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Abstract

The Hilbert number H (n) is defined as the maximum number of limit cycles of a planar
autonomous system of ordinary differential equations (ODEs) with right-hand sides
containing polynomials of degree at most n € N. The dynamics of chemical reaction
systems with two chemical species can be (under mass-action kinetics) described
by such planar autonomous ODEs, where n is equal to the maximum order of the
chemical reactions in the system. Analogues of the Hilbert number H (n) for three
different classes of chemical reaction systems are investigated: (i) chemical systems
with reactions up to the n-th order; (ii) systems with up to n-molecular chemical
reactions; and (iii) weakly reversible chemical reaction networks. In each case (i),
(ii) and (iii), the question on the number of limit cycles is considered. Lower bounds
on the modified Hilbert numbers are provided for both algebraic and non-algebraic
limit cycles. Furthermore, given a general algebraic curve h(x,y) = 0 of degree
nj € N and containing one or more ovals in the positive quadrant, a chemical system
is constructed which has the oval(s) as its stable algebraic limit cycle(s). The ODEs
describing the dynamics of the constructed chemical system contain polynomials of
degree at most n = 2nj;, + 1. Considering nj;, > 4, the algebraic curve h(x,y) = 0
can contain multiple closed components with the maximum number of ovals given by
Harnack’s curve theorem as 1 + (n, — 1)(ny — 2)/2, which is equal to 4 for n, = 4.
Algebraic curve h(x, y) = 0 with n;, = 4 and the maximum number of four ovals is
used to construct a chemical system which has four stable algebraic limit cycles.
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1 Introduction

The dynamics of chemical reaction networks under mass-action kinetics is inherently
connected with the investigation of the dynamics of ordinary differential equations
(ODEs) with polynomial right-hand sides (Feinberg 2019; Angeli 2009). In this paper,
we consider chemical reaction networks with two chemical species X and Y. Denoting
the time-dependent concentrations of chemical species X and Y by x(¢) and y(¢),
respectively, their time evolution is described by a planar system of ODEs

d

_d); = f(x.y), (1.1)
Y ey (1.2)
a & '

where f(x,y) and g(x, y) are polynomials. The ODE systems in the form (1.1)—
(1.2) have been investigated in detail since the pioneering work of Bendixson (1901),
who showed that the most complex long term dynamics one can expect to observe
in planar systems are multiple limit cycles. Considering that f(x, y) and g(x, y) are
polynomials of degree at most n € N, it is interesting to ask how many limit cycles
ODEs (1.1)—(1.2) can have. While this question in its full-generality is a part of the yet-
unsolved Hilbert’s 16th problem (Christopher and Li 2007), it can be answered when
there are additional restrictions imposed on the right-hand sides of the ODEs (Péta
1983; Schuman and Téth 2003; Gasull and Giacomini 2023). A related question is to
find (in some sense minimal) examples of planar polynomial ODE systems (1.1)—(1.2)
for low values of n, which have a certain number of limit cycles or specific bifurcation
structure (Shi 1980; Li et al. 2009; Plesa et al. 2016; Erban et al. 2009).

Chemical reaction networks consisting of reactions with order at most n € N can be
described by ODEs in the form (1.1)—(1.2), where f (x, y) and g(x, y) are polynomials
of degree at most n, which have some further restrictions on their coefficients. In Sect. 2,
we define three important classes of chemical reactions networks: (i) set S, consisting
of reactions of at most n-th order; (ii) set M, consisting of reactions which are at
most n-molecular; and (iii) set W, consisting of the networks in M, which are weakly
reversible (Craciun et al. 2020). Our main question is to understand the existence
of limit cycles in sets S,, M,, and W,, either by finding relatively simple chemical
networks with a certain number of limit cycles, or by proving that certain numbers
and configurations of the limit cycles cannot exist. Denoting the maximum number of
limit cycles in sets S,, Ml,, and W,, by S(n), M (n) and W(n), respectively, we study
the counterparts of the Hilbert number H (n) in the chemical reaction network theory
(Erban and Kang 2023). In Sect. 3, we provide estimates on the values of S(n), M (n)
and W(n) for small values of n and in the asymptotic limit n — oo.

An important subset of limit cycles in planar polynomial ODE systems (1.1)—(1.2)
are algebraic limit cycles (Chavarriga et al. 2004; Gasull and Giacomini 2023). An
algebraic limit cycle is not only a closed isolated solution of the ODE system, but
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it can also be represented as a closed component of an algebraic curve A(x, y) = 0,
where / is a polynomial. The simplest examples of algebraic curves include circles
and ellipses. Some chemical systems that have an ‘exactly evaluable’ (algebraic) limit
cycle given as an ellipse were analyzed by Escher (1979, 1980a,b). In Sect. 4, we focus
on constructing chemical systems with algebraic limit cycles. In particular, we further
specialize the numbers of limit cycles S(n), M (n) and W(n) in sets S,,, M,, and W,
to quantities giving the maximum number of algebraic limit cycles, denoting them by
S%(n), M?*(n) and W (n). If the degree of polynomial % is n, = 2 or nj, = 3, then the
algebraic curve h(x, y) = 0 contains at most one closed oval (a connected component
diffeomorphic to a circle). If nj, = 4, then Harnack’s curve theorem implies that the
maximum number of connected components is 4. In Sect. 5.1, we study an algebraic
curve h(x, y) = 0 of degree n;, = 4 which has the maximum number of ovals, 4, for
some parameter values. We construct a chemical system which has all four ovals as
stable limit cycles. We conclude with the discussion of our results and the literature
in Sect. 6.

2 Chemical reaction networks in sets S,,, M, and W,

We consider chemical reaction networks with two chemical species X and Y which
are subject to m € N chemical reactions

ki .
ai X + BiY — y X + 6Y, for i=1,2,...,m, 2.1

where o; € No, B; € Ny, ; € Ny and §; € Ny are nonnegative integers, called
stoichiometric coefficients, and k; is the corresponding reaction rate constant which
has physical units of [time] ™! [concentration]' =% ~#i . However, in what follows, we
assume that all chemical models have been non-dimensionalized, i.e. the rate constant
k; is assumed to be a positive real number fori = 1, 2, ..., m. Moreover, to avoid some
degenerate cases, we assume that the same four-tuple («;, B;, ¥i, §;) does not occur
more than once in the set of m chemical reactions (2.1) and we have («;, 8i) # (¥i, i),
i.e. in each reaction step at least one of the two chemical species X and Y changes. To
get non-trivial planar systems, we also assume that both species take part in at least
one reaction in the set of m chemical reactions (2.1). We then define the order of the
chemical reaction network (2.1) by

n = max (o +pBi), 2.2)
i=1,2,....m

i.e. the chemical reaction network (2.1) is of the n-th order, if all individual reac-
tions are of at most n-th order, where the order of an individual reaction is given as
(o; + Bi). Assuming mass-action kinetics, the time evolution of the chemical reaction
network (2.1) is given by the reaction rate equations which is a planar polynomial
ODE system in the following form (Feinberg 2019; Erban and Chapman 2020)
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dx m

3 = ;ki (i — o) x¥ yP1 23)
1=

dy “

o= Zk (8 — Bi) x* yPi . 24

I
—

This ODE system is of the form (1.1)—(1.2), where f(x, y) and g(x, y) are polynomials
of degree at most nn, where n is the order of the chemical reaction network given by (2.2).

Example. The Lotka-Volterra system can be written as a chemical reaction network

in the form (2.1) with m = 3 chemical reactions and stochiometric coefficients

(a1, B1,v1,01) = (1,0,2,0), (a2, 2,12, 82) = (1,1,0,2),
(a3, B3, v3,03) = (0,1,0,0),

i.e. the chemical reactions are

x 2L oox, X +v 22 oy, y 22 g, 2.5)

where the reaction rate constants kg, k> and k3 are positive real numbers. The Lotka-
Volterra system (2.5) is given by a chemical reaction network of the second-order, i.e.
equation (2.2) gives n = 2. The corresponding ODE system (2.3)—(2.4) is a planar
quadratic ODE system of the form

dx

T =kix —kxy, (2.6)
dy

— =k —kyy. 2.7
” 2%y 3y 2.7

Definition 1 Let n € N. We denote by S, the set of chemical networks (2.1) which
are of at most n-th order, where the order is defined by (2.2).

