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Climate explains global functional trait variation in bees
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variation. However, many of the traits that have outsized effects on thermal per-
formance are complex, multi-dimensional, and challenging to quantify at scale.
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puter vision to quantify hair coverage and lightness of bees, using images of a
diverse and widely distributed sample of museum specimens.
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bee lightness increasing with maximum environmental temperatures (thermal mel-
anism hypothesis) and decreasing with annual precipitation (Gloger's Rule).
Handling Editor: Katie Marshall 4. We found that deserts are hotspots for bees covered in light-coloured hairs, ad-
aptations that may mitigate heat stress and represent convergent evolution with
other desert organisms.
5. These results support major ecogeographical rules in functional trait variation

and emphasize the role of climate in shaping bee phenotypic diversity.
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1 | INTRODUCTION

generalizable patterns at global scales remains a major question in

evolutionary ecology (Gaston et al., 2008; He et al., 2023).

Climate drives macroecological patterns in species distributions,
abundance, and diversity (Brown, 1995; MacArthur, 1972; Whittaker
et al,, 2001). A tractable approach for understanding these pat-
terns is by investigating the species traits that mediate organisms'
fitness and performance under varying climate conditions (Gagic
et al., 2015; Mcgill et al., 2006; Violle et al., 2007). These traits (e.g.
body size, coloration, etc.) mediate functional interactions between
organisms and their environments, and offer avenues for synthesiz-
ing organismal responses with broader-scale biogeographic trends
(Mcgill et al., 2006; Violle et al., 2007, 2014). However, whether

functional relationships between traits and climate give rise to

For ectotherms, the physical characteristics of the body surface
mediate heat exchange with the environment (Angilletta, 2009;
Buxton et al., 2021). Variation in body coloration—specifically, co-
lour lightness—influences the absorption of solar radiation, and so
represents one mechanism for thermal adaptation (Clusella Trullas
et al.,, 2007; Watt, 1968). Indeed, variation in colour lightness can
track environmental gradients. Across taxa, darker coloration has
been associated with cooler climates, such as high elevation or
high latitude environments (Bishop et al., 2016; Clusella Trullas
et al., 2007; Kang et al., 2021; Munjal et al., 1997; Watt, 1968),

where it may confer fitness benefits by enabling individuals to
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reach operating temperatures more quickly (i.e. the thermal mel-
anism hypothesis or Bogert's Rule, (Bogert, 1949; Clusella Trullas
et al., 2007)). Simultaneously, darker individuals may be found in
wetter environments, through a variety of proposed mechanisms
related to the ecological and physiological functions of melanin
(i.e. Gloger's Rule, Delhey, 2019; Gloger, 1833; Lopez et al., 2021;
Nishikawa et al., 2010; Rensch, 1929).

Another morphological trait implicated in thermoregulation is
pilosity (i.e. hairiness), which can increase boundary layer resistance
to convective heat loss (Buxton et al., 2021; Casey & Hegel, 1981,
Church, 1960; Heinrich, 1974). Correspondingly, in some taxa, hair
length increases with elevation (Gonzalez et al., 2022; Osorio-
Canadas et al., 2022; Peters et al., 2016) and latitude (Peat
et al., 2005), consistent with its function as insulation. At the same
time, the quantity and distribution of hair also influence an or-
ganism's reflectance, particularly when the reflective properties
of hair contrast with those of the underlying body surface. In this
way, light-coloured (i.e. high reflectance) hairs serve a photopro-
tective function in some heat-adapted plants and insects (Barrett &
O'Donnell, 2023; Ehleringer et al., 1976; Mershon et al., 2015; Shi
et al,, 2015; Skelton et al., 2012). These findings support mecha-
nistic links between lightness, pilosity, and climate, yet, evidence
that these traits vary predictably with climate at global scales has
remained elusive for most taxa.

