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Abstract 

Taxonomic discussions often permeate the broader scientific community slowly, yet they may hold more relevance than typically 
assumed. In man y z ooplankton groups, identification issues arise from cryptic species complexes, increasingly revealed by molecular 
approaches, and from groups with high morphological similarity. These challenges can lead to substantial uncertainties in species-level 
identification, questioning whether the expected species are truly covered and whether those sharing names across ecosystems are 
indeed distinct entities. This review provides a condensed overview on identification challenges of key species in the ICES zooplankton 
time series from the North Atlantic and adjacent seas. Examples are given across all relevant groups, including copepods, gelatinous 
plankton, and meroplanktonic larvae. The high prevalence of challenging species complexes underscores the need to further explore the 
implications of an accurate species assignment for understanding what defines a species’ role in an ecosystem. This review highlights 
the dynamic nature of taxonomy, with species being split and cryptic species eventually becoming morphologically distinguishable. It 
provides examples showing that relying solely on molecular methods without deep taxonomic expertise poses significant risks. It also 
aims to serve as a starting point for delving deeper into the taxonomy of the ICES zooplankton time series. 

Keywords: zooplankton; cryptic species; species complexes; ICES time series 
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ntroduction 

arine zooplankton time series are essential tools to under-
tand the variability of biodiversity patterns and productivity
rocesses in the ocean. Within the International Council for
he Exploration of the Sea (ICES) area, monitoring is a crit-
cal tool for providing advice. From an ecosystem-based as-
essment approach, multiple time-series analyses are crucial
or the understanding of ecosystem change due to climate and
nthropogenic impacts. The ICES Working Group on Zoo-
lankton Ecology (WGZE) and its Zooplankton Status Re-
orts cover over a hundred time series sites, located in west-
rn and eastern North Atlantic, Nordic, Barents, Baltic, North,
nd Mediterranean Seas. The comprehensive examination of
ong-term changes of dominant zooplankton species and food
eb dynamics can provide improved model parameteriza-
ions and a pan-regional view of the relationships between the
hysical–chemical environment and plankton communities in
he context of climate change (reviewed in Ratnarajah et al.
023 ). However, zooplankton monitoring is not a straightfor-
ard task. Taxonomic identification of the zooplanktonic or-
anisms requires a high level of specialization, and the num-
er of expert taxonomists is rapidly declining. Considering
his, a new series of the ICES Leaflets for the identification of
lankton was initiated by the WGZE revising morphological
dentification keys and providing additional molecular infor-
ation on key zooplankton groups. In many monitoring pro-
rams, taxa are morphologically identified at the class or fam-
ly level, and only some groups (e.g. copepods) are routinely
dentified at the genus or species level. Even well-known or
ery abundant species are not always effectively identified due
o the presence of sibling, cryptic, and pseudocryptic species,
r absence of apparent morphological characters to separate
pecies. 
In the last two decades, the use of molecular tools in

ooplankton research has led to a revolution in species de-
ineation and identification as well as in the assessment of
cosystem diversity (Laakmann et al. 2020 , Bucklin et al.
021a ). The increasing application of DNA-based species re-
earch has resulted in a stronger recognition of the exis-
ence and importance of species complexes in marine ecosys-
ems ( Fig. 1 ). However, recent taxonomic findings on newly
evealed species complexes, or on uncertainties of identifi-
ation in some taxa, are often quite slow to penetrate the
roader scientific community. This is due in part to the
elatively low number of journals of common interest, a
eneral persistence of established terminologies in regions
nd data sets, and the lack of resources to routinely re-
ssess taxonomic knowledge on all important taxa in the
cosystem. 
This review therefore aims (i) to provide condensed up to

ate information on various important taxa from the zoo-
lankton time series in the North Atlantic and adjacent seas,
ncluding the Baltic and Mediterranean Seas; (ii) to pinpoint
mportant species complexes as well as identification issues for
ome key taxa; and (iii) to assess the relevance of potentially
idden diversity (cryptic species complexes) or nonaccessible
iversity (highly laborious identification) for ecosystem and
ime series studies. 
In essence, this review is based on the collective expertise

f the ICES Working Groups on Integrated Morphological
nd Molecular Taxonomy (WGIMT) and Zooplankton Ecol-
gy (WGZE) and seeks to shed light on critical issues in the
eld of zooplankton taxonomy in time series data. Yet, we ac-
nowledge the inherent limitations of our exploration, as it
erely scratches the surface of the taxonomic complexity of
ooplankton communities and the inherent questions on the
ole of species identification for ecosystem studies. However,
e believe that it can be a good starting point for discussion on
xploring taxonomic challenges and the significance of species
omplexes in zooplankton time series. 

ey taxa 

axonomic challenges, such as identification of specimens
rom cryptic species complexes or species groups with high
orphological similarity, are not a minor issue restricted to
are taxa. These challenges exert a significant impact on taxa
dentification in many zooplankton time series. A qualitative
eta-analysis (based on top 10 taxa lists for each station
ccording to expert evaluation) summarizing abundant taxa
rom 19 monitoring stations in the North Atlantic Ocean and
editerranean ( Fig. 2 ) has identified 60 species groups, or

axon groups, to be of high importance in the various ecosys-
ems. Most of them belong to the calanoid copepods (mainly
o the genera Acartia , Temora , Calanus as well as Para -,
seudo- , and Clausocalanus ), the cyclopoid genus Oithona ,
o meroplanktonic larvae or gelatinous plankton (ICES 2021 ).
he group of Diplostraca (formerly known as Cladocera) has
igh impact in several ecosystems, but species are varying be-
ween different areas. 
Some widely distributed species that rank in the top ten at
any stations ( Table 1 ) are readily identifiable based on cur-
ent knowledge and are assumed to be conspecific throughout
heir range. One example is Temora longicornis that is among
he most abundant copepods found in the coastal and neritic
aters of the northern hemisphere (Di Capua 2021 ). Other
roups, however, are commonly merged into a very high taxo-
omic level in routine analyses, or species classification differs
etween regions due to uncertainties in identification. For ex-
mple, the calanoid copepod Paracalanus parvus is reported in
he top ten taxa from more than 50% of the monitoring sta-
ions. However, recent studies revealed that diagnostic char-
cters of Paracalanus congeners are variable and that a larger
omplex of species is commonly grouped under the species
ame P. parvus (Cornils and Held 2014 , Kasapidis et al.
018 , Khelifi-Touhami and Ounissi 2023 ). Oithona and Acar-
ia species exhibit high abundance across all stations. The tax-
nomic lists for both genera, as well as for the genera Pseudo-
alanus , Paracalanus , and Clausocalanus , reveal that species-
evel identification is not straightforward, as many monitor-
ng stations report them as unidentified species or as groups
ith mixed genera. They are often referred to as “P-Cal” or
PCPCalanus”categories that comprise the copepodites of the
hree abovementioned genera plus Ctenocalanus (Albaina and
rigoien 2007 , Uriarte et al. 2016 ). 
In addition to the top 10 list coming from expert eval-

ation on the different sites, this review incorporates sev-
ral taxa that we believe are of significant importance and
ose challenges for taxonomic identification. These taxa are
issing in the species ranking, e.g. due to marked seasonal-

ty or suboptimal sampling strategy, which is a critical factor
or many gelatinous groups. We therefore also included the
ydrozoans Obelia , Clytia , and Muggiaea , the scyphozoans
urelia , Cyanea , and Rhizostoma , as well as the ctenophore
eroe as they can be of seasonally high importance at regional
cale. Further challenges in time series analysis may arise from
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Figure 1. Number of publications per year on “DNA and marine species” and “species complex and marine” based on literature search Web of Science, 
January 2024. 
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Figure 2. Time-series stations (black dots) in the ICES area and the Mediterranean included in the meta-analysis of key taxa, modified from the WGZE 
report (ICES 2021 ). 
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Table 1. Ov ervie w of k e y taxa listed in time series within the ICES eco-regions based on e xpert e v aluation from program scientists on the different sites 
(o v ervie w in Fig. 2 ) supplemented by taxa selection by authors of this study. The categories of prominence (Prom.) are specified as: x: prominence not 
reported, 1: occasional prominence, i.e. < 20% of all sites, 2: frequent prominence, i.e. 20%–40% of all sites, and 3: predominant prominence, i.e. > 40% 

of all sites. Please note that the time series use different taxonomic resolutions for the different taxa. 

Taxon as referred to in LTER Prom. Taxonomic challenge 

Copepoda 
Acartia spp. 2 Species identification laborious, also cryptic species 
Acartia bifilosa 2 No cryptic complex reported so far 
Acartia clausi 2 No cryptic complex reported so far 
Acartia longiremis 1 No cryptic complex reported so far 
Acartia tonsa 1 Cryptic species complex 
Calanus spp . 1 Species identification laborious 
Calanus finmarchicus 2 Reliable separation from C. glacialis only via molecular methods or for 

later copepodite stages (CV and adults) 
Calanus helgolandicus 1 Reliable separation from C. finmarchicus via molecular methods or for 

later copepodite stages (CV and adults) 
Centropages spp. 1 Species identification laborious 
Centropages hamatus 2 No cryptic complex reported so far 
Centropages typicus 2 No cryptic complex reported so far, but may be misidentified as C. 

c hierc hiae 
Clausocalanus spp. 1 Species identification laborious 
Clausocalanus arcuicornis 1 No cryptic complex reported so far 
Clausocalanus furcatus 1 No cryptic complex reported so far 
Clausocalanus lividus 1 No cryptic complex reported so far 
Clausocalanus paululus 1 No cryptic complex reported so far 
Clausocalanus pergens 1 No cryptic complex reported so far 
Para-/Clausocalanus spp . 1 Species identification laborious for young stages 
Paracalanus parvus 3 Cryptic species complex 
Pseudo-/Paracalanus spp . 1 Only separable as older copepodite stages/adults 
Pseudocalanus spp . 2 Complex morphometry needed to seperate species 
Pseudocalanus acuspes 1 Complex morphometry needed to seperate species 
Pseudocalanus elongatus 1 Complex morphometry needed to seperate species 
Pseudocalanus minutus 1 Complex morphometry needed to seperate species 
Metridia spp . 1 Difficult species complex 
Metridia lucens 2 Difficult species complex 
Pseudodiaptomus marinus 1 NIS, species identification possible 
Temora longicornis 3 No cryptic complex reported so far 
Temor a stylifer a 1 No cryptic complex reported so far 
Euterpina acutifrons 2 Cryptic species complex suspected 
Oithona spp . 2 Species identification laborious, also cryptic species 
Oithona davisae 1 NIS, might be overlooked or misidentified 
Oithona longispina 1 Species identification laborious 
Oithona nana 2 Cryptic species complex suspected 
Oithona plumifera 1 Species identification laborious 
Oithona similis 3 Cryptic species complex 
Oncaea spp . 1 Species identification laborious 
Oncaea media 1 Cryptic species complex suspected 
Eurytemora carolleeae x NIS, might be overlooked or misidentified 
Eurytemora affinis x Cryptic species complex, mainly estuarine and brackish waters 
Tachidius discipes 1 No cryptic complex reported 
Microcalanus spp . 1 Cryptic species complex (Cornils, unpublished data) 
Nannocalanus minor 1 No cryptic complex reported so far 
Calanipeda aquaedulcis 1 No cryptic complex reported so far 

