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Abstract—In this paper, we propose a backbone-aware user
association algorithm for heterogeneous hierarchical federated
learning. We consider the scenario in which mobile devices have
different computation and communication capabilities, while
edge servers have different model uploading delays to the cloud
server. To find an optimal user association, we formulate a
combinatorial optimization problem that takes into consideration
mobile-to-edge delays and edge-to-cloud delays. To reduce the
computational complexity, we put forward the backbone-aware
greedy algorithm. In addition, we prove that it is not always
optimal for a mobile device to connect to the edge server with
the minimum mobile-to-edge delay. Furthermore, we propose
using dynamic bandwidth allocation after assigning users to edge
servers to further reduce the latency. We also use simulation
results to show the advantages of the proposed approach.

Index Terms—Hierarchical federated learning, user associa-
tion, heterogeneous system, end-to-end latency, combinatorial
optimization.

I. INTRODUCTION

Federated learning is a framework of distributed machine
learning and is designed to protect data privacy of users [1].
In a basic federated learning system, users directly upload
their local models to the parameter server for updating the
global model. Abad et al. [2] studied hierarchical federated
learning in a cellular network that contains a macro base
station and small base stations. Specifically, each small base
station aggregates local models of associated users, the macro
base station is responsible for updating the global model and
there is no cloud server. To combine the advantages of cloud
and edge servers, Liu et al. [3] proposed using a client-edge-
cloud hierarchical federated learning (HFL) system. We focus
on client-edge-cloud HFL systems in this paper. Federated
learning consists of multiple rounds. In a round of a client-
edge-cloud HFL system, mobile devices use the received
global model and their own data to perform local model
updates and upload their local models to the associated edge
servers. After aggregating received local models, each edge
server uploads its model to the cloud server for updating the
global model. Then, the cloud server broadcasts the latest
global model to edge servers which forward the global model
to associated mobile devices for local model updates.

User association and wireless resource allocation are im-
portant for HFL systems. In a heterogeneous HFL system,
mobile devices have different computation capabilities, wire-
less links have distinct average channel gains and edge-to-
cloud links have unequal delays. Thus, it is important to take

into consideration heterogeneous devices and communications
links in order to make intelligent decisions on user association
and wireless resource allocation. Luo et al. [4] formulated an
optimization problem to minimize the weighted sum of energy
consumption and delay of hierarchical federated learning.
They derived analytical results on the optimal bandwidth and
computation capacity allocations. For deciding user associ-
ation, they proposed a heuristic algorithm based on device
transferring adjustments and device exchanging adjustments.
Liu et al. [5] studied user association and wireless resource
allocation for wireless hierarchical federated learning systems.
For mobile devices with IID data, they claimed that the
optimal user association is for each mobile device to choose
the edge server with the largest signal-to-noise ratio (SNR).
The SNR-based algorithm is called Max-SNR in this paper.
Liu et al. [6] sought to minimize the total model parameter
communication and computation delay by optimal user-edge
association and wireless resource allocation. For deciding user-
edge association, they proposed a greedy algorithm based on
signal-to-noise ratios. In this paper, we show that the Max-
SNR algorithm does not necessarily lead to optimal user-edge
association when the edge-to-cloud delays are not negligible
in comparison with mobile-to-edge delays.

Wen et al. [7] investigated sub-channel allocation and helper
scheduling in a hierarchical federated learning system in which
the base station plays the role of parameter server and the
helpers connect to the base station through wireless links. Liu
et al. [8] derived a tighter convergence bound for HFL with
neural network quantization. Based on the derived analytical
results, they optimized the two aggregation intervals in HFL.
However, they [7] [8] did not explicitly deal with the opti-
mal user-helper association problem. Wu et al. [9] proposed
using deep reinforcement learning based staleness control
and heterogeneity-aware client-edge association to improve
the system efficiency of HFL. Wang ef al. [10] put forward
FedCH that adopts bipartite matching to partition clients into
clusters based on their training capacities for accelerating HFL.
The heterogeneity-aware client-edge association algorithm [9]
and the cluster construction algorithm [10] assumed that the
communication latency between mobile device k and edge
server m is independent of the number of mobile devices
associated with edge server k. In contrast, we take into
consideration the impacts of the number of mobile devices
associated with an edge server on the communication latency.
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Chen et al. [11] proposed a deep reinforcement learning
approach for client selection and resource allocation in HFL
systems. Feng et al. [12] developed a theoretical model for
studying the impact of user mobility on the performance of
HFL systems. Machine learning and mobility management for
HFL is beyond the scope of this paper.

