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Abstract: A significant waste material threatening sustainability efforts are post-consumer food
packaging goods. These ubiquitous multi-materials comprise chemically disparate components
and are thus challenging targets for recycling. Herein, we undertake a proof-of-principle study in
which we use a single-stage method to convert post-consumer multi-material food packaging (post-
consumer peanut butter jars) to a high compressive strength composite (PB]Sgp). This is accomplished
by thiocracking the ground jar pulp (10 wt. %) with elemental sulfur (90 wt. %) at 320 °C for 2 h.
This is the first application of thiocracking to such mixed-material post-consumer goods. Composite
synthesis proceeded with 100% atom economy, a low E factor of 0.02, and negative global warming
potential of —0.099 kg COye/kg. Furthermore, the compressive strength of PBJSqy (37.7 MPa) is
over twice that required for Portland cement building foundations. The simplicity of composite
synthesis using a lower temperature/shorter heating time than needed for mineral cements, and
exclusive use of waste materials as precursors are ecologically beneficial and represent an important
proof-of-principle approach to using thiocracking as a strategy for upcycling multi-materials to
useful composites.
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1. Introduction

Despite strides in chemical recycling methods for various types of plastics, the quantity
of plastic waste deposited in landfills or incinerated far exceeds the quantity recycled [1,2].
The amount of landfilled plastic waste is projected to grow at an exponentially faster rate
than its recycling and incineration [3-5], and it is already estimated that 91% of plastic
waste is deposited as litter in the environment or landfilled, rather than recycled [6-9].
Plastics exposed to the elements in the environment can shed microplastics, fibers, and
other pollutants into the atmosphere, water systems, and surrounding areas, leading to
detrimental effects on the environment, ecological systems, and human health [10-22].
There is a dire need to ameliorate these detrimental effects by finding improved meth-
ods for chemically recycling various plastics [23—41]. Many single-use packaging items
in circulation today are multi-materials comprised of various plastics, paper, and other
materials, often in multi-layer assemblies fixed together by adhesives that are not easy
to physically separate into their chemically distinct components [42—47]. Familiar exam-
ples include plastic jars or bottles having paper or plastic labels. The separation process
is further complicated in many cases by contamination of packaging components with
unused goods such as food waste in discarded jars and bottles. Mixed-composition waste
thus poses a colossal challenge for chemical recycling, in particular due to the divergent
chemical reactivity of each component. In order to create a quintessential green economy, it
is necessary to design recycling methods that can address various plastics and materials
in a single process. Thiocracking is a promising approach in this regard. Thiocracking is
a general term for the breakdown of organic polymeric materials by heating them in the
presence of elemental sulfur [48-51]. Because elemental sulfur is a byproduct of the oil
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refining process stockpiled at waste sites [52,53], its utilization further contributes posi-
tively to sustainability and environmental remediation goals [54-122]. Thiocracking has
proven effective in chemical recycling/upcycling of a wide range of synthetic plastics
and biopolymers including polyesters [49,123-125], polyacrylics [50], polycarbonates [51],
lignin [126-128], cellulose [129], starch [130,131], and raw lignocellulosic biomass [132,133].
The broad applicability of thiocracking is attributable to the homolytic ring-opening of
sulfur and self-polymerization to form polymeric sulfur diradicals at >159 °C. These radical-
terminated sulfur catenates react with both organic radicals and radical-reactive species
that form when organics are heated, allowing diverse reactivity with a range of functional
groups (Figure 1). Thiocracking is thus an attractive method for the potential single-stage,
one-pot, atom-economic conversion of mixed-material waste streams.
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Figure 1. Heating organics with elemental sulfur facilitates formation of S-C bonds via vulcanization
(a). This can occur in one-pot methods with concomitant transesterification between triglycerides
and cellulose (b) or poly(ethylene terephthalate) (c). The resultant crosslinked composites can have
over twice the compressive strength of ordinary Portland cement (OPC).

The objective of the current study is to demonstrate that thiocracking is a viable method
for upcycling challenging multi-materials that (1) are difficult to physically separate into
their individual components, (2) comprise challenging mixtures of plastic, paper, and food
waste, and (3) are produced in high volume. Post-consumer peanut butter jars meet all of
these criteria. Peanut butter is popular globally, with consumption worldwide projected
to increase by 36% between 2023 and 2028, and over 612 million jars of peanut butter are
already produced annually in the United States alone [134]. Other than removing the lid, it
is difficult to physically separate any of the other components of a post-consumer peanut
butter jar: the induction seal and label are attached with adhesive and residual peanut
butter sticks tenaciously to the sides of the jar, making it a prototypically challenging
multi-material for the current study (Figure 2).

