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1  |  INTRODUC TION

Climate drives macroecological patterns in species distributions, 
abundance, and diversity (Brown, 1995; MacArthur, 1972; Whittaker 
et al., 2001). A tractable approach for understanding these pat-
terns is by investigating the species traits that mediate organisms' 
fitness and performance under varying climate conditions (Gagic 
et al., 2015; Mcgill et al., 2006; Violle et al., 2007). These traits (e.g. 
body size, coloration, etc.) mediate functional interactions between 
organisms and their environments, and offer avenues for synthesiz-
ing organismal responses with broader- scale biogeographic trends 
(Mcgill et al., 2006; Violle et al., 2007, 2014). However, whether 
functional relationships between traits and climate give rise to 

generalizable patterns at global scales remains a major question in 
evolutionary ecology (Gaston et al., 2008; He et al., 2023).

For ectotherms, the physical characteristics of the body surface 
mediate heat exchange with the environment (Angilletta, 2009; 
Buxton et al., 2021). Variation in body coloration—specifically, co-
lour lightness—influences the absorption of solar radiation, and so 
represents one mechanism for thermal adaptation (Clusella Trullas 
et al., 2007; Watt, 1968). Indeed, variation in colour lightness can 
track environmental gradients. Across taxa, darker coloration has 
been associated with cooler climates, such as high elevation or 
high latitude environments (Bishop et al., 2016; Clusella Trullas 
et al., 2007; Kang et al., 2021; Munjal et al., 1997; Watt, 1968), 
where it may confer fitness benefits by enabling individuals to 
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Abstract
1. Climate is a fundamental driver of macroecological patterns in functional trait 

variation. However, many of the traits that have outsized effects on thermal per-
formance are complex, multi- dimensional, and challenging to quantify at scale.

2. To overcome this challenge, we leveraged techniques in deep learning and com-
puter vision to quantify hair coverage and lightness of bees, using images of a 
diverse and widely distributed sample of museum specimens.

3. We demonstrate that climate shapes variation in these traits at a global scale, with 
bee lightness increasing with maximum environmental temperatures (thermal mel-
anism hypothesis) and decreasing with annual precipitation (Gloger's Rule).

4. We found that deserts are hotspots for bees covered in light- coloured hairs, ad-
aptations that may mitigate heat stress and represent convergent evolution with 
other desert organisms.

5. These results support major ecogeographical rules in functional trait variation 
and emphasize the role of climate in shaping bee phenotypic diversity.
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reach operating temperatures more quickly (i.e. the thermal mel-
anism hypothesis or Bogert's Rule, (Bogert, 1949; Clusella Trullas 
et al., 2007)). Simultaneously, darker individuals may be found in 
wetter environments, through a variety of proposed mechanisms 
related to the ecological and physiological functions of melanin 
(i.e. Gloger's Rule, Delhey, 2019; Gloger, 1833; Lopez et al., 2021; 
Nishikawa et al., 2010; Rensch, 1929).

Another morphological trait implicated in thermoregulation is 
pilosity (i.e. hairiness), which can increase boundary layer resistance 
to convective heat loss (Buxton et al., 2021; Casey & Hegel, 1981; 
Church, 1960; Heinrich, 1974). Correspondingly, in some taxa, hair 
length increases with elevation (Gonzalez et al., 2022; Osorio- 
Canadas et al., 2022; Peters et al., 2016) and latitude (Peat 
et al., 2005), consistent with its function as insulation. At the same 
time, the quantity and distribution of hair also influence an or-
ganism's reflectance, particularly when the reflective properties 
of hair contrast with those of the underlying body surface. In this 
way, light- coloured (i.e. high reflectance) hairs serve a photopro-
tective function in some heat- adapted plants and insects (Barrett & 
O'Donnell, 2023; Ehleringer et al., 1976; Mershon et al., 2015; Shi 
et al., 2015; Skelton et al., 2012). These findings support mecha-
nistic links between lightness, pilosity, and climate, yet, evidence 
that these traits vary predictably with climate at global scales has 
remained elusive for most taxa.