A major obstacle to attaining these macroecological insights is
the time-demanding nature of trait measurement and data stan-
dardization. As a consequence, our understanding of climate-
trait relationships is dominated by the traits that are simplest to
measure (e.g. body size, see Blackburn & Gaston, 1994; Chown
& Gaston, 2010). By contrast, heterogeneous and geometrically
complex traits like lightness and especially pilosity are poorly rep-
resented in large datasets, despite their importance for thermal
performance (Ostwald et al., 2023). Contemporary advances in ar-
tificial intelligence (Al) present exciting opportunities to overcome
these quantification challenges. Computer vision, a branch of Al
that applies machine learning to derive high-dimensional data
from images, offers tractable solutions for scalable, automated
trait data collection. These techniques are increasingly acceler-
ating ecological data collection, taking advantage of the recent
proliferation of image datasets in biological research (Gharaee
et al., 2025; Lirig et al., 2021; Seltmann et al., 2021; Van Horn
et al., 2018; Weinstein, 2018). In addition to providing pathways
to study complex, lesser-studied traits, these tools enable high-
throughput trait data collection that extends the scales at which
we can test ecological hypotheses.

Here, we develop and apply a computer vision methodology for
investigating functional trait variation in bees (Apoidea: Anthophila),
the most important animal pollinators of wild and cultivated plants
(Ollerton et al., 2011). Bees are diverse and globally distributed, rep-
resenting over 20,000 described species worldwide and occupying
all major terrestrial biomes (Michener, 2007). Likewise, bees are mor-
phologically diverse, spanning a broad range of colour phenotypes
and ranging from hairless to thickly pilose. We trained convolutional
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neural networks (CNNs) to perform feature extraction on images
of bees, and used these data to automate the measurement of co-
lour lightness and pilosity across a large, taxonomically diverse bee
image dataset. Using these data, we ask the following questions: (i)
how does climate shape interspecific variation in bee lightness (i.e.
Bogert's Rule and Gloger's Rule)? (ii) how does climate shape inter-
specific variation in bee pilosity? and (iii) how do these two traits
interact? These findings illuminate how climate shapes species as-

semblages and drives trait diversification at macroecological scales.

2 | MATERIALS AND METHODS
2.1 | Image datasets

For both model training and trait analysis, we used high-resolution,
bright-field DSLR macro photographs of preserved bee specimens.
All images represent lateral habitus views of the specimens. The
lateral view allowed for greater consistency in the viewable portion
of the bees' body; in dorsal images, by contrast, the proportion of
the body in view is strongly dependent on the relative positions of
the mesosoma and metasoma. All specimens were dried and none
were stored in preservative (e.g. ethanol).

We trained our models on a total of 230 unique bee images (and
associated augmented images, see ‘Segmentation model training’),
then applied the trained models to a novel set of 611 bee images.
We produced the majority of these images (67.5%) by photographing
specimens from the University of Kansas Entomology Collections
and the University of California, Santa Barbara Invertebrate Zoology
Collection using a Canon EOS 6D Mark Il camera with a 65mm lens,
StackShot macro-rail (Macroscopic Solutions, East Hartford, CT,
USA), and focus stacking using Zerene Stacker. These images are
publicly available (Ostwald et al. 2024; Seltmann et al., 2021). We
supplemented these images with public domain images captured
using the same imaging methodology, from two sources: Exotic
Bee ID (Burrows, 2021) (used in model training, N=161 images) and
the USGS Native Bee Inventory and Monitoring Program (USGS
Interagency Bee Lab, USGS Native Bee Inventory and Monitoring
Program Images, 2010; used in trait analysis, N=132 images). To
train models that could generalize well to a variety of lateral hab-
itus images, we used a broad sample of 230 images that included
male and female bees across six families (Andrenidae: N=7; Apidae
N=41; Colletidae: N=17; Halictidae N=7; Megachilidae: N=151;
Apidae N=7), specimens with and without visible pins, and images
with backgrounds that were either grey or black.

After training, for trait analysis using the trained models, we
used a more uniform image dataset consisting of only female bees
and only images with black backgrounds (N = 623; all taken at the
University of Kansas with a single camera/lighting set-up). Female
bees and black background images are also well represented in the
training dataset. The trait analysis images represent 611 bee species
and 377 genera (63% of recognized bee genera) across all seven bee
families. Specimens were collected between 1907 and 2019 (mean
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collection year=1972). All images and metadata are available at
https://doi.org/10.5281/zenodo.12572898.