Previous investigations into the preparation of composites via reaction of elemental
sulfur with triglycerides, PET, polysaccharides, or combinations thereof (vide infra) sug-
gested that a more complicated mixture of such chemical components may give similar
high-strength composites. For these reasons, a peanut butter jar was selected as a food
waste container having triglycerides (representative of fat in various food wastes) and cellu-
lose (to represent polysaccharides present in many food wastes), and PET as a high-volume
plastic waste.
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- (39.9 wt. %)

PET Jar Body
55.6 wt. %

e nmjrmoz(u.a_znzm ;
Coated Paper Label (3.79 wt. %)
(b)

Figure 2. Food packaging items are examples of multi-materials posing challenges for chemical
recycling. A post-consumer peanut butter jar (a), for example, is made up of a polypropylene lid,
a poly(ethylene terephthalate) (PET) jar body, a coated paper label, an induction seal (aluminum
foil, wax, adhesive and pulpboard), and residual peanut butter (primarily triglycerides). Of the
components (b), only the lid is easy to physically separate from the other components.

Herein, we report the thiocracking of a post-consumer peanut butter jar material with
elemental sulfur to yield the composite PBJSq, which has 2.2 times the compressive strength
required for residential building foundations. Composite PBJSyg is prepared entirely from
waste materials with 100% atom economy, a remarkably low E factor [135] of 0.02, and a
negative global warming potential of —0.099 kg CO,e/kg.

2. Materials and Methods
2.1. Instrumentation and Calculations

Proton NMR spectra were acquired on a Bruker NEO-300 MHz (Bruker, Billerica,
MA, USA) at room temperature and data processed with MestReNova x64-14.3-30573
software. All spectra reported were calibrated to the residual solvent peak from deuterated
chloroform. Fourier transform infrared spectra were obtained using a Shimadzu IR Affinity-
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1S (Shimadzu Corporation, Columbia, MD, USA) instrument with an ATR attachment
operating over 400-4000 cm™ at ambient temperature. UV-Vis data were collected on an
Agilent Technologies Cary 60 UV-Vis (Agilent Technologies, Inc., Santa Clara, CA, USA)
using Simple Reads software (Cary WinUV Scan Application Version 5.1.0.1016). SEM and
EDX were acquired on a Schottky Field Emission Scanning Electron Microscope SU5000
(Hitachi High-Tech, Tokyo, Japan) operating in variable pressure mode with an accelerating
voltage of 15 keV.

Thermogravimetric analysis (TGA) data were recorded on a TA SDT Q600 (TA In-
struments, New Castle, DE, USA) instrument over the range 25 to 800 °C, with a heating
rate of 10 °C-min! under a flow of N, (20 mL min™!). DSC data were acquired (Mettler
Toledo DSC 3 STARe System, Mettler Toledo, Columbus, OH, USA) over the range —60
to 140 °C with a heating rate of 10 °C-min~! under a flow of N, (200 mL-min!). Each
DSC measurement was carried out over three heat—cool cycles. For percentage crystallinity
calculations, T, AHpy and AH, the data were taken from the third heat/cool cycles.
Melting enthalpies and cold crystallization enthalpies were calculated using DSC data. The
reduction in the percentage crystallinity of the composite PBJSgy with respect to sulfur was
calculated using the following equation.

AH — AH
AXC —1— m(PB]Sg) cc(PBJSgo) % 100%
AH,, sy — AH(s)

where the variables are defined as follows:

Ax. Change in percentage crystallinity with respect to sulfur
AH,,(ppjsy,) Melting enthalpy of composite materials (PBJSqo)

AH_c(ppjsy,) Cold crystallization enthalpy of composite materials
AH,,s) Melting enthalpy of sulfur
AH,(s) Cold crystallization enthalpy of sulfur

Compressive strength analysis was performed on a Mark-10 ES30 (Mark-10 Corpora-
tion, Copiague, NY, USA) test stand equipped with a M3-200 force gauge (1 kN maximum
force with 1 N resolution) with an applied force rate of 3-4 N-s~!. Compression cylinders
were cast from silicone resin molds (Smooth-On Oomoo® 25 tin-cure, Oomoo Corp, Rich-
mond, BC, Canada) with diameters of approximately 6 mm and heights of approximately
10 mm. Samples were manually sanded to ensure uniform dimensions and measured
with a digital caliper with +0.01 mm resolution. Compressional analysis was performed
in triplicate, and the results were averaged. Flexural strength analysis was performed
using a Mettler Toledo DMA 1 STARe System (Mettler Toledo, Columbus, OH, USA) in
single cantilever mode. The samples were cast from silicone resin molds (Smooth-On
Oomoo® 25 tin-curve, Oomoo Corp, Richmond, BC, Canada). The sample dimensions were
approximately 1.5 mm x 15 mm x 23 mm. Flexural analysis was performed in triplicate
and the results were averaged. The clamping force was 1 cN-m.