In what follows we will make a convenient abuse of terminology, and use S,, to denote
not only the set of the chemical reaction networks described above, but also the set of
the corresponding ODEs (2.3)—(2.4), which are planar autonomous ODE systems in
the form (1.1)—(1.2), where f(x, y) and g(x, y) are polynomials of degree at most .
In general, such polynomials can be expressed in terms of coefficients as

fl,y) = Yo axy and  glx.y) = S bigxlyl,
{i,j>0 [ i+j<n) [i,j=0 | i+j<n)
(2.8)

where a; ;, b; ; are real numbers. The set S, can then be characterized in terms of
restrictions on these coefficients, which we state as our next lemma.
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Lemma 1 Consider an ODE system in the form (1.1)—(1.2), with f and g given by
equation (2.8). Then a necessary and sufficient condition for belonging to the set S,
is that the coefficients of f and g in (2.8) satisfy the following condition

ap; >0 and bijp>0 for i=0,1,2,...,n. 2.9)

Proof This is a classical result (Héars and Téth 1981). We include a short proof here,
since the construction in this proof will be used again later. Consider some term of the
form ag; ; x' y/ that is one of the monomials within f (x, y) in (2.8). In particular, we
have i + j < n. We will exhibit a reaction that gives rise to this term a; ; x* y/, and
no other terms; in other words, this reaction generates the system

dx i dy

— =qa; i X J and — =0
dr gy dt
Indeed, if @; ; < O it follows thati > 1 (because ap,; > 0), and then this term can be
obtained by using the reaction i X + jY — (i — 1)X + jY, if we choose its reaction

rate constant to be k = —a; ;. Similarly, if a; ; > 0, this term can be obtained by
using the reaction i X + jY — (i + 1)X + jY, by choosing its reaction rate constant
tobe k = aij-

We can proceed similarly for monomials of g(x, y), by using reactions of the from
iX+jY - iX+(G—-—DYandiX + jY — iX + (j + 1)Y. We conclude that,
by using the reaction network which consists of the reactions described above (i.e.,
one reaction for each monomial of f(x, y), and one reaction for each monomial of
g(x,y)), we can obtain the system (1.1)-(1.2).

Conversely, we can see in (2.3)—(2.4) that if @; = 0 then k;(y; — «;) > 0 and,
similarly, if b; = 0 then k; (6; — 8;) > 0. This implies that any polynomial dynamical
system that is generated by a chemical reaction network satisfies the inequalities (2.9).

(]

The Lotka-Volterra system (2.5) is an example of a chemical reaction network in set
S, because every reaction is of at most second-order. Moreover, we observe that
not only each reaction in (2.5) has at most two reactants, but it also has at most two
products. We will denote the set of such networks as M, and call them bimolecular
reaction networks. In general, we define the set of n-molecular reaction networks M,
as follows.

Definition2 Let n € N. We denote by M, the subset of S,, which corresponds to
chemical reaction networks (2.1), where each chemical reaction has at most n reactants
and n products, i.e.

max max {(Oli + Bi), (vi + 8i)} <n. (2.10)

i=12,...,

The set of n-molecular reaction networks M, can again be characterized in terms of
the coefficients as stated in the next lemma.
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Lemma 2 Consider an ODE system in the form (1.1)—(1.2), with f and g given by
equation (2.8). Then a necessary and sufficient condition for belonging to M, is to
satisfy inequalities (2.9) together with

ain—i +bin—i <0 for i =0,1,2,...,n. (2.11)

Proof Consider an ODE system (1.1)—(1.2), with f and g expressed in coefficients
(2.8) that satisfy (2.9) and (2.11). In particular, according to Lemma 1, this system
belongs to S,, which implies that it can be realized by a reaction network where all
the reactions are of the form i X + jY — pX 4+ qY withi + j < n. We need to show
that we can also choose these reactions such that p + g < n.

Note that we know from the proof of Lemma 1 that we can obtain the same monomial
terms by using reactions such that (p,q) = (( £ 1, j) or (p,q) = (i,j £ 1), and
therefore p + g < i + j + 1. This gives us the desired conclusion ifi + j <n — 1.
Consider now thecasei+j = n,ie. j =n—i.Ilfi > 0,n—i > O0anda; ,—; > b; y—i,
then we can realize the system

dx L dy S
i aj p—ix'y"""  and i bi p—ix'y"™! (2.12)
by using the following two chemical reactions
4in—i=bin—i
iX+m—)Y ————> (+DX+m—i—-1DY
and
—4in—i—bin—i
iX+n—-i)Yy ——— (i—-DX+@m—i—-1Y.

Similarly, if i > 0,n —i > 0 and a; ,—; < b; ,—;, then we can realize ODE sys-
tem (2.12) by using two reactions iX + (n —i)Y — (i — DX+ (m —i + 1)Y and
iX+m—-—0D)Y —>0(—-DX+m—i-1)Y.

Finally, ifi = 0, then we know thatag , > 0, and we can realize ODE system (2.12)
by using two reactions nY — X + (n — 1)Y and nY — (n — 1)Y with reaction rate
constants ap , and —ag , — bo ., respectively. The case where i = n is analogous to
the case i = 0. O

The Lotka-Volterra system (2.5) is an example of a chemical reaction network belong-
ing to both S, and M, . Itis described by the conservative dynamical system (2.6)—(2.7),
with the conserved quantity k> (x + y) — k3 log(x) — k1 log(y) on orbits. In particular,
the ODE system (2.6)—(2.7) admits periodic solutions, but it has no limit cycles. In
Sect.3, we will start our investigation of the existence and number of limit cycles of
chemical reaction networks in sets S, and M,,. We will observe that ODE systems in
M, do not have any limit cycles, but there are reaction systems in S with limit cycles.
There are also other important properties and classes of chemical reaction networks,
including weakly reversible chemical systems (Craciun et al. 2020; Boros et al. 2020).
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(a) (b) (¢)

Y,

> N N
> > >

Fig.1 Schematics of planar E-graphs associated with (a) Lotka- Volterra chemical system (2.5); (b) chemical
system (2.13); (¢) chemical system with six reactions given by (2.13) and (2.16)

To define weak reversibility, we embed the chemical reaction network (2.1) as a planar
E-graph (i.e. Euclidean embedded graph, see Craciun (2019); Yu and Craciun (2018))
where the nodes have coordinates (¢;, 8;) and (y;, 6;) and each reaction corresponds
to the edge («;, Bi) —> (i, 8;). For example, the planar E-graph corresponding to
the Lotka-Volterra chemical system (2.5) has three edges

(1,0) — (2,0), (1,1) — (0,2), 0,1) = (0,0)

and it is schematically shown in Fig. la. We say that a chemical reaction network is
weakly reversible if every edge of the associated planar E-graph is a part of an oriented
cycle. Clearly, Lotka-Volterra system is not weakly reversible.

Example. Consider the first-order chemical reaction network

g x, X 5y, Yy -5 o (2.13)

Its associated planar E-graph is visualized in Fig. Ib, schematically showing three
edges (0,0) — (1,0), (1,0) — (0, 1) and (0, 1) — (0, 0) corresponding to the three
reactions of chemical system (2.13). Since every edge of the associated planar E-graph
is a part of an oriented cycle, chemical reaction network (2.13) is weakly reversible.
The ODE system (2.3)—(2.4) corresponding to the chemical system (2.13) is a planar
linear ODE system

dx

~ =1-x, 2.14
o x (2.14)
dy

Y oy — vy, 2.15
o X —y (2.15)

Multiplying the right-hand side of the ODE system by polynomial (1 + x2y), we
obtain the ODE system

d‘x 2

7 = (1 + 2700 - ).
d

d—f = (14 22y — y).
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which are the reaction rate equations for the chemical system consisting of reac-
tions (2.13) and additional three reactions:

2X+v 5 3x+v, 3x+vY S ox+2v,
2X +2Y -5 2X + 1. (2.16)

The associated planar E-graph is visualized in Fig. 1c. This example illustrates that the
multiplication of the right-hand side of the reaction rate ODEs by a polynomial with
positive coefficients results with multiple copies of the original associated E-graph.
This will be further used in Sect.4, where we study weakly reversible systems with
algebraic limit cycles. Moreover, the chemical system consisting of six reactions (2.13)
and (2.16) in Fig. ¢ provides another example of a weakly reversible system.

Definition 3 Let n € N. We denote by W, the subset of M, which corresponds to
chemical reaction networks (2.1) that are weakly reversible.

Considering an arbitrary chemical reaction network, it belongs to S, where n is the
order given by (2.2). Moreover, the corresponding ODEs satisfy the property that they
can be obtained as reaction rate equations of a chemical system in M, ;. We formulate
this result as our next lemma.

Lemma3 We have

@ W, cM, CS, forall neN,
by MpyCcS,cM3sCcS3CcMyCSyC....

Proof (a) This is a direct consequence of Definitions 1, 2 and 3 of W,,, M[, and S,,.

