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1 University of Wisconsin-Madison, Madison, WI, United States of America
2 University of Louisiana at Lafayette, Lafayette, LA, United States of America
3 Lucian Blaga University of Sibiu, Sibiu, Romania

E-mail: craciun@math.wisc.edu, jiaxin.jin@louisiana.edu and
mirunastefana.sorea@ulbsibiu.ro

Received 7 March 2024; revised 31 October 2024
Accepted for publication 9 December 2024
Published 30 December 2024

Recommended by Dr Kuo-Chang Chen

Abstract
We consider toric dynamical systems, which are also called complex-balanced
mass-action systems. These are remarkably stable polynomial dynamical sys-
tems that arise from the analysis of mathematical models of reaction networks
when, under the assumption of mass-action kinetics, they can give rise to
complex-balanced equilibria. Given a reaction network, we study the set of
parameter values for which the network gives rise to toric dynamical systems,
also called the toric locus of the network. The toric locus is an algebraic vari-
ety, and we are especially interested in its topological properties. We show
that complex-balanced equilibria depend continuously on the parameter values
in the toric locus, and, using this result, we prove that the toric locus has a
remarkable product structure: it is homeomorphic to the product of the set
of complex-balanced flux vectors and the affine invariant polyhedron of the
network. In particular, it follows that the toric locus is a contractible manifold.
Finally, we show that the toric locus is invariant with respect to bijective affine
transformations of the generating reaction network.
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1. Introduction

Nonlinear dynamical systems are among the most common mathematical models used in the
study of population dynamics, epidemiology, biochemistry, just to name a few [43]. However,
the analysis of long-term dynamical behavior of nonlinear dynamical systems is a very difficult
problem. Finding explicit, quantitative answers to the question of how a system evolves in
continuous time is usually impossible. Inspired by the work of Poincaré [37], mathematicians
started tackling the qualitative aspects of these systems. However, this task is also a difficult
one. For instance, consider the second part of Hilbert’s 16th problem, concerning polynomial
dynamical systems in the real plane. After more than a century, the problem of finding an upper
bound for the number of limit cycles remains open even in the quadratic case; for technical
details and historical aspects of Hilbert’s 16th problem, we refer the reader to [28], [33, chapter
11]. Another example meant to show that nonlinear dynamical systems are challenging is the
Lorenz system: a quadratic polynomial dynamical system, in the three-dimensional Euclidean
space, which exhibits chaotic dynamics [32].

1.1. Context

We focus on polynomial dynamical systems generated by reaction networks, which are rep-
resented by directed graphs in Euclidean space. One of the goals of reaction network the-
ory is to determine information about the qualitative long-term dynamics from the algebro-
combinatorial structure of the network. In order to model the evolution in time of the concen-
trations of interacting species, we use autonomous systems of ordinary differential equations,
dictated by the network structure. Under the assumption of mass-action kinetics [19, section
2.1.2], this leads to fruitful interactions between the study of reaction networks and applied
algebraic geometry (see [17]), because these systems have polynomial right-hand side. The law
of mass-action is very commonly used in mathematical modeling, for instance in population
dynamics, ecology, biochemistry, and chemical engineering [5, 19, 43].

In particular, we are interested in complex-balanced mass-action systems (see [19, chapter
15]). Introduced by Horn and Jackson in [27], these represent a large class of polynomial
dynamical systems that are known to have a stable dynamical behavior that is very desirable
in applications. For instance, Horn and Jackson proved that complex-balanced dynamical sys-
tems possess exactly one positive equilibrium up to conservation laws (i.e. one within each
invariant polyhedron) and that this equilibrium is locally asymptotically stable (see [27], [43,
theorem 2.3]). One of the most important lines of research in the field of reaction network
theory is the Global Attractor Conjecture, which says that this equilibrium is actually globally
asymptotically stable. This has been already proven in several cases, under various additional
hypotheses. For a description of the state of the art, we refer the reader to [43]. A proof in full
generality of the Global Attractor Conjecture has been proposed in [12].

Besides their stable dynamical behavior, another advantage of complex-balanced dynam-
ical systems is the fact that tools from commutative algebra, computational, applied, real algeb-
raic geometry turn out to be useful in deducing qualitative dynamical properties, which are
often encoded or hidden in the geometric structure of the associated reaction networks. For
instance, in [13] complex-balanced dynamical systems have also been called toric dynamical
systems by Craciun, Dickenstein, Shiu and Sturmfels, to emphasize their strong combinatorial
aspects and the remarkable algebraic properties of their toric locus. To be more precise, con-
sider the full parameter space of a reaction network. The subset of parameters that gives rise
to complex-balanced dynamical systems is called the toric locus; in particular, up to a change
of coordinates, this set is a variety given by a binomial ideal, intersected with the positive
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orthant (see [13]). Toric varieties appear in numerous applications [35] and are very well stud-
ied and understood by algebraic geometers, who use them often in their quest for examples
and counterexamples, due to their combinatorial representation and their computational assets.
For a presentation of toric varieties from the point of view of Nonlinear Algebra, the reader
may refer to [35, chapter 8]; according to [35, p 126], ‘the world is toric’.

Increasing interest in the toric locus of a network has been shown recently. For instance,
methods to expand the toric locus from a set of Lebesgue measure zero to a positive measure
set using the disguised toric locus are proposed in the form of a systematic algorithm in [36],
where the authors leverage some properties of the notion of dynamical equivalence from [15].
See also [24], where the authors show that the disguised toric locus is invariant under invertible
affine transformations of the network.

1.2. Main contributions

The results of this paper concern the topological structure of the toric locus. One of our main
contributions is to show that the complex-balanced equilibria depend continuously on the para-
meter values, i.e. reaction rate constants (theorem 3.5). We then use this result to prove that
the toric locus of any reaction network is connected (theorem 3.17). Next, in theorem 4.7 we
show that the toric locus is homeomorphic to the product of the set of complex-balanced flux
vectors (definition 4.2) and the affine invariant polyhedron (definition 2.8).

Being homeomorphic to the product of two path-connected spaces, it also follows that the
toric locus is path-connected. Hence, given any two points in the toric locus of a toric dynam-
ical system, there will exist a continuous path between them. This might be advantageous in
computations, for instance when using numerical methods for constructing the set of equilib-
ria along a path in parameter space. Recall that the main strategy used by homotopy continu-
ation methods is tracking the solutions of systems of polynomial equations which are easier
to solve than the given system, or which are already known (for instance BERTINI [4], Julia
HomotopyContinuation [3, 8, 9, 18, 39, 42]). Such tracking can take advantage of the path
connectivity of the toric locus.

Furthermore, we recover a result from [13, theorem 9], which says that the codimension of
the toric locus in the parameter space is equal to the deficiency of the network (see definition
4.12). We also show that the toric locus is invariant under bijective affine transformations of
a network (theorem 4.17). This result has recently been extended in [24], where the authors
show that the disguised toric locus is also invariant under bijective affine transformations of a
network.

1.3. Structure of the paper

In section 2, we introduce standard terminology and notations concerning dynamical systems
generated by reaction networks, mostly focusing on mass-action complex-balanced dynamical
systems, also called toric. In section 3, we prove that complex-balanced equilibria depend con-
tinuously on the parameter values inK(G). Leveraging this result, in section 3.1 we show that
the toric locus is connected. In section 4, we first prove that the toric locus is homeomorphic
to a product space. Using this property, in section 4.3 we show proposition 4.13 which gives
a precise formula for the dimension of the toric locus of the network. In section 4.4, we prove
theorem 4.17 showing that any bijective affine transformation of the network preserves the
toric locus.
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2. Preliminary notions

In this section, mostly following [43], we present standard terminology concerning a special
class of nonlinear dynamical systems that are generated by (bio-chemical) reaction networks,
under the assumption of mass-action kinetics. For an introduction to the general theory of
nonlinear dynamical systems, the reader could refer for instance to the textbooks [30, 40].

First, we give some classical definitions and notations relevant to the study of mass-action
dynamical systems and to (bio-chemical) reaction networks. Next, we present a special class
of these systems: complex-balanced dynamical systems, which are also called toric dynamical
systems. More details can be found in the textbooks [19] and [10], the latter one with a view
toward Nonlinear Algebra. See also [11, 13, 15, 36].

Notation 2.1. (a) We let Rn
!0 and Rn

>0 denote the sets of vectors with non-negative and pos-
itive entries respectively. Similarly, Zn

!0 is the set of vectors with non-negative integer
components. We denote the cardinality of a set A as |A|, and the disjoint union of sets A
and B is denoted by A⊔B.