2.2 | Segmentation model training

To quantify bee pilosity and lightness, we trained a semantic seg-
mentation model for pixel-by-pixel classification of relevant features
(focal body region, hair) from images of bees (Figure 1). Our chosen
segmentation model, TernausNet, is a variant of UNet, a widely-used
convolutional neural network that has been successfully implemented
for biomedical image segmentation (Huang et al., 2020; Ronneberger
et al, 2015). TernausNet uses VGG11 architecture, which is pre-
trained on a large and diverse labelled image dataset (ImageNet;
Iglovikov & Shvets, 2018). We trained models to perform two distinct
segmentation tasks: segmentation of the focal region of the bee's
body and segmentation of hair (Figure 1). First, the model identifies
the bee in the image and segments it from the background, simultane-
ously removing the specimen pin (if present), eyes, wings, antennae,
stinger (hereafter, we refer to the remaining segment of the bee as the
‘focal body region’). While eyes, wings, and tongues may contain small
hairs, they contribute minimally to the overall pilosity of the bee, and
so were removed from our focal body segment. Moreover, including
these regions could bias our measurement of hair coverage (% body
surface covered in hair) depending on factors such as the visibility of
the tongue or the orientation of the wings, which can alternately rep-
resent a large or small area of the image. Likewise, inclusion of wings
would skew our estimation of lightness due to variation in reflected
light depending on wing position. Next, the model takes the output
of the first segmentation task (the focal body region) and further seg-
ments pixels into ‘hair’ and ‘non-hair’ components.

To accomplish these segmentation tasks, we trained two mod-
els, one for hair segmentation and one for focal body region seg-
mentation. The training datasets included ground-truth image masks
manually created in Adobe Photoshop (Figure 1). Prior to training, we
resized training images to 256x256 pixels and converted them to
PyTorch tensors, a data structure compatible with our deep learning
framework. We also performed colour normalization to better align
our data with the TernausNet pretraining dataset (ImageNet) and fa-
cilitate the model's ability to learn from the training data. For focal
body region segmentation, we divided our dataset of 230 images and
associated ground-truth masks into three subsets with a 60:20:20
split for training, testing, and validation (138, 46, and 46 images, re-
spectively). We trained this model over 100 epochs (batch size=2)
then performed an additional round of training to fine-tune the
model using an expanded dataset that included the original images
as well as two corresponding sets of augmented images, that is, one
image that had been flipped (both vertically and horizontally) and one
that had been rotated. For hair segmentation, we used a dataset of
441 cropped images of bees and associated hair masks, similarly split
into training, testing, and validation subsets with a 60:20:20 split
(265, 88, and 88 images, respectively). This model was also trained
over 100 epochs (batch size=2). Due to the time-intensive nature
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FIGURE 1 Summarized computer vision workflow for feature
extraction from images of bees. We trained two CNNs, one for
segmentation of the focal body region and one for segmentation

of hair. The segmented images from each model are then used to
quantify bee lightness and pilosity. Bee lightness is computed as the
median pixel lightness value from the focal body region segment.
Pilosity is estimated as percent hair coverage, computed by dividing
the number of pixels in the hair segment by the total number of
pixels in the focal body region segment.

of creating hair masks from images of whole bees, we used image
tiling to train the hair segmentation model: we divided input images
(mean dimensions: 4269 x 2975 pixels) into smaller 300 x 300-pixel
crops, then created ground-truth hair masks from randomly chosen
cropped images (Figure 1). These crops were then downscaled to
256 x256-pixel crops to fit training requirements. This image tiling
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procedure is repeated during analysis: prior to hair segmentation,
input images are divided into 300 x 300 pixel crops. The model then
segments hair from the cropped images. We then reassemble these
segmented crops to reproduce the original full image and calculate a
hair coverage score for the entire bee. In this way, the model is able
to perform segmentation at the same scale on which it was trained
(Figure 1). For all training, we used an Adam optimizer (Kingma &
Ba, 2017) and a weighted combination of generalized dice loss and
binary cross-entropy loss, with weights of 0.75 and 0.25, respec-
tively (De Boer et al., 2005). Models were implemented in Python
3.9.13. Model training, evaluation, and implementation scripts are
available at: https://zenodo.org/doi/10.5281/zenodo0.12572908.
We divided our training image dataset into three subsets with
a 60:20:20 split for training, testing, and validation, respectively.
To evaluate model performance, we report pixel-wise accuracy, F1

scores, and intersection over union (loU) as follows:

number of correctly classified pixels

Pixel — wise accuracy = - x 100 %
total number of pixels
recision x recall
F1=2x pu—,where
precision + recall
.. true positives
precision = ,and recall

"~ true positives +false positives
_ true positives
"~ true positives +false negatives

loU = area of overlap between ground truth mask and predicted mask
" area of union between ground truth mask and predicted mask

2.3 | Trait quantification

We quantified pilosity as hair coverage, that is, the percent of the

focal body region covered in hair:

total segmented hair pixels

100%
total segmented focal body region pixels X ?