(b) We show that S,, C M, 1, as follows. Recall that in the proof of Lemma 1 above we
have been able to obtain the polynomial right-hand side of a chemical system in S,, by
using only reactions of the formi X+ ;Y — (i—DX+jY,iX+jY — (i+1)X+)Y,
iX+jY > iX+(—-DY,oriX+jY - iX+ (j+ DY, withi + j < n. Note
now that for these types of reactions the largest stoichiometric coefficients are either
i+1landj,oriand j+ 1,and wehavei+14 j =i+ j+1 < n+ 1. This implies
that any system that belongs to S, also belongs to M, . O

3 Hilbert number and its analogues for sets S,,, M,, and W,

Let H(n) be the maximum number of limit cycles for planar ODE systems in the
form (1.1)—(1.2), where f and g are polynomials of degree at most n given by (2.8).
Then H (n) is often called the Hilbert number, because it can be used to formulate
Hilbert’s 16th problem (Christopher and Li 2007). By constructing polynomial ODE
systems with a specific number of limit cycles, lower bounds on the Hilbert number
H (n) have been obtained: for example, a quadratic system with 4 limit cycles (Shi
1980), a cubic system with 13 limit cycles (Li et al. 2009) and a quartic system with
28 limit cycles (Prohens and Torregrosa 2018) have been constructed in the literature,
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Table 1 Some values and estimates from below on numbers W(n), M (n), S(n) and H (n), see Lemmas 5,
6,7 and 8

n W(n) M(n) S(n) H(n)

2 =0 =0 >3 >4

3 >3 >3 >6 >13

4 >6 >6 > 13 > 28

asn — oo > O(nzlog(n)) > O(nzlog(n)) > O(nzlog(n)) > O(nzlog(n))

giving H(2) > 4, H(3) > 13 and H(4) > 28. On the other hand, one can show
that quadratic systems which can be written as chemical systems corresponding to
bimolecular systems M, cannot have limit cycles (Péta 1983; Schuman and T6th
2003). To formulate our results and put them into context with the literature, we first
define the corresponding counterparts of the Hilbert number H (n) for subsets of the
polynomial ODE systems corresponding to sets S,,, M, and W,,.

Definition 4 We denote by S(n) the maximum number of limit cycles of ODEs in the
set S, of the n-th order chemical reaction networks, by M (n) the maximum number
of limit cycles of ODEs in the set M, of n-molecular chemical reaction networks,
and by W(n) the maximum number of limit cycles of ODEs in the set W, of weakly
reversible chemical reaction networks.

Some inequalities between numbers W(n), M (n), S(n) and H (n) are stated as our
next lemma.

Lemma4 We have

(@ Wh)<Mmn) <Sh) <HMm)foralln e N,
b) Hn) < S(n+ 1) foralln € N,
(©) Sm) <Mm+1)foralln e N,
(d) H(n) < Wn+3) foralln € N.

Proof (a) The first two inequalities follow directly from Lemma 3(a) and Definition 4
of numbers W(n), M (n) and S(n). The last inequality is a direct consequence of the
definition of the Hilbert number H (n).

(b) First, it is easy to prove a weaker inequality that H(n) < S(n + 2). For this, we
observe that any n-degree polynomial ODE system (1.1)-(1.2) can be transformed
into a chemical system of at most (n + 2)-th order by shifting all limit cycles to the
positive quadrant [0, co) x [0, oo) and by multiplying both right-hand sides by xy.
Since this corresponds to a rescaling of time in the original system, both the original
system and the transformed system in S, will have the same number of limit cycles.
This implies that H (n) < S(n + 2).

In order to prove that H (n) < S(n + 1) we rely on the recent work of Plesa (2024),
and also on the recent work of Gasull and Santana (2024). Consider first the case
H (n) < oo. Then, according to Theorem 2 in Gasull and Santana (2024), there exist
ODE systems of degree n with exactly H (n) hyperbolic limit cycles. Then these limit
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cycles persist after small perturbations of the functions on the right-hand side of the
ODEs; therefore, according to the results in Plesa (2024), we can transform these
ODE:s into chemical systems of at most (n + 1)-th order which still have at least H (n)
limit cycles. This implies the desired inequality for the case H (n) < oo.If H(n) = oo,
then, again according to Theorem 2 in Gasull and Santana (2024), for any £ > 0 there
exist ODE systems of degree n with at least k hyperbolic limit cycles, and, like before,
this implies that S(n 4+ 1) = oo.

(c) This inequality follows directly from Lemma 3(b). Note that these inequalities
also trivially hold for n = 1, because there are no limit cycles in linear systems, i.e.,
Wl)=M1)=S1)=H()=0.

(d) Consider an ODE system of degree n that has H (n) limit cycles. Without loss of
generality we can assume that the limit cycles lie in the positive quadrant, because we
can shift this system via a linear change of variables, and the shift does not affect the
degree. Let us now multiply the right-hand side of this system by xy as in the proof
of part (b). The resulting system belongs to S, 1> and has the same H (n) limit cycles.
According to results in Gasull and Santana (2024), there exists a small perturbation
of this system that has H (n) hyperbolic limit cycles in the positive orthant, such
that the monomials on the right-hand side of the perturbed system are the same as
the monomials of the original unperturbed system. Therefore, the perturbed system
still belongs to S,47. Recall now that S,1» C M,3. Now we do a second small
perturbation of this system, in order to bring it from M, ;3 to W,, 1 3. In this perturbation
we simply make each reaction reversible, but with a very small reaction rate constant
for any new reaction that we add to the network. If these rate constants are small
enough it follows that we obtain a system in W,, 3 that has at least H (n) limit cycles,
and therefore H(n) < W(n + 3). O

Some lower bounds on numbers W(n), M (n), S(n) and H (n) can also be established.
They are summarized in Table 1 and stated in lemmas below.

Lemma5 The ODEs in set My cannot have any limit cycles, i.e. we have M(2) = 0
and W(2) = 0.

Proof See Péta (1983), Tyson and Light (1973), Schuman and Téth (2003) for the proof
of M(2) = 0. Using Lemma 4, we have W(2) < M (2), which implies W(2) = 0. O

Lemma 6 We have S2) >3, S5S3)>6,54) > 13, M3) >3, M4)>6, W3) >3
and W(4) > 6.

Proof The fact that S(2) > 1 has been known for more than 80 years (Frank-
Kamenetsky and Salnikov 1943), and is considered an important classical example
in the mathematical theory of autocatalysis. The improved lower bound S(2) > 3 is
due to Escher (1981). The results S(3) > 6 and S(4) > 13 have been established
in the literature on Kolmogorov systems (Lloyd et al. 2002; Carvalho et al. 2023).
A planar cubic (resp. quartic) ODE system with six (resp. thirteen) limit cycles in
the positive quadrant has been presented in Lloyd et al. (2002) (resp. Carvalho et al.
(2023)). Applying Lemma 1 to these systems, we conclude that there is a chemical
system in S3 with six limit cycles and a chemical system in Sy with thirteen limit
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cycles, giving S(3) > 6 and S(4) > 13. Using Lemma 4(c), we get M(3) > S(2) > 3
and M (4) > S(3) > 3. Finally, we can add reactions with very small values of rate
constants to make the corresponding systems (weakly) reversible. Such small pertur-
bations will not change the existence of hyperbolic limit cycles (Smale and Hirsch
1974; Perko 2013), giving W(3) > 3 and W(4) > 6. m|

Lemma7 We have H(2) > 4, H(3) > 13, H(4) > 28 and H (n) > O(nzlog(n)) as
n— o0o.

Proof See Shi (1980) for H(2) > 4, Li et al. (2009) for H(3) > 13, Prohens and
Torregrosa (2018) for H(4) > 28 and Christopher and Li (2007) for the asymptotic
inequality H (n) > O(n’log(n)) as n — oo. O

Lemma8 We have S(n) > On>log(n)), M(n) > On>log(n)) and W(n) >
O(n’log(n)), asn — oo. .

Proof Using Lemma 4, we get S(n) > H(n — 1), M(n) > S(n — 1) > H(n —2) and
W(n) > H(n — 3). The results then follow by applying the asymptotic inequality for
H(n) given in Lemma 7. O

The analysis of ODE systems with limit cycles which are used to achieve lower bounds
in Table 1 often cannot be supported by illustrative numerical simulations, because
some parameter values are negligible (beyond the machine precision) when compared
to other parameter values. However, there are also chemical systems in the literature
with multiple limit cycles, where the phase plane can be computed using standard
numerical methods. For example, the third-order system in Sz with three limit cycles,
two stable and one unstable, is presented in Plesa et al. (2017), and a 3-molecular
chemical system in M3 with two limit cycles, one stable and one unstable is studied
in Nagy et al. (2020).

