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The spacetime Penrose inequality for

cohomogeneity one initial data

Marcus Khuri and Hari Kunduri

We prove the spacetime Penrose inequality for asymptotically flat
2(n+ 1)-dimensional initial data sets for the Einstein equations,
which are invariant under a cohomogeneity one action of SU(n+
1). Analogous results are obtained for asymptotically hyperbolic
initial data that arise as spatial hypersurfaces in asymptotically
Anti de-Sitter spacetimes. More precisely, it is shown that with
the dominant energy condition, the total mass is bounded below
by an explicit function of the outermost apparent horizon area.
Furthermore, the inequality is saturated if and only if the initial
data isometrically embed into a Schwarzschild(-AdS) spacetime.
This generalizes the only previously known case of the conjectured
spacetime Penrose inequality, established under the assumption of
spherical symmetry. Additionally, in the time symmetric case, we
observe that the inequality holds for 4(n+ 1)-dimensional and 16-
dimensional initial data invariant under cohomogeneity one actions
of Sp(n+ 1) and Spin(9), respectively, thus treating the inequality
for all cohomogeneity one actions in this regime.
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1. Introduction

In an effort to find a counterexample to the weak cosmic censorship conjec-

ture [37], Penrose put forward a precise inequality [38] relating the ADM

mass m of an asymptotically flat 4-dimensional spacetime to any cross-

sectional area Ae of the event horizons it contains, in the form

(1) m ≥
√

Ae

16π
.

It is typical to reformulate this inequality in the setting of initial data sets.

Consider a triple (Md, g, k) consisting of a d-dimensional connected and

orientable manifold Md with boundary, a complete Riemannian metric g,

and a symmetric 2-tensor k denoting the extrinsic curvature of an embedding

into spacetime, with all objects being smooth. These quantities must satisfy

the constraint equations

(2) 16πµ = R+ (Trgk)
2 − |k|2g, 8πJ = divg (k − (Trgk)g) ,

where R is scalar curvature, and µ, J represent the energy-momentum den-

sity of matter fields. We will say that the dominant energy condition is satis-

fied if µ ≥ |J |g. Moreover, the data will be referred to as asymptotically flat

if outside a compact set C there is a diffeomorphism φ :Md \ C → Rd \B1,

such that in the Caretesian coordinates x provided by this map

(3)
φ∗g − δ = O2(|x|−τ ), φ∗k = O1(|x|−τ−1),

µ, J = O(|x|−2τ−2), Trgk = O1(|x|−2τ−1),

for some τ > d−2
2 . The additional decay on the trace of k is usually not

included in the definition of asymptotically flatness, but will be useful when

working with the generalized Jang equation below. With these asymptotics



The spacetime Penrose inequality 1907

the ADM energy and linear momentum are well-defined [5, 16] and given by

(4)

E=
1

2(d− 1)ωd−1
lim
r→∞

ˆ

Sr

(gij,i − gii,j)ν
jdV,

Pi=
1

(d− 1)ωd−1
lim
r→∞

ˆ

Sr

(kij − (Trgk)gij)ν
jdV,

where Sr are coordinate spheres with unit outer normal ν and ωd−1 is the

volume of the unit (d− 1)-sphere. The ADM mass is then the Lorentz length

of the energy-momentum vector, m =
√

E2 − |P |2.
The role of the event horizon is replaced by that of an apparent horizon,

which may be computed directly from the initial data. Recall that the grav-

itational field’s strength near a hypersurface Σ ⊂Md may be probed by the

null expansions (null mean curvatures)

(5) θ± = HΣ ± TrΣk,

where HΣ denotes the mean curvature with respect to the normal pointing

towards infinity. These give the rate of change for area of a shell of light

emanating from the surface in the outward future/past direction (+/−).

