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Abstract

We present a catalog of clouds identified from the 12CO (1–0) data of M83, which was observed using the Atacama
Large Millimeter/submillimeter Array with a spatial resolution of ∼46 pc and a mass sensitivity of ∼104Me (3σ).
The almost full-disk coverage and high sensitivity of the data allowed us to sample 5724 molecular clouds with a
median mass of ∼1.9× 105Me, which is comparable to the most frequently sampled mass of giant molecular
clouds by surveys in the Milky Way (MW). About 60% of the total CO luminosity in M83ʼs disk arises from
clouds more massive than 106Me. Such massive clouds comprise 16% of the total clouds in number and tend to
concentrate toward the arm, bar, and center, while smaller clouds are more prevalent in interarm regions. Most
>106Me clouds have peak brightness temperatures Tpeak above 2 K with the current resolution. Comparing the
observed cloud properties with the scaling relations determined by P. M. Solomon et al. (1987, hereafter S87),
Tpeak> 2 K clouds follow the relations, but Tpeak< 2 K clouds, which are dominant in number, deviate
significantly. Without considering the effect of beam dilution, the deviations would suggest modestly high virial
parameters (median αvir∼ 2.7) and low surface mass densities (median Σ∼ 22Me pc−2) for the entire cloud
samples, which are similar to values found for the MW clouds by T. S. Rice et al. (2016) and M.-A Miville-
Deschênes et al. (2017). However, once beam dilution is taken into account, the observed αvir and Σ for a majority
of the clouds (mostly Tpeak <2 K) can be potentially explained with intrinsic Σ of ∼100 Me pc−2 and αvir of ∼1,
which are similar to the clouds of S87.

Unified Astronomy Thesaurus concepts: Giant molecular clouds (653); Spiral galaxies (1560); Millimeter
astronomy (1061); CO line emission (262); Interstellar medium (847)
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2. Molecular Cloud Identification

2.1. Data

We used the 12CO (J= 1–0) mapping data of M83 observed
with ALMA (project code 2017.1.00079.S; J. Koda et al.
2023). The observations used the main 12 m array and Atacama
Compact Array, i.e., the 7 m short-baseline interferometric
array and the Total-Power (TP) single-dish array, to recover the
flux. The interferometric and single-dish data were calibrated
separately. The calibration procedure is described in J. Koda
et al. (2023). The calibrated TP array data were converted into
interferometric visibilities using the TP2VIS software (J. Koda
et al. 2019). Then, the 12 m, 7 m, and TP array visibilities were
inverted onto the image plane and jointly deconvolved using
the MIRIAD software package (R. J. Sault et al. 1995). We
refer the readers to J. Koda et al. (2023) for further details on
the data processing.

Three data cubes were prepared in J. Koda et al. (2023) with
velocity resolutions of 1, 2, and 5 km s−1, respectively. We
here adopt the one with 1 km s−1 resolution. The restoring
beam of the original data is a Gaussian with major and minor
axes of 2 09× 1 68 in FWHM, which corresponds to
45.6 pc× 36.7 pc at the assumed distance of M83 (4.5 Mpc;
F. Thim et al. 2003). To avoid complexities associated with the
noncircular beam, we smoothed the original data cube in spatial
directions to achieve a circular beam with an FWHM size of
2 1, corresponding to ∼46 pc.

Figure 1(a) shows the two-dimensional map of the rms noise
level. We adopted the following procedure to obtain a noise-
free estimate of the noise distribution. First, we used
MIRIAD’s “mossen” command to generate a two-dimensional
noise distribution expected from the integration time and
system noise temperature assigned to visibilities. Next, the
“expected” noise map produced by mossen was compared with
the “measured” noise map, which we made by measuring rms
noise along the velocity axis at each position in the data cube.
The comparison confirmed that both maps are consistent
regarding the relative spatial variation within each map but are
discrepant in the absolute scaling by a few tens of percent.
Therefore, as the final step, we scaled the “expected” map so
that the median noise level matches that of the “measured”
noise map. The median noise level across the observed field is
6.5 mJy per beam.