% hair coverage =

We measured the lightness of each pixel in the focal body region
as a score ranging from O (full black) to 255 (full white). To standard-
ize for variation in lighting across images, we calibrated our scores
such that the black of the background was set equal to 0. We then
computed a lightness score for each pixel in the focal body region
and calculated the median lightness across these pixels.

2.4 | Statistical analysis of trait and climate data

To understand relationships between climate variables and trait
variation, we fit generalized linear mixed-effects models (GLMM)
using the ‘Ime4’ package (Bates et al., 2015) in R version 4.4.2 (R
Core Team, 2024). Models were fit with either pilosity or lightness
as the response variable and with climate variables as predictors.
To account for phylogenetic non-independence of trait values, we
included a nested random effect of taxonomic identity (subfamily/
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genus) (da Silva et al., 2023; Lenoir et al., 2020; Sunday et al., 2011)
and used Akaike's Information Criterion (AIC) to confirm that the in-
clusion of this random effect improved model fit.

We extracted climate data from WorldClim version 2.1 (historical
climate data for 1970-2000) at 305 spatial resolution (~1km?); (Fick
& Hijmans, 2017) using the ‘raster’ package (Hijmans, 2023). We as-
sociated climate data with the sampling locations of each specimen.
Because hair and lightness patterns can vary across a species' range
(LaBerge, 1956; Peat et al., 2005), we considered only the climate in
the location where a given individual was sampled, rather than the
entire range of the species. Where sampling coordinates were not
available, we estimated sampling latitude and longitude from the most
specific available location data (county, city, or locality) using the geo-
code() function in the R package ‘ggmap’ (Kahle & Wickham, 2013).
We used these data to describe eight climate variables: (Brown, 1995)
mean annual temperature, (MacArthur, 1972) annual precipitation,
(Whittaker et al., 2001) temperature seasonality (std. dev. of monthly
mean temperatures x 100), (Gagic et al., 2015) precipitation seasonal-
ity (std. dev of monthly precipitation valuesx 10), (Mcgill et al., 2006)
the maximum temperature of the hottest month, (Violle et al., 2007)
the minimum temperature of the coldest month, (Violle et al., 2014)
the vapour pressure deficit, and (Gaston et al., 2008) solar radiation.
These eight variables reflect various measures of the magnitude and
variation in environmental moisture and temperature, and were cho-
sen based on predicted relationships between our focal traits and heat
and/or water balance (Angilletta, 2009; Barrett & O'Donnell, 2023;
Hadley, 1994; Kevan et al., 1982; Shi et al., 2015). We used stepwise
backward model selection to identify climate variables associated with
pilosity and lightness. We sequentially removed variables based on
variance inflation factor to account for collinearity of climate variables
(VIF>5 is a standard threshold; (Rogerson, 2001)), then by removing
non-significant variables (type Il ANOVA) until we achieved the best-
fitting model (lowest AIC). To prevent bias in model selection caused
by the order of variable removal, we initially assessed each environ-
mental variable individually (GLMM) to prioritize retention of influen-
tial variables in cases where multiple variables had VIF>5 or p>0.05
(as in Kellermann et al., 2018). We assessed normality of predictor
(environmental) and response (trait) variables by inspecting QQ-plots
and transformed variables where necessary to improve normality (log-
transform: precipitation seasonality; square-root transform: lightness,
temperature seasonality, annual precipitation). We confirmed that
chosen models met assumptions of GLMM by inspecting QQ-plots of
residuals and plots of fitted values versus residuals.