In the following sections we will restrict our investigations to algebraic limit cycles,
with a counterpart of Table 1 for algebraic limit cycles presented in Sect.4. We also
introduce a general approach in Theorem 3 in Sect. 5 to obtain chemical systems where
we will be able to calculate their phase planes with multiple (algebraic) limit cycles
and present some illustrative numerical results.

4 Chemical systems with algebraic limit cycles

The analogues of the Hilbert number H (n) for polynomial ODE systems correspond-
ing to the sets S,,, M,, and W, have been given in Definition 4. In this section, we will
focus on algebraic limit cycles (Chavarriga et al. 2004; Gasull and Giacomini 2023).
An algebraic limit cycle is not only a closed isolated solution of the ODE system, but
it can also be represented as a closed component of an algebraic curve A (x, y) = 0,
where & is a polynomial of degree nj,. Note that, since the flow of the planar ODE
system (1.1)—(1.2) is tangent to the algebraic curve, we have

oh oh
a—(x,y)f(x,y) + =, g, y) = s(x,y)hx,y), 4.1
X ay
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Table 2 Some values and estimates from below on numbers W% (n), M%(n), S%(n) and H%(n), see
Lemma 10, Lemma 11, Lemma 12 and Theorem 1

n Wa(n) M4 (n) S%(n) H%(n)

2 =0 =0 >1 >1

3 >0 >1 >1 >2

4 >1 >1 >3 >4

asn — 0o > O(n) > Om?) > On?) > On?)

where s(x, y) is a polynomial, called cofactor of h. First, we define versions of S(n),
M (n) and W (n) for counting only algebraic limit cycles.

Definition 5 We denote by S§%(n) the maximum number of algebraic limit cycles for
ODE:s in the set S;, by M“(n) the maximum number of algebraic limit cycles for
ODEs in the set M, of n-molecular chemical reaction networks, and by W¢(n) the
maximum number of algebraic limit cycles for ODEs in the set W, of weakly reversible
chemical reaction networks.

A counterpart of Lemma 4 establishing inequalities between numbers W(n), M (n),
S(n) and H (n) can also be formulated for numbers W% (n), M%(n), S*(n) and H*(n)
counting only algebraic limit cycles.

Lemma9 We have

(@ Wn) <M%n) < S%mn) <Hn) <SGmnm+2)foralln e N,
(b) SDn) <MD +1)foralln € N.

Proof The proof follows some of the same arguments as in the proof of Lemma 4,
where we replace limit cycles by algebraic limit cycles. O

Some lower bounds on numbers W¢(n), M“(n) and S(n) are given in Table 2 and in
Lemmas 10, 11 and 12.

Lemma 10 We have H*(2) > 1, H®(3) > 2, H*(4) > 4, §%(2) > 1, S@(3) > 1,
S$94) >3, MD2) =0, M*3) > 1, MD4) > 1 and W@ (2) = 0.

Proof See Llibre et al. (2010) for H*(2) > 1, H9(3) > 2 and H*(4) > 4. Since
Lemma 5 gives M (2) = 0 and W(2) = 0, we also have M@D2)=0and W@ 2) =0
when we restrict to algebraic limit cycles in sets M and W». To show S%(2) > 1, we
need to find a quadratic chemical system with an algebraic limit cycle. Consider the
quadratic system (Escher 1979)

S S (4.2)
— =2x"—x -, .
dr 4 2

dy 5, 17

A S 43
a2t TRy (4.3)
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Using Lemma 1, the ODE system (4.2)—(4.3) belongs to Sp. Moreover, it is easy to
verify that it has an algebraic limit cycle in the positive quadrant, which is the ellipse
given by Escher (1979)

h(x,y) = 10x? — 12xy + 4y> +20x — 16y + 19 =0 (4.4)

with the cofactor s(x, y) in equation (4.1) given as s(x, y) = x — 2. Consequently,
we have S9(2) > 1. Using Lemma 9, we conclude

1<5902) <M@3) <S93) < MD@4). (4.5)

Finally, to show S¢(4) > 3, consider quartic algebraic curve A (x, y) = 0 given by

9 6
hx,y) = x2y2 - — (x3y +xy3) + — ()c3 +y3)

10 10%
2, ) 934
+5g (v 7)) = 20+ 1o (4.6)

which has three ovals in the positive quadrant. We visualize them in Fig.2a. Next, we
consider the line y = 7x, which does not intersect the three ovals of i (x, y) = 0, as
it is shown in Fig.2a. Then, we can apply (Christopher 2001, Theorem 1) to deduce
that the ODE system

dx oh
prlie hx,y) + (y—7x)5(x,y), 4.7
dy _ %
il h(x,y) + (7x — y) i (x, ¥, (4.8)

is a polynomial system of degree 4 which has the three ovals of h(x, y) = 0 in the
positive quadrant as hyperbolic algebraic limit cycles. Using Lemma 1, we observe
that the ODE system (4.7)—(4.8) is in set S4. Therefore, we conclude that §%(4) > 3.

]

In Lemma 10, we have presented a second-order chemical system in S, with the
algebraic limit cycle given as ellipse (4.4). The corresponding ODE system (4.2)—
(4.3) has quadratic polynomials on the right-hand side. Another quadratic polynomial
dynamical system with an algebraic limit cycle is (Chavarriga et al. 2004)

dx 2

o =2(142x —2cx” 4+ 6xy), 4.9)
d

d—f:8—3c—14cx—2cxy—8y2. (4.10)

As explained in Chavarriga et al. (2004), for any ¢ € (0, 1/4) the ODE system (4.9)-
(4.10) has an invariant algebraic curve, which is a limit cycle (Gasull and Giacomini
2023). The ODE system (4.9)—(4.10) is not a chemical system because of the term
—14cx in equation (4.10). However, we can use this quadratic system for ¢ = 1/8
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(a)

10"
°
4-4¢||1-¢
=100 ===,
1
1
1
1
?o °
107" 1-6¢ a+ds
10 1 1
——Se

Fig. 2 (a) The quartic algebraic curve h(x, y) = 0 given by (4.6) has three (blue) ovals in the positive
quadrant. The red line is given by 7x —y = 0. The red line does not intersect the (blue) ovals of 2 (x, y) = 0
in the positive quadrant. We use log scale on the x-axis and y-axis. (b) The chemical reaction network
corresponding to the blue edges of the planar E-graph realizes the ‘unperturbed’ ODE system (4.11)—(4.12),
while the e-perturbations are shown by the red edges. (¢) The weakly reversible network that consists of
the blue edges (with some modified rate constants) together with the red edge provides a weakly reversible
realization of the perturbed system (4.16)—(4.17) (color figure online)

to construct a cubic mass-action system that has an algebraic limit cycle. For this we
note that the limit cycle of the quadratic system (4.9)—(4.10) is contained in the set
(0, 00) x (—1, 00), and therefore if we shift this system one unit in the y-direction,
and then multiply its right-hand side by a factor of y, we obtain

d

d_’t‘zz(1 +2x —2cx? + 6x(y - 1)y,

dy 2
= (8 =3¢ — 14cx—2cx(y—l)—8(y—1)))’-

Then, the cubic system above is a mass-action system; moreover, it has an algebraic
limit cycle, because its trajectory curves are the shifted versions of the trajectory curves
of the system (4.9)—(4.10). Such a construction provides an alternative way for us to
show that §® (3) > 1, which we have previously established in the proof of Lemma 10
by using inequalities (4.5).

In Sect. 3, it has been relatively straightforward to establish that weakly reversible
chemical systems can give rise to limit cycles by using small perturbations of non-
reversible chemical systems. This is not the case, when we consider algebraic limit
cycles, because a small perturbation can change an algebraic limit cycle to a non-
algebraic one. In our next lemma, we show that weakly reversible chemical systems
can have algebraic limit cycles by constructing a quartic weakly reversible two-species
system. The question of whether cubic weakly reversible two-species systems can give
rise to algebraic limit cycles remains open, leaving us with inequality W@ (3) > 0
in Table 2. In our construction we rely on a general approach for constructing weakly
reversible systems that have a curve of equilibria; this approach has been introduced
in Boros et al. (2020).