Future or past trapped surfaces are defined by the inequalities θ+ < 0 or

θ− < 0, respectively, and may be interpreted as lying within a region of

strong gravity. When θ+ = 0 or θ− = 0 the surface is called a future or

past apparent horizon; these naturally arise as boundaries of future or past

trapped regions [4]. Furthermore, such a surface will be called an outermost

apparent horizon if it is not enclosed by any other apparent horizon. The

conjectured Penrose inequality for general dimensions may then be recast as

(6) m ≥ 1

2

( Ah

ωd−1

)
d−2

d−1

whenever the dominant energy condition holds, where Ah is the smallest

area required to enclose the outermost apparent horizon. Equality should

be achieved only for slices of the Schwarzschild spacetime.

In the (Riemannian) time symmetric case when k = 0, the 3-dimensional

Penrose inequality has been confirmed by Huisken-Ilmanen [28] and

Agostiniani-Mantegazza-Mazzieri-Oronzio [1] for a single black hole via

inverse mean curvature flow and p-harmonic functions repsectively, and by

Bray [7] for multiple black holes using a conformal flow. The latter approach

has been generalized by Bray-Lee [11] up to dimension 7. Within the context
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of the general spacetime setting, there are very few results. In fact, for this

regime the conjectured inequality has only been verified in the spherically

symmetric case [26, 33] with the rigidity statement also obtained in [9, 12],

[31, Theorem 7.46]; these results hold in all dimensions.

In the present note we consider cohomogeneity one initial data sets.

Recall that a Riemannian manifold (Md, g) is said to have cohomogeneity

one if a (compact connected) Lie group G acts by isometries on Md such

that the principal orbits G/H are of codimension one, where H is a princi-

pal isotropy subgroup (for general initial data sets we also assume that k is

invariant under the action of G). Within the setting of interest, the manifold

will be asymptotically flat or asymptotically hyperbolic with an outermost

apparent horizon boundary; note that smooth outermost apparent horizons

inherit the symmetries of the initial data from which they arise [12, Lemma

3.1] ([3, Theorem 8.1], [36]). Therefore, the principal orbit theorem implies

that the orbit spaceMd/G is diffeomorphic to a half line [0,∞) with the ori-

gin corresponding to the apparent horizon, and Md ∼= [0,∞)× G/H. This

is discussed further in Section 2, where it is also shown that the struc-

ture at infinity ensures that the surfaces of homogeneity will be spheres.

A classification of the possible homogeneous metrics on spheres has been

obtained by Ziller [42]. In addition to the standard round metric, there are

odd-dimensional cases corresponding to

(7)
S2n+1 = SU(n+ 1)/SU(n), S4n+3 = Sp(n+ 1)/Sp(n),

S15 = Spin(9)/Spin(7).

We will establish the spacetime Penrose inequality for the first of these cases

in the asymptotically flat and asymptotically hyperbolic contexts, namely

for initial data of dimension d = 2(n+ 1), n ≥ 1 which are invariant under

the action of SU(n+ 1). Note that in contrast to the spherically symmet-

ric case, this class of initial data includes those with non-vanishing angular

momentum, and there are explicit rotating black hole solutions arising from

data in this class, see Appendix B. To accomplish this goal we will exploit

a method proposed by Bray and the first author [9, 10] which involves cou-

pling inverse mean curvature flow to the so called generalized Jang equation.

In these higher dimensions, lack of the Gauss-Bonnet theorem presents dif-

ficulties for monotonicity of Hawking mass, however in the current setting

a fortuitous cancellation occurs (in Proposition 4.1) which allows the proce-

dure to go through.
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Theorem 1.1. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically flat SU(n+

1)-invariant initial data set, with outermost apparent horizon boundary of

area A. If the dominant energy condition is satisfied then

(8) m ≥ 1

2

( A
ω2n+1

) 2n

2n+1

,

and equality occurs if and only if the initial data arise from an isometric

embedding into a Schwarzschild spacetime.