Diplostraca 
Penilia avirostris 1 Only species in genus, no cryptic complex reported 
Podon intermedius 1 No cryptic complex reported 
Podon spp . 1 No cryptic complex reported, P. leuckartii and P. intermedius only 

species in genus, Pleopis (formerly Podon ) polyphemoides morphol. 
similar 

Evadne nordmanni 1 No cryptic complex reported 
Bosmina coregoni maritima 1 No cryptic complex reported 
Evadne spinifera 1 No cryptic complex reported 
Cerg opagis peng oi 1 No cryptic complex reported 

Cnidaria 
Muggiaea atlantica 1 Eudoxid stage not separable from that of Muggiaea kochii 
Aurelia spp. x Cryptic species complex 
Cyanea spp. x Unresolved taxonomy, laborious species identification 
Obelia spp. x No differentiation on medusae stage 
Clytia spp . x No differentiation on medusae stage 
Rhizostoma spp . x Species identification laborious 
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Table 1. Continued 

Taxon as referred to in LTER Prom. Taxonomic challenge 

Ctenophora 
Pleurobrachia pileus 1 Larval morphology similar for most Tentaculate ctenophore species, i.e. 

no clear morphological differences between species 
Beroe spp. x Unresolved taxonomy, difficult identification 

Mollusca 
Bivalvia larvae 1 Morphology similar for most species, i.e. species identification not 

possible/restricted to experts 
Limacina spp . 1 Several cryptic species complexes 

Cirripedia 
Cirripedia larvae 1 Morphology similar for most species, i.e. species identification not 

possible/restricted to experts 
Decapoda 

Decapod larvae 1 Species identification laborious, restricted to experts, often only genus or 
family level 

Rotifera 
Synchaeta spp . 1 Species identification laborious, restricted to experts, about 20 

marine/brackish species 
Appendicularia 

Appendicularia 1 Identification beyond family level restricted to experts, Oikopleura 
dioica and O. longicauda are cryptic species complexes 

Fritillaria borealis x 
Oikopleura spp. x 

Chaetognatha 
Sagitta spp. x Species identification laborious, restricted to experts 
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species exhibiting low abundance but potentially high eco- 
logical impact, such as chaetognaths as well as from non- 
indigeneous species (NIS) with marked morphological simi- 
larity to native taxa. The latter may be overlooked in rou- 
tine analyses and are a major challenge for monitoring. This 
concerns, for example, the copepods Eurytemora carolleeae ,
Oithona davisae , and several Acartia species . Furthermore, we 
included selected species with potential hidden diversity, such 
as the copepod species complexes Eurytemora and Metridia ,
which are often not prominent in coastal monitoring but can 
be of regionally high importance. 

Please note that for simplification purposes, we use only 
genus and species names in the main manuscript without ref- 
erencing the author of the original description. Even though it 
would be formally correct to include subgenus or subspecies 
nomenclature for some taxa, we have also omitted these for 
simplicity. A list of all mentioned taxa including the authors 
of the original descriptions and the taxonomic status accord- 
ing to the World Register of Marine Species can be found in 
Table S1 . 

Species complexes 

The advent of the genetic revolution in taxonomy has sparked 
a surge in the usage of the term “cryptic species” in the con- 
text of diversity assessments. Nonetheless, the definition and 
usage of the term “cryptic species complex” remains a topic 
of ongoing debate (Korshunova et al. 2019 , Shin and All- 
mon 2023 ). This term is frequently employed to denote con- 
geners that exhibit substantial molecular divergence, but lack 
discernible differences in phenotype and external morphol- 
ogy. However, in many instances, these species groups have 
not been subjected to sufficient morphological examination 
in light of molecular-based knowledge. In such cases, the term 

“pseudo-cryptic”may more accurately capture the taxonomic 
status, rather than “cryptic” (Lajus et al. 2015 ). Several au- 
thors even argue that the term cryptic can only be used on 
 temporary basis and with on-going refinement of morpho- 
ogical identification, differences would finally be identified 
Korshunova et al. 2017 ). Within this review, we will address
omplexes that consist of genetically diverged but so far hid-
en and undescribed species as being a “cryptic species com-
lex,” acknowledging that these may be of only temporary 
xistence. 
The challenges in routine zooplankton identification are di- 

erse. Some taxa cannot be identified to the species or genus
evel throughout their entire pelagic phase due to a lack of
iagnostic characters. Others are cryptic species, which are 
ndistinguishable from closely related species based on estab- 
ished morphological traits. Additionally, congeneric species 
ften require extensive, labor-intensive identification. A com- 
on risk among these taxa is that NIS of the same genus
ay have been overlooked in recent years. NIS are preva-

ent in marine zooplankton communities worldwide and al- 
hough not all NIS become invasive, some can out-compete 
ative species or multiply into pest proportions. NIS have 
ransformed coastal marine habitats around the world and 
ose a serious threat to biodiversity. Small invertebrate species 
ike copepods are scarcely listed in invasive species databases 
Zenetos et al. 2005 ). In this context, it is very important to
trengthen taxonomic initiatives, as well as cooperation and 
nowledge comparison. In marine time series, the risk of un-
etected NIS poses a significant challenge, specifically since 
ome taxa are only identified to genus level. 
This overview is neither all-encompassing nor intended to 

erve as a comprehensive inventory. Rather it aims to highlight
ome of the key issues and raise awareness for the hidden di-
ersity in zooplankton time series. 

axa with elusive identity in the pelagic phase 

arly life stages of many planktonic species are difficult to
dentify, but there are some species that cannot be identi-
ed to species level during their whole pelagic phase. Par-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf077#supplementary-data
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icularly challenging are meroplankton organisms, defined as
hose organisms that spend only part of their life cycle in a
lanktonic stage, for example, fish larvae and dispersive lar-
al stages of benthic invertebrates. Meroplankton taxa often
xhibit specific regional patterns connected to the characteris-
ics of local benthic communities, species phenology, and en-
ironmental conditions. In many ICES regions, particularly
oastal areas, meroplankton taxa are characterized by strong
easonal variations and can be dominant components of zoo-
lankton communities (e.g. Highfield et al. 2010 , Hidalgo et
l. 2014 , Michelsen et al. 2017 , Weydmann-Zwolicka et al.
021 ). However, these important contributors to zooplankton
ommunities are often underestimated during routine time-
eries analyses because most meroplanktonic larvae of benthic
nimals are difficult to identify. In some cases, identification
s not possible beyond the phylum level, mainly due to their
mall sizes and the lack of easily visible taxonomic features.
eroplankton species-, or at least, genus-identification is of-

en only possible with molecular methods (e.g. Heimeier et al.
010 , Brandner et al. 2017 , Walczy ́nska et al. 2019 ) but it can
e costly and time-consuming, thus difficult to apply during
he routine zooplankton time-series analyses. Metabarcoding
lays a pivotal role in addressing these groups, offering rapid
nd cost-effective qualitative assessment of zooplankton di-
ersity through high-throughput DNA sequencing of unsorted
amples (Lindeque et al. 2013 , Schroeder et al. 2020 , Di Ca-
ua et al. 2021 , Ohnesorge et al. 2023 ). Almost all meroplank-
onic groups are more or less affected by these taxonomic dif-
culties. We chose decapods as an example to highlight these
ssues, which are also inherent in polychaetes, mollusks, echin-
derm larvae, and some hydromedusae. 
Decapods are a greatly diverse group of species, ranging

rom shrimps to crabs, containing some economically impor-
ant species, possessing large genetic variability, and a high
evel of cryptic diversity (e.g. Matzen da Silva et al. 2011 ).
onsequently, their larvae exhibit much morphological diver-
ity, requiring extensive knowledge of various morphotypes
nd access to a wide range of bibliographic resources. In ad-
ition to the great diversity of forms and morphological char-
cters that decapod larvae exhibit, making their identification
hallenging in plankton samples, they also undergo changes
hroughout their larval development. The decapod larval cycle
omprises three morphologically different phases: nauplius,
oea, and decapodid. As a result, the first larval stage can
e considerably different from the last stage within the same
pecies (e.g. Martin et al. 2014 ). Although molecular tech-
iques have been used to identify larval decapod species (e.g.
orres et al. 2014 , Carreton et al. 2019 ), these techniques are
ot yet generalized and are unable to separate larval stages.
nformation on the larval morphologies of the various groups
f decapods is summarized in Martin et al. ( 2014 ), and keys
o the morphological identification of the species are avail-
ble (Dos Santos and González-Gordillo 2004 , Buckland et
l. 2017 ). 
Certain species are identified easily due to their character-

stic morphology (e.g. shrimp larvae Lysmata ; De Sousa et al.
022 ), or some types of larval stage can be assigned to cer-
ain taxon groups, e.g. the typical zoea larva as belonging to
rachyuran crabs (e.g. Paula and Dos Santos 2000 ). How-
ver, some decapod groups are difficult to distinguish (e.g.
arideae and Upogebiidae larvae), and others possess larval
tages that are morphologically indistinguishable (e.g. Poly-
iinae species). Upogebiidae larvae can only be distinguished
rom all the caridean (shrimp) larvae by the size of the second
osterior process of the telson. In the case of the Polybiinae lar-
ae and Palaemon larvae, groups common in North Atlantic
oastal waters, the first zoeal stage is morphologically similar
or most of the species and identifying them to species level re-
uires a high level of expertise, looking for very small details
nder the microscope and to have a pool of different stages of
he same species in the sample. In other cases, identification at
he species level is prevented because the larval morphology
f all species of a given group is still unknown. A concerted
ffort to produce high quality morphological identification is
rovided by the new series of the ICES Identification Plankton
eaflets, of which five are already dedicated to decapod larvae
nd more are in progress. However, a greater effort in the use
f integrative taxonomy would have to be made to find a re-
iable tool or method for the identification of decapod larvae.

axa with challenging identification (congeneric 
nd cryptic species) 

istinguishing among congeneric species can be a difficult
ask, especially when the identification process requires re-
ources and taxonomic expertise beyond what is feasible in
ime series analyses. This is especially true for species with
ifficult-to-access or very small morphological characters that
ould require routine dissection and even mounting on mi-
roscope slides to distinguish, especially when highly abun-
ant taxa are involved. In addition, it is typical that fragile
ody parts, such as antennae and swimming legs, are the ones
hat have specific characteristics and these break easily when
ollecting samples. It is particularly challenging to preserve
eatures using fixatives for gelatinous planktonic organisms
n routine sampling. We structured this chapter into hard-
odied plankton and gelatinous plankton and generally refer
nly to the older developmental stages, as some species cannot
e identified in certain pelagic phases (e.g. in larval or juvenile
tages). 