2.2. Preparation of Jar for Thiocracking

Whereas the jar (without the lid) eventually used for thiocracking was ground without
separating the components, another identical jar was first analyzed to assess its components
and their contribution to the jar. A post-consumer peanut butter jar was thus physically
deconstructed and the peanut butter residue was recovered from the jar by rinsing with
hexanes followed by removal of hexanes by rotary evaporation under reduced pressure.
The mass of each component was recorded to allow calculation of each component’s
contribution to the overall mass (Table 1). Each individual component was analyzed
by FTIR spectroscopy (Supplementary Materials Figures 54-59), TGA (Supplementary
Materials Figures 514-517), and DSC (Supplementary Materials Figures S19-522). An
identical post-consumer jar of peanut butter was taken without the lid as the organic
component for use in the thiocracking process. The difference in mass between the two
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identical jars was assumed to be the difference in peanut butter residue remaining in the
jar. The jar for thiocracking was placed in a blender and processed for several minutes
to produce a coarse aggregate. The mixture was then added in small batches to a coffee
grinder to produce the fine aggregate (PBJ) used as the organic component in thiocracking.

Table 1. Mass breakdown of each component of PBJ and the primary constituents of each component.

Component Mass % of Upcycled Mass Primary Chemical Components

Jar Without Lid 38.800 g 100% Muti-Material (breakdown below)
Induction Seal 0.265¢g 0.68% Aluminum, cellulose, wax, polymer(s)
Adhesive 0.020g 0.05% Acrylic/rubber polymer(s)

Label 1473 g 3.79% Cellulose

Residual Peanut Butter 15482 ¢ 39.9% Triglycerides

Jar Body 21.560 g 55.6% Poly(ethylene terephthalate)

2.3. Synthesis

CAUTION: Heating elemental sulfur with organics can result in the formation of H,S
or other gases. Such gases can be toxic, foul-smelling, and corrosive. The temperature must
be carefully controlled to prevent thermal spikes, contributing to the potential for H,S or
other gas evolution. Rapid stirring shortened heating times, and very slow addition of
reagents can help avoid unforeseen temperature spikes.

2.3.1. Preparation of PBJSq

To a Parr bomb reactor were added 13.5 g (0.053 mol) elemental sulfur and 1.50 g
PB]J. The reactor was heated to 320 °C and allowed to run for 2 h before cooling to room
temperature and the composite was removed from the reactor, giving the composite as
a black matte solid in quantitative yield. Upon completion of this reaction, no mass was
observed, indicating this reaction proceeded with 100% atom economy. Two batches of
PBJSgy were prepared and metrics were identical within statistical error.

2.3.2. Heating of PBJ in the Absence of Sulfur to Give hPBJ

In a glovebox under an atmosphere of dry N»(g) was added approximately 5 g of PB]
to the Parr bomb reactor. The reactor was heated to 320 °C for 2 h before cooling to room
temperature to yield 3.10 g of hPBJ as a non-remeltable, heterogeneous solid comprising a
mixture of light- and dark-colored particles.

2.3.3. Depolymerization of PBJSgg

In a glovebox under an atmosphere of dry N»(g) was added 100 mg PBJSqy and 175 mg
LiAlH, to a glass vial equipped with a magnetic stir bar. The solid mixture was suspended
in 7 mL anhydrous toluene and sealed with a rubber septum. The reaction was stirred for
24 h at room temperature. At the conclusion of the reaction time, the reaction vessel was
removed from the glovebox and placed in an ice bath under a flow of N, gas. The reaction
was slowly quenched with 5% (v/v) HCl:ethanol until no more evolution of hydrogen
gas was observed. The solution was washed with HCl(aq) (pH = 5) three times. The
organic layer was separated, and the solvent removed by rotary evaporation under reduced
pressure, yielding 23 mg of the yellow solid d-PBJSgy.

2.4. Determination of Dark Sulfur Content

To determine the dark sulfur content, a modified literature method for quantification
by UV-vis spectroscopy in ethyl acetate was employed [136]. To a 250 mL volumetric flask
was added 6.7 mg PBJSqy (weighed with a microbalance) and approximately 230 mL ethyl
acetate. The mixture was allowed to stir for 30 min after which the solution was made up
to the mark of 250 mL with ethyl acetate. A 3 mL aliquot of this solution was transferred
to a cuvette and 3 mL pure ethyl acetate was transferred to a separate cuvette to serve
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as a blank. Data were collected at 275 nm and the dark sulfur content calculated from
a calibration curve having the equation y = 36.124x + 0.012 (R? = 0.9967), where y is the
absorbance and x is the concentration of sulfur in mg/mL.