2.2. Cloud Identification

We here describe our procedures to identify molecular
clouds in the 12CO (1–0) data cube.
As a preparatory step, we constructed a signal mask to

isolate voxels with significant detection. The mask was created
by first identifying a set of regions that consist of voxels with
signal-to-noise ratio (SNR)� 4, then discarding small regions
whose spatial extents are less than 0.6 times the beam area or
whose emissions are confined in a single 1 km s−1 channel
along the velocity axis, and finally expanding the remaining
regions to include the morphologically connected surrounding
voxels with SNR� 2.
The masked data cube was decomposed into a set of

independent closed surfaces using the astrodendro soft-
ware package.23 Although astrodendro identifies hierarchi-
cally nested sets of structures, we adopted only the structures at
the finest spatial scales, commonly referred to as leaves. This is
because the utilized spatial resolution, ∼46 pc at FWHM, is
only a factor of 2 smaller than the typical height of the thin
molecular gas disk (e.g., about 100 pc in FWHM for the MW
disk; see M. Heyer & T. M. Dame 2015). As long as the disk
height is similar between M83 and Milky Way and the size of
the largest cloud is limited by the disk height, examining
structures larger than individual leaves is unnecessary.
Parameters for the cloud decomposition algorithm are config-
ured such that only voxels with SNR> 2 are included in the
analysis, and leaf candidates with SNR contrasts between their
peak and edge-level <2 are discarded. In addition, to avoid
picking up noise fluctuations as clouds, we discarded small
leaves with the number of voxels less than Abeam/Avoxel, where
Abeam and Avoxel are the area of the beam and a voxel.
The identified leaves generally trace the small regions around

the peaks of molecular clouds, especially in crowded areas,
because by nature of the algorithm, the leaves are defined such
that they do not overlap each other. The astrodendro
decomposition left about 80% of the CO emission unassigned
to any leaves. The unassigned voxels to any seed structures are
further segmented with the watershed algorithm, using the
scikit-image software package (S. van der Walt et al. 2014).

Figure 1. (a) rms noise map of the 12CO (1–0) used here. The white lines indicate the rms map with the contour levels of 0.9σ and 1σ, where 1σ is the global median
of the rms noise of 6.5 mJy beam−1 (∼0.17 K), and the black line indicates the level of 1.1σ. (b) Integrated intensity map of 12CO (1–) data used here. The cyan lines
indicate the galactocentric radii of 25″ (∼0.55 kpc), 100″ (∼2.2 kpc), 140″ (∼3.1 kpc), 210″ (∼4.6 kpc), and 280″ (∼6.1 kpc), respectively.

23 http://www.dendrograms.org
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(R. B. Larson 1981; J. Ballesteros-Paredes et al. 2011). We note a
general caveat on interpreting αvir. As isolated clouds with simple
geometry and density distribution are assumed, the observationally
derived αvir has a limitation in characterizing the dynamical status
of molecular clouds. Numerical simulations suggest that clouds
could be either more bound (J. Ballesteros-Paredes et al. 2018;
L. Ramírez-Galeano et al. 2022) or more unbound (S. A. Mao
et al. 2020) than what the face value of αvir would suggest.

2.4. Extrapolation Factors and Measurement Uncertainties

The extrapolation to 0 K emission level made to basic cloud
parameters (Section 2.3.1) is needed to correct for the
underestimation of the parameters that would arise if the
parameters are determined at a higher edge level (E. Rosolow-
sky & A. Leroy 2006). However, the extrapolation result
becomes less reliable for a cloud that requires a higher
correction factor. Thus, we expect clouds with higher
correction factors to have higher measurement uncertainties
assigned by the bootstrap estimate. We show the amount of
correction and measurement uncertainties to the clouds here.

Figures 2(a)–(c) show the correction factor of the extrapola-
tion, which is the ratio between the extrapolated to unextra-
polated values for CO luminosity, radius, and the velocity
dispersion of the clouds, plotted as functions of the cloud mass.

The correction factors tend to increase toward lower cloud
masses. At a mass of 2× 105Me, the medians of the correction
factors are about 1.25, 1.16, and 1.12 for luminosity, radius,
and velocity dispersion, respectively, and are modest. At the
lowest-mass bin of 2× 104Me, the median factors are 1.96,
1.43, and 1.41, respectively.
Figures 2(d)–(f) show the measurement errors in CO

luminosity, radius, and velocity dispersion expressed in the
fractional form. Uncertainties in these basic three quantities are
transferred to other advanced quantities following uncertainty
propagation.

2.5. GMC Catalog

Table 1 lists the first several entries of the compiled catalog.
The complete list shall be available as an electronic table. Each
line in the catalog reports the parameter of an identified cloud,
including the centroid position and receding velocity, Reff, the
axial ratio (σy/σx) and position angle, σv, LCO, Mvir, and the
binary flag that indicates whether the deconvolution failed for
the cloud or not.