(b) Let us consider two vectors x,y ∈ Rn with x= (x1, . . . ,xn)ᵀ and y= (y1, . . . ,yn)ᵀ. The fol-
lowing are the vector operations that will be used in this paper:

x ◦ y := (x1y1, . . . ,xnyn)
ᵀ ,

exp(x) := (exp(x1) , . . . ,exp(xn))
ᵀ .

For x ∈ Rn
>0 we also define

ln(x) := (ln(x1) , . . . , ln(xn))
ᵀ ,

xy := xy11 x
y2
2 . . .xynn .

(c) We also apply vector operations on a subset of Rn, where they are applied to all elements
of the subset. For example, given a vector x ∈ Rn and a set A⊆ Rn,

x ◦A := {x ◦ y : y ∈ A} .

2.1. Dynamics of reaction networks with mass-action kinetics

We work with deterministic, autonomous, and continuous dynamical systems, generated by
reaction networks. The goal is tomodel the variation in time of the concentrations of the species
involved, under the assumption of mass-action kinetics. Mostly following the terminology and
notations from [43], let us give precise definitions of these classical notions.

The classical definition of a reaction network involves species, complexes, and reactions,
as illustrated in figure 1 (and explained in detail below). In a recent work [12], it was observed
that the equivalent definition of reaction network as a directed graph embedded in Euclidean
space leads to very convenient notations, see figure 2; this is why we employ this definition
here.

Definition 2.2. (a) We denote by n the number of species involved in the reaction network,
and denote by X1, . . . ,Xn the species of the network.

(b) Denote by xi the concentration of the species Xi, for i = 1, . . . ,n. We consider xi as func-
tions of time t: xi = xi(t). At any time t! 0, this gives us a vector x= (x1, . . . ,xn)ᵀ ∈ Rn,
also called a state of the system.

(c) A formal linear combination of species {Xi}ni=1, with non-negative real coefficients is
called a complex. A reaction is a directed edge between two distinct complexes.

Definition 2.3. A reaction network, also called aEuclidean embedded graph (orE-graph),
is a directed graph G= (V,E) such that the set V⊂ Rn is a finite set of vertices and the set
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Figure 1. A reaction network with three species, three complexes, and four reactions.

E⊆ V×V represents the finite set of edges. We assume that there are neither self-loops nor
isolated vertices.

(a) We denote the number of vertices bym, and letV= {y1, . . . ,ym}, where each vertex yi ∈ V
corresponds to a complex. The entries of the vertex are the coefficients of the species in
the corresponding formal linear combination.

(b) A directed edge connecting two vertices yi ∈ V to yj ∈ V is denoted by yi → yj ∈ E and
represents a reaction in the network.We call the difference vector yj− yi ∈ Rn, the reaction
vector. Here yi and yj denote the source vertex and target vertex respectively.

Aswementioned above, reaction networks can either be represented as sets of reactions (see
figure 1), or, equivalently, by using E-graphs, where the vertices correspond to the complexes
(see figure 2). This is illustrated in the example below.

Example 2.4. Let us consider the reaction network from figure 1. There are three interacting
species: X1, X2, X3, and three complexes:

2X1 + 3X2, 2X2, X3,

and four reactions (directed edges between complexes):

2X1 + 3X2 → 2X2, 2X2 → 2X1 + 3X2, 2X2 → X3, X3 → 2X1 + 3X2.

The real coefficients from each formal linear combination of species appearing in the com-
plexes from the reaction network in figure 1 give rise to vectors in the three-dimensional
Euclidean space:

y1 =

⎛

⎝
2
3
0

⎞

⎠ , y2 =

⎛

⎝
0
2
0

⎞

⎠ , y3 =

⎛

⎝
0
0
1

⎞

⎠ .

This gives rise to an E-graph (see figure 2), whose edges represent vectors yi− yj ∈ R3.

Definition 2.5. Let G= (V,E) be an E-graph.

(a) The set of vertices V is partitioned according to the connected components of G, and we
identify each connected component by the subset of vertices that belong to that connected
component. We denote the number of connected components by ℓ, and let V= V1 ⊔
V2 · · ·⊔Vℓ, where each Vi represents a connected component of G.

(b) A connected component is called strongly connected if every edge is part of an oriented
cycle. Furthermore, a strongly connected component L⊆ V is terminal strongly connec-
ted, if for every vertex y ∈ L and y→ y ′ ∈ E, we have y ′ ∈ L.
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Figure 2. The E-graph of the network from figure 1.

(c) The graph G= (V,E) is weakly reversible, if every connected component is strongly
connected.

Wework under the assumption ofmass-action kinetics, which says that the rate withwhich a
reaction takes place is directly proportional to the product of the concentrations of the reactant
species (see [43] and references therein). Under this assumption, the dynamics can be modeled
using the ODE system (1) below. Starting with the work of Gatermann (see [13, 21]), the
polynomial structure of the right-hand side of (1) has given rise to fruitful interactions between
the field of reaction networks and the methods of computational algebra.

Definition 2.6. Given an E-graph G= (V,E), each edge yi → yj is decorated with a positive
constant kyi→yj or kij, called a reaction rate constant. Further, we denote by k := (kij) ∈ RE

>0
the vector of reaction rate constants. The associated mass-action system generated by
(G,k) on Rn

>0 is given by

dx
dt

=
∑

yi→yj∈E
kyi→yjx

yi
(
yj− yi

)
. (1)

For example, consider the E-graph from figure 2 (see example 2.4). Under mass-action
kinetics, the associated dynamical system is

dx
dt

= k12x21x
3
2 (y2 − y1)+ k21x22 (y1 − y2)+ k23x22 (y3 − y2)+ k31x3 (y1 − y3)

= k12x21x
3
2

⎛

⎝
−2
−1
0

⎞

⎠+ k21x22

⎛

⎝
2
1
0

⎞

⎠+ k23x22

⎛

⎝
0
−2
1

⎞

⎠+ k31x3

⎛

⎝
2
3
−1

⎞

⎠

=

⎛

⎝
−2k12x21x

3
2 + 2k21x22 + 2k31x3

−k12x21x32 +(k21 − 2k23)x22 + 3k31x3
k23x22 − k31x3

⎞

⎠ .

(2)

Before the end of this subsection, we define affine invariant polyhedra; they will play an
important role in the proof of our main results, starting with section 3.
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Remark 2.7 ([43]). Note that we set the domain of (1) to beRn
>0. In general, systems of ODEs

do not allowRn
>0 to be forward-invariant. But under the assumption that V⊂ Zn

!0, the positive
orthant Rn

>0 is forward-invariant under system (1). See also [24, remark 2.3, p 3]: we could
also allow V⊂ Rn

!0 or V⊂ Rn.

Definition 2.8. Let G= (V,E) be an E-graph. We denote the stoichiometric subspace of G
by S , which is

S = span
{
yj− yi : yi → yj ∈ E

}
. (3)

By remark 2.7 and the fact that the right-hand side of (1) is in S , any solution to (1) with initial
condition x0 ∈ Rn

>0 and V⊂ Zn
!0, is confined to (x0 +S)∩Rn

>0. The set (x0 +S)∩Rn
>0 is

called the affine invariant polyhedron of x0. For the sake of simplicity, we use the following
notation:

Sx0 := (x0 +S)∩Rn
>0.

2.2. Complex-balanced dynamical systems and their properties

The importance of complex-balanced dynamical systems is mostly due to their strong stability
properties. For more details, we advise the reader to consult [27], [43, theorem 2.3]. Using
a strictly convex Lyapunov function, Horn and Jackson proved in [27] that if a mass-action
system has a complex-balanced equilibrium, then all its positive equilibria are also complex-
balanced, and that there is a unique and locally asymptotically stable equilibrium within each
affine invariant polyhedron.

Definition 2.9. Consider the associated mass-action system generated by (G,k):

dx
dt

=
∑

yi→yj∈E
kyi→yjx

yi
(
yj− yi

)
.