ar d-bodied plankt on 

cartia spp . 
he calanoid copepod genus Acartia requires a revision as
any of the original descriptions are incomplete (Boxshall
nd Halsey 2004 , Belmonte 2021 ). Recently, an updated ICES
lankton leaflet presented a key to the 21 species occurring in
he North Atlantic and adjacent seas (Belmonte 2021 ). Tax-
nomic classification is mainly based on the morphology of
he fifth pair of thoracic legs and spinules or fine hairs on
he last cephalothoracic segment. The main taxonomic chal-
enge in this genus is a high plasticity of morphological char-
cters, probably reflecting the ability to adapt to variable and
tressful environments (Sasaki and Dam 2019 ). Highly vari-
ble setulation of female urosome segments or in the fifth pair
f thoracic legs were reported for Acartia bifilosa (Brylinski
984 , Hirst and Catro-Longoria 1998 ), leading to the discus-
ion about different varieties in the past . Different morphol-
gy in the genital somite of females and in the fifth thoracic leg
n males in A. discaudata suggest the existence of a species va-
iety A. discaudata var. mediterranea (Bradford-Grieve 1999a ,
elmonte 2021 ). This variability within the same species may
ide the presence of cryptic species (Brylinski 1984 ), which
re difficult to confirm by morphological studies alone. 
Phylogenetic studies on this genus are confounded by nu-
erous morphological misidentifications of Acartia species
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deposited in GenBank (Figueroa et al. 2020 ) . In addition, ex- 
ceptionally high and uncommon divergence to other calanoid 
copepods was observed in the genus Acartia when analyzing 
18S rDNA, which highlights the need for further morpholog- 
ical and molecular taxonomic studies to resolve uncertainties 
within this genus (Laakmann et al. 2013 ). Also, high intraspe- 
cific genetic divergence has been found in some species, when 
analyzing different gene–enzyme systems, which may indicate 
the presence of multiple cryptic species (Cervelli et al. 1995 ).
For instance, molecular studies suggest that A. tonsa repre- 
sents a complex of several cryptic species (Caudill and Bucklin 
2004 , Chen and Hare 2008 , da Costa et al. 2011 , Plough et 
al. 2018 , Figueroa et al. 2020 ). Analyses of DNA sequences of 
the mtCOI, and rRNA 16S have revealed several phylogenetic 
clades of A. tonsa in the northwestern Atlantic and Europe,
which are mainly geographically separated, but in some cases,
they occur in sympatry (Caudill and Bucklin 2004 , Figueroa 
et al. 2020 ). Although no morphological differences between 
the cryptic species in A. tonsa have been identified yet, differ- 
ences may exist in size and chemical composition (Plough et 
al. 2018 ). Signs of crypsis are also found for A. clausi , with 
distinct subclades without detectable gene flow between the 
North Sea and the Mediterranean Sea (Di Capua et al. 2022 ).

The ability to produce resting eggs and tolerance to brack- 
ish or hyperhaline environments, enables Acartia copepod 
species to spread to new habitats. Some species of this genus 
have been introduced to Europe by human activities, such as 
A. tonsa , A. margalefi, A. teclae , and A. omorii , and are clas- 
sified as NIS. Acartia tonsa is reported as invasive in some 
coastal areas, where they may exclude local indigenous species 
(Sei et al. 1996 , Aravena et al. 2009 , Belmonte et al. 2011 ).
Just recently, the species Acartia hudsonica has been identi- 
fied several times in the North Sea (Ohnesorge et al. 2023 ),
the Limfjord (Ohnesorge et al. 2024 ), and the Baltic Sea (Hahn 
and Brennan 2024 , Ohnesorge et al. 2024 ) based on molecular 
techniques. This species is generally distributed in the North 
Pacific and the Northwest Atlantic Ocean (OBIS 2024a ), but 
the recurring identification of this species in European waters 
indicates its presence in this area. It remains to be clarified 
(Hahn and Brennan 2024 ) whether this is a NIS in the North 
and Baltic Seas, or whether this species was previously over- 
looked and is hence native to the North and Baltic Seas; note 
that this species was a subspecies of A. clausi before it was 
considered as a single species (Bradford 1976 , Ueda 1986 ). 

Eurytemora spp . 
The calanoid copepod Eurytemora affinis complex is divided 
into at least six major genetically divergent clades, four na- 
tive to the North American continent and one in Europe, re- 
vealed by two mitochondrial gene regions: 16S rRNA and 
cytochrome oxidase I (COI; Lee 1999 , 2000 ). Subsequently,
three geographically separated subclades in Western Europe 
were identified showing sequence divergence of 1.7%–2.1% 

on the COI gene (Winkler et al. 2011 ). The East Atlantic sub- 
clade is present in the Gironde and the Loire, the North Sea 
English Channel subclade spans from the Seine, the Scheldt 
and the Elbe rivers, and the third subclade is restricted to the 
Baltic Sea (Winkler et al. 2011 , Sukhikh et al. 2016 ). Mor- 
phological stasis of sexual characteristics was marked among 
clades, except the European one (Lee and Frost 2002 ). How- 
ever, an increased effort in the last decade, revealed differ- 
entiation at the fine scale of morphological characteristics 
and led to the description of two new species within the 
omplex, E. carolleeae (Alekseev and Souissi 2011 ) and E.
aspica (Sukhikh and Alekseev 2013 ). Eurytemora carolleae ,
ormerly the Atlantic clade, is considered native to brackish 
aters of North America and has invaded freshwater envi- 
onments, such as the Great Lakes (Winkler et al. 2008 , Lee
016 , Vasquez et al. 2016 ) and more recently European wa-
ers (Sukhikh et al. 2013 , 2019 , Labuce et al. 2018 , 2020 ).
esides the identification of the cryptic species using molecu- 
ar approaches (Favier and Winkler 2014 , Cabrol et al. 2015 ),
orphometry on adults can help to distinguish the species 
nd clades of the species complex (Sukhikh et al. 2013 , La-
us et al. 2020 ). Three morphometric indices are well distin-
uished based on the caudal rami, the shape of the female gen-
tal segment, and the exopodite first segment in male leg P5.
hortcomings of this method, however, are that these measure- 
ents are time consuming, thus not likely to be applied in rou-
ine time series zooplankton identification and furthermore 
his morphometry approach is restricted to adult individuals 
or the moment. Alternatively, a relatively simple quantitative 
olymerase chain reaction (qPCR) approach might be a cost 
nd time efficient solution, to detect the occurrence of the in-
asive E. carolleeae in samples (Avila et al. 2024 ). 

ithona spp . 
he cyclopoid copepod genus Oithona is common and very 
iversified in the ICES regions (Wootton and Castellani 2017 ),
hough many surveys report generically about Oithona spp.
e.g. John et al. 2001 , Licandro et al. 2001 , Continuous Plank-
on Recorder Survey Team 2004 , Eloire et al. 2010 ). The most
ommon species occurring in the North Atlantic and adja- 
ent seas have been recently presented in an ICES plankton
eaflet (Mazzocchi 2019 ) that is mainly based on the compre-
ensive taxonomic review of Nishida ( 1985 ). Oithona species
re mostly small and thin copepods whose abundance is cer-
ainly underestimated in mesozooplankton samples due to the 
ypical use of 200 μm mesh nets (Gallienne and Robins 2001 ),
nd whose specific identification in routine analyses is in many
ases rather difficult because it is based on the ornamentation
f the swimming legs and mouthparts as well as the shape of
he rostrum (Nishida 1985 ). 
A clear latitudinal gradient appears in the distribution of 
ithona richness, with only three species occurring in the Arc-

ic and subArctic regions, seven in the eastern North Atlantic,
nd up to 23 in the Mediterranean Sea (Razouls et al. 2024 ).
n this latter basin, the cooccurrence of congeneric species 
s characterized by their distinct seasonal peaks (e.g. Maz- 
occhi and Ribera d’Alcalà 1995 ), and contrasting distribu- 
ional preferences in the horizontal (Mazzocchi et al. 2014 )
r vertical space (Scotto di Carlo et al. 1984 , Lindegren et
l. 2020 ). For example, O. atlantica , common in the ICES
rea, is quite difficult to distinguish from the closely allied O.
ongispina (Nishida 1985 ) with which it shares the Mediter-
anean epipelagic habitat. Similarly, O. decipiens , occurring 
n the Mediterranean Sea and in the Ibero-Moroccan area, is
ery similar to O. similis in its general shape and differentiates
or spinulation on thoracic leg exopods. 
Molecular analyses suggest that the cosmopolitan and of- 

en abundant O. similis is likely a species complex with dis-
inct lineages separated by climate zones (polar and temper- 
te), oceans (Atlantic and Pacific), and hemispheres (Arctic 
nd Antarctic) (Cornils et al. 2017 ). Although no morpho-
ogical differences have been described so far for the putative
pecies within O. similis s.l. (Cornils et al. 2017 ), it is likely
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hat morphometric diagnostic characters do exist. Shuvalov
 1972 ) described significant differences in prosome lengths
nd cephalon shape between O. similis specimens from Arctic
nd North Atlantic water masses and based on these results he
tated that O. similis might be a polytypic species with distinct
emperature preferences. It has also been speculated whether
. helgolandica described by Claus ( 1863 ) and O. similis are
ynonymous (see review in Cepeda et al. 2016 ). Both descrip-
ions, however, are incomplete and the description of O. hel-
olandica may also match with O. nana (Sars 1918 ). 
Oithona setigera may also be a species complex that is
idely distributed in the ICES regions. This is supported by
arran’s ( 1929 ) previous suggestion of two groups for the Irish
nd Pacific specimens, as well as differences in size and other
inor morphological characters that have been observed in
pen Mediterranean populations (MG Mazzocchi, personal
bservations). 
The copepod species O. davisae has become increasingly

bundant in the ICES area or has replaced native species such
s O. similis or O. nana (Cornils and Wend-Heckmann 2015 ,
sinibilir et al. 2016 , Pansera et al. 2021 ). Oithona davisae
s native to the eutrophic coastal waters of East Asia with
ronounced seasonality in hydrography and food availabil-
ty (Nishida 1985 , Uye and Sano 1998 ). During the past two
ecades, it has been introduced to many European coastal
egions including e.g. the Black Sea (Temnykh and Nishida
012 , Isinibilir et al. 2016 ), the North Sea (Cornils and Wend-
eckmann 2015 ), the Bay of Biscay (Uriarte et al. 2016 , Bar-
oeta et al. 2020 ), and the Mediterranean Sea (Saiz et al. 2003 ,
erbıyık Kurt and Be ̧s iktepe 2019 , Vidjak et al. 2019 , Pansera
t al. 2021 ). The most likely vectors of its introduction are
he ballast water tanks of ships, as has been suggested for the
orth Pacific (Choi et al. 2005 ). Oithona davisae is charac-
erized by a strong ventrally pointed rostrum and thus eas-
ly distinguishable from indigenous species such as O. similis
r O. nana in the Northern Atlantic (Ferrari and Orsi 1984 ,
ornils and Wend-Heckmann 2015 ). Additional morpholog-
cal information is available in Nishida ( 1985 ) or Temnykh
nd Nishida ( 2012 ). 