Our major technical contributions are summarized as fol-
lows.

o To minimize the length of a round in heterogeneous hier-
archical federated learning, we formulate a combinatorial
optimization problem for optimal user-edge association.
We consider the general case in which edge-to-cloud links
have different delays and mobile devices have different
computation and communication capabilities.

e To reduce the computational complexity, we propose
the backbone-aware greedy (BAG) algorithm that takes
into consideration heterogeneous edge-to-cloud delays for
efficiently assigning mobile devices to edge servers.

e We derive novel analytical results on user association
in HFL. We show that it is not necessarily optimal
for a mobile device to connect to the edge server with
the minimum latency of wireless communications when
edge-to-cloud delays are different and not negligible.

o We use large-scale simulations to show that the proposed
approach could significantly reduce the length of an HFL
round when mobile devices have different computing
capabilities and backbone communication links have dif-
ferent delays.

The rest of the paper is organized as follows. In Section II,
we include the system models and formulate a combinatorial
optimization problem for backbone-aware user association
in heterogeneous hierarchical federated learning. In Section
II, we elaborate on the proposed backbone-aware greedy
algorithm for efficient user association. In Section IV, we
derive novel analytical results on optimal user association in
HFL. In Section V, we propose using dynamic bandwidth
allocation to further reduce the HFL latency. In Section VI,
we include simulation results that show the advantages of the
proposed approach. In Section VII, we draw conclusions.

II. SYSTEM MODELS

We consider a heterogeneous hierarchical federated learning
system that consists of one cloud server, N > 2 edge servers
and M > 2 mobile devices. Each edge server is colocated with
a base station (BS). Specifically, edge server n is associated
with BS n, Vn. Let N be the set of positive integers. For
each n € N, let [n] = {1,2,..,n}. For each set .S, denote its
cardinality by |S|.

The federated learning process is composed of rounds. For
each t € N, in the tth round, a mobile device is associated
with an edge server. Let z,,, ,(t) € {0, 1} be a binary variable,
VYm € [M],n € [N],t € N. Specifically, if mobile device m
is associated with edge server n in round ¢, @, n(t) = 1.
Otherwise, x, ,(t) = 0. If ,,, ,(t) = 1, mobile device m
uploads its local model to edge server n through BS n in

round ¢. Since a mobile device is associated with a single
edge server, we have

N
> ma(t) =1,Ym € [M],t € N. (1)
n=1

Let A, (t) be the set that is composed of the indexes of
mobile devices that are associated with edge server n in the
tth round of federated learning, Vn € [N],¢ € N. Then,

Ap(t) ={m € [M]|zmn(t) =1},Vn e [N],t eN.  (2)

Note that (A;(t), A2(t),.., Anx(t)) is a partition of [M].
Namely, UZ_ | A, (t) = [M] and A;(t) N A;(t) =0, Vi # j.

Let w(t) be the global model vector at the beginning
of round t. At the beginning of round ¢, the cloud server
broadcasts the value of w(t) to the M mobile devices through
the IV base stations. Upon receiving the value of w(t), each
mobile device performs local model updates based on its local
training data and w(t). Let «,,(t) be the amount of time
required for mobile device m to perform a local model update
in round ¢, Ym € [M],t € N.