2.5. Mechanical Strength Analysis

Cylinders with diameters of approximately 6 mm and heights of approximately 10 mm,
appropriate for compressive strength measurements, were prepared by melting the compos-
ite at 160 °C, then slowly and carefully poured into molds and allowed to solidify. Samples
were stored at room temperature for 4 d prior to strength measurements. The samples were
sanded to remove flack and measured with a digital caliper with a £0.01 mm resolution.

3. Results and Discussion
3.1. Design and Preliminary Analysis of Multi-Material

In this study, the overarching goal was to assess the extent to which a simple, single-
stage thiocracking process could be applied to a representative post-consumer mixed waste
packaging item comprising waste plastic, paper, adhesives/seals and food waste. As a
test item for this proof-of-principle study, a post-consumer jar (total weight = 47.247 g)
that when purchased by the consumer was filled with peanut butter was selected. The jar
contained residual peanut butter waste that had been left by the consumer. All components
were adhered to the main jar body other than the lid, which was physically removed and
was not used for the subsequent steps of the study. Although an entire jar (without the
lid) was used for the thiocracking procedure, another identical jar was separated so that its
individual components could be analyzed and the percentage composition by mass of each
component quantified (Table 1).

The jar had contained 510 g of peanut butter when purchased, and the post-consumer
jar contained 15.482 g of residual peanut butter (3.0% of purchased product). The resid-
ual peanut butter, primarily composed of triglycerides, and the jar body, composed of
poly(ethylene terephthalate) (PET), were determined to be the two majority components
(>95 wt. % of thiocracked organics) of the jar. The minority components (<5 wt. % of
thiocracked organic mass) were the label (primarily cellulose), the induction seal (alu-
minum foil, wax, polymer coating, and pulp board), and the adhesive (acrylic and rubber
polymers), collectively accounting for <5% of the thiocracked mass. Preliminary analysis of
each component of the jar was carried out using infrared spectroscopy, thermogravimetric
analysis, differential scanning calorimetry, and, for soluble components, proton nuclear
magnetic resonance ('H NMR) spectrometry. These analyses further validate the identity of
each component and provide points of comparison for the derivative composite discussed
below. The data for each component from each of these techniques are provided in the
Supplementary Materials File as Figures S1, 54-59, S14-517 and S19-522.

Olefins found in the peanut butter residue triglycerides are expected to undergo
inverse vulcanization (addition of sulfur across C-C 7t bonds, as shown in Figure 1a) during
thiocracking [93,137-141]. The total olefin content contributed by the residue was thus
quantified by 'H NMR spectrometry with 2,3,4,5,6-pentafluorobenzaldehyde added as
an internal standard (Figure S2). Calculations based on the ratio of integration of the
alkene region (4.5-5.5 ppm) versus the aldehydic proton resonance on the internal standard
(10.3 ppm) indicated an olefin content of 4.3 mmol-g™! for the peanut butter residue alone
and an olefin content of 1.7 mmol-g™! for the jar used in thiocracking.

3.2. Reactivity of Individual Components with Elemental Sulfur

We have undertaken several studies to understand the reactivity of the primary indi-
vidual jar components with elemental sulfur under thiocracking conditions. Triglycerides,
the primary constituent of the peanut butter residue, undergo inverse vulcanization to
give composites as previously reported (Figure 1a) [142]. At the temperatures used for
thiocracking, triglycerides also undergo transesterification reactions with both PET [125]
and cellulose (the primary constituent of paper) [132,133]. In the case of PET, this trans-
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(b)

esterification was demonstrated to lead to its depolymerization into oligomers of fatty
acid-functionalized terephthalate derivatives [125]. Cellulose derivatized with olefins,
as by transesterification with triglycerides in the current case, also reacts with sulfur to
give composites formed via crosslinking of olefins by sulfur [130,143]. Analogous tandem
depolymerization/transesterification/vulcanization of the mixed-material jar components
in the current case is likewise responsible for forming homogeneous composites comprising
structures shown in Figure 1b,c.

3.3. Thiocracking and Chemical Analysis of Composite PB]Sqg

The post-consumer peanut butter jar without the polypropylene lid was converted
into a mixture by coarse grinding in an industrial blender followed by comminution in
a coffee grinder to give the finely ground pulp (PBJ, Figure 3a) used in the thiocracking
process. Composite PBJSgg was then prepared by heating PBJ (10 wt. %) with elemental
sulfur (90 wt. %) at 320 °C in a stainless-steel autoclave for 2 h (Figure 3b). This process
yielded a black, glassy material of low viscosity which remained shiny once cooled, that
was readily shaped by pouring the molten material into a silicone mold and allowing it to
cool to room temperature (Figure 3b). In contrast, when ground PBJ is heated under the
same conditions, the product is a brittle, heterogeneous solid comprising a mixture of light-
and dark-colored particles. This solid is not remeltable and cannot readily be shaped.