A major obstacle to attaining these macroecological insights is 
the time- demanding nature of trait measurement and data stan-
dardization. As a consequence, our understanding of climate–
trait relationships is dominated by the traits that are simplest to 
measure (e.g. body size, see Blackburn & Gaston, 1994; Chown 
& Gaston, 2010). By contrast, heterogeneous and geometrically 
complex traits like lightness and especially pilosity are poorly rep-
resented in large datasets, despite their importance for thermal 
performance (Ostwald et al., 2023). Contemporary advances in ar-
tificial intelligence (AI) present exciting opportunities to overcome 
these quantification challenges. Computer vision, a branch of AI 
that applies machine learning to derive high- dimensional data 
from images, offers tractable solutions for scalable, automated 
trait data collection. These techniques are increasingly acceler-
ating ecological data collection, taking advantage of the recent 
proliferation of image datasets in biological research (Gharaee 
et al., 2025; Lürig et al., 2021; Seltmann et al., 2021; Van Horn 
et al., 2018; Weinstein, 2018). In addition to providing pathways 
to study complex, lesser- studied traits, these tools enable high- 
throughput trait data collection that extends the scales at which 
we can test ecological hypotheses.

Here, we develop and apply a computer vision methodology for 
investigating functional trait variation in bees (Apoidea: Anthophila), 
the most important animal pollinators of wild and cultivated plants 
(Ollerton et al., 2011). Bees are diverse and globally distributed, rep-
resenting over 20,000 described species worldwide and occupying 
all major terrestrial biomes (Michener, 2007). Likewise, bees are mor-
phologically diverse, spanning a broad range of colour phenotypes 
and ranging from hairless to thickly pilose. We trained convolutional 

neural networks (CNNs) to perform feature extraction on images 
of bees, and used these data to automate the measurement of co-
lour lightness and pilosity across a large, taxonomically diverse bee 
image dataset. Using these data, we ask the following questions: (i) 
how does climate shape interspecific variation in bee lightness (i.e. 
Bogert's Rule and Gloger's Rule)? (ii) how does climate shape inter-
specific variation in bee pilosity? and (iii) how do these two traits 
interact? These findings illuminate how climate shapes species as-
semblages and drives trait diversification at macroecological scales.

2  |  MATERIAL S AND METHODS

2.1  |  Image datasets

For both model training and trait analysis, we used high- resolution, 
bright- field DSLR macro photographs of preserved bee specimens. 
All images represent lateral habitus views of the specimens. The 
lateral view allowed for greater consistency in the viewable portion 
of the bees' body; in dorsal images, by contrast, the proportion of 
the body in view is strongly dependent on the relative positions of 
the mesosoma and metasoma. All specimens were dried and none 
were stored in preservative (e.g. ethanol).

We trained our models on a total of 230 unique bee images (and 
associated augmented images, see ‘Segmentation model training’), 
then applied the trained models to a novel set of 611 bee images. 
We produced the majority of these images (67.5%) by photographing 
specimens from the University of Kansas Entomology Collections 
and the University of California, Santa Barbara Invertebrate Zoology 
Collection using a Canon EOS 6D Mark II camera with a 65 mm lens, 
StackShot macro- rail (Macroscopic Solutions, East Hartford, CT, 
USA), and focus stacking using Zerene Stacker. These images are 
publicly available (Ostwald et al. 2024; Seltmann et al., 2021). We 
supplemented these images with public domain images captured 
using the same imaging methodology, from two sources: Exotic 
Bee ID (Burrows, 2021) (used in model training, N = 161 images) and 
the USGS Native Bee Inventory and Monitoring Program (USGS 
Interagency Bee Lab, USGS Native Bee Inventory and Monitoring 
Program Images, 2010; used in trait analysis, N = 132 images). To 
train models that could generalize well to a variety of lateral hab-
itus images, we used a broad sample of 230 images that included 
male and female bees across six families (Andrenidae: N = 7; Apidae 
N = 41; Colletidae: N = 17; Halictidae N = 7; Megachilidae: N = 151; 
Apidae N = 7), specimens with and without visible pins, and images 
with backgrounds that were either grey or black.

After training, for trait analysis using the trained models, we 
used a more uniform image dataset consisting of only female bees 
and only images with black backgrounds (N = 623; all taken at the 
University of Kansas with a single camera/lighting set- up). Female 
bees and black background images are also well represented in the 
training dataset. The trait analysis images represent 611 bee species 
and 377 genera (63% of recognized bee genera) across all seven bee 
families. Specimens were collected between 1907 and 2019 (mean 
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collection year = 1972). All images and metadata are available at 
https:// doi. org/ 10. 5281/ zenodo. 12572898.

