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Abstract—As climate change drives global temperatures up-
ward, seasonal sea ice in the Arctic is rapidly diminishing,
leading to the formation of meltponds. Meltponds absorb more
solar radiation compared to snow due to lower reflectivity
(albedo), accelerating the melting of the ice underneath. The
manual assessment of the complex boundaries of meltponds
is a demanding and time-consuming endeavor. To streamline
this process, we introduce a novel method for detecting and
segmenting meltponds based on the UNet architecture, named
ArcticNet. Our framework combines two UNets that incorporate
recurrent, residual and attention operations. The first UNet ex-
tracts intermediate features that are further refined by the second
UNet improving overall performance by learning hierarchical
representations. The proposed architecture possesses the ability to
enhance the boundaries of meltponds while accurately capturing
their precise locations. The inclusion of residual and recurrent
operations gives an expanded field of view for segmentation.
Combining this with an attention gate, which concentrates
primarily on target regions of diverse shapes and sizes, has been
demonstrated to enhance the overall performance and robustness
of the network by boosting model sensitivity and improving
predictions. The performance of our model was assessed using 3–
channel (RGB), high–resolution aerial images from Healy–Oden
Trans Arctic Expedition (HOTRAX) and NASA’s Operation
IceBridge. The ArcticNet architecture categorized the HOTRAX
and Operation IceBridge images into three and two classes
respectively. HOTRAX include meltponds, open water, and snow,
whereas Operation IceBridge includes only meltponds and snow.
The new algorithm showed superior performance in segmenting
meltponds when compared to other state-of-the-art approaches.

Index Terms—Arctic Ocean, meltpond, WNet, residual, re-
current, UNet, R2UNet, attention gate, HOTRAX, Operation
IceBridge.

I. INTRODUCTION

THE earth’s average temperature has rapidly increased
over the past years in large part due to natural and

human–made greenhouse gas emissions. The rise in temper-
atures has disproportionately impacted the Arctic, leading to
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accelerated sea ice melting and the formation of meltponds
and disruption in Arctic ecosystems at rates that are un-
precedented [1]. Meltponds are pools of water that appear
on sea ice primarily due to the melting of snow on the
sea ice surface in the summer. The formation and further
development of these “windows” into the underlying ocean
can affect energy balance and albedo [2], [3]. These pools
of water reflect less sunlight compared to snow and absorb
more solar radiation, accelerating the melting process and
reinforcing the cycle of ice melting through a positive feedback
loop [4], [5]. This positive feedback raises air temperatures
during the freezing season, reducing the formation of new
ice. Due to this, the summer melt season is lengthening,
and winter ice growth is slowing, leading to more open
water in the Arctic Ocean [4], [5]. This phenomenon makes
meltponds a visual and measurable indicator and feeds into a
positive feedback loop that accelerates Arctic warming. Their
extent and characteristics provide direct evidence of changes
in temperature and seasonal ice melt which are critical markers
of climate change. Given the substantial impact of meltponds
on accelerating sea ice loss, these features can serve as a
valuable metric for quantifying the response of Arctic sea
ice to global warming [6]. An automated approach to detect
meltpond development and extent would be highly beneficial
for environmental monitoring due to the localized and swiftly
changing nature of these features [7]. Quantitative analyses
and dynamics of meltpond size, shape, and distribution can
provide valuable insights into their evolution over time by
observing the area of meltponds at different times of the year
for multiple years. These data are essential for monitoring
changes in sea ice extent and for validating numerical models
that simulate climate dynamics [8]. Manual monitoring of the
formation and growth of meltponds using classical methods of
image analysis and statistics is time-consuming. Automating a
universal process by identifying boundaries around meltponds
would enable more efficient calculation of crucial metrics,
such as the transition from meltponds to open water [9]. The
current study focuses on the extraction of meltpond regions
by robust segmentation methods on images captured in one
season. The main goal is to develop deep learning techniques
for robust meltpond detection based on CNN segmentation
methods. Ultimately, accurate segmentation contributes to the
ability to predict future sea ice conditions and to develop
effective strategies to mitigate climate change, as well as to
understand contributions to climate change at high latitudes
[1].

Various techniques are employed for segmentation of the
Arctic region, including traditional image processing methods
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like thresholding and edge detection [10], [11], as well as more
advanced deep learning-based approaches such as the well-
known UNet based architectures where it automatically learns
and extracts hierarchical features from the data reducing the
need for manual feature annotation. These models, in addition
to their ability to leverage existing datasets to learn distinctive
features, can also perform segmentation and classification
simultaneously. This capability is particularly important for
detecting meltponds as they share the same microwave sig-
nature as open water making them challenging to detect.
The similarity in microwave signatures causes meltponds to
obscure the ice beneath them, creating the illusion of less ice
than is actually present [12], [13]. Therefore, to validate the
effectiveness of proposed models on identifying meltponds,
we utilize a dataset that contains satellite and airborne im-
agery [12] that features meltponds as pools of water in the
Arctic [14]. This paper examines applications of UNet and
its architectural variations, along with our proposed method,
ArcticNet, specifically targeting the boundaries surrounding
meltponds and similar regions. Through testing and evaluation,
the new model, ArcticNet demonstrates enhanced and superior
performance compared to UNet, R2UNet, WNet.

Our main contributions include:
• We propose a novel model for semantic segmentation of

the Arctic region: ArcticNet, combining the strengths of
UNet, R2UNet, WNet and an attention mechanism.

• The novel architecture consists of two parallel networks
(1) A Dual-Network Structure where the first network
extracts hierarchical features and propagates them ef-
fectively to the second network via skip connections.
The second network refines these features, ensuring en-
hanced boundary detection and accurate segmentation.
(2) Utilization of the skip connection from the decoder
of the first UNet to the encoder of the second UNet
for the easy propagation of the hierarchical features (3)
Recurrent operation and residual connection in the block
continuously looking back at the features and propagating
changes from input to output respectively (4) Adding an
attention mechanism to ArcticNet weights the features
that are essential for producing boundaries, focusing
primarily on the foreground rather than the background.

• The effectiveness of the proposed segmentation models
is validated using the high–resolution, RGB images from
HOTRAX and NASA’s Operation IceBridge datasets.

By focusing on features critical for boundary delineation,
ArcticNet is aimed at improving the accuracy of meltpond
segmentation by capturing complex shapes found in HOTRAX
and NASA’s Operation IceBridge datasets.