aracalanus spp . 
pecies of the calanoid copepod genus Paracalanus are abun-
ant in the pelagic shelf ecosystems of the Northern At-
antic and the Mediterranean Sea (Siokou-Frangou 1996 ,
BIS 2024b ). Of the 12 accepted species (Walter and Boxshall
024 ), 6 occur in the ICES area of the Northern Atlantic
cean and the Mediterranean Sea: P . aculeatus , P . denuda-
us , P . indicus , P . nanus , P . parvus , and P . quasimodo (Ra-
ouls et al. 2024 ) . One species , P. tropicus , occurs in sub-
ropical to tropical regions of the Northern Atlantic Ocean
Khelifi-Touhami and Ounissi 2023 ). A molecular phylogeny
onfirmed the separation of the Paracalanus genus into two
pecies groups (Cornils and Blanco-Bercial 2013 ): the P. ac-
leatus group (with P. denudatus ) and the P. parvus group
all other Paracalanus species). Morphologically, the P. aculea-
us and the P. parvus species group differ from each other
n the segmentation of the antennules (Sewell 1929 ), and the
orphometry of the fourth pair of thoracic legs (Cornils and
lanco-Bercial 2013 ). 
In the ICES region, species of the P. parvus group are often

bundant. While P. nanus is morphologically easy to distin-
uish from the other species due to its small size and the short
ntennules, the separation of the other three species, namely
 . parvus , P . indicus , and P . quasimodo is based mainly on the
ifferences in serration of the distal outer edges of the third ex-
pods of the swimming legs and the shape of the cephalotho-
ax (Bowman 1971 , Bradford 1978 , Bradford-Grieve et al.
999 , Khelifi-Touhami et al. 2007 ). Due to net sampling how-
ver, the distal parts of the swimming legs are often broken,
aking correct morphological identification often impossible.
ecent molecular studies using the mitochondrial COI gene
ave shown that the abovementioned diagnostic characters of
he three species are not persistent and that our knowledge on
heir distribution has to be revised (Cornils and Held 2014 ,
asapidis et al. 2018 , Di Capua et al. 2022 ). It was long as-
umed that the species P. parvus was widely distributed in the
CES region and also in other oceans. Based on the molecu-
ar results, the species P. parvus s.s., originally described from
he North Sea (Claus 1863 ) appears to be restricted to the
ortheastern Atlantic Ocean, including the Mediterranean
ea (Cornils and Held 2014 , Kasapidis et al. 2018 ) and is not a
anmictic species. Specimens from the northwestern Atlantic
cean are morphologically indistinguishable from P. parvus
.s., but are genetically divergent and thus belong to a pu-
ative new species (Cornils and Held 2014 ). In the Mediter-
anean Sea, a molecular study revealed that not P. parvus ,
ut the subtropical P. quasimodo is the most abundant Para-
alanus species (Kasapidis et al. 2018 ). Paracalanus parvus s.s.
s only found in the northern parts of the Mediterranean and
he Black Sea. The subtropical P. indicus occurs in low num-
ers in the Mediterranean Sea. 

seudocalanus spp . 
n contrast to the species complexes in the previous chapters,
n which recent molecular studies revealed a whole species
omplex hidden behind a single species name, interspecific
orphological differentiation and potential cooccurrence of
ryptic species have been discussed for the calanoid copepod
enus Pseudocalanus for some time. Based on morphology,
rost ( 1989 ) suggested that the genus comprises seven species
n total ( P . acuspes , P . elongatus , P . moultoni , P . minutus , P .
ajor , P. mimus , and P. newmani ), using e.g. the shape of

he cephalosome, ornamentation of the thoracic segments, and
ength ratios between urosome segments. Today, the validity of
. major is subject to discussion leaving six accepted species
or this genus (Walter and Boxshall 2024 ). All species have
een reported to occur in the North Atlantic Ocean (Corkett
nd McLaren 1979 , Frost 1989 ). However, the species are re-
arkably similar morphologically and several lack diagnos-
ic characters preventing routine microscopic identification,
hile the mitochondrial COI barcode region has proven to be
eliable for discriminating and identifying the species (Bucklin
t al. 1998 , 2001 , 2003 , Unal et al. 2006 , Aarbakke et al. 2011 ,
aakmann et al. 2013 , Bailey et al. 2016 , Questel et al. 2016 ).
pecies delimitation by morphological parameters seems to be
ess unambiguous than originally assumed. And while investi-
ations show morphological differences between species that
ave so far been overlooked (Markhaseva et al. 2012 ), this
pecies group is often being assigned to a cryptic species com-
lex highlighting the fluidity of the taxonomic categories used
n this review. 
The congeners have been shown to exhibit unique life his-

ory characteristics and distinct ecological roles in the pelagic
cosystem (Cleary et al. 2016 , Aarbakke et al. 2017 , Crouch
t al. 2020 , Ershova et al. 2021 ) as well as different pat-
erns of population connectivity and phylogeography in the
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Figure 3. Pseudocalanus species in the North Atlantic and adjacent seas, modified from Aarbakke et al. ( 2014 ), dots or squares = species detected by 
morphological species identification modified from Frost ( 1989 ) and Markashe v a et al. 2012 stars = species detected by genetic species identification 
modified from Bucklin et al. ( 1998 , 2001 , 2022 ), Questel et al. ( 2016 ), Unal et al. ( 2006 ), Grabbert et al. ( 2010 ), Aarbakke et al. ( 2011 ), Holmborn et al. 
( 2011 ), Laakmann et al. ( 2013 ), Crouch et al. ( 2020 ), Ersho v a et al. ( 2021 ). 
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Atlantic (Aarbakke et al. 2011 , 2014 ). They exhibit distinct 
biogeographical distributions, although with significant areas 
of overlap. This species complex exemplifies how integrating 
genetic and morphological studies can complement and vali- 
date each other ( Fig. 3 ), effectively characterizing species dis- 
tributions. For instance, this approach facilitated the detec- 
tion of P. moultoni in the North Sea (Laakmann et al. 2013 ) 
and identified distributional boundaries with potentially low 

abundances, such as P. elongatus in the Baltic Sea (Grabbert 
et al. 2010 ). 

Clausocalanus spp . 
Clausocalanus , one of the calanoid copepod genera most 
widespread worldwide, occurs in the ICES basins with 11 
of its 13 species (Razouls et al. 2024 ). The most common 
representatives in those regions are C . arcuicornis , C . furca- 
tus , C . jobei , C . lividus , C . mastigophorus , C . parapergens ,
C. paululus , and C. pergens (e.g. Williams and Wallace 1975 ,
Fragopoulu et al. 2001 , Continuous Plankton Recorder Sur- 
vey Team 2004 , Licandro and Icardi 2009 , Mazzocchi et al.
2014 , Wootton and Castellani 2017 ). These species occur 
both in offshore and coastal waters and inhabit mainly the 
epipelagic layers, although some of them have a more exten- 
sive vertical distribution (Scotto di Carlo et al. 1984 ). Clear 
differentiations of their ecological niches have been revealed,
for the most abundant species, based on their seasonal occur- 
rence and succession (Mazzocchi and Ribera d’Alcalà 1995 ,
Peralba and Mazzocchi 2004 , Mazzocchi et al. 2011 ) and lat- 
itudinal distribution (Schnack-Schiel et al. 2010 , Peralba et al.
2017 ). The ecological, biological, and taxonomic features of 
Clausocalanus have been recently synthesized in an updated 
ICES plankton leaflet (Mazzocchi 2020 ). The morphological 
identification of Clausocalanus species is not straightforward 
because, for females, it is based on the shape of the seminal re- 
ceptacle (Frost and Fleminger 1968 ). Although this character 
is visible at high magnification at the stereomicroscope in spec- 
imens fixed with formalin, it is more difficult to distinguish in 
samples fixed with ethanol. Males are even more arduous to 
iscern (Frost and Fleminger 1968 ), and copepodites are of-
en grouped with those of Paracalanus , Pseudocalanus , and
tenocalanus because of their similar general characteristics.
olecular tools such as a restriction fragment length proce- 
ure can facilitate the identification of these stages (Blanco- 
ercial and Alvarez-Marques 2007 ), also allowing to separate 
hem from the other genera. The ability to identify both sexes
nd the juvenile stages will improve our knowledge of Clauso-
alanus diversity and population structure (e.g. Peralba et al.
017 ) to further understand their adaptations to the different
CES regions. Molecular investigations on intraspecific diver- 
ence are scarce in Clausocalanus and have only been found
n C. lividus differentiating Atlantic and Pacific populations 
o far (Blanco-Bercial et al. 2011 ), but none pertains to the
CES region. 

alanus spp . 
ome taxa play key roles in marine ecosystems, due to their
umbers and biomass, or may be used as indicators of water
asses. Therefore, their correct identification is extremely im- 
ortant, although sometimes it requires highly laborious iden- 
ification with efforts that might be beyond resources for rou-
ine, time-series analyses. A good example of such taxa present
n the ICES area are four representatives of the calanoid
opepod Calanus species complex: C . helgolandicus , C . fin-
archicus , C. glacialis , and C. hyperboreus , which are mor-
hologically similar, especially as young development stages.
lthough they have overlapping geographic ranges, there is a
atitudinal gradient in their distribution: C. helgolandicus is 
egarded as a more temperate species, C. finmarchicus as a
orth Atlantic one, and C . glacialis and C . hyperboreus are

he Arctic congeners; however, the northern species are be- 
ng gradually replaced by the respective southern ones due to
limate change (Beaugrand et al. 2002a , Chust et al. 2014 ,
eydmann et al. 2014a ). While C. hyperboreus copepodites 
f stage 4 and older are easily identified by morphology and
ize (Brodskii et al. 1983 ), the identification of the congeneric
pecies C . helgolandicus , C . finmarchicus , and C . glacialis is



10 Peters et al. 

s  

(  

l  

t  

a  

a  

o  

a  

a  

d  

m  

r  

s  

C  

a  

a  

a  

o  

2  

2  

c  

l  

i  

e  

G  

a
 

b  

2  

t  

a  

i  

2  

a  

a

M
I  

g  

M  

(  

a  

l  

p  

O  

t  

d  

t  

d  

w  

a
 

l  

e  

p  

o  

c  

1  

b  

t  

p  

d  

g  

O  

g  

s  

S  

t  

t

O

T  

a  

t  

a  

b  

(  

a  

d  

u  

t  

d  

R  

i  

2  

o  

2  

t  

s  

l  

o  

p  

1  

a  

q  

a  

e  

s  

d  

O  

s  

s  

l  

2  

l  

l  

(  

T  

s  

a

T
O  

N  

C  

r  

g  

v  

l  

l  

d  

h  

t  

a  

(  

(  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/6/fsaf077/8166648 by guest on 26 N
ovem

ber 2025
till problematic, especially in the areas of their cooccurrence
North Sea and the European Arctic, respectively). Morpho-
ogical differences between these three species, such as: struc-
ure of the first basipodite of female fifth pair of thoracic legs
nd structure of fifth pair of legs in males, shape of forehead
nd its internal structures, and shape of posterolateral margin
f the last thoracic segment and the genital segment, as well
s the pore signature patterns of female urosome (Fleminger
nd Hulsemann 1977 ), are hardly used in ecological research
ue to their time-consuming examination and limitation of the
ethod to older life stages. Therefore, in a long-term time se-
ies, such as the Continuous Plankton Recorder, only species-
pecific abundance for the copepodite stage 5 and adults of
 . helgolandicus and C . finmarchicus are reported (Wilson et
l. 2015 ). A common method to distinguish C. finmarchicus
nd C. glacialis is based on differences in size of the prosome,
lthough this approach is inaccurate because the species may
verlap in sizes in areas where they cooccur (Lindeque et al.
006 , Weydmann and Kwa ́sniewski 2008 , Gabrielsen et al.
012 ) and show high plasticity depending on environmental
onditions (Trudnowska et al. 2020 ). Despite species morpho-
ogical similarities, genetic identification of Calanus congeners
s possible at any development stage with the use of differ-
nt molecular tools (Hill et al. 2001 , Lindeque et al. 2006 ,
abrielsen et al. 2012 , Weydmann et al. 2014b , Weydmann et
l. 2017 , Choquet et al. 2018 ). 
There has been an ongoing discussion about hybridization

etween C. finmarchicus and C. glacialis (Parent et al. 2012 ,
021 , Choquet et al. 2020 , 2023 ). However, a recent publica-
ion with advanced genetic tools (SNPs and transcriptomes)
nd a reassessment of existing genetic data has found no ev-
dence for hybridization in these two species (Choquet et al.
023 ), suggesting that despite their morphological similarity
nd sympatric occurrence, the reproductive timing may act as
 barrier for hybridization. 