Let B,, be the total bandwidth that BS/edge server n owns.
Let 6,,.,(t) be the fraction of bandwidth that edge server n
allocates to mobile device m for uploading the local model in
the tth HFL round, Ym € [M],n € [N],t € N. If x,, ,,(t) =
1, Omn(t) > 0. Otherwise, 6, ,(t) = 0. Let p,,,(t) be the
transmit power of mobile device m in the ¢th HFL round. Let
gm,n(t) be the channel gain of the link from mobile device m
to BS/edge server n in the ¢th HFL round. Let Ny be the power
spectral density of the additive white Gaussian noise at each
edge server. Let 7, ,(¢) be the data transmission rate from
mobile device m to BS/edge server n in the tth HFL round.
Then, for each (m,n,t), where m € [M],n € [N],t € N,

P (t) Gim,n (1)

am,n (t)BnN(] ) (3)

Tmn(t) = Omn(t)By X logy(1+
Let L be the number of bits in a local model of machine

learning. Let ., ,,(¢) be the amount of time required to upload

d? (t) a (1)

Fig. 1: An illustration for a hierarchical federated learning
system.
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the local model of mobile device m to edge server n in round
t. Then,

T (t)L
T (£)

Let By n(t) be the amount of time required for uploading
the local model of mobile device m to edge server n in round
t when 6,, ,(t) =1, Ym € [M],n € [N],t € N. Namely,

L
677 n (t) = . (5)
L B, Xlog2(1+w)

nNo

(1) ,Ym € [M],n € [N],t e N. (4)

It is assumed that all mobile devices that are associated with
edge server n equally share the bandwidth of BS n. Namely,
equal bandwidth allocation (EBA) is adopted and

T (t)
|An ()]
Then, if z, »(t) = 1,

Omn(t) ,Vt € Nyn € [N],m € A,(t). (6)

L

O (1) By x logy (1 4 5208
[An(t)] - L

B, x logz(l + %)

Let d'y (t) be the amount of time required for mobile device
m to perform local model updates and upload its local model
to the associated edge server in round ¢, Ym € [M],t € N.
Specifically, for each (m,t), where m € [M],t € N,

+mek

Note that z,, »(t) = 1 if and only if m € A,,(t).

Consider edge server n in round t. After receiving local
models from all associated mobile devices, edge server n
aggregates the local models to obtain the edge model. Next,
the edge server uploads the edge model to the cloud server.
After receiving all edge models, the cloud server updates the
global model. Then, the cloud server broadcasts the latest
global model to the mobile devices through the edge servers.

Let dgf) (t) be the amount of time required for edge server
n to upload its model to the cloud server, Yn € [N],t €
N. In general, the geographical distances from different edge
servers to the cloud server are different. In addition, two edge
servers might connect to the cloud server through different
routm§ paths with different congestion levels. Thus, the value
of dEL t) depends on n and is not always constant.

In Flg. 1, we illustrate a hierarchical federated learning
system that consists of one cloud server, two edge servers
and five mobile devices. In the figure, N = 2, M = 5, the
cloud server is marked by C, the nth edge server is marked
by ES,, Vn € [N] and the mth mobile device is marked by
M,,,, ¥m € [M]. In addition, the first two mobile devices are
associated with the first edge server, while the last three mobile

tmn(t) =

dD(t) = am(t X B k() X [A(@®)].  (8)

devices are associated with the second edge server. In this case,
$171(t) = l‘g)l(t) =1 and $372(t) = x472(t) = 335)2(” =1.
Let y(¢) be the length of the ¢th HFL round. In particular,

max

dV @) +dP @), vteN. (9
m:meA,(t) m ( )+ " ( )] ©)

t =
y(t) max

For each n € [N], max,,.;mea, @) dgn)( t) + d(Z)( t) is the
amount of time required for mobile devices associated with
edge server n to update and upload their local models. In
addition, the cloud server has to receive models from all edge
servers in order to update the global model. Thus, we have
the above equality.