2.2  |  Segmentation model training

To quantify bee pilosity and lightness, we trained a semantic seg-
mentation model for pixel- by- pixel classification of relevant features 
(focal body region, hair) from images of bees (Figure 1). Our chosen 
segmentation model, TernausNet, is a variant of UNet, a widely- used 
convolutional neural network that has been successfully implemented 
for biomedical image segmentation (Huang et al., 2020; Ronneberger 
et al., 2015). TernausNet uses VGG11 architecture, which is pre- 
trained on a large and diverse labelled image dataset (ImageNet; 
Iglovikov & Shvets, 2018). We trained models to perform two distinct 
segmentation tasks: segmentation of the focal region of the bee's 
body and segmentation of hair (Figure 1). First, the model identifies 
the bee in the image and segments it from the background, simultane-
ously removing the specimen pin (if present), eyes, wings, antennae, 
stinger (hereafter, we refer to the remaining segment of the bee as the 
‘focal body region’). While eyes, wings, and tongues may contain small 
hairs, they contribute minimally to the overall pilosity of the bee, and 
so were removed from our focal body segment. Moreover, including 
these regions could bias our measurement of hair coverage (% body 
surface covered in hair) depending on factors such as the visibility of 
the tongue or the orientation of the wings, which can alternately rep-
resent a large or small area of the image. Likewise, inclusion of wings 
would skew our estimation of lightness due to variation in reflected 
light depending on wing position. Next, the model takes the output 
of the first segmentation task (the focal body region) and further seg-
ments pixels into ‘hair’ and ‘non- hair’ components.

To accomplish these segmentation tasks, we trained two mod-
els, one for hair segmentation and one for focal body region seg-
mentation. The training datasets included ground- truth image masks 
manually created in Adobe Photoshop (Figure 1). Prior to training, we 
resized training images to 256 × 256 pixels and converted them to 
PyTorch tensors, a data structure compatible with our deep learning 
framework. We also performed colour normalization to better align 
our data with the TernausNet pretraining dataset (ImageNet) and fa-
cilitate the model's ability to learn from the training data. For focal 
body region segmentation, we divided our dataset of 230 images and 
associated ground- truth masks into three subsets with a 60:20:20 
split for training, testing, and validation (138, 46, and 46 images, re-
spectively). We trained this model over 100 epochs (batch size = 2) 
then performed an additional round of training to fine- tune the 
model using an expanded dataset that included the original images 
as well as two corresponding sets of augmented images, that is, one 
image that had been flipped (both vertically and horizontally) and one 
that had been rotated. For hair segmentation, we used a dataset of 
441 cropped images of bees and associated hair masks, similarly split 
into training, testing, and validation subsets with a 60:20:20 split 
(265, 88, and 88 images, respectively). This model was also trained 
over 100 epochs (batch size = 2). Due to the time- intensive nature 

of creating hair masks from images of whole bees, we used image 
tiling to train the hair segmentation model: we divided input images 
(mean dimensions: 4269 × 2975 pixels) into smaller 300 × 300- pixel 
crops, then created ground- truth hair masks from randomly chosen 
cropped images (Figure 1). These crops were then downscaled to 
256 × 256- pixel crops to fit training requirements. This image tiling 

F I G U R E  1  Summarized computer vision workflow for feature 
extraction from images of bees. We trained two CNNs, one for 
segmentation of the focal body region and one for segmentation 
of hair. The segmented images from each model are then used to 
quantify bee lightness and pilosity. Bee lightness is computed as the 
median pixel lightness value from the focal body region segment. 
Pilosity is estimated as percent hair coverage, computed by dividing 
the number of pixels in the hair segment by the total number of 
pixels in the focal body region segment.
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procedure is repeated during analysis: prior to hair segmentation, 
input images are divided into 300 × 300 pixel crops. The model then 
segments hair from the cropped images. We then reassemble these 
segmented crops to reproduce the original full image and calculate a 
hair coverage score for the entire bee. In this way, the model is able 
to perform segmentation at the same scale on which it was trained 
(Figure 1). For all training, we used an Adam optimizer (Kingma & 
Ba, 2017) and a weighted combination of generalized dice loss and 
binary cross- entropy loss, with weights of 0.75 and 0.25, respec-
tively (De Boer et al., 2005). Models were implemented in Python 
3.9.13. Model training, evaluation, and implementation scripts are 
available at: https:// zenodo. org/ doi/ 10. 5281/ zenodo. 12572908.