Consider now asymptotically hyperbolic initial data relevant for asymp-

totically Anti-de Sitter (AdS) spacetimes. Let (Hd, b) denote the d-dimensio-

nal hyperbolic space with metric expressed in geodesic polar coordinates

as b = dr2 + (sinh2 r)gSd−1 . Recall that hyperbolic space arises as a totally

geodesic spacelike slice of the Anti-de Sitter (AdS) spacetime,

(R×Hd,−(cosh2 r)dt2 + b). An initial data set (Md, g, k) satisfying the mod-

ified constraints

(9) 16πµ = R+ (Trgk)
2 − |k|2g + d(d− 1), 8πJ = divg (k − (Trgk)g) ,

will be referred to as asymptotically hyperbolic if outside a compact set C
there is a diffeomorphism φ :Md \ C → Hd \B1 such that

(10) g := φ∗g − b = O2(e
−qr), φ∗k = O1(e

−qr), µ, J = O(e−2qr),

for q > d/2. The dominant energy condition in this setting is again expressed

as µ ≥ |J |g. Initial data satisfying (9) and (10) arise as spacelike hypesurfaces

in asymptotically AdS spacetimes with (negative) cosmological constant Λ =

−d(d−1)
2 . Well-defined global Hamiltonian charges, interpreted as the total

energy-momentum for such data, were obtained by Chruściel-Nagy [17] (see

also [35] and the exposition in [13]). In particular, if U = cosh r denotes the

time translation lapse function then the total energy is given by

(11)
Ehyp =

1

2(d− 1)ωd−1
lim
r→∞

ˆ

Sr

[U(divbg)− U(dTrbg)

+(Trbg)dU − g(∇bU)] (νb)dV,

where νb is the unit outward normal (measured in b) to the coordinate

spheres Sr. An analogous expression gives rise to the total linear momentum

by replacing U with the lapse functions Ui = xi sinh r, i = 1, . . . d defined
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on Hd, where xi are Cartesian coordinates restricted to the unit sphere

Sd−1. A version of the spacetime Penrose inequality is conjectured to hold

in this asymptotically hyperbolic setting [8, 14, 23, 34], and is relevant in

the context of the gauge theory/gravity correspondence [21]. The inequality

has been established in spherical symmetry by Engelhardt-Folkestad [20,

Theorem 6], Folkestad [22, Theorem 1], and Husain-Singh [29], with various

hypotheses. Moreover, it has been proved when k = 0 for small perturbations

of the Schwarzschild-AdS manifold by Ambrozio [2] (see also [30]), and for

graphs by Dahl-Gicquaud-Sakovich [18] and Girão-de Lima [25]. We prove

the following result.

Theorem 1.2. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically hyperbolic

SU(n+ 1)-invariant initial data set, with outermost apparent horizon bound-

ary of area A. If the dominant energy condition is satisfied then

(12) Ehyp ≥ 1

2

( A
ω2n+1

) 2n

2n+1

+
1

2

( A
ω2n+1

)
2n+2

2n+1

,

and equality occurs if and only if the initial data arise from an isometric

embedding into a Schwarzschild-AdS spacetime.

A different type of asymptotically hyperbolic initial data, with second

fundamental form k converging to g rather than vanishing at infinity, appears

naturally as asymptotically umbilic slices in asymptotically flat spacetimes

and are referred to as asymptotically hyperboloidal. In this setting, the Pen-

rose inequality [41] takes the form (8) instead of (12), and the case of equal-

ity should give rise to an embedding into the Schwarzschild spacetime. This

has also been established in spherical symmetry by Hou [27], in the time

symmetric graphical context by Girão-de Lima [24], and we expect that the

strategy outlined in [15] together with arguments of the current paper will

yield the SU(n+ 1)-invariant case as well.