A state x∗ ∈ Rn
>0 is called a positive equilibrium of the system if
∑

yi→yj∈E
kyi→yj (x

∗)yi
(
yj− yi

)
= 0. (4)

A positive equilibrium x∗ ∈ Rn
>0 is called a complex-balanced equilibrium if for each vertex

y0 ∈ V,
∑

y0→y ′∈E
ky0→y ′ (x∗)

y0 =
∑

y→y0∈E
ky→y0 (x

∗)y . (5)

We say the pair (G,k) satisfies the complex-balanced conditions if it has a complex-balanced
equilibrium; and in this case the mass-action system generated by (G,k) is called a complex-
balanced system or toric dynamical system.

The following classical theorem illustrates some of themost important dynamical properties
of complex-balanced systems.

Theorem 2.10 ([43, theorem 2.3]). Consider a complex-balanced system (G,k) such that x∗ ∈
Rn

>0 is a complex-balanced equilibrium of the system. Denote the associated stoichiometric
subspace by S . Then the following hold:

(a) All positive equilibria are complex-balanced. There is exactly one equilibrium within each
affine invariant polyhedron Sx0 := (x0 +S)∩Rn

>0.

7
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(b) Every complex-balanced equilibrium x satisfies the following relation: lnx− lnx∗ ∈ S⊥.
(c) Every complex-balanced equilibrium is locally asymptotically stable within its affine

invariant polyhedron.

Additionally, the mass-action system (1) admits a matrix decomposition, which helps us
in studying complex-balanced equilibria. Recall that the number of species is denoted by n,
and the number of vertices is denoted by m. Following [13], we set the n×mmatrix Y, whose
columns correspond to vertices:

Y := (y1,y2, . . . ,ym) = (yji) ∈ Rn×m,

Next, we build the following vector of monomials:

Ψ(x) :=

⎛

⎜⎝
xy1
...
xym

⎞

⎟⎠ ∈ Rm.

Since each directed edge yi → yj ∈ E has a reaction rate constant kij ∈ R>0, we construct the
m×m Kirchoff matrix Ak, which is the transpose of the negative of the graph Laplacian of
(V,E,k):

[Ak]ji :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kyi→yj , if i ̸= j and yi → yj ∈ E

−
∑

yi→yj∈E
kyi→yj , if i = j,

0, otherwise.

(6)

Then the mass-action dynamical system (1) generated by (G,k) can be written in the fol-
lowing vectorial representation:

dx
dt

= Y ·Ak ·Ψ(x) . (7)

Remark 2.11. Note that the notation we use in (7) is different from the one in [13, p 2], by
transposing.

Under direct computation, the ith component of Ak ·Ψ(x) is

[Ak ·Ψ(x)]i =
∑

yj→yi∈E
kyj→yix

yj −
∑

yi→yj∈E
kyi→yjx

yi .

Therefore, the equality (5) is equivalent to

Ak ·Ψ(x∗) = 0 (8)

where x∗ ∈ Rn
>0 is a complex-balanced equilibrium for the mass-action system (G,k).

The following lemma 2.12 is a key result that we will use in the proof of proposition 3.9,
where we give a characterization of the complex-balanced equilibria.

Lemma 2.12 ([20, p 94]). Consider a mass-action system (G,k) with terminal strongly con-
nected components T1,T2, . . . ,Tt and vertices {y1,y2, . . . ,ym}. Then ker(Ak) (see equation (6)
for the definition of Ak) has a basis {e1, . . . ,et}, such that

ep =

⎧
⎨

⎩
[ep]i > 0, if yi ∈ Tp,

[ep]i = 0, otherwise,

8
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where 1" i " m and 1" p" t.

For the proof of lemma 2.12, we refer the reader to [20, p 94] or [23, theorem 4.2].

Example 2.13. Revisiting example 2.4, we have

Y= (y1,y2,y3) =

⎛

⎝
2 0 0
3 2 0
0 0 1

⎞

⎠ ,

and

Ak =

⎛

⎝
−k12 k21 k31
k12 −k21 − k23 0
0 k23 −k31

⎞

⎠ , Ψ(x) =

⎛

⎝
xy1
xy2
xy3

⎞

⎠=

⎛

⎝
x21x

3
2

x22
x3

⎞

⎠ .

Following equation (7), we derive

dx
dt

= Y ·Ak ·Ψ(x) =

⎛

⎝
−2k12x21x

3
2 + 2k21x22 + 2k31x3

−k12x21x32 +(k21 − 2k23)x22 + 3k31x3
k23x22 − k31x3

⎞

⎠ ,

which gives the same ODE system as (2).

2.3. The toric locus K(G)

Here we introduce the notion of toric locus, which is a key concept in this paper. See also [36,
definition 2.2].

Definition 2.14. Consider an E-graph G= (V,E). Let K(G)⊆ RE
>0 denote the set of para-

meters k ∈ RE
>0, for which the dynamical system generated by (G,k) is toric (i.e. complex-

balanced). We refer to K(G) as the toric locus of the E-graph G.

The following theorem shows us that only weakly reversible E-graphs can give rise to
complex-balanced mass-action systems.

Theorem 2.15 ([26]). Every E-graph that generates a complex-balanced mass-action sys-
tem is weakly reversible. Moreover, every E-graph that is weakly reversible permits complex-
balanced mass-action systems.

As a consequence, given an E-graph G= (V,E), we conclude that

• If G= (V,E) is weakly reversible, then K(G) ̸= ∅.
• If G= (V,E) is not weakly reversible, then K(G) = ∅.

Since we are not interested in the case when K(G) is empty, we always assume the E-graph
G= (V,E) is weakly reversible when working with K(G) in this paper.

Next, we want to study K(G). In practical applications, it is difficult to compute precise
values for the parameters kij ∈ R>0, so we usually choose a symbolic approach and consider
them as unspecified parameters, as in [13].

Example 2.16. Revisit example 2.4, suppose x= (x1,x2,x3) is a complex-balanced equilib-
rium. The conditions (5) satisfied by complex-balanced equilibrium x are as follows:

9
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Figure 3. Cycle on four vertices.

k21x22 + k31x3 = k12x21x
3
2,

k12x21x
3
2 = k21x22 + k23x22,

k23x22 = k31x3.

Surprisingly, the toric locus K(G) in example 2.4 is the whole positive orthant R4
>0. This

follows from a classical result, known as the Deficiency Zero Theorem. We will revisit this
example and show the details in section 4.3.

For small E-graphs one can successfully use Computer Algebra software such asMacaulay2
[22], in order to apply Elimination theory [35, chapter 4] or Real quantifier elimination [2,
chapter 12.3] for computing the toric locus K(G).

In general, the toric locus can have quite a complicated algebraic description and it is not
easy to study. This is reflected by example 2.17 below, which shows that even for very simple
E-graphs the toric locus can be nontrivial.

Example 2.17. Consider the mass-action system (G,k) in figure 3, with four vertices:

y1 =
(
3
0

)
, y2 =

(
2
1

)
, y3 =

(
1
2

)
, y4 =

(
0
3

)
.

Suppose x= (x1,x2) is a complex-balanced equilibrium, then the complex-balanced con-
ditions follow:

k14x31 = k21x21x2 = k32x1x22 = k43x32.

By eliminating x1,x2 above (either by hand, e.g. k14/k21 = k32/k43, or via computer algebra
software), the toric locusK(G)⊂ R4

>0 is the following algebraic variety given by equations (9)
and (10), intersected with the positive orthant

(k43k32k21)(k21k14k43) = (k14k43k32)
2 , (9)

and

(k14k43k32)(k32k21k14) = (k21k14k43)
2 . (10)

In general, after a polynomial change of variables the toric locus becomes the intersection
of a toric variety with the positive orthant (this can be done for any weakly reversible network

10
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using the matrix-tree theorem, see [13]). More precisely, in this case, equations (9) and (10)
become

K1K3 −K2
2 = 0, (11)

and

K2K4 −K2
3 = 0, (12)

where we set K1 := k43k32k21, K2 := k14k43k32, K3 := k21k14k43, K4 := k32k21k14.

From the algebraic point of view, binomial equations are desirable in computations and toric
varieties are a cornerstone of algebraic geometry, since they provide many tractable examples
due to their combinatorial structure, which is well understood [35, chapter 8].

3. Complex-balanced equilibria depend continuously on the parameter values
in the toric locus K(G)

In this section, we show the first main result of this paper: complex-balanced equilibria depend
continuously on the parameters k in the toric locusK(G). Now we introduce a map fromK(G)
to Sx0 , which is crucial in the later proofs.