PBJ

"5::1‘.."
AR
+ & i !:;};:\’ .‘:.‘4 X —
Sulfur PBJS,,

[T r——]

100um 100pm

Figure 3. Breakdown of post-consumer jar (a) for use in thiocracking to give black composite PB]Sg
(b). Imaging (c) of PBJSgg by scanning electron microscopy (SEM, gray image) with elemental
mapping by energy dispersive X-ray analysis (EDX) where carbon is shown in green, oxygen in blue,
and sulfur in red.

High sulfur-content materials (HSMs) can be depolymerized by their reaction with
LiAIHy4, which leads to breakage of S-S bonds and consequent conversion of the S—C
crosslink points to thiols. PBJSgg was depolymerized in this way to give d-PB]Sgg. Be-
cause only a single thiol sulfur remains in d-PBJSgy where each polysulfur crosslinking
chain (-Sx— in Figure 1) had been in PBJ]Sgy, the majority of the 90 wt. % sulfur is re-
moved, thus improving the spectroscopic signal-to-noise ratio for characterization of
organics in the material, as was readily demonstrated by IR spectra for PB]Sqy and d-PBJSgg
(Figures S3, S11 and S13 in Supplementary Materials). Infrared spectra for PBJSgy and
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d-PBJSqy showed evidence of the anticipated S-C bond formation by a broad S-C stretch at
728 cm™! in PBJSgy and d-PBJSyg. Further evidence of microscale homogeneity was obtained
by imaging a film of PBJSgg by scanning electron microscopy with elemental mapping by
energy dispersive X-ray (SEM/EDX). These images showed an even distribution of carbon,
oxygen, and sulfur throughout the material, and no evidence of gross phase separation
throughout the surface of the material on a 100 um scale (Figure 3c).

Although no distinct small molecules were identified from the complex mixture
resulting from the thiocracking of the mixed waste in the current study, several prior
studies were undertaken to understand the chemistry of the components under these
reaction conditions. For example, we have previously reported detailed studies on the
reactions of elemental sulfur with (1) triglycerides [142,144], (2) polysaccharides (cellulose
and starch) [129,131], (3) lignocellulosic biomass [132,133], (4) mixtures of peanut oil with
polysaccharides (starch or cellulose) [145], and (5) PET with triglycerides [123,125]. These
studies revealed that (1) triglycerides undergo transesterification with polysaccharides and
PET, (2) sulfur adds across the pi bonds in triglyceride-derived olefins. All three classes of
components—triglycerides, polysaccharides, and PET—are present in the organic monomer
feed for PBJS90, leading to the formulation of the chemical structure as shown in Figure 4.

%,
Sx PET
2 9 PET
HO ory : -
mo n 0~0 H,Cx~ triglyceride 0
cellulose 0 o) A O~"o
o) n S/S s, © O,
X
¢ PBJSy, O
H,Cx S,
triglyceride

Figure 4. Representative structural features of PB]JSgy derived from the primary jar components of
cellulose, triglycerides, and PET.

The sulfur in composites like PBJSqg is usually present as crosslinking polysulfur
catenates (—Sx— in Figure 1) that are covalently attached to the organic molecules and some
physically entrapped oligosulfur species known as “dark sulfur” [146]. The presence of
larger quantities of dark sulfur generally leads to poorer mechanical strength in high sulfur
content composites. To further validate the chemical composition of PBJSq, the amount of
dark sulfur in PBJSgy was quantified by UV-Vis spectroscopy by the published method [136].
This analysis revealed a dark sulfur content of only 14 wt. % in PBJSgg. Despite the high
PET content in PBJSy, its dark sulfur content is more similar to sulfur composites made
from triglyceride mixtures (e.g., CanBGgy made from 90 wt. % sulfur, 5 wt. % brown grease
and 5 wt. % canola oil, and having 14% dark sulfur content) [144] than to composites made
from PET and sulfur, for example the 82% dark sulfur content in SPG (90 wt. % sulfur
with 10 wt. % geraniol /PET derivative) [49] or 88% dark sulfur content in mPES (90 wt. %
sulfur with 10 wt. % oleyl-derivatized PET) [123]. The low dark sulfur content in PBJSq
predictably trends with its high compressive strength, as discussed in the following section.

3.4. Thermal and Mechanical Properties

Thermogravimetric analysis (TGA and DTGA, Table 2 and Figures 514-518 in the
Supplementary Materials) showed a single T4 (here defined as the temperature at which 5%
mass loss is observed) at 218 °C in PBJSgg. This value is slightly lower than the T4 observed
for cyclo-Sg (229 °C) and is attributable to sublimation of sulfur—from both dark sulfur
and decomposing polysulfur crosslinking chains—out of the material. TGA thermograms
for PBJ] components (Figures S14-518 in the Supplementary Materials) revealed higher
T4 values than that observed in PBJSgy. No additional thermal features attributable to
unreacted individual jar components (PET, cellulose, etc.) were observable, providing



Sustainability 2024, 16, 7023

90of 18

further evidence of the established transesterification/vulcanization pathways expected for
the triglyceride, cellulose, and PET components comprising >99% of the organic content of
PBJSqg (Figure 1).