II. LITERATURE REVIEW

Background: Meltponds form during the spring-summer
melt season when the meltwater on the surface collects in
the local depressions, evolving from small, rounded pools to
irregular, connected networks as melt and drainage progress.
During the initial stages of sea ice melt, it is common for
meltwater to pool over the underlying ice surface [15]. The
appearance of these meltponds alter light transmission and

albedo and can increase primary production in the underlying
water column due to the reduced albedo associated with
meltponds [16]. The reduced albedo increases shortwave ab-
sorption relative to snow and bare ice [15], [17]. On relatively
smooth first-year ice (FYI), ponds tend to be shallower and
laterally extensive; on rougher multiyear ice (MYI), ponds
are typically deeper and more segmented, constrained by
hummocks and ridges [18],[19], [20]. Modeling of meltpond
evolution on MYI indicates meltponds can persist slightly
longer than on FYI [20]. However, the proportion of MYI in
the Arctic Ocean has been in sharp decline in recent decades
[21]. Thus, the differences in the evolution and spatial extent
of meltponds on MYI relative to FYI may be becoming less
and less consequential.

Meltpond Physical, Morphological, and Radiative Proper-
ties (by sea-ice type): Ponds initiate once meltwater from snow
and surface ice accumulates in microtopographic lows. Over
the season, isolated circular ponds coalesce into branching
networks as drainage pathways open. Snow depth/distribution,
freeboard, permeability thresholds, and roughness (ridges,
hummocks) govern planform geometry, area–perimeter scal-
ing, and depth—properties that modulate lateral ablation and
light transmission [18], [19], [20]. FYI’s smoother topography
favors laterally continuous, shallow ponds and often higher
peak pond fractions; once permeability increases, drainage
can be abrupt. MYI tends to host deeper, more segmented
ponds constrained by hummocky relief and lower early-season
permeability [17], [18], [19], [20]. For segmentation, FYI
scenes often present broad, low-contrast water–ice boundaries,
whereas MYI scenes present fragmented, high-curvature pond
edges. Ponds reduce albedo and increase shortwave absorption
relative to snow/bare ice, enhancing melt and increasing light
transmission to the upper ocean [17], [22], [23]. Transient
conditions complicate both physics and detection: (i) fresh
snowfall can blanket ponds and collapse optical contrast;
(ii) thin overnight skim-ice brightens and textures surfaces;
and (iii) wind roughening alters both optical bidirectional
reflectance distribution function (BRDF) and radar backscatter.
During refreezing, snow can preferentially accumulate on
refrozen ponds and reduce their light transmittance below
that of adjacent bare ice [24]. These behaviors motivate
robustness tests and targeted data augmentation in learning-
based segmentation.

SAR Imagery: In optical (VIS/NIR) imagery, ponds appear
dark/blue against bright snow/ice, enabling spectral/unmixing
approaches to estimate pond fraction when skies are clear
[25], [26]. However, fresh snowfall and thin overnight “skim-
ice” can temporarily brighten ponds and suppress contrast.
In SAR, calm ponds are radar-dark, but wind roughening
introduces centimetric capillary–gravity waves that markedly
increase X-/C-band backscatter; thin refreezing and wet snow
can further brighten surfaces [27], [28], [29]. Single- or dual-
polarization X-band pond retrievals are sensitive to surface
state. Modest winds roughen pond water and brighten returns;
thin refreezing or wet snow increases backscatter further,
reducing separability from rough ice. Studies mitigate this
with polarization ratios and texture features, yet accuracy
degrades under windy/refreeze conditions. While somewhat
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similar features can appear on glacial ice, the use of image
processing methods we explore here is restricted to sea ice
surfaces. In this paper, our experiments and evaluations are
focused entirely on optical imagery.

Image Processing Methods: Otsu’s method [30] is an image
processing technique applied to analyze meltpond configu-
rations. By utilizing aerial images of Arctic sea ice from
the surface heat budget of the Arctic Ocean (SHEBA) and
HOTRAX databases, this approach developed an algorithmic
framework for mapping meltpond configurations onto graphs
of nodes and edges. This method demonstrated the extrac-
tion of valuable structural information about meltponds. A
limitation to note is that the estimated conductivity factor
was merely correlated with the permeability or conductivity
of the meltpond network, which underlined the need for
further research to clarify this relationship. The thresholding
method [31] explored the quantification of daily changes in
fractional meltpond and snow cover. Using a time series
of photographic infrared imagery collected from a tethered
balloon at an altitude of 300 meters during the Seasonal Sea
Ice Monitoring and Modelling Site (SIMMS) experiment in
1995, this method allowed the tracking of meltpond dynamics
over short timescales. However, setting constant threshold
values across the time series images was a challenge due to
invariant light conditions, and during the early melt season,
the network could not distinguish melt features from wet
snow and accurately segment the regions in the images. A
third study combined different spectral bands to investigate
the possibility of obtaining meltpond fraction estimates [32].
This method leveraged ENVISAT WSM images with HH-
polarization focused on detecting open water and meltponds.
By combining bands, the study enhanced the ability to discern
subtle variations in spectral responses which led to more
accurate mapping of surface features. Lastly, the use of image
processing software, such as ENVI@EX [33], demonstrated
the effectiveness of synthetic aperture radar (SAR) systems
in meltpond studies. Helicopter-based airborne SAR surveys
conducted in the northern Chukchi Sea during the summer of
2011 were employed to map meltponds and derive detailed
information on their fraction, size, and shape.