etridia spp . 
n the ICES regions, seven species of the calanoid copepod
enus Metridia have been found: M. brevicauda , M. discreta ,
. longa , M. lucens , M. pacifica , M. princeps , and M. venusta

O’Brien et al. 2024 ). The most widespread species in temper-
te and boreal waters of the Atlantic and Pacific Oceans is M.
ucens . In the Arctic Ocean, this species is considered as an ex-
atriate species of Atlantic origin (Kosobokova et al. 2011 ).
riginally, M. lucens was described from the North Sea off

he Norwegian coast (Boeck 1865 ). Based on morphological
ifferences in the shape of the head and the length of the se-
ae of the fifth swimming leg of the females, Brodsky ( 1950 )
escribed a new, closely related species from Northern Pacific
aters ( M. pacifica ), although these characteristics are vari-
ble (Bradford-Grieve 1999b ). 
First molecular results confirmed a separation of North At-

antic and North Pacific specimens (Bucklin et al. 1995 ). How-
ver, not all specimens of Pacific origin can be attributed to M.
acifica described by Brodsky ( 1950 ), as they show a variation
f morphological characteristics intermediate between M. lu-
ens and M. pacifica (Mazzocchi et al. 1995 , Bradford-Grieve
999b ). However, a recent study confirmed the presence of
oth M. pacifica and M. lucens with distinct biogeographies in
he northern Pacific (Hirai et al. 2022 ). Further research com-
aring COI haplotypes showed that M. lucens significantly
iffered between ocean basins (Atlantic–Pacific), and also re-
ional isolation between the NW Atlantic and the NE Atlantic
cean was observed (Blanco-Bercial et al. 2014 ). Similar re-
ional isolation and evidence of cryptic species has been ob-
erved in M. lucens north and south of the Polar front in the
outhern Ocean (Stupnikova et al. 2013 ). Further investiga-
ions are necessary to elucidate the status of M. pacifica and
he putative cryptic speciation within M. lucens . 

ncaea spp . 
he Oncaeidae is a large family of planktonic copepods, very
bundant from neritic areas to open seas and from epipelagic
o deep waters (e.g. Boxshall and Halsey 2004 , Razouls et
l. 2024 , 2024). The ecological traits and the role played
y Oncaeidae in planktonic communities are poorly known
Böttger -Schnack 1992 , Böttger -Schnack and Schnack 2009 )
nd many aspects of their biology are still not completely un-
erstood. The taxonomic allocation of Oncaeidae is currently
nder debate. This family is within the order Cyclopoida (Wal-
er and Boxshall 2024 ), while some authors place Oncaei-
ae within Poecilostomatoida (e.g. Boxshall and Halsey 2004 ,
azouls et al. 2024 ). Also, at genus level the classification
s debatable (Heron and Frost 2000 , Boxshall and Halsey
004 , Di Capua et al. 2017 ). Currently, 70 different species
f the genus Oncaea are reported worldwide (Razouls et al.
024 , 2024). A combination of several microscopic charac-
ers is necessary to identify species within the genus Oncaea
.s. (Böttger-Schnack 2001 ). In recent years, further morpho-
ogical studies have been carried out to improve oncaeid tax-
nomy and additional morphological characters have been
roposed to distinguish Oncaea species (e.g. Böttger-Schnack
999 , 2001 , Di Capua and Boxshall 2008 , Böttger-Schnack
nd Schnack 2013 ). Overall, Oncaea species identification re-
uires advanced taxonomic expertise, and, in many cases, di-
gnostic morphological details are visible only using scanning
lectron microscopy technique. The revised genus Oncaea s.
tr. includes eight species (O . venusta , O . mediterranea , O . me-
ia , O. scottodicarloi , O. curta , O.waldemari , O. clevei , and
. paraclevei ), five of which occur in ICES basins. Taxonomic
tudies have shown that many apparently well-known species,
uch as O. venusta and O. media , are complexes of closely re-
ated, yet distinct, species (Heron and Frost 2000 , Elvers et al.
006 , Böttger-Schnack and Machida 2011 ). Only few molecu-
ar studies have been conducted so far to disentangle the phy-
ogenetic relationship and connectivity within the Oncaeidae
Böttger-Schnack and Machida 2011 , Di Capua et al. 2017 ).
axonomic features of Oncaeidae have been recently synthe-
ized in an updated ICES plankton leaflet (Böttger-Schnack
nd Schnack 2025 ). 

emora spp . 
nly three copepod species of Temora are known from the
orth Atlantic, all of which are distinct in morphology (Di
apua 2021 ) and COI barcodes (GenBank). Based on cur-
ent knowledge, no cryptic speciation is suspected within the
enus. The reason for including this genus anyway in the re-
iew despite this, is that there is a high degree of morpho-
ogical similarity between the congeners T. turbinata and T.
ongicornis , with differences observed primarily in the cau-
al rami and anal segment length. This similarity poses a
igh risk of misidentification and undetected invasion. Temora
urbinata was classified as a NIS in Brazilian waters (Soares et
l. 2018 ) and was reported once from the English Channel
OBIS 2024c ) as a potential indicator of warm water inflow
Beaugrand et al. 2002b ). While it has been observed regularly



Taxonomic uncertainty in North Atlantic and Mediterranean zooplankton 11 

 

 

 

 

 

 

 

 

 

 

 

s
R

G

S
C  

1  

t  

c  

B
w
n  

o
p
s
p
1  

r
l
c
a
s
s  

M  

c  

w  

a
d  

d
t  

(  

t
w
t
e  

T
n  

t

A
T
v  

s  

r  

D  

a  

A
(  

2  

g
p  

r  

s
d
G

 

a  

(  

s  

c
A  

r

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/82/6/fsaf077/8166648 by guest on 26 N
ovem

ber 2025
in neritic water of the NW Atlantic (OBIS 2024c ), its distri- 
bution in European waters is much less certain. 

Euterpina acutifrons 
The copepod Euterpina acutifrons is recognized as a glob- 
ally distributed warm-water species. It spans diverse regions 
from the southern coast of Norway to the Brazilian coast,
with extensive records in Oceania, the Mediterranean, and 
both North American coasts (Lang 1948 , Walter and Boxshall 
2024 ). It has been found in ballast water tanks as confirmed 
morphologically in the Mediterranean and European coastal 
waters (Choi et al. 2005 , David et al. 2007 , Cabrini et al.
2019 ). Metabarcoding studies indicate its presence to British 
Columbia, Svalbard, and Australian waters (Takahashi et al.
2020 , Van den Heuvel-Greve et al. 2021 , Bailey et al. 2022 ).
However, the presence in metabarcoding studies, coupled with 
the prior absence of observations of the species e.g. in the 
Arctic, suggests a recent introduction, still low in abundance.
Morphological variability within E. acutifrons has been ob- 
served, particularly in males (Haq 1965 , Stancyk and Mor- 
eira 1988 ), resulting in distinctly different male-types. Breed- 
ing experiments indicate that these differences are rather in- 
traspecific variation and not an indication of a sympatric 
species complex (Haq 1972 ). While morphological and molec- 
ular approaches seemingly agree on a cosmopolitan distribu- 
tion, molecular data of the East Atlantic population intro- 
duces the possibility of undiscovered cryptic diversity within 
E. acutifrons (Blanco-Bercial et al. 2014 ). Further scrutiny,
especially in remote locations, is recommended to unravel 
potential hidden diversity within this species (Blanco-Bercial 
et al. 2014 ) 

Diplostraca 
Only eight diplostracan branchiopod species (formerly known 
as cladocerans) from five genera are truly marine (Egloff et al.
1997 ): Evadne nordmanni and E. spinifera , Pleopis polyphe- 
moides and P. sc hmac k eri (the latter mainly distributed out- 
side the North Atlantic area), Podon leuckartii , P. intermedius ,
Pseudevadne tergestina , and Penilia avirostris . Furthermore,
the endemic Bosmina coregoni as well as the NIS Ponto- 
Caspian Cercopagis pengoi and Evadne anonyx occur in the 
brackish environment of the Baltic Sea (Möllmann et al. 2002 ,
Telesh and Ojaveer 2002 , Rodionova and Panov 2006 , Telesh 
et al. 2008 ). This introduction of NIS diplostracan species is 
observed also in other basins. For example, P. sc hmac k eri of 
Indo-Pacific origin has recently arrived into the Levantine Sea 
(Eastern Mediterranean), where it was found for the first time 
in 2012 and has become abundant since then (Terbiyik-Kurt 
and Polat 2018 ). For the currently known and described ma- 
rine taxa, as well as for B. coregoni and C. pengoi in the Baltic 
Sea, the challenges in identification are mainly due to the small 
size of the organisms and their delicate bodies, as all these 
species are well described and easily distinguishable by distinct 
morphological characteristics (see Onbé 1999 and references 
therein). The occurrence of cryptic species has not been men- 
tioned so far in marine diplostracans. A phylogenetic analysis 
of six marine species, based on COI, has supported an an- 
cient radiation of Podonidae and a recent worldwide expan- 
sion of Sididae and has highlighted the identity or high sim- 
ilarity of haplotypes in different oceans (Durbin et al. 2008 ).
The worldwide distribution of P. avirostris has been reviewed 
by Della Croce and Venugopal ( 1972 ) and that of six of the 
even marine podonid species by Mordukkai-Boltovskoy and 
ivier ( 1987 ). 

elatinous plankton 

agitta spp . 
haetognaths are a small phylum with only two orders and
20 species, but are widely distributed in many marine ecosys-
ems. In ICES ecoregions, 28 epi- and mesopelagic species oc-
ur of which 20 species belong to the genus Sagitta (Pierrot-
ults 2020 ). Identification of chaetognaths is not straightfor- 
ard, requires substantial taxonomic expertise and chaetog- 
aths are often only identified in time series samples to genus
r phylum levels. The general morphological simplicity of the 
hylum has led to much debate about chaetognath taxonomy 
pecifically whether to divide the genus Sagitta into multi- 
le genera or to maintain the original classification (Tokioka 
965 , Bieri 1991 ). Resolving this taxonomic debate will likely
equire a comprehensive approach integrating both morpho- 
ogical and molecular data. Several studies examining mito- 
hondrial DNA variation within species uncovered unusu- 
lly high levels of genetic variation, often combined with 
patial genetic structure, and suggest the presence of cryptic 
pecies (Peijnenburg et al. 2004 , 2006 , Jennings et al. 2010 ,
iyamoto et al. 2012 , Kulagin et al. 2014 ). For example, the

oastal species Sagitta setosa (accepted as Parasagitta setosa ),
hich is abundant in the North East Atlantic, Mediterranean,
nd Black Sea, shows genetic isolation among populations in 
ifferent European basins (Peijnenburg et al. 2004 , 2006 ). Ad-
itionally, highly divergent mitochondrial lineages were found 
hat did not match morphology, geography or nuclear DNA
Peijnenburg et al. 2005 , 2006 ). Marlétaz et al. ( 2017 ) showed
hat by analyzing entire mitochondrial genomes combined 
ith nuclear genetic markers, chaetognaths have unusual pat- 
erns of mitochondrial evolution and can have extreme lev- 
ls of mitochondrial diversity without reproductive isolation.
herefore, conclusions about cryptic speciation in chaetog- 
aths cannot be drawn in the absence of information from
he nuclear genome. 