Definition 3.1. Let G= (V,E) be a weakly reversible E-graph with the stoichiometric sub-
space S . Given a state x0 ∈ Rn

>0, we define the following map:

Qx0 :K (G)→ (x0 +S)∩Rn
>0, (13)

such that for any k ∈K(G), Qx0(k) is the complex-balanced equilibrium in the invariant poly-
hedron Sx0 , under the mass-action system (G,k).

The map Qx0 is well-defined for any state x0 ∈ Rn
>0 and k ∈K(G). This follows from the-

orem 2.10, where every complex-balanced system admits a unique equilibrium within each
invariant polyhedron. Now we show some basic properties of the map Qx0 .

Lemma 3.2. For any state x0 ∈ Rn
>0, the map Qx0 from definition 3.1 is surjective.

Proof. To prove the surjectivity of Qx0 , we show that for any point x̂ ∈ (x0 +S)∩Rn
>0, there

exists k̂ ∈K(G) such that Qx0(k̂) = x̂.
From definition 2.14, given some parameters k ∈K(G), there exists x ∈ Rn

>0 such that
Qx0(k) = x and the pair (k,x) satisfies the complex-balanced conditions (5), namely: for each
vertex yi ∈ V,

∑

yi→yj∈E
kyi→yjx

yi =
∑

yj→yi∈E
kyj→yix

yj . (14)

Now we define the set of parameters k̂= (k̂yi→yj) as

k̂yi→yj :=
kyi→yjx

yi

x̂yi
. (15)

From (14) and (15), we derive that for each vertex yi ∈ V,
∑

yi→yj∈E
k̂yi→yj x̂

yi =
∑

yi→yj∈E
kyi→yjx

yi =
∑

yj→yi∈E
kyj→yix

yj =
∑

yj→yi∈E
k̂yj→yi x̂

yj . (16)

11
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It is clear that k̂ ∈ RE
>0. Thus, from (16) we get k̂ ∈K(G) and the pair (k̂, x̂) satisfies the

complex-balanced conditions (5). Hence, we conclude Qx0(k̂) = x̂.

Lemma 3.3. For any state x0 ∈ Rn
>0, consider the map Qx0 from definition 3.1. Given any state

x ∈ (x0 +S)∩Rn
>0, the preimage Q

−1
x0 (x) is convex and thus connected.

Proof. Suppose any x ∈ (x0 +S)∩Rn
>0. From lemma 3.2, we haveQ−1

x0 (x) ̸= ∅. Follow defin-
ition 3.1, for any k ∈ Q−1

x0 (x)⊂K(G), the pair (k,x) satisfies the complex-balanced condi-
tions, such that for each vertex yi ∈ V,

∑

yi→yj∈E
kyi→yjx

yi =
∑

yj→yi∈E
kyj→yix

yj . (17)

Now we claim that the fiber Q−1
x0 (x) is a convex set. Suppose both k∗,k∗∗ ∈K(G) sat-

isfy (17). We will show that any convex combination of k∗ and k∗∗ also satisfies (17). Let us
consider the following set:

L(k∗,k∗∗) := {ak∗ +(1− a)k∗∗ : 0" a" 1} . (18)

Under direct computation, we obtain for each vertex yi ∈ V and any 0" a" 1,
∑

yi→yj∈E

(
ak∗yi→yj

+(1− a)k∗∗yi→yj

)
xyi =

∑

yj→yi∈E

(
ak∗yj→yi

+(1− a)k∗∗yj→yi

)
xyj . (19)

Hence, we prove that L(k∗,k∗∗)⊆ Q−1
x0 (x). This shows the preimage Q−1

x0 (x) is a convex set,
and we conclude Q−1

x0 (x) is connected.

Lemma 3.4. For any state x0 ∈ Rn
>0, the map Qx0 from definition 3.1 is open.

Proof. Pick a point k̂ ∈K(G) and assume that Qx0(k̂) = x̂. It suffices for us to prove that for
any 0< ϵ≪ 1, there exists δ> 0 such that for all x satisfying ∥x− x̂∥" δ, there is a point
k ∈K(G), such that x= Qx0(k) and ∥k− k̂∥" ϵ.

For any x ∈ Sx0 , we define the set of parameters k= (kyi→yj) as

kyi→yj :=
k̂yi→yj x̂

yi

xyi
. (20)

Using lemma 3.2, we get k ∈K(G) and Qx0(k) = x. For each reaction yi → yj ∈ E and 0<
ϵ≪ 1, the continuity of the function xyi in (20) guarantees the existence of δyi→yj such that for
any x satisfying ∥x− x̂∥" δyi→yj we have

|kyi→yj − k̂yi→yj |" ϵ/|E|.

Then we do the same on all reactions in E and set δ = min
yi→yj∈E

{δyi→yj}. Now suppose any state

x satisfying ∥x− x̂∥" δ, we derive that

∥k− k̂∥"
∑

yi→yj∈E
|kyi→yj − k̂yi→yj |" ϵ.

Now we state the main result of this section, theorem 3.5. We will use this result in the
following sections, for proof of the connectedness of the toric locus.

12
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Theorem 3.5. For any state x0 ∈ Rn
>0, the map Qx0 from definition 3.1 is continuous. In other

words, the complex-balanced equilibrium within the invariant polyhedron Sx0 depends con-
tinuously on the parameter values in K(G).

Theorem 3.5 represents a crucial step in the proof of theorem 4.7 (more precisely, in lemma
4.11), where we will show the product structure of the toric locus. Before proving theorem 3.5,
we need to address some necessary notations and lemmas.

Definition 3.6. Let G= (V,E) be a strongly connected E-graph.

(a) We call T a spanning tree of G, if it is a connected, acyclic subgraph of G that contains
all vertices in V.

(b) For a spanning tree T of G, the vertex y ∈ V is called a sink of T , if y is the target vertex
for all reactions in T involving y.

(c) For a spanning tree T of G and a vertex yi ∈ V, then we call T a spanning yi-tree (or
i-tree) if yi is the only sink of T .

Notation 3.7. Let G= (V,E) be a strongly connected E-graph.

(a) Consider a spanning tree T of G, we denote by kT the product of all the reaction rate
constants associated with reactions in the spanning tree T .

(b) Consider every spanning yi-tree of G, let Ki denote the sum of all products associated with
spanning yi-trees, such that

Ki :=
∑

T an i -tree

kT .

Proposition 3.8 ([13, proposition 3]). Consider a mass-action system (G,k) with the
strongly connected E-graph G= (V,E). Let Ak be its corresponding Kirchoff matrix Ak (see
equation (6) for the definition of Ak), andMi be the matrix obtained by removing the ith row
and the ith column of Ak, then

det(Mi) = (−1)m−1Ki, (21)

where Ki =
∑

T an i -tree
kT defined in notation 3.7.

The following proposition 3.9 gives a characterization of the complex-balanced equilibria.
The similar conclusion can be obtained from [13]. For the completeness of the paper, we sketch
the proof here.

Proposition 3.9. Consider a weakly reversible mass-action system (G,k) with ℓ connected
components. For any two vertices yi and yj, we construct the following equation:

Ki xyj −Kjxyi = 0, (22)

where Ki =
∑

T an i -tree k
T is defined in notation 3.7. Then x is a complex-balanced equilibrium

for the reaction rate vector k if and only if equations (22) are satisfied for every pair of vertices
yi and yj in the same connected component in G.

Proof. From (6), we get [Ak]ji ̸= 0, if yi → yj ∈ E or i= j. After we relabel the vertices accord-
ing to the connected components of G, the Kirchoff matrix Ak will be a block diagonal matrix,
where each diagonal block corresponds to a connected component of G.

Following equation (8), x is a complex-balanced equilibrium if and only if Ak ·Ψ(x) = 0
under the reaction rate vector k. Since we consider Ak as a block diagonal matrix, it suffices
to prove the proposition when the system has a single connected component (i.e. ℓ= 1).

13
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Figure 4. Complete bidirected graph with three vertices, considered in example 3.10.

Now suppose G= (V,E) has one connected component, thus it is strongly connected.
Applying lemma 2.12 on the system (G,k), we deduce that

dim(ker(Ak)) = 1, and det(Ak) = 0. (23)

Let Mi,j denote the (i, j) minor of the matrix Ak. Since the column sums of Ak are zero, Mi,j is
independent of the choice of rows, that is,

M1,j = · · ·=Mm,j, for every j = 1, . . . ,m.