2.6. Fraction of CO Luminosity Sampled as GMC

Table 2 lists the total CO luminosity LCO along with the
fractional CO luminosities included within the signal mask

Figure 2. (a)–(c) Ratio of the extrapolated to unextrapolated values for LCO, Reff, and σv, respectively, are shown as a function of the cloud mass. The red markers and
error bars indicate the median and 16th-to-84th percentile ranges of each quantity at the binning masses. (d)–(f) Same as (a)–(c), but for fractional uncertainty for each
quantity in (a)–(c) as a function of the cloud mass.
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in GMCs with Mcl> 106 Me, although such massive GMCs
consist of less than 16% in number. Therefore, the small
number of massive clouds contain the major fraction of the

total gas mass in M83. This trend is similar to the inner
Galactic disk (S87; M17). We will discuss the cloud mass
spectrum in Section 4.

Figure 3. (a) Distribution of cloud mass Mcl in M83. In the upper panel, the black histogram shows the overall distribution. The blue solid, green solid, and black
dashed histograms indicate the subsamples with Mcl > 106 Me, Mcl in the range between 105 and 106 Me, and with sizes that failed in the deconvolution
(Section 2.3.2). In the same panel, the marker and horizontal line indicate the median and 16th-to-84th percentile range for all clouds (black), clouds with >106 Me
(blue), and clouds with 105–106 Me (green). In the bottom panel, the mass-weighted histogram is shown. Note that, as the constant CO-to-H2 conversion factor is
adopted, it is equivalent to the luminosity-weighted histogram. The marker and horizontal line indicate the median and percentiles as the upper panel. (b)–(g) Same as
(a), but for peak temperature Tpeak, velocity dispersion σv, effective radius Reff, surface density Σ, and virial parameter αvir, respectively.
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marker colors show the elevation of ∣ ∣vres around spiral arms.
The locations of the galactic structures identified in Section 3.3
are also shown for comparison.

Streaming motions around the bar and spiral arms
are coherent and should show ordered patterns in this figure.
While such coherent motions appear limited, there are still
some signatures. For example, across the eastern, outermost

armlike feature from the trailing to leading side, vres changes
from positive (red markers) to negative (blue markers).
Figure 10(e) is similar to Figure 10(b), but plots the radial

variation of <vz> for clouds in the center/bar/arm region and
the interarm regions using the spatial mask shown in
Figure 10(d). Except for the innermost two radial bins, the
dispersions within the bar/spiral arms and interarm regions are

Figure 10. (a) Cloud’s residual velocity vres as a function of galactocentric radius Rgal. The gray and cyan markers indicate the clouds for mass below and above
5 × 105 Me. The black lines indicate the 16th, 50th, and 84th percentiles of vres derived within binned Rgal of 24″ width, spaced by every 12″. (b) Estimated vertical
velocity dispersion <vz> derived within the same binned Rgal as (a). Black and cyan solid lines indicate <vz> for the clouds below and above 5 × 105 Me. The
dashed line indicates <vz > for the whole cloud masses. As vres is severely affected by noncircular motions in the inner disk fo M83, Rgal < 100″ is shaded. (c) p-
values derived for the binned Rgal calculated with Levene’s test, which indicate the statistical significance of the difference of <vz> between clouds with mass below
and above 5 × 105 Me. The p-values below 3 × 10−3 are indicated as upper limits with the arrow markers. The dotted horizon line indicates the adopted threshold of
0.05. (d) Spatial distribution of vres, compared with the regional mask. (e) Same as (b), but comparing the difference between center/bar/arm and interarm regions
shown with black and orange lines. (f) Same as (c), but comparing the difference between center/bar/arm and interarm regions.
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Figure 13(a) shows the distribution of f. The solid lines indicate
the “valid” f values derived from the clouds compatible with the
single-component approximation by assuming αvir,0= 1 (black)
and 2 (green), respectively. As for the reference, the dashed lines
indicate f for all clouds, which include “invalid” values derived
from the clouds incompatible with the single-component approx-
imation. Although the distribution of “valid” f extends down to
∼0.01, it is chiefly between 0.1 and 1, as the 16th percentile is
∼0.07 (∼0.13) for αvir,0 of 1 (2).