Lemma 11 We have W4(4) > 1.
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Proof We will construct a weakly reversible system that has an algebraic limit cycle,
as follows. We start with a weakly reversible chemical system constructed in reference
Boros et al., (2020, Example 4.3), given by

e SR S _
i (x +xy 4y 4xy) (1 —x), 4.11)
dy 5 2
i (x* +xy" +y—4dxy) (x — ). (4.12)
The common factor
h(x,y) =x2+xy2+y—4xy 4.13)

results in a curve of positive steady states within the positive quadrant. Note that the
polynomials on the right-hand side of the ODE system (4.11)—(4.12) have degree 4.
They can be obtained by multiplying the linear system (2.14)—(2.15) by (4.13). In
Fig. lc, we illustrated that the multiplication of the linear system (2.14)—(2.15) by
positive monomials results in copies of the network. Generalizing this observation to
the ODE system (4.11)—(4.12), we can realize it by the chemical reaction network
shown in blue in Fig.2b or Fig. 2c. We now consider a perturbed version of the ODE
system (4.11)—(4.12), also of degree 4, given by

— = (x +xy 4y —4xy) (IT—x) —exy—(x,y), (4.14)
dr dy
d oh
d—f = (¥ xy? +y —dxy) (6 =) + exy (), (4.15)

which implies

% = (P +x?+y—4y) (1 —x) —exy(2xy+1-4x),  (416)
d
T = @0’y —dn) -y +exy Qe+t —4y).  @1D)

The ODE system (4.16)—(4.17) has an algebraic limit cycle given by A(x, y) = 0. One
possible way to check that the periodic solution that lies along the curve h(x,y) =0
is indeed a limit cycle is to look at a more general setting which is discussed in depth
in Sect. 5; specifically, it is easy to check that the transversality condition (5.6) holds
for the ODE system (4.16)—(4.17).

The red edges in Fig. 2b suggest a realization of the ODE system (4.16)—(4.17) as
a chemical reaction network in Sy for any ¢ > 0, but this particular realization is not
weakly reversible. However, reaction network realizations of polynomial dynamical
systems are not unique in general (Craciun and Pantea 2008; Plesa et al. 2018; Craciun
et al. 2020). If ¢ € (0, 1/6), then there do exist weakly reversible realizations of the
ODE system (4.16)—(4.17); one such realization is shown in Fig.2c. Therefore, the
ODE system (4.16)—(4.17) is in W4 for ¢ € (0, 1/6), giving W*(4) > 1. O
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Lemma 12 We have H%(n) > On?), S%(n) > Om?) and M*(n) > On?), as
n — oQ.

Proof SeeLlibreetal. (2010) for H%(n) > O(n?)asn — oo. The next two asymptotic
inequalities follow from Lemma 9. O

Lemmas 10, 11 and 12 have justified all lower bounds in Table 2, except of the
asymptotic inequality W% (n) > O(n) as n — oo. We will show this inequality in
the next subsection by considering reversible chemical systems, which is even more
restrictive class of chemical reaction networks than weakly reversible systems. In
particular, we will show that reversible chemical systems can have (multiple) algebraic
limit cycles.

4.1 Algebraic limit cycles for reversible chemical systems

In this section we describe a general approach for constructing reversible systems with
algebraic limit cycles. We start with the simple chemical reaction network shown in
Fig.3a. If we choose all the reaction rate constants to be equal to 1, the corresponding
reaction rate equations are given by the ODE system

d
o l—x 4y —ay, (4.18)
dr
dy
=1 —y —x, 4.19
ar +x—y—xy ( )

which has a globally attracting point at (x, y) = (1, 1). Next, we consider the algebraic
curve h(x, y) = 0 of degree n;, = 4 given by

h(x,y):x2y2+x2y+xy2+x2+y2+x+y+l—9xy, (4.20)

then, within the positive quadrant, the equation A (x, y) = 0 is satisfied along a simple
closed curve. Indeed, we can rewrite 2(x, y) = 0 as

1 1
<x+l+—><y+l+—>:10,
X y

which has two solutions y for each x satisfying (7 — +/13)/6 < x < (7 + /13)/6.
Plotting the values of y as functions of x in Fig.4a, we obtain the two branches of the
closed curve visualized as the blue line. A geometric representation of the monomials
of h(x, y) in (4.20) is shown in Fig.3b. Multiplying the right-hand side of the ODE
system (4.18)—(4.19) by h(x, y), we obtain the ODE system
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(a) (b) (c)

u
_ O
L

Fig. 3 (a) Planar E-graph of a reversible chemical reaction network corresponding to the ODE sys-
tem (4.18)—(4.19) as its reaction rate equations with all reaction rate constants equal to 1. (b) A geometric
representation of the monomials of the polynomial /(x, y) given by (4.20). The blue points represent
the monomials with positive coefficients and the red point represents its negative monomial —9xy. ¢ The
dynamical system obtained by multiplying the network shown in a by the factor 2 (x, y) shown in (b) (which
gives rise to the equations (4.21)—(4.22)) can be realized by this reversible ‘full-grid’ network (color figure
online)

dx

a = (x2y2+x2y+xy2+x2+y2+x+y+1—9xy)(1—x+y—xy),
4.21)

d

d—f = (22 + 2y +x? +x2 +y x4+ y+1=9xy)(1+x —y —xy),

(4.22)

which has polynomials of degree 6 on the right hand side. The ODE system (4.21)—
(4.22) has a curve of equilibria (Boros et al. 2020) given by i (x, y) = 0. Moreover,
since the ODE system (4.21)—(4.22) has been obtained by multiplying the ODE sys-
tem (4.18)—(4.19) by a polynomial, the corresponding planar E-graph representation
will consists of shifted copies of the reaction network in Fig. 3a for each multiplication
by a positive monomial, as we have already observed in Fig. lc.

We argue that the ODE system (4.21)—(4.22) has a weakly reversible realization
given by the network in Fig. 3c, and, moreover, this realization can be chosen such that
all reactions have reaction rate constants > 1. For this, we first note that the reactions
shown in blue in Fig.3c can all be chosen to have reaction rate constants equal to 1,
because these are obtained from reactions in Fig. 3a after multiplying with one of the
positive monomials of i (x, y).

On the other hand, the reactions shown in red in Fig. 3¢ may have rate constants that
are impacted by multiplication with some positive and some negative monomials of
h(x, y), so their size (and even their sign) are not immediately clear. Nevertheless, note
that, no matter what values these rate constants have to begin with, if we increase all
of them by an arbitrarily chosen constant, then the effect of all these increases cancels
out. This is due to the fact that the red reactions can be partitioned into pairs, such that
each pair of reactions originates at the same red node, and the two reactions within
each such pair point exactly opposite from each other. Therefore, we conclude that the
system (4.21)—(4.22) can be realized by the network shown in Fig. 3c. Consider now
a perturbed version of this system, also of degree 6, given by
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Fig.4 (a) The algebraic curve /1 (x, y) = 0 given by (4.20) is plotted as the blue line, together with algebraic
curves h;(x,y) = 0 given by (4.27) for §; = 2 (red line), §; = 3 (green line) and §; = 4 (magenta line).
(b) The negative coefficients of product A given by (4.28) correspond to (a subset of) monomials that
are represented by the red points, while the coefficients of the monomials that are represented by the blue
points are all positive. (¢) A reversible chemical reaction network which can be modelled by the reaction
rate equations written in the form of the ODE system (4.29)—(4.30), which has N algebraic limit cycles
(color figure online)

dx
T (x2y2+x2y+xy2+x2+y2+x+y+1—9xy)(1 —x+y—xy)
oh
—exy——(x,), (4.23)
dy
d
d—i} = (22 + 2y a2+ x+y+1=9xy) (1+x —y —xy)

oh
+exy—(x,y), (4.24)
ox

which implies

dx

i (22 + %y +ay? 2+ 2+ x+y+1-9xy) (1 —x +y—xy)
—8xy(2x2y+x2+2xy+2y+ 1 —9x), (4.25)

d

d—f = (x2y2+x2y+xy2+x2+y2+x+y+1—9xy) (1+x—y—xy)

+exy (2xy* + 3% +2xy +2x +1-9y). (4.26)

The ODE system (4.25)—(4.26) has been constructed in a similar way as the ODE
system (4.16)—(4.17). Like in that example, it is easy to check that the transversality
condition (5.6) also holds in this case. We therefore conclude that the ODE sys-
tem (4.25)—(4.26) has an algebraic limit cycle, plotted as the blue line in Fig. 4a.

We now explain why this system also has a weakly reversible realization given by
the network in Fig. 3c. Recall that we have observed above that the ODE system (4.21)—
(4.22) has arealization that uses the reaction network in Fig. 3¢ with all reactions having
reaction rate constants > 1. Note now that all the monomials in (4.25)—(4.26) that
contain a factor of ¢ already appear among the monomials of the ODE system (4.21)—
(4.22), and if we choose ¢ sufficiently small, the ODE system (4.25)—(4.26) can then be
realized by the same reaction network as the ODE system (4.21)—(4.22). Therefore,
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the ODE system (4.25)—(4.26) can be realized by the reversible network shown in
Fig.3c.