Using proposition 3.8 and expanding the determinant of Ak in terms of its minors, we derive
that

Ak ·K= 0, (24)

where K= (K1,K2, . . . ,Km)ᵀ.
Now we obtain both K and Ψ(x) belongs to the null-space of Ak. One can check that

they are both positive vectors. From dim(ker(Ak)) = 1 in equation (23), we deduce that the
two vectors K and Ψ(x) are proportional. Hence, it is clear that Ak ·Ψ(x) = 0 if and only if
equations (22) are satisfied for every pair of vertices of G. Again using equation (8), we con-
clude this proposition.

Example 3.10 (see also [25, equation (3.12)]). Consider a strongly connected mass-action
system (G,k) in figure 4, with three vertices:

y1 =
(
2
0

)
, y2 =

(
1
1

)
, y3 =

(
0
2

)
.

For the vertex y1, we list all spanning y1-trees of G in figure 5 below:
From notation 3.7, we obtain that

K1 = k21k31 + k32k21 + k23k31.

Analogously, we can derive K2,K3 corresponding to the vertices y2,y3 in G,

K2 = k12k32 + k13k32 + k31k12
K3 = k13k23 + k21k13 + k12k23.

14
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Figure 5. Spanning y1-trees of G.

Suppose x= (x1,x2) is a complex-balanced equilibrium. Using proposition 3.9, we get that
k ∈K(G), if and only if

K1

xy1
=
K2

xy2
=
K3

xy3
. (25)

This is equivalent to

K1

x21
=

K2

x1x2
=
K3

x22
. (26)

By eliminating x1,x2 in equation (26), the toric locusK(G)⊂ R6
>0 is defined by the following

binomial:

K1K3 −K2
2 = 0. (27)

Therefore, we recover the result from [25, equation (3.12)] (see also [13, example 1], [10, p
195]): the toric locus can be written as

K (G) =
{
k ∈ R6

>0 : (k21k31 + k32k21 + k23k31)(k13k23 + k21k13 + k12k23)

− (k12k32 + k13k32 + k31k12)
2 = 0

}
.

(28)

Definition 3.11 ([38]). Consider two manifolds A and B in the Euclidean spaceRn. We say that
A and B intersect transversally, if at any intersection point x ∈ A∩B, Tx(A)+ Tx(B) = Rn,
that is, their tangent spaces span Rn.

Before we proceed to the proof of theorem 3.5 we also need the following lemma:

Lemma 3.12 ([16, lemma 5.4]). Let x1,x2 ∈ Rn
>0 be positive vectors. Consider a vector sub-

space S in Rn, and two manifolds x1 + S and x2 ◦ exp(S⊥) of Rn. Then the two manifolds
intersect transversally, i.e.

Tp (x1 + S)+ Tp
(
x2 ◦ exp

(
S⊥
))

= Rn,

for any point p ∈ (x1 + S)∩ (x2 ◦ exp(S⊥)).

Finally, we are prepared to prove theorem 3.5. Let us roughly explain the main ideas of
the proof. We will show that the set of complex-balanced equilibria depends continuously
on K (see Notation 3.7). There are two main steps. First, we prove the theorem in the case
where the graph G has only one connected component; second, we generalize the result for

15
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any number of connected components. In the case of one connected component, we proceed
as follows. For any state x0 ∈ Rn

>0, the corresponding complex-balanced equilibrium is the
unique intersection between the set of complex-balanced equilibria and the affine invariant
polyhedron (x0 +S)∩Rn

>0.We find a vectorX∗ ∈ S , such that exp(X∗) is a complex-balanced
equilibrium of the system (G,k). By lemma 3.12 we have that (x0 +S) and exp(X∗ +S⊥)
intersect transversally, thus the unique intersection point varies continuously as a function of
X∗. Since X∗ depends continuously on K, we conclude the proof for the case of one connected
component, and then extend to the general case.

Proof of theorem 3.5. Here, for the sake of simplicity, we temporarily make the following
abuse of notation:

X= (X1, · · · ,Xn)ᵀ := lnx= (lnx1, . . . , lnxn)
ᵀ . (29)

Recall notation 3.7, for each vertex yi ∈ V, we have

Ki =
∑

T an i -tree

kT ,

where kT is the product of reaction rates kij associated with reactions in the spanning yi-tree T
of G. It is standard to derive that the vector K= (Ki) ∈ Rm

>0 depends smoothly on the reaction
rate vector k= (kij) ∈ RE

>0. Hence, it suffices for us to show that the set of complex-balanced
equilibria depends continuously on K.

By proposition 3.9, a state x is a complex-balanced equilibrium if and only if for any two
vertices yi,yj in the same connected component of G,

Ki xyj = Kjxyi . (30)

Taking the log of both sides in equation (30), we derive

ln(Ki)+ yj
ᵀ · ln(x) = ln(Kj)+ yi

ᵀ · ln(x) . (31)

Thus, we can rewrite (31) as

ln(Ki /Kj) =
(
yi
ᵀ − yj

ᵀ) ·X, (32)

where yi and yj are two vertices belonging to the same connected component of G.
We show the rest of the proof in two steps. First, we prove the theorem under the assumption

that the graph G has only one connected component. Next, we explain how to generalize the
result into an arbitrary number of connected components.

Now suppose the graph G has a single connected component (i.e. ℓ= 1), then all vertices
{y1, . . . ,ym} are in the same connected component. It is clear that equation (32) are equivalent
to the following system of linear equations in X:

⎡

⎢⎢⎢⎣

ln(K1/K2)
ln(K2/K3)

...
ln(Km−1/Km)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

yᵀ1 − yᵀ2
yᵀ2 − yᵀ3

...
yᵀm−1 − yᵀm

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X1

X2
...
Xn

⎤

⎥⎥⎥⎦
. (33)

After we set

∆y :=

⎡

⎢⎢⎢⎣

yᵀ1 − yᵀ2
yᵀ2 − yᵀ3

...
yᵀm−1 − yᵀm

⎤

⎥⎥⎥⎦
, and ∆K :=

⎡

⎢⎢⎢⎣

K1/K2

K2/K3
...

Km−1/Km

⎤

⎥⎥⎥⎦
,
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the system (33) can be expressed as

ln(∆K) = (∆y)X. (34)

Since G is strongly connected, its stoichiometric subspace is

S = span
{
yᵀ1 − yᵀ2 ,y

ᵀ
2 − yᵀ3 , . . . ,y

ᵀ
m−1 − yᵀm

}
.

Let s be the dimension of S , then we deduce that s"min{m− 1,n}, and the matrix ∆y has
exactly s linearly independent rows. W.l.o.g. we assume the first s rows in ∆y are linearly
independent. Thus, we obtain

S = span
{
yᵀ1 − yᵀ2 ,y

ᵀ
2 − yᵀ3 , . . . ,y

ᵀ
s − yᵀs+1

}
. (35)

Furthermore, we consider the system of equations as follows:

ln(∆sK) = (∆sy)X, (36)

where

∆sy :=

⎡

⎢⎢⎢⎣

yᵀ1 − yᵀ2
yᵀ2 − yᵀ3

...
yᵀs − yᵀs+1

⎤

⎥⎥⎥⎦
, and ∆sK :=

⎡

⎢⎢⎢⎣

K1/K2

K2/K3
...

Ks/Ks+1

⎤

⎥⎥⎥⎦
.

Since k ∈K(G), by theorem 2.10, the complex-balanced system (G,k) must admit one
complex-balanced equilibrium x∗ ∈ Rn

>0, i.e. lnx
∗ is a solution to (34). From theorem 2.10, any

complex-balanced equilibrium x satisfies lnx− lnx∗ ∈ S⊥, where S⊥ denotes the orthogonal
complement of S . Thus the solutions to (34) can be written as X= lnx∗ +S⊥, and this shows
the dimension of the set of solutions to (34) is n− s.

Moreover, the solutions of (34)must solve (36). Since the rows in thematrix∆sy are linearly
independent, the set of solutions to (36) is also of dimension n− s. Therefore, we conclude
that system (34) is equivalent to system (36) in solving X.

Next, we construct a special solution X∗ to system (36) with X∗ ∈ S . Recall that s"
min{m− 1,n}. Based on the dimension of the stoichiometric subspace s, we consider two
cases: s= n and s< n.

Case 1: s= n. Then the stoichiometric subspace S = Rn, and∆sy ∈ Rn×n is a square full rank
matrix, i.e. ∆sy is invertible. Thus, we derive a solution of (36) as

X∗ = (∆sy)
−1 ln(∆sK) . (37)

It is clear that X∗ ∈ S = Rn, and exp(X∗) satisfies equation (30) by construction. This ensures
that exp(X∗) is a complex-balanced equilibrium.