The minimum value of f∼ 0.1 is seemingly consistent with
the detection limit of the clouds. For example, if we suppose a
typical cloud with an intrinsic brightness temperature of 8 K,
the observed peak brightness temperature would be 0.5 K if f is
0.1.25 As our cloud-finding procedure adopted 0.5 K as the

detection limit, it is consistent that the lower limit of the
estimated f is around 0.1.
Figure 13(b) is the same as Figure 13(a) but shows in the

cumulative number form. On the plot, the fractional number of
clouds with f= 1 for a particular value of αvir,0 indicates the
fractional number of clouds with their observed αvir less than the
adopted αvir,0; about 12% (24%) of the clouds indicate f= 1 with
αvir,0 of 1 (2). Therefore, if the area-filling factor were not
considered, we would be led to the conclusion that only a small
number of clouds, less than about 20%, are gravitationally bound.
However, contrary to this small fractional number, a majority of
clouds (∼57%) are compatible with the single-component
approximation as Teq> 0.5 K. We saw that the f values estimated
for such clouds by assuming αvir,0 of 1 (or 2) are consistent with
the sensitivity limit of the observation; therefore, we deduce that
more than half of the clouds in number are potentially bound, i.e.,
αvir,0< 2 if we accept a variation in f.

Figure 13. (a) Number distribution of the estimated area-filling factor f for the clouds in M83. The black and green lines show the distribution of f by assuming αvir,0
of 1 and 2 for clouds that provide “valid” estimates, i.e., the clouds that satisfy the Teq > 0.5 K condition. The dashed gray and light green lines are the same as the
black and green lines but for all the cloud samples. For each category shown here, the 16th-to-84th percentile range and 50th percentile are indicated with the
horizontal line and the filled-circle marker, respectively. (b) Cumulative number distribution of the estimated f for the clouds. The colors and styles of the lines are the
same as in (a). The dotted horizontal lines indicate the fraction number of clouds with “valid” estimates of f; about 12% (23%) of the clouds have f = 1 for the case of
αvir,0 of 1 (2), and about 56% of the clouds have “valid” estimate of f. (c) Same as (b), but showing as a cumulative fractional mass distribution.

25 In most parts within Taurus molecular cloud, which is one of the most well-
studied molecular clouds, the intrinsic temperature is estimated to be between 6
and 12 (K P. F. Goldsmith et al. 2008).
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We also show the environmental variation of Σ0 in
Figure (15). The environmental mask defined in Section 3.3
is used here. The medians in the arm and interarm regions are
∼170 (∼96) Me pc−2 and ∼120 (∼95) Me pc−2, respectively,
for the assumed αvir,0 of 1 (2). The 1σ scatter is only about
0.3 dex for each. In the bar and center regions, Σ0 is elevated
compared to the arm/interarm regions with medians of ∼270
Me pc−2 and ∼770 Me pc−2, respectively. Thus, the cloud
properties vary depending on the environments; the interarm
clouds have lower Σ0, or higher αvir,0, compared to the arm
clouds, and the disk clouds have lower Σ0 than the clouds in
the central region.

Finally, we compare the filling-factor corrected intrinsic
cloud properties with the uncorrected plain values on Larson’s
scaling relations. Figure 16(a) compares the corrected relation-
ship, σv–R0, with the uncorrected σv–Reff, and Figure 16(b)
compares Mcl–R0 with Mcl–Reff. The clouds with Teq> 0.5 K
are shown, and we here assumed αvir,0 of 1. From the near
constancy of Σ0 obtained by assuming a constant αvir,0

(Figure 14), we would expect that the filling-corrected intrinsic
cloud properties follow Larson’s scaling relations, and both
plots show that the expectation is the case. Figure 16 also plots
the distribution density of S87ʼs data points. M83ʼs data points
have a larger scatter than S87ʼs points, for which the
environmental variation of Σ0 seen in Figure 15 should be at
least partly responsible.

6.3. Implications

The observed αvir and Σ vary over wide ranges in the M83
clouds (Section 3.1). The wide range of variations in αvir and
Σ agrees with some recent GMC studies (see references at the
beginning of this section). However, we saw that the αvir and
Σ in the M83 clouds are distributed approximately along the
αvir∝Σ−1/2 lines on the αvir–Σ plane (Figure 11), which are
exactly in the direction of the beam dilution (along the change
of f ). Within the limitations of the current data, it seems
conceivable that a significant fraction of the clouds in M83 is

Figure 15. (a)–(d) Same as Figure 14(a), but showing for the central region, bar, arms, and interarm regions, respectively. The regional mask shown in Figure 7(c) is
used for the classification.
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Space Project (grant Nos. CMS-CSST-2021-A04 and CMS-
CSST-2021-A06). M.I.N.K. is supported by Grants-in-Aid from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japan (grant No. JP22K14080).