Our construction of a reversible chemical system (4.25)—(4.26) with an algebraic
limit cycle can be generalized to obtain reversible systems with multiple limit cycles.
To do that, we replace a single factor 4 (x, y) by a product of several such factors. We
construct reversible systems with several algebraic limit cycles in our next theorem.

Theorem 1 There exists a reversible chemical system of order 4N + 2 that has N
algebraic limit cycles for all N € N. In particular, we have W (4N +2) > N.

Proof We define

hi(x,y) =x2y2+x2y+xy2+x2+y2+x+y+1—(8+5,~)xy,
for i =1,2,...,N, 4.27)

and for some mutually distinct real positive numbers 81, 82, . .., 5. Then the equation
hi(x,y) = 0 can be rewritten as

1 1
(x+1+—)<y+1+—):8,-+9,
x y

which has two solutions for

i — +/6i (124 6;) Si + +/6i (124 6;)
1+ 6 <x <14+ 6

giving a simple closed curve in the positive quadrant for each §; > 0. As an illustration,
we visualize four such curves in Fig.4afor§; = 1,6; = 2,6; = 3 and §; = 4. We
note that ; given by (4.27) is equal to & given by (4.20) for §; = 1, which is plotted as
the blue line in Fig.4a. In particular, we note that ; (x, y) = 0 in equation (4.27) for
mutually distinct real positive numbers &1, &, ..., §y giverise to N disjoint algebraic
curves in the positive quadrant. Now denote

N
ho = [ ki (4.28)
i=1
and consider the system
dx oh
5 = hotey) (1 =x +y —xy) —exya—y‘), (4.29)
d—y—h(x )(1+x— —x)+8x % (4.30)
ar o(x,y y y y ax .

The curves of the form A;(x, y) = O lie along periodic trajectories of the system
(4.29)—(4.30), and a quick way to ensure that each one of the curves h;(x,y) = 0
is actually a limit cycle is to check the transversality condition (5.6) in Theorem 2.
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This can be done without additional calculations (by relying on the case of the ODE
system (4.25)—(4.26)) if we assume that we have chosen all the §; to be close enough
to 1.

The polynomial /¢ has degree 4 N. From the definition of ko we conclude that if
a monomial x?”y? of ho has a negative coefficient, then we have 1 < p < 4N — 1
and 1 < g < 4N — 1. This situation is illustrated in Fig.4b, as follows: if the points
in Fig. 4b represent monomials of /4, then all the negative monomials are among the
red points, and all the blue points correspond to positive monomials. Using the same
argument as in Fig.3b and c, we conclude that the ODE system (4.29)—(4.30) has a
reversible realization which uses the reaction network illustrated in Fig.4c, and the
ODE system (4.29)—(4.30) has atleast N algebraic limit cycles in the positive quadrant,
given by the equations %;(x, y) = 0. Therefore we have W¢(4N +2) > N. O

5 Robust limit cycles

The reaction rate equations (4.14)—(4.15), (4.23)—(4.24) and (4.29)—(4.30) can be writ-
ten in the following general form

dx oh

T = hy) foleoy) = exy = (xoy), .1)
t ay

d oh

d—y = h(x,y) g0(x, ¥) + £X Y m(x, ), (5.2)
t 0x

where fo(x, y), go(x,y) and h(x, y) are polynomials. For example, the ODE sys-
tem (4.14)—(4.15) is given in the general form (5.1)—(5.2) for

h(x,y) = x> +xy>+y—4xy, fox,y)=1—x and go(x,y) =x —y.
(5.3)

Substituting ¢ = 0, we get the ODE system (4.11)—(4.12), which can be realized as a
chemical system and has a continuum of stable steady states, given by h(x, y) = 0.
We illustrate this in Fig.5a, where we plot the set #(x, y) = 0 as the black dashed
line together with fifteen illustrative trajectories starting at the boundary of the visu-
alized domain [0, 4] x [0, 4] and three illustrative trajectories starting inside the oval
h(x,y) = 0. We observe that all calculated trajectories approach an equilibrium point
inside the set 2(x, y) = 0ast — o0.

In the proof of Lemma 11, we have found a weakly reversible realization of the
ODE system (4.16)—(4.17) for ¢ € (0, 1/6). However, the ODE system (4.16)—(4.17)
can be realized as a chemical system for all ¢ > 0. For example, if ¢ = 1, it simplifies
to

dx

i X2+ )cy2 +y—6xy+ 8x2y — 3x2y2 —x3, 5.4
d

d_i) :x3+x2y2+xy—3x2y—y2. (5.5)
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(a)
4

Fig.5 (a) The phase plane of the ODE system (4.11)—(4.12), i.e. the ODE system (4.16)—(4.17) for ¢ = 0.
We plot the algebraic curve h(x,y) = x2 4+ xy2 + y —4xy = 0 (black dashed line) together with some
illustrative trajectories starting at the boundary of the visualized square. All trajectories converge to a stable
steady state on the curve i (x, y) = 0. (b) The phase plane of the ODE system (5.4)—(5.5), i.e. the ODE
system (4.16)—(4.17) for e = 1. The algebraic curve i (x, y) = 0 becomes a stable limit cycle for ¢ > 0

This ODE system has one stable limit cycle as illustrated in Fig. 5b, where we calculate
trajectories for the same initial conditions as in Fig. 5a. We observe that all calculated
trajectories approach the stable limit cycle i (x, y) = 0. The existence of a stable limit
cycle can also be established for the general system (5.1)—(5.2). We formulate it as
our next theorem.

Theorem 2 Consider the ODE system (5.1)—(5.2), where fo(x,y), go(x,y) and
h(x,y) are real polynomials. Assume that the set where h(x,y) = 0 contains N
isolated simple closed curves, and also assume that the transversality condition

oh oh
folx, y) PP (x,y) + golx,y) —(x,y) #0 (5.6)
X ay

holds along all these N isolated closed curves.
Then any simple closed curve where h(x, y) = 0 and

oh oh
fox, y) e (x,y) + golx,y) —(x,y) <0 (5.7
X ay

is a stable algebraic limit cycle of the ODE system (5.1)—(5.2), for all values of ¢ > 0.
Similarly, any simple closed curve where h(x,y) = 0 and

ah oh
folx, ) B—(x,y) + go(x,y) —(x,y) >0 (5.8)
X ay

is an unstable algebraic limit cycle of the ODE system (5.1)—(5.2), for all values of
e>0.

In particular, the ODE system (5.1)—(5.2) has N algebraic limit cycles, for all values
ofe > 0.
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Proof The transversality condition (5.6) implies that the gradient of / does not vanish
along the curve h(x, y) = 0. In particular, any simple closed curve where h(x, y) = 0
is a smooth curve. Note that the vector field

(_hy,hx)E< ah 8h>

_5’5

always points along any curve of the form A(x, y) = «, i.e. never points across it;
the same is true of the vector field exy(—hy, hy). Therefore, the dynamics of the
system (5.1)—(5.2) across curves of the form & (x, y) = « is determined by the vector
field (fo, go)-

Let us focus on the case where the condition (5.7) is satisfied along one such curve C.
(The other case is completely analogous.) Then there exists an annular neighborhood
of C denoted A¢(8), which is delimited by two curves where h(x, y) = +§, for some
small number § > 0, such that A¢(§) is forward invariant for the system (5.1)—(5.2).
To show this, we observe that the condition (5.7) implies that, for § small enough, the
two boundary curves of A¢(8) where i(x, y) = %4 are smooth and (5.7) holds along
them. Therefore, along the two boundary curves of A (8) the vector field (5.1)—(5.2)
points towards the interior of A¢(8).