Case 2: s< n. Recall that S⊥ denotes the orthogonal complement of S . Since the stoichiomet-
ric subspace S ⊂ Rn, we obtain that S⊥ ̸= ∅ and

0< dim
(
S⊥)= n− dim(S) = n− s. (38)

Then we consider a basis of S⊥, denoted by B, such that

B= {v1,v2, . . . ,vn−s}⊂ Rn.
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Furthermore, we build another matrix and vector below

∆̃y :=

⎡

⎢⎢⎢⎣

∆sy
vᵀ1
...

vᵀn−s

⎤

⎥⎥⎥⎦
, and ∆̃K :=

⎡

⎢⎢⎢⎣

∆sK
0
...
0

⎤

⎥⎥⎥⎦
, (39)

and consider the following system:

ln
(
∆̃K
)
=
(
∆̃y
)
X. (40)

The solutions of (40) must solve (36). From (35) and {v1, . . . ,vn−s} forming a basis of S⊥, we
deduce that ∆̃y ∈ Rn×n is an invertible matrix. Hence, we obtain a solution of (40) as

X∗ =
(
∆̃y
)−1

ln
(
∆̃K
)
. (41)

Moreover, for i = 1, · · · ,n− s, we have

vᵀi ·X
∗ = 0,

and this shows that X∗ ∈ S . By construction, exp(X∗) must solve equation (30), thus it is a
complex-balanced equilibrium.

In conclusion, we have found a vector X∗ ∈ S , such that exp(X∗) is a complex-balanced
equilibrium of the system (G,k) in both cases. Further, using the fact that both (∆sy)−1 and
(∆̃y)−1 are fixed real matrices, we deduce X∗ depends smoothly on the vector K. From the-
orem 2.10(b), given a complex-balanced system (G,k) and one complex-balanced equilibrium
exp(X∗) constructed above, the set of all complex-balanced equilibria of the system can be
written as exp(X∗ +S⊥).

More specifically, for any state x0 ∈ Rn
>0, the corresponding complex-balanced equilib-

rium is the unique intersection between the set of complex-balanced equilibria exp(X∗ +S⊥)
and the affine invariant polyhedron (x0 +S)∩Rn

>0. Using lemma 3.12, we get that the two
manifolds (x0 +S) and exp(X∗ +S⊥) intersect transversally. Hence, given a state x0, the
(unique) intersection point varies continuously as a function of X∗. Together with the fact that
X∗ depends continuously on K, which additionally varies continuously on k, we conclude that
the mapQx0 is continuous on k ∈K(G)when the graphG has only one connected component.

Finally, we consider the case when the graph G has multiple connected components,
V1, . . . ,Vℓ with ℓ> 1. Following the proof in proposition 3.9, we can relabel the vertices
according to the connected components of G, i.e. for 1" p" ℓ,

Vp =
{
ymp−1+1, . . . ,ymp

}
,

such that the Kirchoff matrix Ak will be a block diagonal matrix, where each diagonal block
corresponds to a connected component of G.

Recall from equation (32), a state x is a complex-balanced equilibrium, if and only if for
any two vertices yi,yj in the same connected component of G,

ln(Ki /Kj) =
(
yi
ᵀ − yj

ᵀ) ·X,

18
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which is equivalent to the following system of linear equations in X:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln(K1/K2)
...

ln(Km1−1/Km1)
ln(Km1+1/Km1+2)

...
ln(Km2−1/Km2)

...
ln(Kmℓ−1/Kmℓ)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ln(∆K)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yᵀ1 − yᵀ2
...

yᵀm1−1 − yᵀm1

yᵀm1+1 − yᵀm1+2
...

yᵀm2−1 − yᵀm2

...
yᵀmℓ−1 − yᵀmℓ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
∆y

⎡

⎢⎢⎢⎣

X1

X2
...
Xn

⎤

⎥⎥⎥⎦
, (42)

and we can express it as

ln(∆K) = (∆y)X. (43)

Since G has ℓ connected components, its stoichiometric subspace is

S = span
{
yᵀ1 − yᵀ2 , . . . ,y

ᵀ
m1−1 − yᵀm1

,yᵀm1+1 − yᵀm1+2, . . . ,y
ᵀ
mℓ−1 − yᵀmℓ

}
.

Let s be the dimension of S . Then we deduce that s"min{m− ℓ,n}, and the matrix ∆y has
exactly s linearly independent rows.

Analogously, we pick s linear independent rows in ∆y, and they also span stoichiometric
subspace S . Moreover, these rows in ∆y formulate a full row rank matrix ∆sy, while the cor-
responding rows in ln(∆K) give us the vector ln(∆sK). And it is easy to check that system (43)
is equivalent to the following system in X:

ln(∆sK) = (∆sy)X. (44)

Next, we construct a special solutionX∗ to system (44) with X∗ ∈ S . Similarly, we consider
s the dimension of the stoichiometric subspace in two cases: s= n and s< n.

If s= n, then ∆sy is an invertible matrix. Thus, we derive a solution of (44) as

X∗ = (∆sy)
−1 ln(∆sK) .

It is easy to see that X∗ ∈ S = Rn, and exp(X∗) is a complex-balanced equilibrium.
If s< n, we obtain dim(S⊥) = n− s> 0, and consider a basis B= {v1, . . . ,vn−s} of S⊥.

Similar as in equations (39)–(41), we first add vᵀ1 , . . . ,v
ᵀ
n−s on the bottom of the matrix ∆sy,

and adapt n− s zeros to the vector ln(∆sK). Then, we obtain the desired solution X∗ ∈ S
of (44), with exp(X∗) is a complex-balanced equilibrium.

Together with both cases, we deduce X∗ depends smoothly on the vector K. We omit the
rest of the proof since it directly follows from the single connected component case.

The following is a direct consequence of results within the proof of the theorem 3.5, since
we gave explicit formulae that are given by smooth functions at each step in the construction
of x∗.

Corollary 3.13. Let G= (V,E) be a weakly reversible E-graph with the stoichiometric sub-
space S . For any k ∈K(G), there exists a unique complex-balanced equilibrium x∗, such that
ln(x∗) ∈ S and x∗ depends smoothly on the parameter values k ∈K(G).

Definition 3.14 ([31]). A surjective, continuous, and open map is called a quotient map.

Corollary 3.15. For any state x0 ∈ Rn
>0, the map Qx0 from definition 3.1 is a quotient map.
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Proof. From lemmas 3.2 and 3.4, we proved the mapQx0 is surjective and open. Together with
theorem 3.5, we conclude the map Qx0 is a quotient map.

3.1. The toric locus K(G) is connected

The main result of this section is theorem 3.17, where we show the connectedness of the toric
locus K(G). We first recall a fundamental result in general topology as follows:

Lemma 3.16 ([41, theorem 9.4]). Consider three topological spaces A,B,C and a surjective
map f : A→ B. Let B be endowed with the quotient topology induced by f. Given an arbitrary
map g : B→ C, then g is continuous if and only if the map g ◦ f : A→ C is continuous.

Theorem 3.17. Let G= (V,E) be a weakly reversible E-graph. Then the toric locus K(G) is
connected.

Proof. We will argue by contradiction. Suppose the set K(G) is not connected. For a given
state x0 ∈ Rn

>0, there exists surjective continuous map µ, such that

µ :K (G)→ {0,1} ,

where µ is constant on every connected subset of K(G). Next we consider the following com-
mutative diagram:

The map ν : (x0 +S)∩Rn
>0 → {0,1} in the diagram satisfies

µ= ν ◦Qx0 .

By lemma 3.3, for any state x ∈ (x0 +S)∩Rn
>0, the preimage Q−1

x0 (x) is convex and thus
connected. Combined with the surjectivity of Qx0 from lemma 3.2, this ensures that the map ν
is well-defined. Therefore such a function ν makes the above diagram commute.

By corollary 3.15, the map Qx0 is a quotient map. Hence, by lemma 3.16 we derive that ν
is continuous if and only if µ is continuous. Since µ is continuous, we conclude that ν is a
continuous map. We also derive that ν is surjective from µ being a surjective map.