For each t € N, let x(t) € {0, 1} > be a matrix such that
X(®)]m,n = Tm,n(t), Ym € [M],n € [N]. For each t € N, to
find an optimal user association for round ¢, we formulate the
following combinatorial optimization problem.

min max max dV(t) +d? ()]

x(t) nin€[N] ~m:meA, (t)

subject to

xmn( ) €{0,1},Ym € [M],n € [N]

men =1,Vm € [M]

An( ) ={m € [M]|zmn(t) =1},Yn € [N]. (10)

Since each mobile device could be assigned to one of the N
edge servers and there are M mobile devices, there are N
feasible solutions for (10).

III. THE BACKBONE-AWARE GREEDY ALGORITHM

In this section, we introduce the proposed backbone-aware
greedy (BAG) algorithm for user association. The BAG algo-
rithm is backbone-aware rather than backbone-oblivious, since
it takes into consideration edge-to-cloud delays as well as
mobile-to-edge delays when making decisions on user-edge
association. In addition, the BAG algorithm consists of M
iterations and tries to find an optimal edge server for a mobile

Algorithm 1. The backbone-aware greedy (BAG) algorithm.
L d2 (t)s.

Require: M, N, t, cvy,(t)’s, Bin(t)’s
Ensure: (A;(t), A2(t),.., An(1)).
1: Obtain (¢1(t), d2(t), .., da(t)) by sorting cu, (t)’s.
2 An(t) < 0, Ay, (t) < 0, ¥n € [N].
3: for r=1to M do
for n=1to N do
4 ()eA, 1.5(t), VE € [N], k # n.
Ar,n( ) — Ar l,n( ) U {d)r(t)}
Obtain dy’ (t)’s based on (8).
Ar,n(t) — ft (A7-71(t), Ar,g (t)7 .
end for
10: 8p(t) = argmin,.,e(n] Arn ().
e Ay (1) < As, () U{or(t)}.
12: A, (t) — Ar(t), VE € [N].
13: end for

A, N (1)),

R AN
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device in each iteration. Pseudo codes for the BAG algorithm
are included in Algorithm 1.

Consider HFL round t. The BAG algorithm works as
follows. First, the BAG algorithm sorts o, (¢)’s in decreasing
order. Let ¢,.(t) be the index of the mobile device with rank
r, Vr € [M]. Then,

ag, ) (t) > oy, @ (t),Vre[M—1]. (11)

Note that mobile device ¢;(¢) is the device with the worst
computation capability and the largest computation latency in
round .

Since ', (t) = 1 if and only if m € A, (¢), (10) is equiv-
alent to the following combinatorial optimization problem.

min max max dV(t) + dgf)(t)]
Ay (t),A2(t),..,An(t) n:n€[N] ~m:meA,(t)
subject to
Un=14n(t) = [M]
Ai(t) N A;(t) = 0,¥i # j

Tmn(t) =1,Vn € [N],m € A,(t). (12)

Based on (12), for each (A1 (t), Aa(t), .., An(t)), which is

a partition of [M], we define f;(A;(t), As(¢),.., An(t)) as
follows.
fi(AL(8), Aa(t), .., An (1))
= dY ) +dPm]. (3
Jmax | max W+ 2] 13)

The BAG algorithm is composed of M iterations. Specif-
ically, for each r € [M], in the rth iteration of the ¢th HFL
round, the BAG algorithm finds an edge server for mobile
device ¢, (t). Let A, (t) be the set composed of the indexes
of mobile devices that have been assigned to edge server k
by the BAG algorithm in the first 7 iterations of the ¢th HFL
round, Vr € [M],k € [N],t € N. For each (r,n), where
r € [M],n € [N], we define A, ,,(t) as follows.

M) = fi(Ar1a(t), Ape 1,2(75?;--71217*—1,n—1(t)7
Ar 1 n( )U {¢T( )}aArfl,nqtl(t); (23
A, n(1)).

Note that A, (t) is equal to the length of HFL round ¢ when
Ap(t) = A1 n () U {or ()} and Ag(t) = A1 x(¢), VE €
[N], k # n.