To understand whether biome predicts trait variation, we simi-
larly fit GLMMs with trait values (pilosity or lightness) as response
variables, biome as a predictor variable, and nested taxonomic clas-
sification (Subfamily/Genus) as a random effect. We used a sim-
plified version of the World Wildlife Fund's terrestrial ecoregions
delineation scheme to assign specimens to one of four merged
biome categories: (Brown, 1995) Tropical and Subtropical Forests
(WWEF biomes 1, 2, and 3), (MacArthur, 1972) Temperate Forests
(WWEF biomes 4, 5, and 12), (Whittaker et al., 2001) Grasslands and
Shrublands (WWF biomes 7, 8, 9, and 10), and (Gagic et al., 2015)
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Deserts & Xeric Shrublands (WWF biome 13); (Olson et al., 2001).
We excluded from our analysis specimens collected in WWF biomes
6, 11, and 14 (Boreal Forests/Taiga, Tundra, Mangroves), due to low
sample size from these regions. Similar to the above analyses, we
used diagnostic plots to verify that model residuals met assumptions
of normality and homoscedasticity, and confirmed that the random
effect improved model fit by comparing AIC values. Finally, we used
the estimated marginal means (‘emmeans’ package, (Lenth, 2021))
to calculate p-values for pairwise comparisons among the different
biome categories.

To understand the extent to which different taxonomic levels
explained variation in pilosity and lightness, we fit mixed models for
each trait with genus, subfamily, and family identity as nested ran-
dom effects. We then used variance component analysis to estimate
the amount of variation in trait values explained by each taxonomic
level (‘lme4’ package, Bates et al., 2015).

To estimate phylogenetic signal in bee pilosity and lightness, we
used a recent genus-level supermatrix phylogeny of the Anthophila
(Henriquez-Piskulich et al., 2024). A subset of genera in our data-
set was not represented in this tree, so we added them manually to
the tree as polytomies with the most closely related genus, based
on published phylogenies for each taxon (Bossert et al., 2022;
Freitas et al., 2023; Goncalves, 2016; Gonzalez et al., 2012, 2017,
2019; Litman et al., 2013; Michez et al., 2009; Pisanty et al., 2022;
Rasmussen & Cameron, 2009). We calculated mean trait values for
each genus, then used the ‘phytools’ package to estimate phyloge-
netic signal in pilosity and lightness as Pagel's 4, a scaling parame-
ter that ranges from 21=0 (no correlation between species) to 1=1
(strong correlation between species, equal to that expected under
a Brownian Motion model of trait evolution; Revell, 2024). We vi-
sualized mean trait values across this phylogeny using the ‘ggtree’
package (Guangchuang et al., 2017).

Finally, we assessed phylogenetic independent contrasts (PIC) to
describe the relationship between pilosity and lightness while ac-
counting for phylogenetic non-independence, using the ‘ape’ pack-
age (Paradis & Schliep, 2019).

3 | RESULTS
3.1 | Segmentation model performance

Our models showed high performance in segmentation tasks
across a diversity of bee taxa. For focal body region segmenta-
tion, pixel-wise accuracy was 98.479 +2.746% (mean+SD), an
F1 score of 0.960+0.050, and an loU score of 0.926+0.0573.
Segmentation was performed accurately across bee families de-
spite overrepresentation of certain families in our training data-
set (mean accuracy >95% for each family). Indeed, there was no
correlation between mean family-level accuracy and the num-
ber of training images for that family (Spearman's rank correla-
tion test: p=0.774), suggesting that the learned features that
are useful for body segmentation are shared across bees and

not specific to families. Hair segmentation likewise was per-
formed with high accuracy (accuracy=86.739 +1.442%), though
other performance metrics were lower than for body segmenta-
tion (F1=0.593+0.039, loU=0.482+0.037). Importantly, pre-
dicted hair coverage was strongly correlated with hair coverage
in ground-truth masks (Pearson's r=0.631, p<0.001), suggesting
that despite some segmentation limitations, our model captures

meaningful variation in hair coverage across bee taxa.