We divided our training image dataset into three subsets with 
a 60:20:20 split for training, testing, and validation, respectively. 
To evaluate model performance, we report pixel- wise accuracy, F1 
scores, and intersection over union (IoU) as follows:

2.3  |  Trait quantification

We quantified pilosity as hair coverage, that is, the percent of the 
focal body region covered in hair:

We measured the lightness of each pixel in the focal body region 
as a score ranging from 0 (full black) to 255 (full white). To standard-
ize for variation in lighting across images, we calibrated our scores 
such that the black of the background was set equal to 0. We then 
computed a lightness score for each pixel in the focal body region 
and calculated the median lightness across these pixels.

2.4  |  Statistical analysis of trait and climate data

To understand relationships between climate variables and trait 
variation, we fit generalized linear mixed- effects models (GLMM) 
using the ‘lme4’ package (Bates et al., 2015) in R version 4.4.2 (R 
Core Team, 2024). Models were fit with either pilosity or lightness 
as the response variable and with climate variables as predictors. 
To account for phylogenetic non- independence of trait values, we 
included a nested random effect of taxonomic identity (subfamily/

genus) (da Silva et al., 2023; Lenoir et al., 2020; Sunday et al., 2011) 
and used Akaike's Information Criterion (AIC) to confirm that the in-
clusion of this random effect improved model fit.

We extracted climate data from WorldClim version 2.1 (historical 
climate data for 1970–2000) at 30 s spatial resolution (~1 km2); (Fick 
& Hijmans, 2017) using the ‘raster’ package (Hijmans, 2023). We as-
sociated climate data with the sampling locations of each specimen. 
Because hair and lightness patterns can vary across a species' range 
(LaBerge, 1956; Peat et al., 2005), we considered only the climate in 
the location where a given individual was sampled, rather than the 
entire range of the species. Where sampling coordinates were not 
available, we estimated sampling latitude and longitude from the most 
specific available location data (county, city, or locality) using the geo-
code() function in the R package ‘ggmap’ (Kahle & Wickham, 2013). 
We used these data to describe eight climate variables: (Brown, 1995) 
mean annual temperature, (MacArthur, 1972) annual precipitation, 
(Whittaker et al., 2001) temperature seasonality (std. dev. of monthly 
mean temperatures × 100), (Gagic et al., 2015) precipitation seasonal-
ity (std. dev of monthly precipitation values × 10), (Mcgill et al., 2006) 
the maximum temperature of the hottest month, (Violle et al., 2007) 
the minimum temperature of the coldest month, (Violle et al., 2014) 
the vapour pressure deficit, and (Gaston et al., 2008) solar radiation. 
These eight variables reflect various measures of the magnitude and 
variation in environmental moisture and temperature, and were cho-
sen based on predicted relationships between our focal traits and heat 
and/or water balance (Angilletta, 2009; Barrett & O'Donnell, 2023; 
Hadley, 1994; Kevan et al., 1982; Shi et al., 2015). We used stepwise 
backward model selection to identify climate variables associated with 
pilosity and lightness. We sequentially removed variables based on 
variance inflation factor to account for collinearity of climate variables 
(VIF > 5 is a standard threshold; (Rogerson, 2001)), then by removing 
non- significant variables (type III ANOVA) until we achieved the best- 
fitting model (lowest AIC). To prevent bias in model selection caused 
by the order of variable removal, we initially assessed each environ-
mental variable individually (GLMM) to prioritize retention of influen-
tial variables in cases where multiple variables had VIF > 5 or p > 0.05 
(as in Kellermann et al., 2018). We assessed normality of predictor 
(environmental) and response (trait) variables by inspecting QQ- plots 
and transformed variables where necessary to improve normality (log- 
transform: precipitation seasonality; square- root transform: lightness, 
temperature seasonality, annual precipitation). We confirmed that 
chosen models met assumptions of GLMM by inspecting QQ- plots of 
residuals and plots of fitted values versus residuals.