Let s,.(t) be the index of the edge server to which mobile
device ¢,.(t) is assigned by the BAG algorithm in iteration r
of HFL round ¢, Vr € [M],t € N. To minimize the length of
HFL round ¢, the BAG algorithm sets the value of s,(t) as
follows.

(14)

sp(t) = arg minN] Arn(2). (15)

n:ne
Namely, in iteration r of HFL round ¢, the BAG algo-
rithm assigns mobile device ¢, (t) to edge server n*, where
Ars(t) = ming,.,en) Arn(t). If there are two or more
minimum elements in the set {\, ,,(¢)|n € [N]}, the proposed

BAG algorithm breaks the tie by selecting the element with the
minimum index for s, (t). According to the BAG algorithm,

A, (t) = {r € [M]|s-(t) = n},¥n € [N],t € N. (16)

To sum up, the proposed BAG algorithm sequentially as-
signs mobile devices to edge servers. Specifically, in the rth
iteration of the ¢th HFL round, mobile device ¢,.(t) is assigned
to edge server s,.(t).

We now analyze the computational complexity of the pro-
posed BAG algorithm. In line 1 of Algorithm 1, it takes
O(M logy(M)) time to sort the M real numbers in the
set {an(t)lm € [M]}. Since S0, |A_1x(t)] < M,

given (Arfl,l(t),Ar 12(t) AT 1N(t)>, it takes O(M)

time to obtain (Arl() 2() ~n(t)) in lines 5-6.
Given (Ai(t), As(t), .., An(t)), it takes O(MN) time to
obtain x(t). For each m € [M], it takes O(N) time to
obtain ds,ll)(t). Thus, in line 7, it takes O(MN) time to
obtain (dgl)(t),dél)(j),..,ds\}f)(t)). For each (r,n,t), given

(A,1(t), Ara(t), .., Ar n (1)), based on (13), it takes O(MN)
time to acquire the value of A, ,(f). Thus, the compu-
tational complexity of an iteration of the inner for loop
in lines 5-8 is equal to O(M) + O(MN) + O(MN) =
O(MN). Hence, for each (r,t), it takes N x O(MN) =
O(MN?) time to obtain (A, 1(t), A\r2(t), .., Arn(t)). Given
(Ar1(8), Ar2(t), .., Ar N (2)), in line 10, it takes O(V) time to
obtain s,.(t). The computational complexity of line 11 is at
most O(M). Since 2112[:1 |A, (t)] < M, Vr,t, the computa-
tional complexity of line 12 is O(M ). Thus, the computational
complexity for an iteration of the outer for loop between line
4 and line 12 is O(MN?) + O(N) + O(M) + O(M) =
O(M N?). Therefore, the overall computational complexity for
Algorithm 1 is M x O(MN?) = O(M?N?).

IV. ANALYTICAL RESULTS

In this section, we derive novel analytical results on user as-
sociation in heterogeneous hierarchical federated learning. We
find a scenario in which the well-known Max-SNR algorithm
[5] does not produce an optimal solution for (10).

According to the Max-SNR algorithm, for each (m,t),
Ty (t) = 1 only if () < Bui(t), ¥k € [N]. The
following theorem shows that the Max-SNR algorithm does
not always produce an optimal solution for (10).

Theorem 1: Consider a fixed t € N. If N =2, M = 2K,
where K € N, a,,(t) = a € R, Vm € [M], Bmn1(t) <
Bm,2(t), Ym € [K], Bm1(t) > Bma(t), Yme {K +1,K +
2,., M} and d®(t) — dP () > XM SN Bn(t), the
Max-SNR algorithm does not produce an optimal solution for
(10).