urelia spp . 
he cosmopolitan genus Aurelia hides considerable cryptic di- 
ersity (Dawson and Jacobs 2001 , Schroth et al. 2002 , Daw-
on 2003 , Lawley et al. 2021 ) and the number of valid species
emains subject to ongoing debate (Mayer 1910 , Kramp 1965 ,
awson and Jacobs 2001 , Jarms and Morandini 2019 , Collins
nd Morandini 2025 ). By 2021, WoRMS listed 11 described
urelia species, out of which 7 were genetically characterized 
Dawson and Jacobs 2001 , Dawson et al. 2005 , Scorrano et al.
016 , Brown et al. 2021 , Collins and Morandini 2025 ), while
enetic studies had identified 17 additional clades, which were 
reviously only numbered. Lawley et al. ( 2021 ) attempted to
esolve the problem by classifying several of these clades based
olely on genetic data without accompanying morphological 
escriptions, an approach that also faced criticism (Brown and 
ibbons 2022 , Lawley et al. 2022 ). 
Based on the current taxonomic status, the moon jelly A.
urita is not the only species observed in the ICES region
Lawley et al. 2021 , Moura et al. 2023 ) as there are at least
even recorded Aurelia species: A. hyalina (Greenland), A.
oerulea (NE Atlantic and Mediterranean), A. aurita (North 
tlantic, Black Sea, and Baltic Sea), A. solida (Mediterranean),
ecently described A. pseudosolida (Adriatic Sea), A. relicta 
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Adriatic Sea—Mljet lakes), and A. persea (East Mediter-
anean) (Scorrano et al. 2016 , Lawley et al. 2021 , Gari ́c and
atisti ́c 2022 , Gittenberger et al. 2023 ). Aurelia solida seems
o be the main bloom forming species in the coastal waters
f the Mediterranean Sea, while A. aurita is the same for the
lack Sea, North Atlantic, and Baltic area. Aurelia coerulea
nhabits ecosystems with less stable hydrological conditions
ompared to the open sea (Scorrano et al. 2016 ). Aurelia re-
icta is an endemic species from marine Mljet lakes (Adriatic),
hile A. persea is a recently resurrected species based on ge-
etic data of an Aurelia species from the East Mediterranean
Lawley et al. 2021 ). A recent paper by Moura et al. ( 2023 )
resented morphological and genetic evidence for another two
urelia species from the Azores, which are still not formally
escribed. 
Overall, the Aurelia species complex remains challenging

s species are very difficult to identify based on morphology.
orphological characters are e.g. the number of marginal ten-

acles, the morphology of gonads, manubrium, and rhopalia
r the number and organization of radial canals. Many species
an only be reliably identified through genetic analysis. Some
uthors overcome this challenge by referring to A. aurita s.l.
e.g. Suzuki et al. 2018 , Goldstein and Javidpour 2023 ). We
ant to emphasize here that species identification and the
se of the term A. aurita in many publications has to be ap-
roached with caution. 

yanea spp . 
he taxonomy of the scyphozoan genus Cyanea , which is
idely distributed in neritic waters of the target region and
eyond, is not fully resolved. While WoRMS currently lists
8 species of Cyanea as valid (Collins and Morandini 2025 ) ,
ssessing the actual diversity in the genus is currently not pos-
ible (Jarms and Morandini 2019 ), and a taxonomic revision
ntegrating morphological and molecular data is required. Re-
ent molecular studies have suggested undescribed cryptic di-
ersity among Cyanea from Canadian waters (Hotke 2015 ),
nd studies on Cyanea specimens collected at the northwest
tlantic coast (Niantic River, Chesapeake Bay, and Gulf of
exico) revealed the occurrence of two species not identi-

al to Cyanea capillata (Bayha 2005 ). Agassiz ( 1862 ) already
ifferentiated three species with morphological differences in
olor, shape of marginal lappets, size of oral folds, and the
imensions of the subumbrellar muscles and with successive
ore distribution areas along the east coast of North America
rom north to south: C . arctica , C . fulva , and C . v er sicolor .
ewkes ( 1881 ) interpreted the morphological differences be-
ween the three species as variations and combined them un-
er the name C. arctica . Later C. arctica , C. fulva , and C. ver-
icolor were considered to be varieties of C. capillata (Mayer
910 , Stiasny and van der Maaden 1943 , Kramp 1961 ). To
larify whether C. fulva and C. v er sicolor are valid species in
he northwestern Atlantic as recently suggested (Jarms and
orandini 2019 , Collins and Morandini 2025 ), additional

tudies combining molecular and morphological approaches
re needed. Three species are known to occur in European
aters: C . capillata , C . lamarckii , and the recently described
. tzetlinii (Kolbasova et al. 2015 ). Cyanea capillata is found
hroughout the region and is sympatric with both C. lamar-
kii , which has the core of its distribution in the North Sea
nd around the British Isles, and C. tzetlinii , which has so far
nly been recorded from the White Sea. The main diagnos-
ic difference between C. capillata and C. tzetlinii is the pres-
nce of a rhopalial bulb with an eyespot in the latter species
Kolbasova et al. 2015 ). Combined morphological and molec-
lar genetic analysis confirmed that C. capillata and C. lamar-
kii can be differentiated by diagnostic morphological features
s well as by mitochondrial (COI) and nuclear (18S rDNA)
ene fragments (Holst and Laakmann 2014 ). However, a mor-
hological differentiation between the two species requires
lose inspections whereas the simple identification based on
he bell color is not reliable, because of high color variations
n the “blue jellyfish” C. lamarckii , which can also be yellow
Holst and Laakmann 2014 ). Gastrovascular intrusions into
he circular and radial muscle folds are present in C. capil-
ata in specimens with a rhopalar diameter > 10 mm but are
ot found in C. lamarckii s pecimens in any size, whereas C.
amarckii medusae with a rhopalar diameter of < 10 mm can
e distinguished from C. capillata by the presence of con-
picuous papillae at the central exumbrella (Holst and Laak-
ann 2014 ). As these characters require closer morphological
crutiny of the specimens, reliable identification is probably
ften only made to the genus level (e.g. Køhler et al. 2022 ). 

hizostoma spp . 
ll three species of the rhizostome jellyfish genus Rhizostoma :
. pulmo , R. octopus , and R. luteum occur in European wa-
ers, and studies integrating molecular data suggest that these
hree species are indeed valid (Prieto et al. 2013 ). Rhizostoma
ctopus occurs in Atlantic waters of western Europe with a
istribution range from the Scottish Clyde Sea area down to
he Bay of Biscay (Russel 1970 , Lilley et al. 2009 , Lee et al.
013 ), while R. luteum is found in Atlantic waters from Portu-
al down the west coast of Africa and in the western Mediter-
anean (Alboran Sea) (Kienberger and Prieto 2018 ). Rhizos-
oma pulmo is distributed in the Mediterranean Sea and ad-
acent waters, e.g. Black Sea and Adriatic Sea (Mariottini and
ane 2010 , Leoni et al. 2021 ). All three species can reach large
ell diameters of > 600 mm (Elliot et al. 2017 , Kienberger et
l. 2018 ). Rhizostoma octopus and R. pulmo often appear in
looms and haplotype network analyses revealed that both
pecies occur in geographically separated populations (Lee et
l. 2013 , Glynn et al. 2015 , Ben Faleh et al. 2017 ). The two
pecies have very similar morphology, and thus, R. octopus
as been regarded as a variety of R. pulmo by some earlier
uthors (Mayer 1910 , Kramp 1961 ), leading to incorrect re-
orts of R. pulmo in the North Sea (e.g. Dittrich 1988 ). To
ate, there is only one obvious morphological character that
an be used to distinguish the two species: the number of velar
appets that is on average ten per octant in R. octopus but has
een reported to be always eight per octant in R. pulmo (Rus-
el 1970 , Kienberger and Prieto 2018 ). However, species iden-
ification by this morphological difference should be regarded
ith caution, since the number of velar lappets increases with
edusa growth (Russel 1970 ). Moreover, detailed observa-
ions have shown that the number of velar lappets is not only
ariable between specimens but also varies between octants
f the same specimen in R. octopus (Russel 1970 ), as well as
n R. pulmo (Holst and Laakmann, unpublished). Rhizostoma
uteum has been regarded as a rare species (Prieto et al. 2013 )
efore it was frequently reported from the Alboran Sea, where
ts distribution overlaps with R. pulmo (Kienberger and Pri-
to 2018 ). Although the morphology of R. luteum differs re-
arkably from its congeners in lacking the distinct blue color
f the marginal lappets and in forming very long oral arm ap-
endages, it is likely that, in the past, the species has often
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been misidentified in the Mediterranean Sea. It can be con- 
fused with the Mediterranean species R. pulmo , or the mor- 
phologically similar rhizostome medusa Catostylus tagi , that 
differs from species of the genus Rhizostoma only by the struc- 
ture of its oral arms (Kienberger and Prieto 2018 ). 

Muggiaea spp . 
Only four species of the siphonophore hydrozoan jellyfish 
genus Muggiaea are recognized globally (Schuchert 2024 ), of 
which only M. delsmani does not occur in the ICES ecoregions 
(Totton 1965 ). Muggiaea bargmannae is considered a bipolar 
species, but in the Northern Hemisphere it has been detected 
as far as mid-Atlantic Ridge near the waters off the British Isles 
(Hosia et al. 2008 ). The remaining two congeneric forms, M.
atlantica and M. kochii , are frequently found within European 
waters (Blackett et al. 2017 , and references therein). Although 
taxonomic identification of the two is possible, it is tedious,
since their nectophore morphology differs only in the depth 
of hydroecium and the length of somatocyst (Totton 1965 ).
Moreover, this applies only to the nectophore-bearing poly- 
gastric stage in their life cycle, whereas the sexually reproduc- 
ing eudoxids remain morphologically indistinguishable (Tot- 
ton 1965 ). These species represent differing thermal prefer- 
ences, with M. atlantica more typical for warmer waters, and 
M. kochii preferring colder waters (Blackett et al. 2014 ). Spa- 
tial avoidance between the two species has been suggested 
(Mackie et al. 1988 ) and distinguishing between them in sur- 
veys is of interest as climate-driven changes in their distribu- 
tions and relative dominance have been proposed (e.g. Lican- 
dro et al. 2012 , Batisti ́c et al. 2013 ). 