Machine Learning Methods: The Maximum Likelihood
Method [34] utilized aerial photographs collected during heli-
copter flights as part of the CHINARE2010 expedition. This
technique was applied to classify meltponds, open water, and
snow-covered ice, which primarily focused on evaluating the
spatial variability of these features. It was able to synthesize
information on small-scale sea ice features that satellite data
often missed; however, it was unable to address the spatial and
temporal coverage in the aerial observations of sea ice and
meltponds. Another study explored decision tree and random
forest models based on polarimetric parameters [29], which
utilized TerraSAR-X dual-polarization data and airborne SAR
images. The primary objective was to develop an approach
to retrieve meltpond statistics using advanced polarimetric
data. The study highlighted the robustness of these methods
in deriving accurate statistics and improving the detection
of meltponds from high-resolution SAR datasets. However,
due to its limited spatial resolution of the TerraSAR-X data

compared to airborne SAR, it was unable to estimate the
number density of ponds accurately and the mean of the pond
area, which prevented the detection of smaller meltponds. Mul-
tilayer perceptron model based on spectral curve differences
[25] analyzed moderate resolution imaging spectroradiometer
(MODIS) data, A level-3 MODIS surface-reflectance data
with aerial photographs from the 2008 MELTEX campaign
in the Beaufort Sea and with National Snow and Ice Data
Center (NSIDC) observations from four distributed Arctic sites
collected in 2000 and 2001. This study aimed to quantify
surface fractions of meltponds, open water, and snow and ice
across the entire Arctic region. Since it simplified complex
Arctic sea ice cover into a three-surface-class model, surface
types like thin ice were misclassified, and it also led to
uncertainties in fractional coverage estimates. Furthermore, the
integration of a multilayer neural network with multinomial
logistic regression [35] demonstrated a robust framework for
pan-Arctic meltpond classification. Using MODIS data from
2001 to 2019 and combining statistical and machine learning
approaches, it achieved significant advancements in binary
classification tasks for remote sensing applications.

Deep Learning Methods: Semantic segmentation using con-
volutional neural networks (CNNs) has gained significant
attention in recent years due to its effectiveness in various
computer vision tasks, such as image segmentation and object
recognition. Current segmentation models follow encoder-
decoder architecture. A brief literature review highlighting the
key works in this area is presented here. UNet, a CNN based
architecture was designed in 2015. It emerged as a leading
solution for pixel-level classification in medical image anal-
ysis, subsequently extending its applicability to various other
domains owing to its remarkable success rate. The objective
was to perform hierarchical feature propagation allowing it
to capture both high-level and low-level contexts with skip
connections in encoder-decoder manner [36]. DeepLab, Atrous
Convolution, and Fully Connected Conditional Random Fields
(CRFs) were introduced in 2016 achieving state-of-the-art
performance on various segmentation benchmarks. The seman-
tic segmentation task was performed by applying the atrous
convolution with upsampled filters to control the resolution at
which the feature responses by enlarging the field of view. It
was further extended to atrous spatial pyramid pooling (ASPP)
to segment objects in multiple scales. The outputs were
combined with fully connected CRFs for robust localization
[37]. In the same year, Pyramid Scene Parsing Network (PSP
Net) was introduced by leveraging a pyramid pooling module
to capture contextual information at multiple scales to achieve
robust semantic segmentation results [38]. In 2017, WNet
introduced the concept of parallel architectures which was
built by combining two fully convolutional networks into an
encoder-decoder framework, with each Fully Connected Net-
work (FCN) being a variant of the UNet architecture [39]. In
2018, Attention UNet was introduced by adding attention gates
(AGs) to focus on target structures of different shapes and sizes
by suppressing irrelevant information while enhancing salient
features. AGs were added to the decoding unit of the UNet
instead of skip connections to increase the model sensitivity
[40]. In the same year, Recurrent Residual UNet (R2UNet)
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was introduced by incorporating recurrent operation for feature
accumulation obtained by feedback loop and residual learning
for feature propagation in encoding and decoding units of
UNet for medical image segmentation achieving state-of-the-
art performance [41]. In 2019, EfficientNet was introduced
for model scaling by balancing network depth, width and res-
olution using an efficient compound coefficient. The approach
effectively scaled up MobileNets and ResNet models [42].

In 2021, Attention R2UNet was introduced which utilized
the strength of R2UNet and attention mechanisms for multi-
modal medical image segmentation. R2AUNet replaced the
original skip connections with attention gates [43]. AMB-
WNet was introduced in 2022 by embedding attention gates
in multi-bridge WNet to suppress irrelevant background areas.
It comprised of a down-sample group, an up-sample group, a
central block which was a novel inverted U-shaped module,
and a connection group that integrated attention gates and
multi-scale convolution [44].

UNet’s symmetric encoder-decoder with skip connections
excelled in fast, data-efficient medical and remote sensing seg-
mentation, but its reliance on local convolutions and transpose-
convolution upsampling missed global context and introduced
checkerboard artifacts. R2UNet was built on UNet by incor-
porating residual and recurrent blocks that deepened feature
reuse and enlarged the effective receptive field. It increased the
accuracy in fine structures, but it inflated parameters and train-
ing time. Adding attention gates to UNet focused the decoder
on salient encoder features by sharpening boundary delineation
and mitigating class-imbalance drift, though at the cost of extra
memory and slower inference, while R2AUNet had the same
benefits with the richer R2 feature flow, it produced state-
of-the-art detail retention but it risked overfitting on small
datasets, became computationally bulky and prone to noise due
to the nested residual–recurrent operation. WNet’s two stacked
UNets refined outputs in a coarse-to-fine cascade that captured
hierarchical context and smooth predictions, but the doubled
architecture increased the GPU demands, increased redundant
feature learning, and in the absence of dedicated attention or
residual mechanisms, it struggled to capture extremely small
or sparsely represented objects.

In this paper, we propose ArcticNet as a means for pixel-
level multi-class segmentation of imagery sourced from HO-
TRAX and Operation IceBridge. The new model utilizes the
strength of recurrent neural network for repetitive refinement,
residual learning for feature transmission from input to the
output, two UNets in “W” shape for coarse-to-fine conversion
that captures hierarchical feature context, skip connection from
decoding unit of the first UNet to the encoding unit of the
second UNet for the feature propagation forming a shape
of an “A” and an attention mechanism to capture modular
dependencies by increasing the model sensitivity. The model
follows the structure of WNet and R2UNet frameworks, which
are based on UNet. The architectural details, experimental
setup, results, discussion and conclusions are discussed in the
sections below.

III. PROPOSED MODEL ARCHITECTURE

ArcticNet is an integrated convolutional neural network
that combines and extends the design principles of UNet
[36], R2UNet [41], and WNet [39]. It preserves the en-
coder–decoder symmetry of UNet while adopting the residual
and recurrent refinement strategy from R2UNet to enhance
feature reuse and stabilize gradient flow. ArcticNet inherits
the dual-UNet coarse-to-fine hierarchy of WNet, allowing
hierarchical context aggregation and improved boundary lo-
calization. In addition to these inherited elements, Arctic-
Net, introduces two major componants: (1) a cross-network
skip connection linking the decoder of the first network to
the encoder of the second, which facilitates propagation of
semantically rich features for hierarchical refinement, and
(2) additive attention gates that adaptively weight spatial
features to emphasize meltpond boundaries while suppressing
background noise. These integrated modifications yield more
precise pixel-wise segmentation and improved robustness in
delineating meltpond, snow, and open water regions, as illus-
trated in Fig. 1.