Proof:

1. Let x'(¢) be the solution produced by the Max-SNR algo-
rithm. Since N = 2, M = 2K, 3,,,1(t) < Bm,2(t), Ym € [K],
Bma(t) > Bm2(t), Ym € {K+1, K+2,..,M}, a;, . (t) =1,
Vm € [K] and 27, ,,(t) = 2, Vm € {K + 1, K +2,..,M}.
Define A;,(t) = {m € [M]|z;, .(t) = 1}, Vn € [N]. Let
£ = F( AR (), A3 (2)).
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2. Then, d(t) = a + Bm.1(t), Vm € [K] and d5(t) =
a+ Bme(t), vme {K +1,K +2,..,M}. Thus,

max
m:meA(t)

= a—l—dgz)(t)—I— max By, 1(t).
m:me[K]

di) (1) +di” (1)

In addition,

max

dD )+ (t)

meme Al ()
= a+ d§2) (t) + nume{}(rﬂz}})@ﬁwM} Bim.2(t).
Hence,
fi = max [ max dP@)+dP )]

n:n€[N]

= max{a+dP () + nax Brma (1),

me[K]
ﬂm,2(t)}

m:meA’ (t)

o+ d(z)( t) + max
m:me{K+1,K+2,..,M}

(2)
= dy’(t m.1(t
at 1 ( )+771I7nn%)[(K]6 ’1( )

M N
)+ DD Bram(d)

m=1n=1

> a+dP(t

The third equalrty and the 1nequality are due to that d(12)(t) -
(>>Zm IZn 1/877171 andﬂmn()>0 Vm7n.

3. Define z, 1) =0 and z ot )— 1, Vm € [M]. Define
Al(t) = {m € M Jloh, o (t) = 1}, Vn € [N]. Let f] =
fi(AL(t), A}(t)). Then,

o= max{o,a+dg>()+"L%2>[<M]5m2( )}
— a+d§2)( )+m132>[<M] Bim,2(t)
< oH—d(2 )+ Z Zb’mn
m=1n=1

4. Based on 2 and 3, f/ > f; and therefore x/(t) is not an
optimal solution of (10). In this case, the Max-SNR algorithm
does not produce an optimal solution for (10). ]

The above theorem implies that one has to take into consid-
eration the edge-to-cloud delays as well as the mobile-to-edge
delays for optimal user association in HFL.

V. DYNAMIC BANDWIDTH ALLOCATION

To further reduce the latency of HFL, we adopt dynamic
bandwidth allocation (DBA) after assigning mobile users to
edge servers. Recall that A,,(¢) is the set composed of indexes
of mobile users that are associated with edge server n in
round ¢t and 6,,,,(t) is the fraction of bandwidth that edge
server n allocates to mobile user m in round ¢. Define
On(t) = (01,n(t),02,,(t),..,00mn(t)). To find an optimal

M=20, N=2

== Max-SNR+EBA

250 1 —e— BAG+EBA

Exhaustive search+EBA
225 4 BAG+DBA

HFL latency

25 50 75 100 125 150 175 200
d? (1)

Fig. 2: The impact of dg)(t) on the HFL latency.
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Fig. 3: The testing accuracy of HFL.

bandwidth allocation at edge server n in round ¢, we formulate

the following optimization problem.

Brmn(t)

am(t) + B (D)

min max
0, (t) mmeA,(t)

subject to
Omn(t) €

M
D Omn(t) <1

B (£) = 0,¥m & A (2).

Note that max,,.,ea, (1) ¥m(t) + 3 Brm, ”ét; is the latency for

all mobile users associated with edge server n in round ¢ to
update and upload their local models to edge server n in round
t. After defining 1, () = maX,,.mea,, (1) Om (t )+ B, "((g , one
can reformulate (17) as a convex optimization problem Let
0;,(t) = (67 ,,(t),05 ,,(t), .., 03, (t)) be an optimal solution of
(17). Tt can be proved that there exists a positive real number
~n(t) such that

[0,1],¥m € [M]

a7)

Brmn(t)
am(t)+9:%n(t) = Yu(t),Vm € A, (t)
DOl =1 (18)
m:meAy,(t)