Obelia spp . 
More than 100 species of Hydrozoa Obelia have been de- 
scribed over the years, but to the date, only four valid species 
with wide or cosmopolitan distributions are recognized: O.
bidentata , O. dichotoma , O. geniculata , and O. longissima 
(Cornelius 1975 , 1982 , 1990 ). While several morphotypes of 
Obelia medusae have also been described, these cannot be 
unambiguously connected to specific hydroids, and reliable 
morphological species identification is not possible for the 
medusae (Laakmann and Holst 2014 ), but only for the hy- 
droid stage (Cornelius 1990 , 1995 ). However, more recent 
molecular data suggest that the cosmopolitan species recog- 
nized by Cornelius ( 1990 ) may indeed contain cryptic diver- 
sity (e.g. Govindarajan et al. 2005 ), and the 299 public records 
with sequences in the BOLD database form no less than 29 
BINs (clusters) (boldsystems.org, accessed 24 May 2024). It is 
thus prudent to identify the planktonic Obelia hydromedusae 
to genus level only. 

Clytia spp . 
The medusa-producing Clytia hemisphaerica and C. gracilis 
are by far the most commonly recorded species in the genus,
which comprises over 50 accepted species (Schuchert 2024 ) ,
with 3952 and 736 globally distributed records, respectively,
out of the total 7585 records of Clytia in the Global Biodiver- 
sity Information Facility (GBIF) (24 May 2024). Both species 
are common in the ICES region. However, these two suppos- 
edly cosmopolitan and ubiquitous species are part of a larger,
poorly resolved species complex. The medusa stages of C. gra- 
cilis and C. hemisphaerica cannot be reliably separated based 
on morphology, and genetic identification within the genus is 
also fraught with peril. Sequences assigned to C. hemisphaer- 
ca or C. gracilis in BOLD and GenBank fall in numerous clus-
ers, suggesting cryptic diversity, and there is reason to suspect
hat many specimens connected to these sequences may also
ave been misidentified. Cornelius ( 1995 ) states that difficul-
ies in identification within the genus make nearly all records
upporting the near-cosmopolitan distribution of C. hemis- 
haerica suspect. The conspecific medusa C. languida has also
een recorded from the North Sea, based on a comparison
ith sequences from GenBank (Laakmann and Holst 2014 ).
owever, the medusa stage of C. languida is morphologically 

nseparable from C. hemisphaerica and solely identified based 
n area of occurrence (Kramp 1959 ), and is currently regarded
s synonymous to C. hemisphaerica (Schuchert 2024 ). There- 
ore, morphological identification of Clytia medusae of type 
. hemisphaerica/gracilis should not be attempted, and cau- 
ion should also be exercised if assigning a species based on
olecular data from e.g. GenBank. 

eroe spp. 
pecies identification and delimitation of the ctenophore 
enus Beroe is often uncertain and many species may become
ynonymized in future studies (Mills 2024 ) or new species
eing described. In 2024, the European Register of Marine 
pecies lists four species as occurring in European waters: B.
ucumis , B. forskalii , B. gracilis , and B. ovata . However, also
. abyssicola has been commonly observed in the European 
ide of the Arctic (Ciambelli 2023 ; A. Hosia and S. Majaneva,
ersonal observation), as well as in the Norwegian and Ice-
andic Seas (Licandro et al. 2015 , Neitzel et al. 2021 ). 
There has been considerable confusion particularly regard- 

ng B. cucumis and B. ovata (Bayha et al. 2004 , Shiganova
nd Abyzova 2022 ) further compounded by the suggested 
xistence of two potentially undescribed species named B.
norvegica ” and B. “anatoliensis ” along the coast of Nor- 
ay and Turkey (Johansson et al. 2018 ). However, a subse-
uent study (Shiganova and Abyzova 2022 ) synonymized B.
norvegica ” with north Atlantic B. cucumis (see Table S1 ),
nd B. “anatoliensis ” with B. mitrata , native to the Mediter-
anean. Shiganova and Abyzova ( 2022 ) also clarified some of
he confusion around the nomenclature of B. cucumis and B.
vata , concluding (1) that the species name B.ovata should
e used for the species native to the western Atlantic coasts,
nd (2) that the Mediterranean species, which was first incor-
ectly characterized as B. ovata , and later as B. cucumis ( sensu
ayer 1912 ) is genetically distinct from B. cucumis , and was

hus described as B. pseudocucumis sp. nov. However, the lat-
er species is currently unaccepted in WoRMS due to not being
ompliant with the ICZN code. 
Overall, the collection and preservation of ctenophores is 

hallenging, and of all observations logged in the GBIF, 30%
re identified to genus level only (GBIF.org accessed 03 June
024). It is important to emphasize that even when species
evel identification exists, the use of the names B. cucumis
nd B. ovata in particular in many publications should be ap-
roached with caution. For young specimens, accurate species 
dentification is dependent on molecular tools, yet sometimes 
equiring use of multigene approach, but for live larger spec-
men morphological identification is possible, although ham- 
ered by the lack of identification literature. In addition to the
ody shape, which can be somewhat plastic, characters such 
s the branching and anastomoses of the meridional canals,
he relative lengths of the comb rows, and macrocilial patterns
an be diagnostic. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf077#supplementary-data
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ppendicularia 
ppendicularians are often determined only to the class level
Appendicularia) or the family level (Oikopleuridae, Fritil-
ariidae, and Kowalevskiidae). Species-level identification is
hallenging for nonexperts due to subtle morphological dif-
erences and the general fragility of these organisms, which
re frequently damaged during sampling with plankton nets
Hopcroft 2005 ). There have been indications of cryptic di-
ersity within Appendicularia, based on slight morphologi-
al differences in some species. For instance, variations in the
rrangement of oikoblasts in Oikopleura longicauda (Flood
005 ) and differences in tail morphology in O. villafrancae
nd Fritillaria fagei from different basins (Hopcroft 2005 ,
opcroft and Robison 2005 ) suggested cryptic diversity. To

his date the true number of Appendicularia species remains
n open question (Gari ́c and Batisti ́c 2010 ) with specula-
ions that the actual number could be twice the current esti-
ate (Hopcroft 2005 ). The advent of molecular methods has
aised hopes for resolving appendicularian cryptic diversity
Hopcroft 2005 ). However, the presence of poly-T inserts in
tDNA in many appendicularian species (Albaina et al. 2024 )
nd the scarcity of taxonomists have limited genetic diversity
nd cryptic species investigations in this group (Sherlock et al.
017 , Masunaga et al. 2022 ). Recent investigations have pro-
ided evidence of existence of cryptic species within two com-
onest coastal oikopleurid species: O. dioica and O. longi-
auda . Oikopleura dioica is now understood to be a complex
f at least three cryptic species (Masunaga et al. 2022 ). This
s likely also true for O. longicauda , as suggested by morpho-
ogical (Flood 2005 ) and genetic evidence (Gari ́c et al. 2018 ,
lbaina et al. 2024 ). Given the limitations of using mtDNA
enes in appendicularian diversity research, alternative mark-
rs are needed. One promising alternative seems to be the ITS
Internal transcribed spacer) region (Masunaga et al. 2022 ). 

imacina spp . 
he most abundant species of shelled pteropods belong to
he Limacinoidea, which are characterized by thin left-coiling
hells up to 1 mm in size. The species that has been re-
erred to as “the most abundant gastropod in the world” is
eliconoides inflatus , formerly known as Limacina inflata
Janssen 2012 ). This species is easily recognized by the “in-
ated shell,” has a worldwide distribution and is highly abun-
ant in Atlantic and Mediterranean waters. The genus Li-
acina is currently composed of six accepted species (Mollus-
aBase 2024 ) with five species commonly found in ICES ecore-
ions. There are three warm-water species with (sub)tropical
istributions: L. bulimoides , L. trochiformis , and L. lesueurii ,
nd two cold-water species with bipolar or antitropical distri-
utions: L. helicina and L. retrov er sa . Though nominal species
an be fairly easily recognized based on shell shape, at least as
dults (e.g. Choo et al. 2023a ), Limacina spp. are generally
ot identified to species level in time series samples. Molecu-
ar data has revealed substantial genetic diversity within the
ominal species L. bulimoides (Choo et al. 2021 , 2023b ), L.
elicina (Hunt et al. 2010 , Sromek et al. 2015 , Kohnert et al.
020 , Shimizu et al. 2021 ) and L. retrov er sa (Peijnenburg and
pagliardi, unpublished data) suggesting the presence of cryp-
ic species. Specifically, using mitochondrial and > 100 000
enome-wide SNP markers on worldwide samples of L. bu-
imoides , Choo et al. ( 2023b ) showed that there are at least
hree genetic lineages. These lineages are reproductively iso-
ated, yet morphologically indistinguishable based on shell
hape and are thus regarded as cryptic species. For the cold-
ater species, variations in shell shape and genetic differentia-
ion are reported, usually associated with different geographic
reas, and several subspecies are described leading to consid-
rable confusion. Taxonomic revision integrating molecular
nd morphological data with original species descriptions and
ype material is urgently needed, especially as these cold-water
pecies are the most commonly used as bioindicators, and the
ost impacted by ocean acidification (e.g. Mekkes et al. 2021 ,
ofmann Elizondo et al. 2024 ). 

elevance of species complexes for 
nderstanding ecosystem dynamics 

pecies identification is a cornerstone in biodiversity research,
rucial for understanding ecosystem dynamics and guiding
cosystem conservation efforts. We have highlighted the tax-
nomic challenges of achieving precise species-level identifi-
ation in many zooplankton groups, revealing a substantial
ncertainty in species-resolved data, even within key taxa in
elagic coastal ecosystems. This, in turn, may affect not only
he uncertainty of biodiversity assessments but also of the eco-
ogical interpretations resulting from the data. We have shown
hat integrative approaches in taxonomy, using morpholog-
cal characters and molecular markers, often paint a more
omplex picture of species and ecosystems (Hirai et al. 2017 ,
emmouri et al. 2021 ) and sometimes reveal unexpected high
umbers of cryptic species under a single species name (Adams
t al. 2014 ). Ultimately, these challenges posed by species com-
lexes unveil that the true essence lies in understanding what
efines a species. 
The concept of what constitutes a species has been a sub-

ect of debate among taxonomists for centuries. Since Carl
on Linné established a morphological basis for species iden-
ification nearly 300 years ago (Linné 1735 ), various species
oncepts have emerged, each addressing different aspects of
pecies differentiation. The “Biological Species Concept,” in-
roduced by Ernst Mayr, defines species based on their repro-
uctive isolation (Mayr 1942 ). Based on this concept, Theo-
osius Dobzhansky developed his evolutionary ideas regard-
ng the significance of genetic variation within the “Biologi-
al Species Concept” (Dobzhansky 1963 ) laying the founda-
ion for the development of the “Molecular Species Concept,”
hich is finally based on genetic divergence. The practical ap-
licability of this concept was boosted by the fundamental dis-
overy of the structure of DNA (Watson and Crick 1953 ) and
as continued to evolve with studies using a variety of single
nd multiple genetic markers as well as whole-genome infor-
ation and single nucleotide polymorphisms to assess genetic
iversity and to delineate species. However, this delineation
an be more complex than commonly assumed. Genetic di-
ersity within a potential species can vary significantly, and
he interpretation of the “barcoding gap” as a species bound-
ry is not equally reliable across all taxa. Recent research on
haetognaths, for example, challenges the molecular species
oncept, as extreme mitochondrial divergence occurs within
everal sympatric lineages of a morphospecies (Marlétaz et al.
017 ). Other species concepts are focusing on common ances-
ry, defining a species as the smallest group of individuals that
hare a parental pattern of descent as defined in the “Phyloge-
etic Species Concept,” proposed by Joel Cracraft (Cracraft
983 ). Some concepts follow a more functional approach,
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such as the “Ecological Species Concept,”discussed by Robert 
Sokal and Peter Sneath, and later by Daniel Levin, which con- 
siders ecological niches or functions, proposing that species 
are sets of organisms adapted to a particular set of resources 
(niches) in the environment (Sokal and Sneath 1963 , Levin 
1979 ). While morphological species have historically been 
the primary taxonomic unit in time series studies, molecular 
species delineated by genotypic characteristics are increasingly 
prevalent in the routine identification of zooplankton. 