Lastly, in the Riemannian asymptotically flat context, we are able to

treat the Penrose inequality for the full range of cohomogeneity one man-

ifolds. In addition to the SU(n+ 1)-invariant case, this also includes the

Sp(n+ 1) and Spin(9)-invariant cases. The proof will rely on a combination

of Bray’s conformal flow with inverse mean curvature flow.

Theorem 1.3. Let (Md, g), d ≥ 3 be a cohomogeneity one Riemannian

manifold which is asymptotically flat, with outermost minimal surface bound-

ary. If the scalar curvature is nonnegative R ≥ 0, then inequality (6) holds.
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Moreover, equality is achieved if and only if the manifold is isometric to the

canonical slice of a Schwarzschild spacetime.

This article is organized as follows. In Section 2 we describe cohomogene-

ity one initial data sets in detail, while in Section 3 existence is established

for the coupled Jang-IMCF system of equations in this setting. The proofs

of Theorems 1.1, 1.2, and 1.3 are then given in Sections 4, 5, and 6. Finally,

two appendices are provided with the first showing that linear momentum

vanishes in the asymptotically flat case, and the second exhibiting examples

of relevant initial data.

Acknowledgements. The authors would like to thank McKenzie Wang

for helpful comments.

2. Cohomogeneity one initial data sets

Consider a cohomogeneity one Riemannian manifold (Md, g) which is asymp-

totically flat or asymptotically hyperbolic, and possesses a smooth outer-

most apparent horizon boundary. If G is the compact connected Lie group

of isometries giving rise to the cohomogeneity one structure, then as dis-

cussed in the introduction the manifold is diffeomorphic to a product Md ∼=
[0,∞)× G/H, where H is a principal isotropy subgroup. To see this, first

note that smooth outermost apparent horizons inherit the symmetries of the

initial data from which they arise [12, Lemma 3.1] ([3, Theorem 8.1], [36]),

more precisely ∂Md is left invariant by G. Therefore, we have a well-defined

G-action on Md \ ∂Md, and may then apply the principal orbit theorem to

conclude that the orbit space (Md \ ∂Md)/G is diffeomorphic to a open half

line (0,∞), with the origin corresponding to the apparent horizon, and thus

Md \ ∂Md ∼= (0,∞)× G/H. The desired conclusion now follows.

We next claim that in light of the asymptotics, the orbits G/H must

topologically be the sphere Sd−1. Note that if s :Md → R+ is the dis-

tance function to the boundary ∂Md, then g = ds2 + gs where gs is a 1-

parameter family of G-invariant metrics on G/H. Let Σs denote the s-level

set, then there exists a sufficiently large s0 such that Σs0 lies completely

within the asymptotic end Md \ C. If not, then there exists a sequence of

distances si → ∞ with |si − sj | > 1 for i ̸= j such that Σsi ∩ C ̸= ∅. Since C
is compact, a sequence of points pi ∈ Σsi ∩ C must have a convergent subse-

quence. However this contradicts |si − sj | > 1, and we conclude that there

is a Σs0 ⊂Md \ C. Because Σs0 is compact, there exists a large coordinate
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sphere Sr0 ⊂ Rd whose preimage under the asymptotic diffeomorphism φ

separates Σs0 from infinity. Let Ω̃s0r0 be the image of Ωs0r0 inside Rd \B1,

where Ωs0r0 is the region bounded between Σs0 and φ−1(Sr0). By flowing

along radial lines in Rd, we may continuously deform Ω̃s0r0 into Sr0 . This

induces a deformation retract of Md
s0 onto Md

r0 , where these are the closure

of the noncompact component of Md \ Σs0 and Md \ φ−1(Sr0), respectively.

Since Md
s0 is homotopy equivalent to Σs0 and Md

r0 is homotopy equivalent

to φ−1(Sr0), it follows that Σs0 is a homotopy sphere. Therefore, by the

resolution of the generalized Poincaré conjecture we have that G/H = Σs0 is

homeomorphic to the standard sphere Sd−1. Moreover, since exotic spheres

do not admit smooth homogeneous space structures [40, Theorem 1.1], it

follows that G/H is diffeomorphic Sd−1.