We use binary search to numerically obtain the value of

Yu(t). Tn addition, 05, () = —Cr=2 s vm € A, (1),
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VI. SIMULATION SETUP AND RESULTS

In this section, we include simulation setup and results.
We wrote Python programs to obtain simulation results. We
evaluate four algorithms for HFL. The first algorithm is
the well-known Max-SNR algorithm with equal bandwidth
allocation (EBA), the second algorithm adopts the proposed
BAG algorithm and EBA, the third algorithm uses EBA and
exhaustive search to obtain an optimal user association and
the fourth algorithm adopts the BAG algorithm and dynamic
bandwidth allocation (DBA). For proof of concept, we study
the case in which M = 20 and N = 2. The coordinates
of the first edge server are (0,0) and the coordinates of the
second edge server are (5,0). The first 10 mobile devices are
located around (1,0), while the remaining 10 mobile devices
are located around (3,0). In this section, for each ¢t € N,
Bma(t) =1,V1 <m <10 and B, 1(t) =9, V11 <m < 20.
In addition, for each t € N, 3, 2(¢) = 16, V1 < m < 10 and
Bm,2(t) =4, V11 < m < 20. There are two types of mobile
devices in terms of computation capability. Specifically, for
each t € N, o, (t) = 10, Vm € {1,2,..,5} U{11,12,..,15}
and ay, (t) = 20, Ym € {6,7,..,10} U {16, 17, ..,20}. More-
over, for each t € N, de)(t) =10 and d§2)(t) € [10, 200].

In Fig. 2, we show the impacts of de) (t) on the HFL
latency. For the first three algorithms that adopt EBA, the
HFL latency increases as the value of d(22) (t) increases. It is
due to that the HFL latency depends on the mobile-to-edge
delays and the edge-to-cloud delays. When dg)(t) € [10, 70],
the proposed BAG algorithm is as good as the Max-SNR
algorithm in terms of the HFL latency. On the other hand,
when déQ)(t) € [80,200], the proposed BAG algorithm is
superior to the Max-SNR algorithm in terms of the HFL
latency. In comparison with the Max-SNR algorithm, the
proposed BAG algorithm could reduce the HFL latency by
up to 19.2%. When |dg2) (t)— d§2> (t)| is small, one can safely
ignore the edge-to-cloud delays when making decisions on
user association. However, when |d(22) (t) — d12)(t)| is large,
one has to take into consideration the edge-to-cloud delays
for optimally assigning mobile devices to edge servers. The
simulation results also show that DBA could further reduce
the HFL latency especially when the number of mobile users
associated with an edge server is large.

We adopt PyTorch to evaluate two user association algo-
rithms in a federated learning system for image recognition.
We use the CIFAR-10 [13] dataset for training and testing
machine learning models. There are 10 classes of images in the
CIFAR-10 dataset. Each class contains 5000 training images
and 1000 testing images. We adopt a convolutional neural
network (CNN) that is composed of 10 layers including 1 input
layer, 3 convolutional layers, 2 pooling layers, 1 flatten layer
and 3 fully connected layers. The CNN has 591066 trainable
parameters. In Fig. 3, we show the testing accuracy of HFL
for two algorithms when M = 16 and N = 4. The BAG
algorithm outperforms the Max-SNR algorithm in terms of
the convergence speed.

VII. CONCLUSION

We have proposed a novel algorithm for user association
in heterogeneous hierarchical federated learning systems. We
have studied the scenario in which mobile devices have
different computation and communication capabilities, while
edge servers have different model uploading delays to the
cloud server. To find an optimal user-edge association, we have
formulated a combinatorial optimization problem based on
mobile-to-edge delays and edge-to-cloud delays. To reduce the
computational complexity, we have put forward the backbone-
aware greedy algorithm. Furthermore, we have derived novel
analytical results on user association. Moreover, we have used
computer simulation to reveal the advantages of the proposed
approach. Future work includes jointly optimizing wireless
resource allocation, user association and backbone routing for
hierarchical federated learning.
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