Regardless of whether we are dealing with cryptic or 
difficult-to-resolve species, taxonomic information is very of- 
ten lost in routine monitoring, or species identification comes 
with a certain bias. The extent to which this missing or impre- 
cise information will influence our understanding of ecosys- 
tem dynamics depends very much on the function of the taxon 
in the ecosystem and remains one key question in biodiversity 
research. In theory, undetected sympatric cryptic species will 
lead to an underestimation of species number in an ecosystem 

and an overestimation of the respective species abundances.
Missing cryptic species not only has implications for under- 
standing the dynamics of specific ecosystems but also exerts an 
influence on our global understanding of diversity and the ef- 
fects of climate change on species and species richness. The ex- 
istence of nonresolved allopatric cryptic species, for instance,
can result in an overestimation of geographical distribution 
ranges and subsequently lead to erroneous evaluations regard- 
ing connectivity, adaptive potential, niche ranges, species vul- 
nerability, and invasiveness estimations (e.g. Darling and Carl- 
ton 2018 , Chenuil et al. 2019 , Cerca et al. 2020 , Starko et al.
2023 ). 

While the importance of hidden diversity for understand- 
ing the functioning of a marine ecosystem seems intuitive,
its essential role remains largely unverified within the ma- 
rine system. This raises the provocative question of how cru- 
cial species-level resolution of challenging taxa is in routine 
monitoring within a specific ecosystem, given the high re- 
source costs involved. Some real-world examples advocate for 
species-level identification, even when the effort required is 
substantial. One such instance is the common grouping of 
the highly abundant congener copepods A. bifilosa and A.
longiremis into Acartia spp. in the Baltic Sea (e.g. Musialik- 
Koszarowska et al. 2019 ), despite the two (noncryptic) species 
likely being affected very differently by ecological drivers: A.
longiremis is a marine species with a boreal–Arctic distribu- 
tion, probably persisting in the Baltic Sea near its physiolog- 
ical limit (Dutz and Christensen 2018 ), while A. bifilosa is 
a brackish warm water species. We currently have only lim- 
ited knowledge about the physiological variation within mor- 
phologically cryptic species complexes in zooplankton. Field 
studies have attempted to differentiate the ecophysiology and 
ecological roles of cryptic species, revealing e.g. differences 
in food selection within the Eurytemora species complex in 
a Canadian estuary (Cabrol et al. 2015 ), as well as within the 
species group of P . minutus , P . newmani , and P . acuspes in the 
Bering Sea (Cleary et al. 2016 ). 

Molecular identification significantly facilitated the discov- 
ery of cryptic diversity. High-throughput sequencing of both 
zooplankton bulk samples and eDNA promises new insights 
into the role of species complexes in LTER data and databases 
such as GenBank and BOLD offer swift species identification.
However, the lack of clarity in data calibration and the risk of 
outdated or even incorrect species identifications may result 
in inaccurate assignments. It is also crucial to acknowledge 
hat relying solely on molecular species identification without 
eep taxonomic expertise of the morphospecies and detailed 
xpertise of the local and regional fauna poses inherent risks.
his is exemplified by the case of the copepods Calanus eux-
nus and C. helgolandicus , which are morphologically nearly 
ndistinguishable and cannot be differentiated based on ge- 
etic markers (Papadopoulos et al. 2005 , Unal et al. 2006 ,
ebra et al. 2022 , Ohnesorge et al. 2023 ). Despite their genetic
imilarity, these species are still recognized as distinct (Walter
nd Boxshall 2024 ), yet there is ongoing discussion regarding
heir status as populations rather than species (Yebra et al.
011 ). Another example illustrating the risks of relying solely
n molecular units is evident in the case of the decapods Poly-
ius holsatus and Polybius henslowii , of which the larvae are
idespread in the North Sea and thus occur in LTERs. De-
pite displaying distinct differences in morphology and behav- 
or during adulthood (Hazerli et al. 2022 ), these two species
annot be genetically delineated based on various mitochon- 
rial markers (Plagge et al. 2016 ) and are nearly indistinguish-
ble morphologically as larvae. These instances exemplify the 
mportance of understanding species communities and their 
otential challenges, serving as but two among numerous oth- 
rs. A strong synergy of molecular techniques with morpho- 
ogical taxonomic and ecological knowledge would help to 
nravel diversity within natural systems. Extensive regional 
r seasonal sampling efforts and application of genetic tools 
an discover cryptic species in sympatry, a good case study
s the detection of seasonally and regionally occurring cryp- 
ic hydrozoan species in the Gulf of Mexico (Miglietta and
ruski 2023 ). But these approaches require a wise allocation
f resources in monitoring to balance taxonomic precision on 
he one hand and temporal or spatial resolution on the other.
The high number of challenging species complexes in ma- 

ine zooplankton communities calls for a deeper exploration 
f species identification. Are we truly covering the expected 
pecies in the LTER stations? Might those sharing names 
cross ecosystems actually be distinct entities? Should we 
ather follow a polytypic species concept, subdividing biologi- 
al species geographically (Lukhtanov 2024 )? It is essential to
ecognize that species concepts extend beyond singular defi- 
itions and defining every lineage as putative (cryptic) species 
ithout evidence for reproductive isolation bears a risk of tax-
nomic inflation in species numbers (Dufresnes et al. 2023 ).
verall, we hope to have shown in this review compelling ev-

dence that species concepts and species complexes are not 
olely of interest to specialist taxonomists, but hold signifi- 
ance in many ICES zooplankton time series. The uncertain- 
ies inherent in the taxa utilized in time series datasets lead
o challenges in connecting datasets or ecological knowledge 
hrough these entities. This will be particularly significant for 
cientists working with highly comprehensive community and 
cosystem data, as it is impossible to have taxonomic expertise
cross all groups. Therefore, a close integration of taxonomy 
nd data science remains essential for informed ecological re- 
earch and conservation efforts. 

 ood f or thought f or the future of z ooplankt on 

axonomy 

 central premise of this study is that molecular methods have
evealed species identity to be even more complex than what
lready highlighted by morphological taxonomy. This even 
pplies for the most common taxa in well-studied epipelagic 
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eritic systems right on our doorstep, let alone the broader
cological implications of resolving these species complexes.
hat actions should be taken based on this knowledge, and
hich insights does this review aim to provide? 
Our initial recommendation is a pragmatical one. First,

o adapt to the rapidly evolving advancements in analyti-
al methods, it will be necessary to anticipate imminent and
rospective requirements for sample collection, fixation, and
torage. At its core, this requires parallel fixation suitable
or DNA analysis (e.g. ethanol) within established sampling
egimes and long-term storage of at least a subset of material
uitable for future analyses (e.g. cold storage). It is essential
ot only to maintain morphological-based repositories (e.g.
useum collections, digitalization of type individuals by mi-
roCT scanning or laser confocal microscopy) and molecular-
ased databases (e.g. BOLD or GenBank), but also to develop
ustainable repositories (e.g. biobanks) of specimens, tissue, or
enetic material that is suitable for future access to molecular
nformation on ecosystems and their inhabitants. Conversely,
hen developing new methods, it is essential to consider not
nly their future value but also their applicability to existing
aterial. Only this approach would allow calibration and ret-
ospective species resolution. 
Second, we encourage having an open-mind to methods

eyond the well-established morphological and genetic ap-
roaches. Morphological taxonomy generally relies on spe-
ific diagnostic traits, much like molecular identification of-
en depends on specific genetic markers. These traits can be
ifficult to access and may require extensive specimen prepa-
ation. Expanding our taxonomic toolbox by incorporating
ther phenotypic characters, such as proteomic fingerprints or
orphometric traits, may offer a promising path forward. For
xample, using metric data of many easy-accessible morpho-
ogical traits simultaneously may provide a less qualitative but
ore quantitative method for species delimitation, and could
ven be integrated into automated systems. 
Our third recommendation is of a more strategic perspec-

ive regarding the role of taxonomy in modern biodiversity
esearch. In recent years, significant investments have been
ade in developing novel methodologies for species detec-
ion and their integration into field research, not only in ma-
ine ecosystems but also across diverse areas of ecosystem and
iodiversity science. While we highly welcome this progress,
his manuscript also conveys a note of caution. Alongside the
dvancement of techniques, there has been a corresponding
evere decline in morphological-based taxonomic knowledge
nd expertise within the community. Beyond the confines of
useums and collections, there is a paucity of opportunities
nd supports for young scientists to engage with taxonomy in
 sustained manner. There is growing concern that the exper-
ise of traditional taxonomists is at serious risk of being lost.
iven the exponential growth of artificial intelligence capa-
ilities, we may envision the development of systems that not
nly preserve the vast legacy of historical taxonomic literature
nd the profound expertise of retiring taxonomists, but also
nhance this knowledge through machine learning and seman-
ic integration. However, such a path must be taken with cau-
ion. While AI may replace classical taxonomic keys with ac-
essible, dynamic, and integrative platforms to advance global
iodiversity research, human expertise does remain essential
o ensure quality control and taxonomic rigor. 
Finally, we would like to highlight that “not all that glitters

s gold.” Genetic barcoding and molecular databases such as
OLD and GenBank have indeed revolutionized how we col-
ect molecular information about species, unlocking new pos-
ibilities and revealing an increasing number of species. How-
ver, there is a concomitant risk that molecular identification
ould become isolated and self-contained, thereby severing
ts connection to morphological taxonomy and compromis-
ng quality control. Reliable ground-truthing remains essen-
ial. The quality-controlled MetaZooGene database, which
ocuses on marine zooplankton, may serve as a good exam-
le of integrating molecular and morphological taxonomists
Bucklin et al. 2021b ). Molecular taxonomy often raises more
uestions than it answers, and we are still far from fully un-
erstanding the implications of molecular diversity and enti-
ies in terms of species and ecology. More effort must be ded-
cated to understanding the relationship between taxonomic
nits—whether morphological or molecular—and the varia-
ion in ecological niches, physiology, or adaptation potential.
any approaches to understanding ecosystems necessitate an

nitial simplification of complex relationships, often focusing
ore on traits than on taxonomic units. As a result, the choice
f species on which to base such assessments may become
ess critical in these cases. Nevertheless, we should continue to
ensitize the community engaged in species-based research to
he inherent limitations of our taxonomic knowledge and the
ssociated uncertainties, even within well-studied and highly
bundant species complexes. 
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