The classification of homogeneous metrics on spheres has been given by

Ziller [42, page 352]. In all dimensions there is a unique SO(d)-invariant

metric (up to homothety) on Sd−1 = SO(d)/SO(d− 1), of constant curva-

ture. This leads to spherically symmetric initial data, a setting in which the

spacetime Penrose inequality has already been established. In odd dimen-

sions the Hopf fibrations S1 →֒ S2n+1 → CP
n give rise to a 1-parameter

family or 2-parameter family of SU(n+ 1)-invariant metrics on S2n+1 =

SU(n+ 1)/SU(n) depending on whether n > 1 or n = 1, respectively. For

n > 1, these metrics have an extra U(1) symmetry, and will be discussed

in detail below. The remaining cases include a 3-parameter family of met-

rics on S4n+3 = Sp(n+ 1)/Sp(n) and a 1-parameter family of metrics on

S15 = Spin(9)/Spin(7) up to homothety, which will be examined further in

Section 6.

In what follows, an initial data set (Md, g, k) will be referred to as G-
invariant if the Riemannian manifold (Md, g) is cohomogeneity one with

respect to G, and the Lie derivative vanishes Lηk = 0 for any Killing field η

associated with the isometries of g.

2.1. SU(n + 1)-invariant initial data, n > 1

The 1-parameter family of Berger metrics on the ‘squashed’ sphere S2n+1

are given by

(13) gλ = λ(dψ +A)2 + gFS ,

where ψ is a 2π-periodic coordinate on the circles of the Hopf fibration, gFS
is the Fubini-Study metric on CP

n scaled so that Ric(gFS) = 2(n+ 1)gFS ,
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and A is a connection 1-form such that ω = dA/2 is the associated Kähler

form. The normalization is chosen so that g1 is the unit round metric on

S2n+1. Note that the squashing parameter λ controls the size of the S1 fibers

in the fibration, and the metric (13) is invariant under the U(1) isometry

generated by the Killing field ∂ψ. Moreover, since the round metric inherits

the subgroup of isometries SU(n+ 1) from Cn+1 and the action descends by

isometries to the complex projective space quotient, we find that Lη(dψ +

A) = 0 for any Killing field η associated with the SU(n+ 1) symmetry. It

follows that the Berger metrics inherit this symmetry, and they are the

building blocks of SU(n+ 1)-invariant initial data.

Proposition 2.1. Let n > 1. Consider an asymptotically flat or asymp-

totically hyperbolic SU(n+ 1)-invariant initial data set (M2(n+1), g, k), with

outermost apparent horizon boundary. Then M2(n+1) ∼= [0,∞)× S2n+1 and

the metric and extrinsic curvature take the form

g =ds2 + ρ(s)2
[

e−4nB(s)(dψ +A)2 + e2B(s)gFS

]

,

k =kads
2 + 2ksρe

−2nBds(dψ +A) + ρ2
[

kbe
−4nB(dψ +A)2 + kce

2BgFS
]

,

(14)

for some smooth functions B, ka, kb, kc, ks, and ρ > 0 of s alone. In an

asymptotically flat end

(15)
ρ(s) = s+O2(s

1−τ ), B = O2(s
−τ ),

ka, kb, kc, ks = O1(s
−τ−1), Trgk = O1(s

−2τ−1),

while in an asymptotically hyperbolic end

(16)

ρ(s) = sinh s+O2(e
(1−q)s), B = O2(e

−qs), ka, kb, kc, ks = O1(e
−qs).