The architecture adopts a “W” shape in which twin UNets
with attention modules in the decoding paths, as shown in
Fig. 2, are arranged in a sequential manner [39], [45]. Each
UNet [36] is structured with a contracting path, known as the
encoding unit, consisting of CNN blocks with 3× 3 convolu-
tion. Recurrent connections between corresponding layers in
the encoding unit enable the retention of information from
previous steps, thereby enhancing its ability to accumulate
features by repetitive refinement similar to R2UNet [41], [46],
[47]. However, for ArcticNet, we used t = 1 as greater time
periods induce significant instability issues for deep networks
[48], [49], especially within networks that utilize attention
gates. Additionally, residual connections [50] are integrated
within each block to facilitate gradient flow, mitigating the
vanishing gradient issue during training and also for feature
transmission from input to the output. These connections
enable the model to learn residual mappings, which contributes
to more stable and efficient training [51]. The output of the
Recurrent Residual Convolutional Neural Network (RRCNN
as shown in Fig. 3 (a)) undergoes down-sampling via a 2× 2
max-pooling operation after batch normalization where feature
maps are doubled in number, and their sizes reduced in half.
Concatenation is applied to map the low-level features from
the encoding units to decoding units in the sequentially ar-
ranged UNet. Both UNets have their encoding units connected
to the decoding units via a bridge [45].

The recurrent convolutional layer (RCL) builds with discrete
time steps t as seen in Fig. 3 (b). Therefore, output of
the RRCNNs at a center pixel of an input at (a, b) can be
formulated mathematically as:

Oa,b(t) = (wa,b)f (t)∗xa,b
i (t)+(wa,b)r(t−1)∗(xa,b

i )r(t−1).
(1)

Here, for the standard neural convolutional layers and RCL,
(wa,b)f (t) and (wa,b)r(t−1) are the weights respectively, and
the terms xa,b

i (t) and (xa,b
i )r(t−1) are the inputs respectively.

The output of the recurrent convolutional block, Oa,b(t),
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Fig. 1. ArcticNet architecture with the recurrent operation for repetitive refinement, residual learning for feature transmission, self-attention mechanism
to capture modular dependencies and feature propagation from the decoding unit of the first UNet to the encoding unit of the second UNet of the WNet
framework.

Fig. 2. Additive attention gate of ArcticNet in which the input features ai are scaled by attention coefficients αi. The attention coefficients are produced by
trilinearly interpolated grid resampling of the sum of linearly transformed input features ai and gating signal gi.

which is generated from the above mathematical process, is
then fed to the ReLU activation function and is defined as:

Oa,b(t) = f [Oa,b(t)] = max(0, Oa,b(t)). (2)

The final output in the block is obtained after integrating
with the residual unit and it can be calculated as follows:

xa,b
i+1(t) = xa,b

i (t) +Oa,b(t). (3)

The term xa,b
i+1(t) represents the output of RRCNN block

at time step t as shown in Fig 3 (a). The output is used for
the immediate subsampling and upsampling processes in the
decoding unit and encoding unit respectively [41], [52], [53].

In the decoding unit, each block performs an up-sampling
operation where the size of the image is increased, and the
number of feature maps is decreased. The decoding units of the
first UNet are concatenated with the corresponding encoding
units of the second UNet for feature accumulation, residual
refinement of features in a hierarchical manner, and learning
more complex and abstract representations of the data [45].
The final layer performs a 1 × 1 convolutional operation by

(a) (b)

Fig. 3. Recurrent Residual Convolution Unit (RRCU) from encoding unit
and decoding unit of ArcticNet (a) Recurrent Residual Convolutional Layer
(RRCL); (b) Unfolded RRCL with t = 3.

restoring it to the original image and matching the desired
number of classes. The final layer uses a softmax activation
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function, which converts a vector of a certain number of real
numbers into a probability distribution of possible outcomes.

ArcticNet employs attention gates which are incorporated
into the decoding units of both the UNets to dynamically
weigh the importance of various spatial locations or feature
maps to capture modular dependencies within the network.
The output of a batch normalization and transpose layer is
fed into the attention gate to recalibrate the output features
generated by the encoder. This occurs before merging them
with the corresponding features in the decoder at each resolu-
tion. This enables the model to selectively focus on relevant
image regions while suppressing irrelevant (background) or
noisy information [54], thereby enhancing overall performance
and interpretability [43].

Additive attention is applied to each pixel in the image
where ai and gi are features from encoding unit and decoding
unit at position i. The term gi, gating signal, is also determined
as a per-pixel focus area, allowing for contextualization of
low-level information. The terms, σ1 and σ2 are ReLU and
sigmoid activation functions respectively. Wa, Wg , bg and bθ
are learnable parameter matrices (weight matrices) and bias
terms respectively [43]. The attention gate is described as Catt

and is defined below as:

Catt = θ(σ1(Waai +Wggi + bg)) + bθ. (4)

αi = σ2(Catt). (5)

The attention scores are calculated by applying a linear
transformation of a 1× 1× 1 convolution to the concatenated
features of the input tensors by using a sigmoid activation. The
re-sampler is calculated with trilinear interpolation in contrast
to other methods for achieving attention coefficients αi (Eq.
5) to interpolate values from a grid based on the attention
scores. This entire attention gate process is illustrated in Fig.
2. This approach allows for more spatially sensitive attention
coefficients, as the interpolation considers neighboring values
in the grid to compute the final attention coefficients for each
position in the input tensors. The output âi of the attention
gate is element-wise multiplication of input feature maps as
shown in Fig. 2 [40] and defined in Eq. 6.

âi = αi × ai. (6)

IV. EXPERIMENTAL SETUP AND RESULTS

Training was conducted using two Titan RTX GPUs. The code
utilized TensorFlow’s [55] GPU acceleration to take advantage
of the data parallelization available with the dual GPU setup.
This method accelerates learning as it allows for processing on
both GPUs, which is particularly beneficial for handling large
datasets and complex models. The average training time was 2
hours for 100 epochs. The Keras [56] open library framework
was chosen for experimentation, leveraging its compatibility
with TensorFlow and other backend engines. We used 128GB
RAM and an Intel Core i9-9820X CPU.