Table 2. Thermal and morphological properties of mixed composition waste and sulfur composite
PBJSg with comparison to elemental sulfur.

Material

T, 12l Tpn

[b] T, ld Cold Crystal. AH,, AH,, Percent Dark Sulfur

°C °C °C Peaks/°C )ig )ig Crystallinity 4! (%) !

PBJSqg
Sg

218 117 NA 36 27 -5 29 14
229 118 NA NA 44.8 NA 100 0

[l The temperature at which the 5% mass loss was observed. ! The temperature at the peak maximum of
the endothermic melting from the third heating cycle. ! Glass transition temperature. 4 The reduction in
percentage crystallinity of each sample was calculated with respect to sulfur (normalized to 100%). [e] Percentage
of extractable sulfur calculated from UV-vis data according to a modified literature procedure [136].

Thermomorphological changes in the composite PB]Sqy were also evaluated by differ-
ential scanning calorimetry (DSC, Table 2 and Figures S19-523). DSC thermograms also
showed a cold crystallization peak at 36 °C and a melting feature at 117 °C for PBJ]Syy.
The percentage crystallinity calculated from melting and cold crystallization enthalpies
of PBJSgy was determined to be 29%, indicating there are some crystalline regions present
but that the material is primarily composed of amorphous materials, consistent with the
presence of amorphous —Sx— crosslinking chains.

Cylinders for compressive strength analysis were prepared by melting PBJSg at 180 °C
and pouring the material into molds. Samples were allowed to sit for 96 h prior to testing,
following the convention for high sulfur-content materials with 90 wt. % sulfur content for
compressive strength analysis [129]. The compressive strength of PBJSgg was found to be
37.7 & 2.9 MPa (Table 3, Figure S25, stress strain plots in Figure S24 of the Supplementary
Materials), over 200% stronger than that required of OPC for use in residential building
foundations. PBJSgy exhibits exceptional compressive strengths, exceeding that of other
high sulfur-content materials comprised of similar materials such as APSos (35.7 MPa), SPG
(23.1 MPa), and mPES (26.9 MPa). PBJSyg also exceeds the mechanical properties of other
cement materials containing plastics or plastic aggregates (Table 3).

Table 3. Mechanical properties of PBJSgg compared to other high sulfur-content materials, materials
containing recycled plastics, and commercially available building materials.

Sample

Compressive After Acid

Strength

Retained Compressive Flexural Flexural

Strength (MPa) (MPa) Modulus Strength (MPa) Modulus

(%)

PBJSgg
APSg5 [2]
SPG [kl
mPES [
Brick 1 [d]
Brick 2 [e]
Brick 3 [f]
C62 Brick [8]
OPC

37.7£29 354 £45 94% 74 +5 5.64 £0.32 631 +20.8

35.7
23.1
26.9
11.2
16.4
9.0
8.6
17

ND [hl ND ND 4.8 690
ND ND ND 47 ND
ND ND ND 7.7 ND
ND ND ND ND ND
ND ND ND 2.75 ND
ND ND ND ND ND
ND ND ND ND ND
ND ND ND 3.7 580

[al Composite of allylated peanut shells (5 wt. %) and sulfur (95 wt. %) [132] ] Composite of PET (5 wt. %),
geraniol (5 wt. %), sulfur (90 wt. %) [49] G Composite of glycolyzed PET (10 wt. %) and sulfur (90 wt. %) [123]
[d] Brick with HDPE from physical recycling via melting and compression [147] lel Brick with 85% fine PVC
aggregate in cement [148] fl Brick of OPC with 10% mixed plastic waste aggregate, cement optimized [149] (8 Brick
classification C62 for building brick with negligible weathering. " ND = not determined in the reported paper.
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Whereas mineral-based legacy building materials show significant degradation upon
exposure to acidic conditions, previous studies on high sulfur-content materials demon-
strate that they often show impressive resistance to corrosion by acids. To investigate
the corrosion resistance of PBJSqp, its compressive strength was remeasured following
submersion in 0.5 M HySO4 for 24 h. After this acid challenge, the compressive strength
was determined to be 35.4 & 4.5 MPa, indicating that PBJSq, retained 94% of its strength
under conditions that will completely dissolve OPC. PBJSyg also displays an exceptionally
low 0.14% uptake of water following 24 h of submersion (cf. 28% for OPC) [129]. Low
water uptake is another important metric for weathering resistance, as seasonal freezing
and thawing cause expansion—contraction cycling of absorbed water that leads to a crack
formation and is a primary mechanism for OPC failure in temperate climates [150].