To understand whether biome predicts trait variation, we simi-
larly fit GLMMs with trait values (pilosity or lightness) as response 
variables, biome as a predictor variable, and nested taxonomic clas-
sification (Subfamily/Genus) as a random effect. We used a sim-
plified version of the World Wildlife Fund's terrestrial ecoregions 
delineation scheme to assign specimens to one of four merged 
biome categories: (Brown, 1995) Tropical and Subtropical Forests 
(WWF biomes 1, 2, and 3), (MacArthur, 1972) Temperate Forests 
(WWF biomes 4, 5, and 12), (Whittaker et al., 2001) Grasslands and 
Shrublands (WWF biomes 7, 8, 9, and 10), and (Gagic et al., 2015) 

Pixel − wise accuracy =
number of correctly classified pixels

total number of pixels
× 100%

F1 = 2 x
precision × recall

precision + recall
, where

precision =
true positives

true positives+ false positives
, and recall

=
true positives

true positives+ false negatives

IoU =
area of overlap between ground truthmask and predictedmask

area of union between ground truthmask and predictedmask

%hair coverage =
total segmented hair pixels

total segmented focal body region pixels
× 100%
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Deserts & Xeric Shrublands (WWF biome 13); (Olson et al., 2001). 
We excluded from our analysis specimens collected in WWF biomes 
6, 11, and 14 (Boreal Forests/Taiga, Tundra, Mangroves), due to low 
sample size from these regions. Similar to the above analyses, we 
used diagnostic plots to verify that model residuals met assumptions 
of normality and homoscedasticity, and confirmed that the random 
effect improved model fit by comparing AIC values. Finally, we used 
the estimated marginal means (‘emmeans’ package, (Lenth, 2021)) 
to calculate p- values for pairwise comparisons among the different 
biome categories.

To understand the extent to which different taxonomic levels 
explained variation in pilosity and lightness, we fit mixed models for 
each trait with genus, subfamily, and family identity as nested ran-
dom effects. We then used variance component analysis to estimate 
the amount of variation in trait values explained by each taxonomic 
level (‘lme4’ package, Bates et al., 2015).

To estimate phylogenetic signal in bee pilosity and lightness, we 
used a recent genus- level supermatrix phylogeny of the Anthophila 
(Henríquez- Piskulich et al., 2024). A subset of genera in our data-
set was not represented in this tree, so we added them manually to 
the tree as polytomies with the most closely related genus, based 
on published phylogenies for each taxon (Bossert et al., 2022; 
Freitas et al., 2023; Gonçalves, 2016; Gonzalez et al., 2012, 2017, 
2019; Litman et al., 2013; Michez et al., 2009; Pisanty et al., 2022; 
Rasmussen & Cameron, 2009). We calculated mean trait values for 
each genus, then used the ‘phytools’ package to estimate phyloge-
netic signal in pilosity and lightness as Pagel's λ, a scaling parame-
ter that ranges from λ = 0 (no correlation between species) to λ = 1 
(strong correlation between species, equal to that expected under 
a Brownian Motion model of trait evolution; Revell, 2024). We vi-
sualized mean trait values across this phylogeny using the ‘ggtree’ 
package (Guangchuang et al., 2017).

Finally, we assessed phylogenetic independent contrasts (PIC) to 
describe the relationship between pilosity and lightness while ac-
counting for phylogenetic non- independence, using the ‘ape’ pack-
age (Paradis & Schliep, 2019).

3  |  RESULTS

3.1  |  Segmentation model performance

Our models showed high performance in segmentation tasks 
across a diversity of bee taxa. For focal body region segmenta-
tion, pixel- wise accuracy was 98.479 ± 2.746% (mean ± SD), an 
F1 score of 0.960 ± 0.050, and an IoU score of 0.926 ± 0.0573. 
Segmentation was performed accurately across bee families de-
spite overrepresentation of certain families in our training data-
set (mean accuracy >95% for each family). Indeed, there was no 
correlation between mean family- level accuracy and the num-
ber of training images for that family (Spearman's rank correla-
tion test: p = 0.774), suggesting that the learned features that 
are useful for body segmentation are shared across bees and 

not specific to families. Hair segmentation likewise was per-
formed with high accuracy (accuracy = 86.739 ± 1.442%), though 
other performance metrics were lower than for body segmenta-
tion (F1 = 0.593 ± 0.039, IoU = 0.482 ± 0.037). Importantly, pre-
dicted hair coverage was strongly correlated with hair coverage 
in ground- truth masks (Pearson's r = 0.631, p < 0.001), suggesting 
that despite some segmentation limitations, our model captures 
meaningful variation in hair coverage across bee taxa.