A. Dataset
For evaluation of all the models, we used high resolution
images from the following two datasets:

1) HOTRAX: The aerial dataset includes the morphological
and optical characteristics of summer Arctic sea ice cover
during the Healy Oden TRans Arctic EXpedition (HOTRAX)
captured covering the Arctic Basin transect from 76 2.119N
157 55.807 W to 80 28.254 N 7 34.4 E [57], [58]. A Nikon
D70 digital camera mounted on a helicopter captured aerial
imagery between August 12th and September 26th, 2005, as
part of HOTRAX. The captured images had dimensions of
3042 × 2048 × 3 pixels with a spatial resolution of 5-25
cm/pixel depending on the altitude as the flights were flown at
different altitudes of 150–700 m to avoid clouds. One hundred
images of three classes consisting of meltponds, open water,
and snow regions were selected for the experiments from the
total set of 1013 images captured during this expedition. These
images underwent visual analysis and manual annotations
leading to the creation of three distinct categories. Figure 4
shows some image samples from the HOTRAX dataset [12],
[59], [60].

Fig. 4. HOTRAX high-resolution aerial images acquired during a joint US-
Swedish icebreaker cruise across the Arctic Ocean in 2005.

2) NASA’s Operation IceBridge: The IceBridge dataset [61]
contains Level 1B imagery obtained from the Digital Mapping
System (DMS) within NASA’s Operation IceBridge from 16
October 2009 to 19 April 2018 with spatial coverage: N:-53S:-
90E:180W:-180, N:90S:60E:180W:-180. The collected images
were captured as part of Operation IceBridge funded aircraft
survey campaigns. The current dataset is the collection of 536
Level 1B images captured in July 2016 during flights over
the Chukchi Sea. The imagery has a spatial resolution of 10
cm with dimensions varying around 5500 × 3500 × 3 pixels.
The 170 images of 536 available were manually assessed and
classified into two classes: meltponds and snow on sea ice.
Sample images are shown in Fig. 5. [62].

B. Training Method
All the models were trained using ADAM optimizer with
a learning rate set to 1 × 10−4 and a batch size of 2. A
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Fig. 5. Geolocated and orthorectified high-resolution images from NASA’s
Operation IceBridge campaign across the Arctic Ocean conducted between
2009-2020.

categorical loss and softmax activation function were used
for the loss function and the final layer activation function,
respectively. The data labels are transformed into one-hot
encoded matrix where an integer class vector is converted into
a binary class matrix. The model configuration was adjusted to
produce better performance based on the specific requirements
such as time step for recurrent operations and model depth
which are identified during the tweaking/tuning process. The
time step t = 3 was used for evaluating R2UNet and t = 1
was used for ArcticNet due to model depth. For Operation
IceBridge images, we created a dataset of image patches with
the dimension 1000 × 1000 × 3 of 120, 30, 20 images for
training, validation and testing respectively. The patch size of
the HOTRAX dataset was 1200× 800× 3 and the number of
images in training, validation and testing included 60, 25 and
15 images respectively.

C. Quantitative Analysis

TABLE I
TRAINING AND TESTING TIME OF ARCTICNET, WNET, R2UNET AND

UNET FOR 100 EPOCHS.

Model Operation IceBridge HOTRAX
Training Testing Training Testing

(seconds) (seconds)
UNet 1700 5 1600 5
R2UNet 3900 5 3100 5
WNet 3200 4 2500 4
ArcticNet 4300 8 4400 10

Table I compares the overall training and testing times in
seconds for the four models: ArcticNet, WNet, R2UNet, and
UNet. The models are evaluated over two datasets, Opera-
tion IceBridge and HOTRAX each trained for 100 epochs.
The UNet model consumes the least training time for both

Operation IceBridge and HOTRAX datasets, taking 1700 and
1600 seconds, respectively, with a testing time of 5 seconds.
Conversely, ArcticNet has the longest training time of 4300
seconds for Operation IceBridge and 4400 seconds for HO-
TRAX with the highest testing times of 8 and 10 seconds
respectively. WNet balances out UNet and ArcticNet with
the training times of 3200 seconds on Operation Icebridge
and 2500 seconds on HOTRAX, while having the fastest
testing times of 4 seconds for both. R2UNet falls in the
middle range for training, with 3900 seconds on Operation
Icebridge and 3100 seconds on HOTRAX, with a testing
duration of 5 seconds. The variation in training and testing
times across Operation IceBridge and HOTRAX is largely
influenced by each model’s architectural complexity and the
characteristics of the datasets. ArcticNet exhibits the longest
training durations because its network design is deep, and
more complex due to skip connections, attention blocks, and
recurrent and residual operations used for feature extraction,
requiring heavier computational overhead. By comparison,
UNet uses a more straightforward encoder-decoder structure
with fewer parameters, resulting in significantly faster training.
The varying sizes, resolutions, and complexities of the Oper-
ation IceBridge and HOTRAX datasets also contribute to the
training and testing durations. Larger or more diverse images
can demand more computational resources and time for highly
complex models.

All models underwent evaluation using the test data to
compare their effectiveness and robustness in establishing
meltpond boundaries across various regions within the two
high-resolution Arctic datasets. Table II and Table III present
the evaluation results for UNet, R2UNet, WNet and ArcticNet
on HOTRAX and Operation IceBridge respectively. We also
conducted experiments on ArcticNet without the attention
mechanism (ArcticNet−) to study the impact of the attention
mechanism on the ArcticNet model.

The quantitative comparison of UNet, R2UNet, WNet,
ArcticNet− and ArcticNet on the HOTRAX dataset shows
that ArcticNet achieves the best overall performance, with
the highest F1 score of 0.919, accuracy of 96.39%, precision
of 0.933, recall of 0.903, and mean Intersection over Union
(mIoU) of 0.854. ArcticNet−, which excludes the attention
mechanism, also performs strongly, achieving an F1 score of
0.909, accuracy of 96.01%, and mIoU of 0.838, indicating
the significant contribution of the attention mechanism to
ArcticNet’s final performance. It also emphasizes the impact
of hierarchical, semantically rich feature propagation from
decoders of the first UNet to the corresponding encoders of the
second UNet by scoring the second highest when compared
with WNet, R2UNet and UNet. WNet follows in performance,
with an F1 score of 0.912, accuracy of 95.33%, and an mIoU
of 0.809, demonstrating robust but slightly lower effectiveness.
R2UNet performs moderately well, with an F1 score of 0.889,
accuracy of 95.26%, and an mIoU of 0.808, while UNet
shows the lowest scores, including an F1 score of 0.883 and
an mIoU of 0.798. This comparison highlights ArcticNet’s
superior performance in segmentation tasks.