Note that the invariant polyhedron (x0 +S)∩Rn
>0 is connected, while the set {0,1} is

clearly disconnected. This leads to a contradiction since every continuous function maps a
connected set to a connected set. Thus the initial supposition is false, and we conclude that
K(G) is connected.
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4. The toric locus K(G) is a product space

In this section, we first show that the toric locus K(G) is a product space when the E-graph
G= (V,E) is weakly reversible (see theorem 4.7). Next, we apply this result to deficiency
theory and bijective affine transformations in sections 4.3 and 4.4.

4.1. The set of complex-balanced flux vectors B(G)

Definition 4.1. Given an E-graph G= (V,E), we let β = (βyi→yj)yi→yj∈E ∈ RE
>0 denote a flux

vector, where the component βyi→yj > 0 is called the flux of the reaction yi → yj. Moreover,
the pair (G,β) is called a flux system.

Definition 4.2. Consider an E-graphG= (V,E). A flux vectorβ ∈ RE
>0 is called a steady flux

vector on G if
∑

yi→yj∈E
βyi→yj

(
yj− yi

)
= 0. (45)

A steady flux vector β is called a complex-balanced flux vector if for each vertex y0 ∈ V,
∑

y→y0∈E
βy→y0 =

∑

y0→y ′∈E
βy0→y ′ , (46)

and in this case we say that the pair (G,β) is a complex-balanced flux system.

Definition 4.3. Given an E-graph G= (V,E), we define the set of complex-balanced flux
vectors on G as follows:

B (G) :=
{
β ∈ RE

>0 | β is a complex-balanced flux vector on G
}
. (47)

Analogous to complex-balanced mass-action systems, complex-balanced flux systems also
have connections with E-graphs.

Lemma 4.4. Every E-graph that permits a complex-balanced flux system is weakly reversible.
Moreover, every E-graph that is weakly reversible permits complex-balanced flux systems.

Proof. First, suppose the E-graph G= (V,E) allows a complex-balanced flux system β =
(βyi→yj)yi→yj∈E ∈ RE

>0. We define a mass-action system (G,k) with reaction rate constants

ky→y ′ = βy→y ′ , for every y→ y ′ ∈ E.

Then, it is clear that x∗ = (1, . . . ,1)T is a complex-balanced equilibrium. Applying theorem
2.15, we deduce that G= (V,E) is weakly reversible.

Next, assume that the E-graph G= (V,E) is weakly reversible. From theorem 2.15, there
exists a complex-balanced mass-action system (G,k) with a equilibrium x∗. We define a flux
system (G,β) with fluxes

βy→y ′ := ky→y ′ (x∗)
y , for every y→ y ′ ∈ E.

Inputting β into (46), we derive that (G,β) is a complex-balanced flux system.

Subsequently, given an E-graph G= (V,E), we conclude that

• If G= (V,E) is weakly reversible, then B(G) ̸= ∅.
• If G= (V,E) is not weakly reversible, then B(G) = ∅.
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Since we are not interested in the case when B(G) is empty, thus we always assume that the
E-graph G= (V,E) is weakly reversible when working on B(G).

Lemma 4.5. Let G= (V,E) be a weakly reversible E-graph. Then the set of complex-balanced
flux vectors B(G) is a convex cone in RE

>0, and thus is path-connected.

Proof. Suppose two flux vectors β∗,β∗∗ ∈ B(G), then we get
∑

y→y0∈E
β∗
y→y0

=
∑

y ′→y∈E
β∗
y ′→y, and

∑

y→y0∈E
β∗∗
y→y0

=
∑

y ′→y∈E
β∗∗
y ′→y. (48)

Now we consider the following set:

L(β∗,β∗∗) := {aβ∗ +(1− a)β∗∗ : 0" a" 1} . (49)

Under direct computation, we obtain for any number 0" a" 1,
∑

yi→yj

(
aβ∗

yi→yj
+(1− a)β∗∗

yi→yj

)
=
∑

yj→yi

(
aβ∗

yj→yi
+(1− a)β∗∗

yj→yi

)
. (50)

Therefore, L(β∗,β∗∗)⊂ B(G) and we prove this Lemma.

4.2. The toric locus K(G) is a product space

The goal of this section is to establish the product structure of the toric locus via an explicitly
constructed homeomorphism.

Let us recall the well-known definition of a homeomorphism (see for instance [31]):

Definition 4.6. A function f : X→ Y between two topological spaces is a homeomorphism,
if it has the following properties: f is bijective, continuous and the inverse function f−1 is
continuous. If such a function f exists, we say that X and Y are homeomorphic, and write this
as X≃ Y.

Now we present the main result in this paper.

Theorem 4.7. Let G= (V,E) be a weakly reversible E-graph. For any state x0 ∈ Rn
>0, the toric

locus K(G)⊆ RE
>0 is homeomorphic to the product space Sx0 ×B(G), that is,

K (G)≃ Sx0 ×B (G) , (51)

where Sx0 is the invariant polyhedron, and B(G) is the set of complex-balanced flux vectors.
In particular, the toric locus is a contractible manifold.

To prove theorem 4.7, we start by constructing a function ϕ between the product space
Sx0 ×B(G) and the toric locus K(G). Then we show that ϕ is a homeomorphism.

Definition 4.8. Let G= (V,E) be a weakly reversible E-graph. Given a state x0 ∈ Rn
>0, we

define the following map:

ϕ : Sx0 ×B (G)→K (G) , (52)

such that for any x ∈ Sx0 and β = (βyi→yj)yi→yj∈E ∈ B(G),

ϕ (x,β) :=
(
ϕyi→yj

)

yi→yj∈E
, with ϕyi→yj :=

βyi→yj

xyi
. (53)

Lemma 4.9. For any state x0 ∈ Rn
>0, the map ϕ is well-defined and continuous.
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Proof. For any β ∈ B(G)⊆ RE
>0 and x ∈ Sx0 ⊆ Rn

>0, we get

ϕ (x,β) =
(
βyi→yj

xyi

)

yi→yj∈E
∈ RE

>0. (54)

Since β is a complex-balanced flux vector, then for each vertex yi ∈ V,
∑

yi→y∈E
ϕyi→yxyi =

∑

y ′→yi∈E
ϕy ′→yix

y ′ .

Hence, ϕ(x,β) is a vector of reaction rate constants for which x ∈ Sx0 is a complex-balanced
equilibrium ofG. Therefore, we conclude thatϕ(x,β) ∈K(G), andϕ is well-defined. Further,
from (54) we can directly get that ϕ is a continuous map.

Lemma 4.10. For any state x0 ∈ Rn
>0, the map ϕ is bijective.

Proof. First, we show that ϕ is surjective. By theorem 2.10, for any reaction rate vector k ∈
K(G), there exists a (unique) complex-balanced equilibrium x ∈ Sx0 . Then we define a flux
vector β = (βyi→yj)yi→yj∈E as follows:

βyi→yj := kyi→yjx
yi .

Using lemma 4.4, we derive that β ∈ B(G), and ϕ(x,β) = k.
Next, we show ϕ is injective. Assume that (x̂, β̂),(x̃, β̃) ∈ Sx0 ×B(G), such that

ϕ
(
x̂, β̂

)
= ϕ

(
x̃, β̃

)
.

Following (53), we derive two reaction rate vectors ϕ̂ and ϕ̃ as follows:

ϕ
(
x̂, β̂

)
:=

(
β̂yi→yj

x̂yi

)

yi→yj∈E

, and ϕ
(
x̃, β̃

)
:=

(
β̃yi→yj

x̃yi

)

yi→yj∈E

(55)

From ϕ(x̂, β̂) = ϕ(x̃, β̃) and lemma 4.9, the uniqueness on the complex-balanced equilibrium
within each affine invariant polyhedron, we obtain x̂= x̃. Then from equation (55), it is clear
that β̂ = β̃, and we conclude the injectivity.

Lemma 4.11. For any state x0 ∈ Rn
>0, the map ϕ

−1 is well-defined and continuous.

Proof. Since we have proved that the map ϕ is bijective in lemma 4.10, it is standard that ϕ−1

is well-defined.
Now we show that ϕ−1 is continuous. From lemma 4.9, given any (x,β) ∈ Sx0 ×B(G),

ϕ(x,β) forms a complex-balanced rate vector with x being the complex-balanced equilibrium.
Since ϕ is bijective and the complex-balanced equilibrium is unique in Sx0 , for any complex-
balanced rate vector k= (kyi→yj)yi→yj∈E ∈K(G), we have

ϕ−1 (k) = (x,β) , (56)

such that

x= Qx0 (k) and βyi→yj := kyi→yjx
yi , with β =

(
βyi→yj

)

yi→yj∈E
. (57)

Applying theorem 3.5, we get the map Qx0 is continuous, which says that x depends continu-
ously on k. Moreover, every component in β can be written as a polynomial of k and x. This
reveals that β also depends continuously on k.
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After showing that both components in the product space Sx0 ×B(G) vary continuously in
k, we conclude the continuity of the map ϕ−1.