3.2 | Phylogenetic patterns in bee functional trait
variation

The output of our computer vision workflow (Figure 1) revealed
dramatic variation in pilosity and lightness across bee species. We
quantified pilosity as the percent of the body surface covered in
hair (mean bee hair coverage=44.02%; SD=17.25%; range=4.59
to 88.87%), and lightness as the median pixel lightness across the
bee's body, according to the HSL (Hue-Saturation-Lightness) colour
model, where the lightness component ranges from O (full black) to
255 (full white); (mean bee lightness=73.80; SD=24.10; range=20
to 168). Pilosity was significantly, positively associated with light-
ness, with hairier bees being overall lighter in colour (phylogenetic
independent contrasts: #=0.658, R?=0.843, p<0.001; Figure 2).
We detected significant, moderate phylogenetic signal in both pilos-
ity (likelihood ratio test: p<0.001, 1=0.694) and lightness (likelihood
ratio test: p<0.001, 1=0.752). Genus-level differences explained
much of the variation in trait values (variance components analysis:
=38.3% of total

pilositygenus=44.2% of total variance, Iightnessgenus

variance), while differences at the level of subfamily and family were
less explanatory of trait variation (variance components analysis:
=9.7%;

Iightnessfam“y=6.1% of total variance). In other words, the diversity

pilositysubfam"y:SJ%; pilosityfam“y:S.‘?%; Iightnesssubfam“y
of trait phenotypes was well represented within each major family
(Figure 2). High residual variance (pilosity, gy, =44.2%; lightness-
residua =45.9% of total variance) suggests that trait variation is only
partially explained by taxonomic level, highlighting the potential im-

portance of other factors, including environmental variation.

3.3 | Climatic and biogeographic patterns in bee
pilosity and lightness

To understand how climate shapes functional trait variation, we
linked trait to climate data estimated from specimen collection lo-
cation. The best-fitting models exploring these trait-climate rela-
tionships highlighted temperature and precipitation as important
drivers of trait variation, while accounting for phylogenetic ef-
fects. Specifically, high temperatures (the maximum temperature
of the hottest month) significantly predicted variation in both traits
(GLMM: R? =0.530; R? =0.020; R? =0.484;
R? =0.038), with hairier, lighter-coloured bees found in re-
gions with hotter maximum temperatures (ANOVA: Ppitosity < 0.001;

c,pilosity m,pilosity c,lightness

m,lightness
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Interspecific variation in pilosity and lightness across the bee phylogeny (b-d). Tree tips represent genera, and colours

indicate genus-level mean trait values (d). Pilosity values represent percent hair coverage from 0% to 100%. Lightness values represent
median lightness values of all bee pixels on a scale from O (full black) to 255 (full white). (a) Pilosity and lightness are positively associated
(phylogenetic independent contrasts: =0.658, R>=0.843, p<0.001).

ﬁpnosity=0.580; p“ghtness<0.001; /}“ghtness=0.045; Figure 3). Annual
precipitation (square-root transformed) also predicted variation
in bee lightness (GLMM: R? . =0.484; R? ... .. =0.038),
with lighter bees found in drier climates (ANOVA: p”ghtness=0.008;
ﬂlightness:—0.014; Figure 3). Correspondingly, biome significantly
predicted bee pilosity and lightness (GLMM: pp“osity<0.001;

. 2 . 2 X
plightness=0'007’ R c,pilosity=0'545' R m,pilosity=0'027’
R%ightness =0-523; R? =0.039). Bees collected in deserts
and xeric shrublands were significantly hairier and lighter-coloured

m,lightness

than bees found in the other biomes sampled (temperate for-
ests, tropical and subtropical forests, grasslands and shrublands;
pp”osity<0.01 and p“ghmess<0.01 for all pairwise comparisons to
desert; p>0.05 for all other comparisons; Figures 4 and 5).

4 | DISCUSSION

Our study provides evidence for the role of climate in shaping inter-
specific variation in bee functional traits at a global scale. By leverag-
ing advances in deep learning and computer vision, we generated a

large trait dataset with broad geographic coverage representing over

600 species from more than 60% of described bee genera. Our anal-
ysis demonstrates that hot, dry regions of the world are hotspots
for bees with adaptations that may reduce overheating, namely,
coverage with light-coloured hair (Barrett & O'Donnell, 2023;
Ehleringer et al., 1976; Mershon et al., 2015; Shi et al., 2015; Skelton
et al., 2012). These findings implicate climate factors in bee trait
evolution and emphasize the utility of deep learning and computer
vision for expanding the scope of functional trait research.