The performance gain among the models highlights Arctic-
Net’s superiority in segmentation tasks. Compared to UNet,
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Original Image Label UNet R2UNet WNet ArcticNet− ArcticNet

Fig. 6. Segmented outputs on HOTRAX dataset. Left to right: Original image, Ground Truth label, and predicted segmentations by UNet, R2UNet, WNet,
ArcticNet− and ArcticNet.
Legends: Open water, Meltpond, Snow.

ArcticNet shows a significant improvement in mIoU, increas-
ing from 0.798 to 0.854, which represents a 7.0% relative gain.
Similarly, ArcticNet improves over R2UNet and WNet, with
mIoU gains of 5.7% and 5.6%, respectively. The inclusion of
the attention mechanism also provides a notable improvement
over ArcticNet−, with a relative mIoU gain of 1.9

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON OF UNET, R2UNET, WNET,

ARCTICNET− (ARCTICNET WITHOUT ATTENTION MECHANISM) AND
ARCTICNET (WITH ATTENTION MECHANISM) EVALUATED ON HOTRAX

DATASET.

F1 ACC PR RE mIOU
UNet 0.883 94.99% 0.884 0.882 0.798

R2UNet 0.889 95.26% 0.896 0.883 0.808
WNet 0.912 95.33% 0.907 0.876 0.809

ArcticNet− 0.909 96.01% 0.927 0.893 0.838
ArcticNet 0.919 96.39% 0.933 0.903 0.854

The quantitative comparison on the Operation IceBridge
dataset demonstrates that ArcticNet achieves the best perfor-
mance across all metrics. It records the highest F1 score of
0.969, accuracy of 97.85%, precision of 0.983, recall of 0.957,
and mIoU of 0.941. ArcticNet− also performs competitively,
achieving an F1 score of 0.962, accuracy of 97.35%, and
mIoU of 0.928, further illustrating the benefit of the attention
mechanism in enhancing segmentation outcomes. WNet and
R2UNet follow closely, with comparable performance; WNet

achieves an mIoU of 0.918 and R2UNet scores 0.917, both
demonstrating strong segmentation capabilities. UNet shows
the lowest performance, with an F1 score of 0.938 and an
mIoU of 0.885. Overall, ArcticNet’s substantial improvements
in accuracy, precision, and mIoU highlight its effectiveness and
robustness in segmentation tasks on this dataset.

The performance gain on the Operation IceBridge dataset
highlights ArcticNet’s advancements over earlier models.
Compared to UNet, ArcticNet achieves a substantial mIoU im-
provement from 0.885 to 0.941, reflecting a 6.3% relative gain.
It also improves over R2UNet and WNet, with relative mIoU
gains of 2.6% and 2.5%, respectively. Moreover, ArcticNet
shows a 1.4% relative mIoU gain over ArcticNet− reinforcing
the effectiveness of incorporating the attention mechanism into
the architecture. These gains underscore ArcticNet’s superior
performance in accurately and robustly segmenting data in the
Operation IceBridge dataset.

The enhancements acquired in ArcticNet due to attention
gate’s adaptive feature-weighting indication improvements re-
duce noise and emphasize relevant features. Better contextual
understanding is achieved by aggregating contextual informa-
tion from different parts of the input data and improving model
interpretability [63]. In addition, the integration of recurrent
and residual learning contributes to increased robustness and
accuracy.
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Original Image Label UNet R2UNet WNet ArcticNet− ArcticNet

Fig. 7. Segmented outputs on NASA’s Operation IceBridge dataset. Left to right: Original image, Label, and predicted segmentations by UNet, R2UNet,
WNet, ArcticNet− and ArcticNet.
Legends: Meltpond, Snow.

TABLE III
QUANTITATIVE PERFORMANCE COMPARISON OF UNET, R2UNET, WNET,

ARCTICNET− (ARCTICNET WITHOUT ATTENTION MECHANISM) AND
ARCTICNET (WITH ATTENTION MECHANISM) EVALUATED ON OPERATION

ICEBRIDGE DATASET.

F1 ACC PR RE mIOU
UNet 0.938 95.75% 0.969 0.914 0.885

R2UNet 0.956 96.95% 0.978 0.937 0.917
WNet 0.957 96.98% 0.973 0.943 0.918

ArcticNet− 0.962 97.35% 0.976 0.950 0.928
ArcticNet 0.969 97.85% 0.983 0.957 0.941

D. Qualitative Analysis

Qualitative comparison of all the models is available in Fig.
6 and Fig. 7 for HOTRAX and Operation IceBridge datasets,
respectively. The first, second, and the rest of the columns de-
pict the original images, labels and predicted images of UNet,
R2UNet, WNet, ArcticNet− and ArcticNet, respectively. In
Fig. 6, the ground truth labels in rows 1, 3, and 4 exhibit slight
boundary inconsistencies between meltpond, open water, and
snow regions, where textural transitions are gradual rather than
abrupt due to natural scene variability and surface ambiguities.
The minor labeling uncertainties observed in some images are
a consequence of subpixel mixing at these regions. Arctic-
Net’s outputs within these regions align with visually plausi-
ble boundaries within this uncertainty margin, demonstrating
improved sensitivity to subtle surface transitions. ArcticNet
delineates the region boundaries efficiently compared to other
models as shown in row 1 without focusing on the noise.

Here, UNet, R2UNet and WNet misidentifies snow as a water
channel. This indicates that ArcticNet can achieve higher
boundary segmentation. For the qualitative comparison in Fig.
7, our model exhibits better performance in capturing the fine-
grained details of sea ice and open water boundaries. However,
even in the cases of correct predictions, misnomers in ground
truthing will lead to an incorrect evaluation. In essence, ground
truth errors may mislabel correct predictions as “incorrect,”
penalizing the model and reducing its perceived performance.
The metrics defined in Table II and Table III may impede the
model, suggesting poor segmentation results despite the model
functioning at optimized capacity.