Finally, we are able to prove theorem 4.7.

Proof of theorem 4.7. From definition 4.6, it suffices to show that the map ϕ is a homeo-
morphism. Applying lemma 4.10, we derive ϕ as a bijective function. From lemmas 4.9 and
4.11, we show that both ϕ and ϕ−1 are continuous functions. Therefore, we conclude ϕ is
a homeomorphism, and prove this theorem. Now, to conclude the contractibility of the toric
locus, recall that a cartesian product of two convex sets is convex ([6, p 38]) and the fact that
convex sets in Euclidean spaces are contractible (see for instance [34]).

4.3. Connection to deficiency theory

The notion of deficiency of a reaction network or E-graph was introduced by Feinberg and
Horn [20, 26]. It is an invariant of the network and plays a key role in the study of complex-
balanced equilibria of a network [19, 27].

Definition 4.12 ([19, 43]). Consider an E-graph G= (V,E) with ℓ connected components and
m vertices. Let s be the dimension of the stoichiometric subspace S . The deficiency of an
E-graph G is the non-negative integer

δ := m− ℓ− s. (58)

Under mass-action kinetics, networks with low deficiency have special dynamical proper-
ties. For example, the Deficiency Zero Theorem shows that weakly reversible deficiency zero
networks are complex-balanced for any choices of rate constants [20, 26]. In [13], it was shown
that given a weakly reversible E-graph G, the set K(G) is an algebraic variety of codimension
δ in RE

>0. In the following, we will recover this result by using the product structure of the
toric locus K(G) from theorem 3.17.

Proposition 4.13. Consider an E-graph G= (V,E) with ℓ connected components and m ver-
tices. Let s be the dimension of the stoichiometric subspace S , then

dim(K (G)) = |E|−m+ s+ ℓ.

Proof. Recall that the dimension of a product of topological spaces is a topological invariant
and it is given by the sum of the dimensions of the factors [31]. In addition, the dimension of
a variety at any regular point is the dimension of its tangent vector space at that point, thus it
is the same dimension when seen as a manifold as well as when seen as a variety [29].

From definition 2.8, Sx0 is the intersection of an affine linear subspace with the positive
orthant. Moreover, lemma 4.5 shows thatB(G) is an open and convex cone inRE

>0. As both Sx0
and B(G) are path-connected smooth manifolds, and K(G) is the product space Sx0 ×B(G),
it follows thatK(G) has the same dimension everywhere. Now using theorem 4.7, we have for
any state x0 ∈ Rn

>0,

dim(K (G)) = dim((x0 +S)∩Rn
>0)+ dim(B (G)) , (59)

and it is clear that dim
(
(x0 +S)∩Rn

>0

)
= dim(S) = s.

Recall that B(G)⊆ RE
>0 represents the set of complex-balanced flux vectors that sat-

isfy (46). Following Kirchhoff junction rules, for each connected component of G with mi

vertices, there are mi − 1 independent conditions among the linear conditions defining B(G)
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in (46). Further, we can check that linear conditions are independent whenworking on different
connected components of G. Hence, we get

dim(B (G)) = |E|−
l∑

i=1

(mi − 1) = |E|−m+ l.

Together with (59), we conclude the proposition.

The following corollary is a direct consequence of proposition 4.13. It was first proved by
a different method in [13].

Corollary 4.14. Let G= (V,E) be a weakly reversible E-graph. Then the codimension of the
toric locus K(G)⊆ RE

>0 is δ.

Proof. From proposition 4.13 and definition 4.12, the codimension on K(G) follows

codim(K (G)) = |E|− dim(K (G)) = |E|− (|E|−m+ s+ l) = δ.

Example 4.15. Revisit example 2.4, the reaction network G from figure 1 has three vertices
(m= 3) and four edges (|E|= 4) in one connected component (ℓ= 1). In addition, the dimen-
sion of the stoichiometric subspace of the reaction network is two (s= 2). Thus, the deficiency
is δ = 3− 1− 2= 0. From proposition 4.13, we obtain that

dim(K (G)) = |E|−m+ s+ l= 4− 3+ 2+ 1= 4.

This shows that the toric locus K(G) in example 2.4 is the whole positive orthant R4
>0.

4.4. Bijective affine transformations preserve the toric locus

In this subsection we prove that the toric locus is preserved by bijective affine transformations
of the network.

Definition 4.16. Consider a network G= (V,E) in Rn. Suppose T : Rn → Rn is a bijective
affine transformation. Denote by

T(V) := {T(y) | y ∈ V} , and T(E) :=
{
T(yi)→ T

(
yj
)
| yi → yj ∈ E

}
.

Then we call the graph T(G) := (T(V),T(E)) the bijective affine image of G by T.

Theorem 4.17. Consider a weakly reversible E-graph G1. If G2 is a bijective affine image of
the graph G1, then G1 and G2 have the same toric locus, i.e. K(G1) =K(G2).

Proof. The result follows from proposition 3.9 that the polynomial equations characterizing
the parameter values k ∈K(G1) are identical to those for k ∈K(G2). As discussed in [13],
these polynomial equations can be reformulated as binomial equations in terms of a variable
vector K= (Ki)1#i#m ∈ Rm

>0, where K is obtained from the matrix-tree theorem (see notation
3.7), i.e. by summing over spanning yi-trees in the graph. Special cases of this have been
demonstrated in examples 2.17 and 3.10.

Since the graphs G1 and G2 are bijective affine images of each other, they share the same
spanning yi-trees and therefore the same parametersK. Moreover,G1 andG2 produce the same
binomial equations for the variable vector K, because these binomial equations are given by
linear relationships between the vertex points of the graph, as explained in [13, theorem 9].
This implies the desired result.
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As a consequence of this theorem, we can conclude that any complete graph with exactly
three collinear vertices, where the middle vertex is positioned halfway between the other two
vertices, must have its torus locus given by equation (28). Similarly, any two reversible net-
works that are rectangle-shaped (or even parallelogram-shaped) share the same toric locus.
This fact can be useful for analyzing the disguised toric locus of an E-graph G, i.e. the set of
parameter values k for which the corresponding mass-action system (G,k) can be realized as
complex-balanced via dynamical equivalence; see [15, 36], and especially [24].

5. Discussion and future work

There has been strong interest in the study of the toric locus of a reaction network, i.e. the set of
parameters for the network that give rise to complex-balanced dynamical systems. This interest
is due to the very stable dynamical behavior of these systems; for instance, the complex-
balanced equilibria are known to have unique positive equilibria that are locally asymptotically
stable within each invariant polyhedron.

Since important properties of complex-balanced dynamical systems can be analyzed using
Nonlinear Algebra tools (see for example [7, chapter 6]), the authors of [13] called these sys-
tems toric dynamical systems (see also [10, chapter 5]). Indeed, not only the toric locus of a
reaction network is a toric variety, but also the steady-state locus (i.e. the fixed points) of toric
dynamical systems can be described by binomial equations; see [21]. Another computational
advantage of this fact is that one may describe the equilibria of such a system in terms of
monomial parametrizations (see [1]). The fruitful combinatorial and computational properties
of binomial ideals are well-known and they are desirable in applications, since toric algebraic
varieties are well-understood.

In this paper we prove that, given a mass-action system and positive initial data, the pos-
itive complex-balanced equilibria vary continuously in function of the parameters that give a
complex-balanced system. Next, using this result, we show that the toric locus is connected and
we reveal an explicit product structure of the toric locus. Namely, we prove that there exists
a homeomorphism between the toric locus and the product of the set of complex-balanced
flux vectors and the affine invariant polyhedron. Also, we provide an explicit parametrization
of the toric locus of a reaction network, in terms of its invariant polyhedron and its set of
complex-balanced fluxes, as shown in (53).

In future work [14], wewill use some of the approaches developed here to show that the pos-
itive complex-balanced equilibria of a complex-balanced mass-action system actually depend
smoothly on the reaction rate constants and the initial data. Furthermore, the approach used
here in order to construct this homeomorphism will allow us to derive additional regularity
properties of the toric variety K(G).
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