Moreover, if we fix some 8y > 0 such that A (5) is forward invariant for the
system (5.1)—(5.2) for all § € (0, o], then it follows that A¢(8p) cannot contain any
periodic orbit other than C, and cannot contain any fixed point. Therefore, all the
forward trajectories that start within A (8¢) must converge to C, which implies that C
is a stable limit cycle of the system (5.1)—(5.2). O

The vector field (fy, go) given by (5.3) has a single critical point (1, 1) inside the
oval h(x,y) = 0, and the transversality condition (5.6) is satisfied in our example in
Fig. 5b. Such an approach is also used in our proof of Theorem 1 to obtain the ODE
system (4.29)—(4.30), where we have

fox,y) =1—-x+y—xy and golx,y) =1+x—y—xy. (59

Then the vector field (fo, go) has one critical point at (x, y) = (1, 1), which is inside
the ovals (4.27) for any §; > 0. Consider hg(x, y) in the ODE system (4.29)—(4.30)
in the product form (4.28) where N = 4,61 = 1, 8, = 2,63 = 3 and 64 = 4.
Such curves have been visualized in Fig.4a. They are algebraic limit cycles of the
ODE system (4.29)—(4.30). In Fig. 6a, we plot ten illustrative trajectories of the ODE
system (4.29)—(4.30). We observe that the trajectories starting at the corners of our
visualized domain [0, 3.5] x [0, 3.5] approach the outer limit cycle corresponding to
84 = 4, while trajectories starting inside this oval converge either to it, or to the limit
cycle corresponding to 8> = 2 or to a fixed point. The limit cycles corresponding to
82 = 2 and &4 = 4 are stable and they satisfy our transversality condition (5.7). This
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(a) (b)
3.5

NN

Fig. 6 (a) The phase plane of the ODE system (4.29)—(4.30) for ¢ = 0.1. We plot the algebraic curve
hq(x, y) (black dashed line) together with ten illustrative trajectories. (b) The visualization of domains 2
(magenta shading) and €2, (white shading) given by (5.10) and (5.11), respectively. The stable algebraic
limit cycles, corresponding to 8, = 2 and 84 = 4, are plotted as the black lines, while the unstable algebraic
limit cycles, corresponding to §1 = 1 and §3 = 3, are plotted as the green lines (color figure online)

is also confirmed in Fig. 6b, where we visualize the subdomains

ah ah
Q = {(x,y) € [0, 00)? ’ So(x,y) a(x,y) + go(x,y) E(x,y) < 0} (5.10)

oh oh
Q, = {(x,y) € [0,00)? | fo(x, ) 5(x,y) + go(x, ) 5(x,y) > 0} (5.11)

using magenta and white shading, respectively. The limit cycles corresponding to
8> = 2 and 84 = 4 are inside the domain €2, while the limit cycles corresponding
to 81 = 1 and 83 = 3 are inside the domain €2, and they are unstable, satisfying the
transversality condition (5.8).

The systems with limit cycles which are used to achieve lower bounds in Tables 1
and 2 have been constructed using the standard definition of the limit cycle as an
isolated closed trajectory. While such limit cycles can be stable, they are sometimes
difficult to observe in numerical simulations. For example, consider the ODE sys-
tem (4.7)—(4.8) which is a polynomial system of degree 4 with three hyperbolic
algebraic limit cycles in the positive quadrant. The ODE system (4.7)—(4.8) shares
some similarities with our general form (5.1)—(5.2) for (fo, go) = (1, 1) if factor ex y
is replaced by 7x — y. However, if we define the subdomains €2, and €2, by (5.10)-
(5.11) for (fo, go) = (1, 1), then we observe that some parts of each limit cycle of
the ODE system (4.7)—(4.8) are in 2; and some parts are in €2,,. While the applica-
tion of Christopher (2001, Theorem 1) can help us to deduce that each limit cycle is
hyperbolic, the trajectories are attracted by parts of the limit cycle in €25 and repelled
by parts of the limit cycle in €2,,. In particular, numerical errors can make it impos-
sible to observe a trajectory which would for long positive times (resp. long negative
times) approach the (theoretically) stable (resp. unstable) limit cycle in computational
studies of such systems. However, if we do not attempt to minimize the degree of the

@ Springer



64 Page 24 of 31 G. Craciun, R. Erban

polynomial on the right hand side of the ODE system (5.1)—(5.2), then it is possible
to find fj and go such that all limit cycles are fully in ;. We state this result as our
next theorem.

Theorem 3 Let h : R? — R be a polynomial of degree nj, and let the real algebraic
curve h(x,y) = 0 contain N € N ovals in the (strictly) positive quadrant (0, 00) X
(0, 00). Assume that

aoh

—(.X, )’)

Vh(x,y) = 8; * (8) forall (x, y) satisfying h(x, y) = 0. (5.12)
a_(x’ )’)
y

Then the ODE system

dx oh doh
E:—xyh(x,y)a(x,y) — 8xy5(x,y), (5.13)
dy oh oh
— =—xyh(x,y) —(x,y) + exy_—(x,y), (5.14)
dr ay ax

is a polynomial ODE system of degree n = 2ny + 1 which can be realized as a
chemical reaction network under mass-action kinetics (for any value of parameter
). The chemical system (5.13)—(5.14) has N stable algebraic limit cycles contained
in the components of the curve h(x,y) = 0 for all ¢ > 0 and the cofactor, defined
by (4.1), is equal to s(x,y) = —xy ||Vh(x,y) ||2 .

Proof Consider the ODE system (5.1)—(5.2) with

oh oh
Jolx,y) = —xyg(x,y) and  go(x,y) = —xya(x,y)- (5.15)

Then the ODE system (5.1)—(5.2) becomes the ODE system (5.13)—(5.14), where
the right-hand side contains polynomials of degree at most 2n;, + 1. Moreover, the
assumption (5.12) implies the transversality condition (5.7). Using Theorem 2, we
conclude the existence of N stable algebraic limit cycles contained in the components
of the curve h(x, y) = O for all ¢ > 0. Differentiating i (x, y) with respect of time,
we obtain

dh( ) ah( )dx+3h( )dy
o, -x9 = -x5 . a -x7 .
dr Y dx Y dr  dy Y dr

dh 2 (dh 2
= —X)y [(a('xv y)) + (@("“ y)>:|h(xﬂ )’)

which implies that the cofactor (4.1) is a polynomial of degree at most 2n;, given by

dh > dh > 5
s(x,y) = —xy (8—x(x,y)> —xy <5(x,y)> = —xy VA, 2" .
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O

We note that the ODE system (5.13)—(5.14) can also be written in the matrix form as

d X _ —h(x,y) —&
5<y) - ”( . —h(x,y)) VA, y). (5.16)

This ODE system can be used to construct chemical systems with multiple stable
algebraic limit cycles, provided that the ovals of h(x, y) = 0 are contained in the
(strictly) positive quadrant (0, 00)?, as we illustrate using examples with quartic planar
curves (i.e. using n, = 4) in the next section.

5.1 A chemical system with multiple stable algebraic limit cycles

We consider quartic polynomial ¢ (x, y) in the following form
gx,y) = 16(x* +yH — 252+ + ux?y? + 9, (5.17)

where 1 € R is a parameter. Since the degree of the polynomial (5.17) is 4 for all
© € R, Harnack’s curve theorem implies that the maximum number of connected
components of the algebraic curve g(x,y) = 0 is 4. Depending on the value of
parameter 1 € R, the algebraic curve g(x, y) = 0 contains one, two or four ovals, as
we show in our next lemma and illustrate in Fig. 7.

Lemma 13 Let u € R and let q(x, y) be given by (5.17). Then we have:

(1) The set of solutions to equation q(x, y) = 0 contains points

[—1,0], [-3/4,0], [3/4,0], [1,0],
[0, —1], [0,-3/4], [0,3/4], and [O,1]. (5.18)

Points (5.18) are the only intersections of the algebraic curve q(x, y) = 0 with
x-axis and y-axis.

(i) If u < —32, then the set of solutions to equation q(x,y) = 0 contains one
oval.

(iii) If =32 < u < 337/9, then the set of solutions to equation q(x, y) = 0 contains
two ovals.

(iv) If u = 32, then the algebraic curve q(x,y) = 0 are two concentric circles
with radii 3/4 and 1.

(v) If w = 337/9, then the set of solutions to equation q(x,y) = 0 is connected
and contains four ordinary double points (crunodes) at[3/5, 3/5], [3/5, —3/5],
[—3/5,3/5] and [-3/5, =3/5].

(vi) If © > 337/9, then the set of solutions to equation q(x,y) = 0 contains four
ovals.

In particular, q(x, y) = 0 is an M-curve containing four connected components.
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Proof (i) If y = 0, then ¢ (x, y) = 0 simplifies to 16x* — 25x%> + 9 = 0, which is
solved by x = +1 and x = £3/4. Using symmetry, equation g (x, y) = 0 is solved
forx =0byy==1and y = +£3/4.

(ii) Using (5.17), we have

gx,x) = 32+ wx* —50x% 4+ 9.

If © < —32, then equation g(x,x) = 0 has exactly two real solutions and the
algebraic curve g(x,y) = 0 contains one oval. For example, if © = —32, then
the two real solutions to g(x,x) = 0 are given as x = :|:3/(5ﬁ) ~ 0.424 and
the algebraic curve g(x, y) = 0 contains one oval which goes clockwise through
the points [-3/4, 01, [=3/(5v/2), 3/(5v/2)1, [0, 3/41, [3/(5v/2), 3/(5v/2)1, [3/4, 01,
[3/(5v/2), =3/(5v/2)1, [0, —3/4] and [—3/(5v/2), 3/(5+/2)], see Fig.7b.