E. Cross-Validation

The model trained on the HOTRAX dataset (Sec. IV-B) was
tested on the Operation IceBridge dataset, and the model
trained on Operation IceBridge (Sec. IV-B) dataset was tested
on the HOTRAX dataset. The evaluation focused primarily on
the common classes, snow and meltponds. For consistency,
the three-class model (snow, meltpond and openwater) was
adapted by treating the third class, open water, as background
and was merged with the snow (class 0).

Table IV summarizes the performance of three-class model
trained on HOTRAX dataset and tested with the two-class
Operation IceBridge dataset. Fig. 8 displays the segmented
outputs of three-class model when evaluated on the two-class
dataset.
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Original Image Ground Truth Predicted Output

Fig. 8. Segmented outputs of three-class model trained on HOTRAX dataset
and evaluated on two-class Operation IceBridge Dataset. Left: original image,
center: ground truth, right: predicted output.
Legends: Meltpond, Snow.

Original Image Ground Truth Predicted Output

Fig. 9. Segmented outputs of two-class model trained on Operation IceBridge
dataset and evaluated on three-class HOTRAX dataset. Left: original image,
center: ground truth, right: predicted output.
Legends: Meltpond, Snow.

TABLE IV
QUANTITATIVE PERFORMANCE OF THREE-CLASS MODEL(TRAINED ON
THE HOTRAX DATASET) ON THE TWO-CLASS DATASET(OPERATION

ICEBRIDGE).

Evaluation of three classes
Accuracy 96.51%

mIOU 0.8585

Table V summarizes the performance of the two-class
model when applied to the three-class dataset. Fig. 9 displays
the segmented output of the two-class model trained on the
Operation IceBridge dataset and evaluated on the three-class
HOTRAX dataset.

TABLE V
QUANTITATIVE PERFORMANCE OF TWO-CLASS MODEL(TRAINED ON THE

OPERATION ICEBRIDGE DATASET) ON THE THREE-CLASS DATASET
(HOTRAX).

Evaluation of two classes
Accuracy 96.43%

mIOU 0.9602

F. Joint-Validation

All images from the HOTRAX and Operation IceBridge
datasets were combined together to produce a joint model
trained for both three-class and two-class settings. The training
processes used a total of 180 images for training, 55 images
for validation and 35 images for testing. Since the HOTRAX
images have a resolution of 3042 × 2048 × 3, they were
randomly cropped to match the consistent size of the Operation
IceBridge dataset, 1000 × 1000 × 3. The model successfully
detected the third class, open water, efficiently whenever it

TABLE VI
JOINT VALIDATION OF OPERATION ICEBRIDGE AND HOTRAX DATASET
WHERE THE MODEL IS TRAINED FOR THREE CLASSES AND TWO CLASSES

RESPECTIVELY.

Evaluation of three classes
on three-class model

Evaluation of two classes
on two-class model

Accuracy 97.69% 97.55%
mIOU 0.9019 0.9520

Original Image (HOTRAX) Ground Truth Predicted Output

(a)

Original Image (Operation
IceBridge) Ground Truth Predicted Output

(b)

Fig. 10. Segmented outputs of the model trained for three classes and
evaluated on both (a) HOTRAX and (b) Operation IceBridge dataset. Left:
original image, center: ground truth, right: predicted output.
Legends: Open water, Meltpond, Snow.

Original Image (HOTRAX) Ground Truth Predicted Output

(a)

Original Image (Operation
IceBridge) Ground Truth Predicted Output

(b)

Fig. 11. Segmented outputs of the model trained for two classes and evaluated
on both (a) HOTRAX and (b) Operation IceBridge dataset. Left: original
image, center: ground truth, right: predicted output.
Legends: Meltpond, Snow.

was present in the three-class setting. Table VI summarizes
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the joint validation of the HOTRAX and Operation IceBridge
datasets trained as three classes, as well as two classes to
evaluate the generic model performance.

Figures 10a and 10b represent the segmented output trained
for three classes on both HOTRAX and Operation IceBridge
datasets. Segmented outputs of the model trained for two
classes and evaluated on the HOTRAX and Operation Ice-
Bridge datasets are shown in Figures 11a and 11b. The
third class in the HOTRAX dataset was treated as class 0,
representing the background (snow), so that the model could
focus on common classes, such as meltponds and snow. This
approach simplified the segmentation task and reduced the
impact of less significant classes on the learning of the model.

V. DISCUSSION

(a) Original image (b) Ground truth

(c) ArcticNet (d) WNet

(e) R2UNet (f) UNet

Fig. 12. Detailed observation of segmented regions produced by different
architectures. (a) Original image (b) Ground truth (c) ArcticNet (d) WNet (e)
R2UNet (f) UNet.
Legends: Meltpond, Snow.

In the quantitative analysis, ArcticNet shows superior results
relative to the other models. Qualitative analysis corroborates
this visually by focusing on meltpond boundaries. Figure 12
illustrates noticeable features with sharper and cleaner edges
of meltponds. The black circle draws attention to the specific
shortcomings of UNet, R2UNet and WNet in comparison with
ArcticNet as ArcticNet picks up fine details observable in the
ground truth image such as the thin curved boundary of the
meltpond. Additionally, UNet and R2UNet are prone to true
negative identifications as indicated by the red circles. Due to
blurry or irregular meltpond boundaries, UNet and R2UNet
struggle to sharply separate meltpond from surrounding ice,

especially when transitions are gradual, which leads to incor-
rect non-meltpond labeling near true meltpond edges. Another
point to note is that UNet and R2UNet perform aggressive
downsampling to capture a larger context, potentially causing
the loss of small-scale or thin structures such as narrow
meltpond boundaries that are lost during feature extraction,
causing under-detection of fine meltpond features. They also
mainly use local receptive fields that may misinterpret com-
plex textures or mixed surfaces such as thin ice vs shallow
pond because they cannot model large-scale dependencies
well. The unique challenge in meltpond segmentation is that
meltponds are often thin, elongated and irregularly shaped
with subtle intensity transitions relative to surrounding snow
and ice. This requires a model that can preserve fine-scale
boundary details while maintaining global context awareness
to distinguish between very similar regions, and ArcticNet was
specifically designed to meet these requirements. Meanwhile,
WNet lacks the crisp boundaries associated with ArcticNet due
to oversmoothing. WNet uses multi-branch feature fusion from
deeper feature maps which can lead to over-smoothing during
upsampling and reconstruction because features from different
branches are blended together. Although WNet uses wide
connections to preserve multiscale information, finer, pixel-
level localization may still degrade during decoding. How-
ever, ArcticNet avoids oversmoothing during reconstruction by
maintaining fine and coarse semantically rich details during the
feature propagation from the decoder of the first UNet to the
corresponding encoder of the second UNet resulting in shaper
and cleaner boundaries. Another observation with true nega-
tives is shown by orange and purple circles, reaffirming issues
with true negatives and boundary clarity indicated in the red
circles. While ArcticNet yields superior outcomes compared
to UNet, R2UNet and WNet, including the demonstration of
slightly better detection of smaller meltponds. Thus, attention
mechanisms play major roles in capturing specific details that
non-attention models might overlook, as they can better focus
on global dependencies and detailed boundary information
[63].