We found that bee hair coverage and lightness both increase
with maximum environmental temperature. These patterns may
reflect an adaptive thermoregulatory function of light-coloured
hair, which has been shown in plants and other insects to mitigate
heat stress by increasing reflectance (Barrett & O'Donnell, 2023;
Ehleringer et al., 1976; Mershon et al., 2015; Shi et al., 2015; Skelton
et al,, 2012). Indeed, we detected a strong correlation between
these two traits, indicating that hairier bees were lighter coloured.
Bee hairs tend to be lighter in colour than the underlying integu-
ment, which is often dark (with notable exceptions of dark-haired
bees, such as many Bombus species, and bees with light integument,
for example, many stingless and Anthidiine bees). These findings are
consistent with the thermal melanism hypothesis, which posits that
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FIGURE 3 Climate variables predict bee functional trait
variation. (a) Pilosity and (b) lightness both increase with

the maximum temperature of the hottest month (ANOVA:
ppilosity <0'001; ﬁpilosity = 0'577; plightness <O’001; ﬁlightness =O'045)'
(c) Bee lightness decreases with annual precipitation (ANOVA:
plightne55:0.007; /J’“ghtnessz -0.013). For clarity, trendlines show
linear regressions between traits and single environmental
variables.

lighter (i.e. higher reflectance) coloration is advantageous for ec-
totherms in hotter environments because it reduces radiative heat
gain and the risk of overheating (Bishop et al., 2016; Bogert, 1949;
Clusella Trullas et al., 2007; Kang et al., 2021; Munijal et al., 1997,
Watt, 1968).

Additionally, we found that lightness (but not hair coverage)
decreased with annual precipitation, in line with Gloger's Rule,
which predicts that darker individuals inhabit wetter environments
(Delhey, 2019; Gloger, 1833; Rensch, 1929). This rule has been ob-
served in some insects (Lopez et al., 2021; Nishikawa et al., 2010;
O'Neill et al., 2017; Williams, 2007), but the underlying mecha-
nisms are contentious, owing to the diverse functions of melanin in

camouflage, signalling, and pathogen resistance (Cheng et al., 2018;
Delhey, 2019). One possibility that is consistent with the thermal
melanism hypothesis considers interactions between thermal and
hygric stressors: in hot regions, darker individuals may be favoured
in wetter, more vegetated environments that offer refuge from
solar radiation and reduced desiccation stress (Delhey, 2019; Xing
et al., 2016).

Correspondingly, we found significant biogeographic variation
in these traits. Deserts and xeric shrublands hosted hairier, lighter-
coloured bees than other biomes sampled, including tropical and
subtropical forests, temperate forests, and grasslands and shrub-
lands. Bee taxonomists have long remarked on the prevalence of
hair-covered bees in deserts and xeric regions (Michener, 2007). In
hot, xeric habitats, hair coverage and resulting light coloration may
enhance performance by expanding activity windows and reducing
thermal stress (Barrett & O'Donnell, 2023; Shi et al., 2015). Examples
of pubescent phenotypes in desert organisms from across the plant
and animal kingdoms suggest convergent evolution of hair as an
adaptation to heat and aridity (Hadley, 1972; Moles et al., 2020).
Bees likely originated in warm, xeric regions 120Mya (Almeida
et al., 2023), and today bee diversity and species richness are great-
est in climatically similar habitats (Michener, 1979, 2007). Adaptive
variation in these traits may have facilitated the diversification and
dispersal of bees to occupy all major terrestrial biomes.

Both pilosity and lightness serve multiple functions in bees,
complicating climate relationships to trait variation. Hair serves
physiological and ecological functions in bees, functioning in
thermoregulation and as the primary vehicle for pollen transport
(Heinrich, 1974; Thorp, 2000). The density, structure, and location
of specialized pollen-collecting hairs (scopae) vary widely across bee
taxa and mediate the uptake of pollen and the efficiency of pollina-
tion (Phillips et al., 2018; Thorp, 2000; Woodcock et al., 2019). The
extent to which the thermal consequences of hair coverage trade off
with its effectiveness in pollen transport is an intriguing avenue for
future study. Lightness likewise serves adaptive functions beyond
thermoregulation, influencing camouflage, signalling, and immunity
(Hines et al., 2022; Stuart-Fox et al., 2017). Indeed, because visible
colour is under competing selection for multiple ecological functions,
other components of colour outside of the visible spectrum (espe-
cially near-infrared, NIR) may vary more consistently with climate
(Munro et al., 2019; Wang et al., 2021). Our model quantifies light-
ness in the visible light spectrum, and so does not account for these
other components of solar reflectance. Nevertheless, we find that
climate is predictive of visible coloration (Bishop et al., 2016; Kang
etal., 2021). Quantifying NIR reflectance across bee taxa may yet re-
veal even stronger associations to climate variation, and techniques
to capture NIR and UV reflectance in images (Munro et al., 2019) en-
able these data to be analysed with our computer vision workflow.