The flexural strength of PBJSqy was determined through dynamic mechanical analysis
in a single cantilever mode. Rectangular prisms were prepared by pouring material into
a mold and subsequent manual sanding to a thickness of 1.4 mm. PBJSgg was found to
have a flexural strength of 5.64 &+ 0.32 MPa, and a flexural modulus of 631 + 20.8. This
falls within the range of other high sulfur-content materials (Table 3), and exceeds that of
average flexural strength values observed by OPC.

3.5. Environmental and Sustainability Impact Analysis

If the goal is to replace OPC with PBJSg,, some assessment of the environmental impact
of the two materials will be insightful. The E factor [135] is a common metric for estimating
the relative environmental impact of a material in which the focus is on the amount of
waste produced versus the amount of useful product obtained. The E factor is equal to
the mass of waste produced divided by the mass of useful product produced, such that a
lower E factor indicates lower relative waste generation. The E factors for commercial bulk
chemicals range from <1 to over 50 [151,152]. If we consider the inputs to making PBJSgg to
be sulfur and the jar with its lid, we calculate the E factor (using masses for one whole jar
with the lid as delineated in Table 1) as:

waste _ lid _ 8.45¢g —0.02
useful product — (lidless jar +sulfur)  (388g+349g)

E factor =

The E factor for PBJSq is nearly two orders of magnitude lower than that of OPC
(1.4) [151]. The conversion of the lidless jar and sulfur to PB]Sgy proceeds with 100% atom
economy (no lost mass within error), so the only waste of the process is the lid. Since the
lid was already discarded as waste by the consumer of the peanut butter, the net waste to
the environment is approximately zero.

A potential shortcoming of the E factor and atom economy metrics is that they focus on
the mass/atom balance and do not account for energy consumption or net carbon dioxide
emission. For this purpose, it is instructive to determine the global warming potential, an
estimate of kilograms of CO, emitted per kilogram of useful material made (kg COe/kg).
In the current case, a low global warming potential of —0.099 kg CO,e/kg was calculated
for PBJSqp, making its preparation slightly carbon-offsetting (estimates, assumptions, and
inputs for these calculations are provided in the Supplementary Materials). This compares
to a much higher value of 1.0 kg CO,e/kg for OPC. Not only is the global warming po-
tential of OPC quite high, but OPC is also the most-produced synthetic good by mass,
such that its manufacture is responsible for ~8% of all anthropogenic CO, production,
similar to or exceeding the amount produced by noncommercial automobile transporta-
tion [153-157]. These data emphasize the need for waste-derived cements or geopolymer
cements [158-160] to replace OPC as elements of the built environment as a significant
measure against runaway CO, production in the future.

The work described herein contributes positively to achieving several United Nations
Sustainable Development Goals (SDGs). The work described herein advances SDG 12:
Responsible Consumption and Production by demonstrating a single-stage method for con-
verting complex, multi-material post-consumer packaging into high-strength composites,
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thereby potentially reducing waste and promoting more sustainable material lifecycles.
The resultant composites have a negative global warming potential so if these composites
could be used as alternatives to traditional building materials, this would contribute to
reduced carbon emissions, directly supporting SDG 13: Climate Action. The utilization
of waste-derived inputs underscores the relevance to SDG 9: Industry, Innovation, and
Infrastructure. Furthermore, the ecological benefits, including the reduction in microplastic
pollution, align with SDG 14: Life Below Water and SDG 15: Life on Land. New technolo-
gies come with their own challenges, and the environmental impact of the composites will
need to be thoroughly explored before their widespread use, but this proof-of-concept
study holds promise for a more sustainable future.