A. Impact of Attention Mechanism

The inclusion of the attention mechanism in ArcticNet signifi-
cantly enhances the model’s ability to focus on salient regions
during segmentation, particularly around object boundaries.
By weighting the importance of features, the attention gate
selectively emphasizes regions that are critical for accurate
segmentation, such as the foreground structures, while down-
playing irrelevant background information. This selective fo-
cus allows the network to refine spatial details and improve
boundary delineation, which is especially beneficial in com-
plex or noisy scenes [40], [43]. This is particularly critical in
disguising shallow meltponds from thin ice, which otherwise
be misclassified as meltponds due to similar textures. By
directing the focus of the model toward subtle boundary
cues, the attention module reduces both boundary leakage and
mislabeling of adjacent non-meltpond regions. As a result,
ArcticNet achieves more precise segmentation outputs with
improved foreground-background contrast, demonstrating the
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crucial role of attention in guiding the network’s learning
toward the most informative features.

As such, we speculate that introducing an improved version
of an attention gate may further improve the model’s ability
to generate sharp, clear boundaries that would otherwise have
been missed. ArcticNet also demonstrates consistent improve-
ments across metrics, including the F1 score, accuracy, preci-
sion, and recall, reflecting its robust feature representation and
effectiveness in segmentation tasks. These consistent improve-
ments highlight not only ArcticNet’s architectural advantages
but also its robustness and generalizability to varied snow-
pond-open water patterns.

B. Impact of Skip Connection from Decoder of the first UNet
to the Encoder of the Second UNet

Addition of the skip connection from the decoder of the first
UNet to the encoder of the second UNet as in ArcticNet−

and ArcticNet introduces powerful enhancements to feature
representation and segmentation accuracy. These connections
allow the second UNet to receive semantically rich and
context-aware features early in its encoding path, effectively
initializing it with a higher-level understanding of the input.
This facilitates more accurate and refined segmentation, partic-
ularly along object boundaries or in regions of ambiguity from
the first prediction. This mechanism also improves feature
propagation and gradient stability, mitigating the vanishing
gradient problem seen in deeper stacked models [51]. It also
allows the second UNet architecture to correct errors from
the first stage by integrating both coarse context and fine
details. This layered correction is particularly effective in
refining ambiguous regions, such as partially frozen meltpond
edges. The second UNet also benefits from the prior coarse
segmentation as it integrates both low–level and high–level
cues more effectively [44]. It learns to correct prior errors
due to the availability of residual or corrective features from
enriched input.

C. Limitations and Future Directions

Our analysis does not apply to special situations such
as changes in meltpond extent due to coverage by fresh
snowfall, or unusually high wind events. Fresh snowfall on
ponds can cause temporary bright cover in the sea ice that
removes the RGB contrast in the imagery and hides pond
boundaries, leading to under-segmentation in the meltpond
detection process. This could be mitigated by adding snow-
overlay augmentations and exposure jitters on the captured
data to flag low-confidence outputs [24]. Overnight skim-ice
due to thin refreezing may lead to the formation of thin lids in
the sea ice that could alter texture/brightness and blur region
boundaries in the imagery leading to reduced performance
in the detection process. Focusing on the boundary-aware
losses and training with skim like textures may improve the
detection results in this scenario [64]. Illumination extremes
in the Arctic region may cause strong shadows and glints, and
saturation may lead to the degradation of the boundary quality
in the imagery causing model under-performance. Introducing
photometric normalization [65] in the preprocessing stage and

test-time augmentation in the post-processing may mitigate
this issue [66]. Model performance may be affected by out-
of-distribution scenes due to sensor characteristics, season
changes, and ice-type variations. This could be mitigated
through the application of advanced methodologies for domain
adaptation/expansion [67], [68], self-training [69], [70], and
uncertainty-driven triage [71], [72].

VI. CONCLUSION

We presented a deep CNN network namely, ArcticNet which
is based on the fundamental principles of UNet, R2UNet and
WNet for the localization of meltponds in Arctic seas. The
effectiveness of the model was evaluated with HOTRAX and
Operation IceBridge imagery datasets for pixel-level multi-
class classification and extraction of boundaries of meltponds
on the Arctic sea surface. ArcticNet outperformed other deep
learning architectures (UNet, R2UNet and WNet) due to an in-
creased model capacity. The feature propagation phenomenon
in the proposed model that helped the transmission of high-
level features from the decoding units of the first UNet to the
encoding units of the second UNet in a hierarchical manner
benefited during the segmentation task. Incorporation of the
residual and recurrent operations in the architecture broadened
the scope of segmentation by offering a more comprehensive
view and accumulation of low-level features. Integration of
attention gates in the ArcticNet helped in focusing of target
areas of various shapes and sizes which enhanced its overall
performance and reliability. This addition boosted the model
sensitivity and refined predictions which contributed to a
greater robustness of the network.

The improved segmentation accuracy achieved by Arc-
ticNet, compared to earlier architectures, can significantly
enhance subsequent research on meltpond changes. More
accurate delineation of the boundaries of the meltpond will
lead to more reliable estimates of meltpond area, distribution,
and evolution, which are critical indicators in the Arctic and
the progression of climate change. Enhanced segmentation
reduces the propagation of measurement errors in downstream
analyses, such as modeling surface albedo, predicting ice melt
rates, and forecasting Arctic climate feedback mechanisms.
Furthermore, improved accuracy ensures that even small or
fragmented meltponds are better detected, allowing researchers
to capture early-stage pond formation and subtle morpho-
logical variations that were previously overlooked, and also
support better-informed policy decisions regarding climate
change mitigation. Thus, ArcticNet’s improved performance
is not just a technical advancement, but a crucial enabler for
deeper, more precise environmental insights.
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