Importantly, pilosity is a complex and multi-dimensional trait,
with hair varying independently in structure, length, density, and
spatial distribution across the body, even within an individual (Hines
et al.,, 2022; Pasteels & Pasteels, 1971; Portman et al., 2019). This
complexity may account for the appearance of conflicting patterns
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FIGURE 4 Biogeographic variation in bee (a) pilosity and (b) lightness. Both (c) pilosity and (d) lightness are significantly higher in deserts
and xeric shrublands than they are in other sampled biomes (estimated marginal means: p<0.01 for all comparisons to desert; p>0.05 for all
other comparisons). Colour differences in the boxplot indicate significant differences.

in pilosity variation across studies. Previous work at smaller eco-
logical scales associated hair length with cooler climates (Gonzalez
et al., 2022; Osorio-Canadas et al., 2022; Peat et al., 2005; Peters
et al., 2016), in line with the insulative function of hair (Casey &
Hegel, 1981; Kevan et al., 1982). Hair length is the predominant met-
ric for pilosity in bees, owing largely to its ease of measurement and
standardization (Roquer-Beni et al., 2020). However, this method may
not scale appropriately to interspecific comparisons of taxonomically
diverse bees with variable hair morphologies. Where hair length may
reflect the degree of insulation across uniformly hairy body regions,
total hair coverage reflects the extent of the hair boundary layer and
the exposure of cuticle. Our application of computer vision enabled
us to quantify hair coverage, an understudied but functionally signif-
icant axis of pilosity, which we found to vary considerably (nearly 20-
fold) across bee species. Alternatively, hair coverage may also be an
important adaptation to extreme cold habitats, which were under-
represented in our sample. Second, we quantified interspecific trait
variation, though both hair and lightness can also vary within species,
often in relation to local climate (LaBerge, 1956; Peat et al., 2005).

Future work should clarify the extent to which climate drives intra-
specific variation in these traits.

Our study demonstrates the promise of computer vision for ad-
vancing functional ecological research, as well as the use of biodi-
versity collections to address current ecological and evolutionary
questions. Increasingly, functional traits are being leveraged as a
tractable framework for predicting broad patterns in ecology, based
on the premise that traits represent easily-quantifiable yet function-
ally significant organismal characteristics (Gagic et al., 2015; Laughlin
et al.,, 2020; MacLean & Beissinger, 2017; Mcgill et al., 2006; Violle
et al., 2007). Nevertheless, many of the traits most relevant to organ-
ismal performance, such as those involved in thermoregulation, elude
straightforward manual measurement. By automating complex trait
measurement tasks, computer vision relieves this quantification bot-
tleneck (Hgye et al., 2021; Lurig et al., 2021; Weinstein, 2018), with the
additional benefit that these techniques can be replicable and scalable
across large datasets, extending the ecological scales at which we can
test trait-related hypotheses. Indeed, measurement inconsistency is
cited as one reason why climate tends to have poor predictive power in
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FIGURE 5 Deserts host hairier, lighter-coloured bees than other biomes. Randomly selected subsets of our image dataset, representing
bees from deserts and xeric shrublands (top) and from all other sampled biomes (temperate forests, tropical and subtropical forests,

grasslands and shrublands; bottom).

large-scale trait meta-analyses (Anderegg, 2023). The impact of these
tools will only grow alongside the proliferation of image datasets, par-
ticularly specimen images arising from museum collection digitization
efforts (Hedrick et al., 2020; Seltmann et al., 2021).

These findings implicate climate as a major selective force in bee
trait evolution. Our results provide support for two major ecogeo-
graphical rules (the thermal melanism hypothesis and Gloger's Rule),
and highlight the interaction between traits as an important deter-
minant of bee biogeography. More broadly, uncovering the climate
rules shaping trait evolution will have important implications for pre-
dicting the performance and distributions of organisms under future

climate scenarios.
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