4. Conclusions

With the quantity of single-use packaging components being deposited into landfills
rising exponentially faster than recycling, it is crucial to develop versatile methods to
address the challenges currently present in recycling mixed-composition waste. The proof-
of-principle study reported herein demonstrates the first utility of thiocracking for recycling
consumer waste products of mixed composition through its reaction with fossil fuel refining
byproduct sulfur. The resulting composite, PB]Sq), was prepared with a low E factor,
100% atom economy, and a negative global warming potential of —0.099 kg CO,e/kg.
The composite showed a compressive strength greater than 200% of that required for
building foundations and flexural strengths also exceeding that of ordinary Portland
cement, a material with a high global warming potential of 1.0 kg CO,e/kg. The process
and materials described herein may support UN SDGs 9 and 12-15 in humanity’s quest
for a more sustainable future. The attractive properties of PBJSgg suggest its potential as a
greener alternative to legacy mineral-based structural materials, pending, of course, results
of long-term environmental impact and weathering studies. Nonetheless, this proof-of-
principle study holds promise for the use of thiocracking to effectively recycle mixed waste
comprised of various plastics, food remnants, greases, cellulose-based materials, and other
contaminants to durable structural goods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su16167023/s1, Figure S1. Proton NMR spectrum (300 MHz, CDCl3)
of adhesive holding the label to the jar. Figure S2. Proton NMR spectrum (300 MHz, CDCl3) of peanut
butter residue with 2,3,4,5,6-pentafluorobenzaldehyde (exhibiting a single resonance at 10.29 ppm)
added as internal standard. Figure S3. FT-IR spectra for PBJSg (black trace) and d—PBJSq (gray trace)
emphasizing the S-C stretch at 728 cm™'. The Full IR spectrum for these as well each individual jar
component are provided in Figures S4-513. Figure S4. Full IR spectrum of peanut butter jar over
a range of 4000 to 600 cm™!. The feature observed between 1900 and 2400 cm™" is an artifact of the
ATR attachment. Figure S5. Full IR spectrum of lid removed from the peanut butter jar over a range
of 4000 to 600 cm™. The feature observed between 1900 and 2400 cm™ is an artifact of the ATR
attachment. Figure S6. Full IR spectrum of the inside of the label removed from peanut butter jar
over a range of 4000 to 600 cm™!. The feature observed between 1900 and 2400 cm™ is an artifact of
the ATR attachment. Figure S7. Full IR spectrum of the outside of the label removed from peanut
butter jar over a range of 4000 to 600 cm™. The feature observed between 1900 and 2400 cm™! is
an artifact of the ATR attachment. Figure S8. Full IR spectrum of paper side of the induction seal
removed from peanut butter jar over a range of 4000 to 600 cm™!. The feature observed between
1900 and 2400 cm™ is an artifact of the ATR attachment. Figure S9. Full IR spectrum of the foil
side of the induction seal removed from peanut butter jar over a range of 4000 to 600 cm™!. The
feature observed between 1900 and 2400 cm™! is an artifact of the ATR attachment. Figure S10. Full
IR spectrum of PBJSg over a range of 4000 to 600 cmL. The feature observed between 1900 and
2400 cm™ is an artifact of the ATR attachment. Figure S11. Full IR spectrum of the insoluble fraction
of PBJSq( over a range of 4000 to 600 cm™L. The feature observed between 1900 and 2400 cm™ is an
artifact of the ATR attachment. Figure S12. Full IR spectrum of hPBJ over a range of 4000 to 600 em™L.
The feature observed between 1900 and 2400 cm™! is an artifact of the ATR attachment. Figure S13.
Full IR spectrum of d-PBJSgg over a range of 4000 to 600 cm™!. The feature observed between 1900
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and 2400 cm™ is an artifact of the ATR attachment. Figure S14. Mass loss curve and DTGA from
thermogravimetric analysis for the PET jar body over the range 25-800 °C. Figure S15. Mass loss
curve and DTGA from thermogravimetric analysis for the lid over the range 25-800 °C. Figure S16.
Mass loss curve and DTGA from thermogravimetric analysis for the label over the range 25-800 °C.
Figure S517. Mass loss curve and DTGA from thermogravimetric analysis for the induction seal over
the range 25-800 °C. Figure S18. Mass loss curve and DTGA from thermogravimetric analysis for
PBJSgg over the range 25-800 °C. Figure S19. Thermogram from differential scanning calorimetry
(endothermic down) for the PET jar body over the range —60-140 °C. Figure S20. Thermogram
from differential scanning calorimetry (endothermic down) for the lid over the range —60-140 °C.
Figure S21. Thermogram from differential scanning calorimetry (endothermic down) for the label over
the range —60-140 °C. Figure S22. Thermogram from differential scanning calorimetry (endothermic
down) for the induction seal over the range —60-140 °C. Figure 523. Thermogram from differential
scanning calorimetry (endothermic down) for PB]JSgy over the range —60-140 °C. Figure S24. Stress—
strain plots for measurements of the compressive strength of PBJSgq as prepared (top, 37.7 & 2.9 MPa)
and after acid challenge (bottom, 35.4 £ 4.5MPa). Figure 525. Compressive strength for PBJSg, before
and after acid exposure compared to bricks incorporating recycled plastic (Bricks 1-3), commercial
building brick of classification C62, OPC, and other high sulfur content materials. Materials APSgs,
SPG, mPES, and Bricks 1-3 are as defined in the footnote in Table 3. Figure S26. Stress—strain
curve of PB]Sgy determined during flexural strength testing. The orange dotted line represents the
propagations of the linear regions of the stress—strain curve used to determine the flexural modulus.
References [161-170] are citied in the Supplementary Materials.
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