3.2  |  Phylogenetic patterns in bee functional trait 
variation

The output of our computer vision workflow (Figure 1) revealed 
dramatic variation in pilosity and lightness across bee species. We 
quantified pilosity as the percent of the body surface covered in 
hair (mean bee hair coverage = 44.02%; SD = 17.25%; range = 4.59 
to 88.87%), and lightness as the median pixel lightness across the 
bee's body, according to the HSL (Hue- Saturation- Lightness) colour 
model, where the lightness component ranges from 0 (full black) to 
255 (full white); (mean bee lightness = 73.80; SD = 24.10; range = 20 
to 168). Pilosity was significantly, positively associated with light-
ness, with hairier bees being overall lighter in colour (phylogenetic 
independent contrasts: β = 0.658, R2 = 0.843, p < 0.001; Figure 2). 
We detected significant, moderate phylogenetic signal in both pilos-
ity (likelihood ratio test: p < 0.001, λ = 0.694) and lightness (likelihood 
ratio test: p < 0.001, λ = 0.752). Genus- level differences explained 
much of the variation in trait values (variance components analysis: 
pilositygenus = 44.2% of total variance, lightnessgenus = 38.3% of total 
variance), while differences at the level of subfamily and family were 
less explanatory of trait variation (variance components analysis: 
pilositysubfamily = 5.7%; pilosityfamily = 5.9%; lightnesssubfamily = 9.7%; 
lightnessfamily = 6.1% of total variance). In other words, the diversity 
of trait phenotypes was well represented within each major family 
(Figure 2). High residual variance (pilosityresidual = 44.2%; lightness-

residual = 45.9% of total variance) suggests that trait variation is only 
partially explained by taxonomic level, highlighting the potential im-
portance of other factors, including environmental variation.

3.3  |  Climatic and biogeographic patterns in bee 
pilosity and lightness

To understand how climate shapes functional trait variation, we 
linked trait to climate data estimated from specimen collection lo-
cation. The best- fitting models exploring these trait- climate rela-
tionships highlighted temperature and precipitation as important 
drivers of trait variation, while accounting for phylogenetic ef-
fects. Specifically, high temperatures (the maximum temperature 
of the hottest month) significantly predicted variation in both traits 
(GLMM: R2

c,pilosity = 0.530; R2
m,pilosity = 0.020; R2

c,lightness = 0.484; 
R2

m,lightness = 0.038), with hairier, lighter- coloured bees found in re-
gions with hotter maximum temperatures (ANOVA: ppilosity < 0.001; 
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βpilosity = 0.580; plightness < 0.001; βlightness = 0.045; Figure 3). Annual 
precipitation (square- root transformed) also predicted variation 
in bee lightness (GLMM: R2

c,lightness = 0.484; R2
m,lightness = 0.038), 

with lighter bees found in drier climates (ANOVA: plightness = 0.008; 
βlightness = −0.014; Figure 3). Correspondingly, biome significantly 
predicted bee pilosity and lightness (GLMM: ppilosity < 0.001; 
plightness = 0.007; R2

c,pilosity = 0.545; R2
m,pilosity = 0.027; 

R2
c,lightness = 0.523; R2

m,lightness = 0.039). Bees collected in deserts 
and xeric shrublands were significantly hairier and lighter- coloured 
than bees found in the other biomes sampled (temperate for-
ests, tropical and subtropical forests, grasslands and shrublands; 
ppilosity < 0.01 and plightness < 0.01 for all pairwise comparisons to 
desert; p > 0.05 for all other comparisons; Figures 4 and 5).

4  |  DISCUSSION

Our study provides evidence for the role of climate in shaping inter-
specific variation in bee functional traits at a global scale. By leverag-
ing advances in deep learning and computer vision, we generated a 
large trait dataset with broad geographic coverage representing over 

600 species from more than 60% of described bee genera. Our anal-
ysis demonstrates that hot, dry regions of the world are hotspots 
for bees with adaptations that may reduce overheating, namely, 
coverage with light- coloured hair (Barrett & O'Donnell, 2023; 
Ehleringer et al., 1976; Mershon et al., 2015; Shi et al., 2015; Skelton 
et al., 2012). These findings implicate climate factors in bee trait 
evolution and emphasize the utility of deep learning and computer 
vision for expanding the scope of functional trait research.