(1i1) If —32 < pu < 337/9, then there are four real solutions to g (x, x) = 0 given by

L (BT [25-33T -9k
2+ u 2+ u

and the set of solutions to equation g (x, y) = O contains two concentric ovals, see
Fig. 7cf.
(iv) If u = 32, then the formula (5.17) can be rewritten as

gx,y) = 16(x>+y5)? =252 +y?) +9 = 1674 — 2572 + 9,

2 = x% + y2. Solving g(x, y) = 0 for r, we obtain r = 1 or r = 3/4, see

where r
Fig. 7f.
(v) If w = 337/9, then there are two solutions to ¢ (x, x) = 0 given as +3/5. They cor-
respond to ordinary double points (crunodes) at [3/5, 3/5], [3/5, —3/51, [—3/5, 3/5]
and [—3/5, —3/5], where the curves intersects itself so that two branches of the curve
have distinct tangent lines, see Fig. 7g.

(vi) If u > 337/9, then there are no solutions to g(x, x) = 0. In particular, we have
four regions separated by lines y = x and y = —x each containing one oval, see

Fig.7h and i. O

The ovals of the algebraic curve ¢g(x, y) in Lemma 13 are outside of the positive
quadrant. To apply Theorem 3, we first shift the curve g (x, y) to get

hix,y)=q(x =2,y —2), where g (x, y) is given by (5.17). (5.19)

Then the ovals of h(x, y) are in the positive quadrant for all nonnegative values of w,
see Fig.7. The phase plane of the ODE system (5.13)—(5.14) is plotted in Fig. 8 for
¢ = 1. We use two different values of j« corresponding to two ovals (1 = 0) and four
ovals (u = 39) of the algebraic curve h(x, y) = 0 given by (5.19). In both cases, we
observe that all computed illustrative trajectories approach one of the ovals, confirming
that Theorem 3 leads to chemical systems with two (Fig. 8a) or four (Fig. 8b) stable
limit cycles.
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Fig. 7 The algebraic curve g(x, y) = 0 given by (5.17) for (a) u = —100; (b) u = —32; (¢) u = —28;
(d) o = 05 (&) n = 20; () u = 32, (g) . = 337/9; (h) . = 39 and (i) 1 = 100

(a) (b)
pn=0e=1 =39,¢ =1
35 - 35 e
N\ 4 / | - \ /LS
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Fig.8 (a) The phase plane of the ODE system (5.13)—(5.14) with the polynomial 2 (x, y) given by (5.19)
for parameters 1 = 0 and ¢ = 1. We plot the two ovals of the algebraic curve i (x, y) = 0 (black dashed
line) together with ten illustrative trajectories showing convergence to one of the two ovals which are stable
algebraic limit cycles of the ODE system. (b) The phase plane of the ODE system (5.13)—(5.14) with the
polynomial i (x, y) given by (5.19) for parameters 4 = 39 and ¢ = 1, when the ODE system has four
stable algebraic limit cycles given as the four ovals of the algebraic curve A(x, y) = 0 (visualized as the
black dashed line together with illustrative trajectories converging to the limit cycles)
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6 Discussion

We have considered both algebraic and non-algebraic limit cycles in chemical reaction
systems, with our results summarized together with the results in the literature in
Tables 1 and 2, respectively. To establish some lower bounds in Tables 1 and 2, different
techniques have to be applied. For example, small perturbations of an ODE system
preserve the existence of a hyperbolic limit cycle, but an algebraic limit cycle can
become non-algebraic after a perturbation. In particular, while the existence of a cubic
weakly reversible chemical system with a limit cycle has been established in Table 1,
it remains an open question whether a cubic weakly reversible system can have an
algebraic limit cycle.

While a formulation of Hilbert’s 16th problem restricted to algebraic limit cycles
under generic conditions has been solved, see Llibre et al. (2010); Giné et al. (2018)
for further discussion, these results are not considering the ODE systems which can
be realized as chemical reaction networks. For example, a cubic system with two
circular limit cycles is presented in Giné et al. (2018). Shifting the limit cycles to the
positive quadrant, as we have done with our quartic example in equation (5.19), and
then multiplying the right-hand-side by xy yields a fifth-order chemical system with
two limit cycles. Other examples of cubic systems with 2 (non-generic) algebraic limit
cycles appear in Llibre et al., (2010, Section 1), which could again be used to conclude
that $%(5) > 2. However, this does not improve the lower bound in Table 2, which
implies $4(5) > S4(4) > 3.

Our investigation has focused on the ODE systems which can be realized as models
of chemical reaction networks. However, such a realization is not unique: if an ODE
system can be realized as the reaction rate equations of a chemical system, then there
exists infinitely many chemical reaction networks corresponding to the same ODE sys-
tem (Craciun and Pantea 2008; Plesa et al. 2018; Craciun et al. 2020). For some studied
ODE systems, we have been able to identify their realization as (weakly) reversible
chemical reaction networks and this helped us to make conclusions on the values of
numbers W (n) and W%(n) (see, for example, our proof of Lemma 11). In particular,
chemical reaction networks (corresponding to the same ODE system) can be distin-
guished by having different structural properties. They can also be distinguished by
considering their more detailed stochastic description (Enciso et al. 2021), written as
the continuous-time discrete-space Markov chain and simulated by the Gillespie algo-
rithm (Gillespie 1977; Erban and Chapman 2020). While the long-term dynamics of
some chemical reaction networks can consist of a unique attractor of their ODE mod-
els, the long-term (stationary) probability distribution given by their stochastic model
may display multiple maxima (Duncan et al. 2015; Plesa et al. 2019). Considering
chemical systems with limit cycles and oscillatory behaviour, stochastic models can
bring additional possibilities for long-term dynamics including noise-induced oscilla-
tions (Muratov et al. 2005; Erban et al. 2009). It may also happen that the ODE has a
periodic solution and the long-term probability distribution is degenerate, converging
to the state with zero molecules of all chemical species as time t — oo (Reddy 1975).

The ODE system (5.13)—(5.14) or in its equivalent matrix form (5.16) can be used to
construct chemical reaction networks with stable algebraic limit cycles corresponding
to the given algebraic curve h(x, y) = 0. In particular, if we want to construct a
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chemical system with more than one stable algebraic limit cycle, we can start with a
quartic curve with more than one oval as shown in Sect.5.1. Another quartic curve
with two ovals can be obtained as a product of two circles (quadratic curves). Such a
product form construction has been used in our proof of Theorem 1, see equation (4.28).
Considering the product of two circles and using Theorem 3, we can obtain a chemical
system which has the two circles as its two stable algebraic limit cycles. In Sect.5.1,
we have considered quartic curve (5.19) which had four closed connected components
for © > 337/9 and Theorem 3 implied a chemical system with four stable algebraic
limit cycles. To construct chemical systems with more stable limit cycles than four,
we can apply Theorem 3 to algebraic curves i (x, y) = 0 of degree nj;, > 4, which has
the corresponding number of ovals. One possible way to find such algebraic curves is
to construct them in the product form (4.28).

In this paper, we have considered chemical reaction systems with two chemical
species X and Y which are described by planar ODE system (1.1)—(1.2). In particu-
lar, we could make connections to the results and open problems on limit cycles and
periodic solutions in planar polynomial ODE systems, with attention to the results
for systems with polynomials of low degree n on the right hand side (Shi 1980; Li
et al. 2009). Our low degree n investigation is also interesting from the applications
point of view, because it decreases the order (2.2) of the chemical reactions when
the ODE system (1.1)—(1.2) is realized as the chemical system. In particular, we have
addressed some questions on ‘minimal’ reaction systems with certain dynamics by
minimizing the value of n. The minimal reaction systems with oscillations can also
be defined in terms of the minimal number m of reactions in the chemical reaction
network (2.1), see Banaji et al. (2024) for some systems with two chemical species.
In some applications, it is necessary to study chemical reaction systems with more
than two chemical species, leading to three-dimensional or higher-dimensional ODE
systems. For example, limit cycles in reaction networks with three or four chemical
species are investigated under additional structural conditions on the reaction net-
work in Boros and Hofbauer (2022, 2023). Multiple limit cycles for systems of two
chemical species have also been reported in Boros and Hofbauer (2024) for the case
when deficiency of the chemical reaction network is one, while it is well known that
the deficiency-zero networks cannot have periodic solutions in the positive quadrant
(Feinberg 1972).
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