Facility: ALMA.
Software: astrodendro (T. Robitaille et al. 2019),

scikit-image (S. van der Walt et al. 2014), matplotlib
(J. D. Hunter 2007), emcee (D. Foreman-Mackey et al. 2013).

Appendix A
Source Injection Test

The observed virial parameter αvir of the clouds in M83
exhibits a trend, which is approximately αvir∝Σ−0.5

(Figure 11). In Section 6.1, we argued that this trend possibly
owes to a variation in the area-filling factor, driven by the
overestimation of cloud radius Reff for clouds smaller than the
beam. We assumed there that (1) the resolution effect
overestimates Reff but does not affect the velocity dispersion
σv and mass Mcl of clouds, and that (2) the Reff overestimation
is coupled with the decrease of the area-filling factor of the
beam (Equation (18)). We test these assumptions with a
simulation test, which injects model sources with known
properties into a portion of the data cube and samples the
injected sources via the same identification procedure utilized
in Section 2.

A.1. Procedure

The test is made with two setups. A ∼0.8 kpc2 segment of
M83 is used as the target field in both setups. Within the field,
CO emission from M83 mostly resides within the LSR velocity
range between 410 and 455 km s−1. The two setups are
configured with different velocity ranges as follows.

1. Noise-only setup. A CO emission-free velocity range of
from 340 to 409 km s−1 is used. This setup is used to see the
impact of the noise on the cloud property measurements.

2. Blended setup. The velocity range between 401 and 470
km s−1 is used to assess the combined impact of the noise
and blending of CO emission surrounding the input sources.

Input model clouds are generated by assuming a Gaussian
profile in both spatial and velocity directions. For each model
cloud, Mcl is given as a parameter, and Reff and σv are determined
by setting αvir as 1.5 and Σ as 100 Me pc−2, respectively. Five
model clouds with Mcl of 0.5, 1, 2, 4, and 8× 105 Me are
generated and convolved to emulate the spatial resolution of ∼46
pc and velocity channel of 1 km s−1. In each round of the test, the
model clouds are injected into the random positions within the
data cube with an imposed minimum spacing of 80 pc. For the
noise-only setup, a constant receding velocity of 375 km s−1 is
assigned to the clouds. For the blended setup, the receding
velocity of each cloud is determined such that it is offset by 12
km s−1 from the median velocity of the existing CO emission
around the cloud. The offset velocity of 12 km s−1 is comparable
to the rms cloud-to-cloud velocity dispersion in the M83 clouds
(Section 5). From the source-added data cube, clouds are
identified using the procedure described in Section 2 and
crossmatched with the input model clouds with a matching
tolerance of half the FWHM cloud size in both spatial and
velocity directions. The injection-identification sequence is
repeated 40 times for each setup.

A.2. Simulation Results

Figures 17 and 18 show the test results for noise-only and
blended setups, respectively. In the noise-only setup, the input
sources are detected with high detection rates. The rate is 100%

Figure 17. Simulation results of the source injection test made with the noise-only setup, which uses a CO emission-free portion of the data cube. (a) Integrated CO
intensity image of the data used in one of the 40 rounds of the test. In the image, five sources with Mcl of 0.5, 1, 2, 4, and 8 × 105 Me are injected. The red dotted
markers indicate the positions of the input sources. Yellow ellipses indicate the output FWHM sizes of the detected sources. (b) Detection rate as a function of the
input Mcl. (c) Output-to-input ratios of Mcl for the detected sources as a function of the input Mcl. The black dotted horizontal line indicates the output-to-input ratio of
1. Gray dots indicate each of the detected clouds in each round. Open markers indicate the median output-to-input ratios for each inputMcl with error bars showing the
16th-to-84th percentiles range. (d) Same as (c), but for Reff. The blue dashed line indicates the line of θb/θsource, where θb and θsource are the FWHM sizes of the beam
(∼46 pc) and the input model sources, respectively. (e) Same as (c), but for σv. (f) αvir–Σ relationship of the detected sources. The vertical and horizontal dotted lines
indicate Σ of 100 Me pc−2 and αvir of 1.5 uniformly assigned to all the input sources. The dashed line indicates the relation of αvir ∝ Σ−0.5.
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