We found that bee hair coverage and lightness both increase 
with maximum environmental temperature. These patterns may 
reflect an adaptive thermoregulatory function of light- coloured 
hair, which has been shown in plants and other insects to mitigate 
heat stress by increasing reflectance (Barrett & O'Donnell, 2023; 
Ehleringer et al., 1976; Mershon et al., 2015; Shi et al., 2015; Skelton 
et al., 2012). Indeed, we detected a strong correlation between 
these two traits, indicating that hairier bees were lighter coloured. 
Bee hairs tend to be lighter in colour than the underlying integu-
ment, which is often dark (with notable exceptions of dark- haired 
bees, such as many Bombus species, and bees with light integument, 
for example, many stingless and Anthidiine bees). These findings are 
consistent with the thermal melanism hypothesis, which posits that 

F I G U R E  2  Interspecific variation in pilosity and lightness across the bee phylogeny (b–d). Tree tips represent genera, and colours 
indicate genus- level mean trait values (d). Pilosity values represent percent hair coverage from 0% to 100%. Lightness values represent 
median lightness values of all bee pixels on a scale from 0 (full black) to 255 (full white). (a) Pilosity and lightness are positively associated 
(phylogenetic independent contrasts: β = 0.658, R2 = 0.843, p < 0.001).
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lighter (i.e. higher reflectance) coloration is advantageous for ec-
totherms in hotter environments because it reduces radiative heat 
gain and the risk of overheating (Bishop et al., 2016; Bogert, 1949; 
Clusella Trullas et al., 2007; Kang et al., 2021; Munjal et al., 1997; 
Watt, 1968).

Additionally, we found that lightness (but not hair coverage) 
decreased with annual precipitation, in line with Gloger's Rule, 
which predicts that darker individuals inhabit wetter environments 
(Delhey, 2019; Gloger, 1833; Rensch, 1929). This rule has been ob-
served in some insects (Lopez et al., 2021; Nishikawa et al., 2010; 
O'Neill et al., 2017; Williams, 2007), but the underlying mecha-
nisms are contentious, owing to the diverse functions of melanin in 

camouflage, signalling, and pathogen resistance (Cheng et al., 2018; 
Delhey, 2019). One possibility that is consistent with the thermal 
melanism hypothesis considers interactions between thermal and 
hygric stressors: in hot regions, darker individuals may be favoured 
in wetter, more vegetated environments that offer refuge from 
solar radiation and reduced desiccation stress (Delhey, 2019; Xing 
et al., 2016).

Correspondingly, we found significant biogeographic variation 
in these traits. Deserts and xeric shrublands hosted hairier, lighter- 
coloured bees than other biomes sampled, including tropical and 
subtropical forests, temperate forests, and grasslands and shrub-
lands. Bee taxonomists have long remarked on the prevalence of 
hair- covered bees in deserts and xeric regions (Michener, 2007). In 
hot, xeric habitats, hair coverage and resulting light coloration may 
enhance performance by expanding activity windows and reducing 
thermal stress (Barrett & O'Donnell, 2023; Shi et al., 2015). Examples 
of pubescent phenotypes in desert organisms from across the plant 
and animal kingdoms suggest convergent evolution of hair as an 
adaptation to heat and aridity (Hadley, 1972; Moles et al., 2020). 
Bees likely originated in warm, xeric regions 120 Mya (Almeida 
et al., 2023), and today bee diversity and species richness are great-
est in climatically similar habitats (Michener, 1979, 2007). Adaptive 
variation in these traits may have facilitated the diversification and 
dispersal of bees to occupy all major terrestrial biomes.

Both pilosity and lightness serve multiple functions in bees, 
complicating climate relationships to trait variation. Hair serves 
physiological and ecological functions in bees, functioning in 
thermoregulation and as the primary vehicle for pollen transport 
(Heinrich, 1974; Thorp, 2000). The density, structure, and location 
of specialized pollen- collecting hairs (scopae) vary widely across bee 
taxa and mediate the uptake of pollen and the efficiency of pollina-
tion (Phillips et al., 2018; Thorp, 2000; Woodcock et al., 2019). The 
extent to which the thermal consequences of hair coverage trade off 
with its effectiveness in pollen transport is an intriguing avenue for 
future study. Lightness likewise serves adaptive functions beyond 
thermoregulation, influencing camouflage, signalling, and immunity 
(Hines et al., 2022; Stuart- Fox et al., 2017). Indeed, because visible 
colour is under competing selection for multiple ecological functions, 
other components of colour outside of the visible spectrum (espe-
cially near- infrared, NIR) may vary more consistently with climate 
(Munro et al., 2019; Wang et al., 2021). Our model quantifies light-
ness in the visible light spectrum, and so does not account for these 
other components of solar reflectance. Nevertheless, we find that 
climate is predictive of visible coloration (Bishop et al., 2016; Kang 
et al., 2021). Quantifying NIR reflectance across bee taxa may yet re-
veal even stronger associations to climate variation, and techniques 
to capture NIR and UV reflectance in images (Munro et al., 2019) en-
able these data to be analysed with our computer vision workflow.

Importantly, pilosity is a complex and multi- dimensional trait, 
with hair varying independently in structure, length, density, and 
spatial distribution across the body, even within an individual (Hines 
et al., 2022; Pasteels & Pasteels, 1971; Portman et al., 2019). This 
complexity may account for the appearance of conflicting patterns 

F I G U R E  3  Climate variables predict bee functional trait 
variation. (a) Pilosity and (b) lightness both increase with 
the maximum temperature of the hottest month (ANOVA: 
ppilosity <0.001; βpilosity = 0.577; plightness <0.001; βlightness = 0.045). 
(c) Bee lightness decreases with annual precipitation (ANOVA: 
plightness = 0.007; βlightness = −0.013). For clarity, trendlines show 
linear regressions between traits and single environmental 
variables.
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in pilosity variation across studies. Previous work at smaller eco-
logical scales associated hair length with cooler climates (Gonzalez 
et al., 2022; Osorio- Canadas et al., 2022; Peat et al., 2005; Peters 
et al., 2016), in line with the insulative function of hair (Casey & 
Hegel, 1981; Kevan et al., 1982). Hair length is the predominant met-
ric for pilosity in bees, owing largely to its ease of measurement and 
standardization (Roquer- Beni et al., 2020). However, this method may 
not scale appropriately to interspecific comparisons of taxonomically 
diverse bees with variable hair morphologies. Where hair length may 
reflect the degree of insulation across uniformly hairy body regions, 
total hair coverage reflects the extent of the hair boundary layer and 
the exposure of cuticle. Our application of computer vision enabled 
us to quantify hair coverage, an understudied but functionally signif-
icant axis of pilosity, which we found to vary considerably (nearly 20- 
fold) across bee species. Alternatively, hair coverage may also be an 
important adaptation to extreme cold habitats, which were under-
represented in our sample. Second, we quantified interspecific trait 
variation, though both hair and lightness can also vary within species, 
often in relation to local climate (LaBerge, 1956; Peat et al., 2005). 

Future work should clarify the extent to which climate drives intra-
specific variation in these traits.

Our study demonstrates the promise of computer vision for ad-
vancing functional ecological research, as well as the use of biodi-
versity collections to address current ecological and evolutionary 
questions. Increasingly, functional traits are being leveraged as a 
tractable framework for predicting broad patterns in ecology, based 
on the premise that traits represent easily- quantifiable yet function-
ally significant organismal characteristics (Gagic et al., 2015; Laughlin 
et al., 2020; MacLean & Beissinger, 2017; Mcgill et al., 2006; Violle 
et al., 2007). Nevertheless, many of the traits most relevant to organ-
ismal performance, such as those involved in thermoregulation, elude 
straightforward manual measurement. By automating complex trait 
measurement tasks, computer vision relieves this quantification bot-
tleneck (Høye et al., 2021; Lürig et al., 2021; Weinstein, 2018), with the 
additional benefit that these techniques can be replicable and scalable 
across large datasets, extending the ecological scales at which we can 
test trait- related hypotheses. Indeed, measurement inconsistency is 
cited as one reason why climate tends to have poor predictive power in 

F I G U R E  4  Biogeographic variation in bee (a) pilosity and (b) lightness. Both (c) pilosity and (d) lightness are significantly higher in deserts 
and xeric shrublands than they are in other sampled biomes (estimated marginal means: p < 0.01 for all comparisons to desert; p > 0.05 for all 
other comparisons). Colour differences in the boxplot indicate significant differences.
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F I G U R E  5  (Legend on next page)
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large- scale trait meta- analyses (Anderegg, 2023). The impact of these 
tools will only grow alongside the proliferation of image datasets, par-
ticularly specimen images arising from museum collection digitization 
efforts (Hedrick et al., 2020; Seltmann et al., 2021).

These findings implicate climate as a major selective force in bee 
trait evolution. Our results provide support for two major ecogeo-
graphical rules (the thermal melanism hypothesis and Gloger's Rule), 
and highlight the interaction between traits as an important deter-
minant of bee biogeography. More broadly, uncovering the climate 
rules shaping trait evolution will have important implications for pre-
dicting the performance and distributions of organisms under future 
climate scenarios.
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