Proof. According to the discussion at the beginning of this section, and the

classification of [42], the manifold is topologicallyM2(n+1) = [0,∞)× S2n+1

and the metric is given by

(17) g = ds2 + P (s)2(dψ +A)2 +Q(s)2gFS

for some smooth positive functions P (s) and Q(s). We may then set

(18) ρ(s) :=
[

P (s)Q(s)2n
]

1

2n+1 , eB(s) :=

(

Q(s)

P (s)

) 1

2n+1

,
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so that

(19) Q(s) = eB(s)ρ(s), P (s) = e−2nB(s)ρ(s).

The desired expression for the metric now follows.

Consider now the structure of k. It is useful to introduce the orthonormal

coframe

(20)
e1 = ds, e2 = ρ(s)e−2nB(s)(dψ +A),

ei = ρ(s)eB(s)êi, i = 3, . . . , 2(n+ 1),

where êi are members of an orthornoaml coframe for the Fubini-Study met-

ric. The dual basis vectors are given by

(21)

e1 = ∂s, e2 = ρ(s)−1e2nB(s)∂ψ, ei = ρ(s)−1e−B(s) (êi −A(êi)∂ψ) .

We may then expand the extrinsic curvature as k = kije
i ⊗ ej for some sym-

metric matrix of functions kij, with i, j = 1, . . . , 2(n+ 1). First observe that

kij has no dependence on ψ, since the Killing field ∂ψ commutes with the

frame (21). Next, note that gFS is the unique SU(n+ 1)-invariant metric

(up to a scaling) on CP
n. This implies that there can be no nontrivial

SU(n+ 1)-invariant 1-forms σ on CP
n, for otherwise gFS + λσ2 would pro-

duce another invariant family of metrics. It follows that an invariant k cannot

contain terms of the form e1 ⊗ ei or e2 ⊗ ei for any i > 2. To see this, write

kℓie
1 ⊗ ei = eℓ ⊗Kℓ where Kℓ = kℓie

i and ℓ = 1, 2. Let η be a Killing field

associated with the SU(n+ 1) symmetry, then Lη(e
ℓ ⊗Kℓ) = eℓ ⊗ LηKℓ.

However, since LηKℓ is a linear combination of ei for i > 2, there is no

possibility of canceling this term with any other expression in Lηk. We then

have that LηKℓ = 0. Thus, Kℓ is a SU(n+ 1)-invariant 1-form as η was arbi-

trary, so that Kℓ = 0. From this, one may further conclude that k11, k12, and

k22 depend only on s, and that α =
∑

i,j>2 kije
i ⊗ ej is SU(n+ 1)-invariant.

The latter statement implies that α must be a multiple of gFS , otherwise for

small ε the expression gFS + εα would furnish an invariant metric on CP
n

in violation of the uniqueness property of the Fubini-Study metric. Putting

this all together yields the desired structure for k.

Lastly, to obtain the fall-off in (15), write the Euclidean metric of (3)

in polar form with the coordinate spheres expressed with respect to the

Hopf fibration, and compare with the coefficients of φ∗g. This gives relations

between the two sets of coordinates and the quantities ρ, B, from which
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the desired decay may be derived. An analogous procedure applies to the

extrinsic curvature. Moreover, the asymptotically hyperbolic case is treated

similarly. □

It will be useful to record some facts about the class of metrics (14).

First note that the s-level set spheres Σs have volume form

(22) dVΣ = ρ2n+1dψ ∧ dVCPn = ρ2n+1dVS2n+1 ,

and scalar curvature

(23) RΣ = −2nP 2

Q4
+

4n(n+ 1)

Q2
= −2n

ρ2

(

e−4(n+1)B − 2(n+ 1)e−2B
)

,

while the scalar curvature of g as expressed in (17) is given by

(24)

R = −4nQ′′

Q
− 2P ′′

P
− 2nP 2

Q4
− 4nP ′Q′

PQ
+

4n(n+ 1)

Q2
− 2n(2n− 1)Q′2

Q2

where the prime notation indicates differentiation with respect to s. Fur-

thermore

(25) Trgk = ka + kb + 2nkc, TrΣk = kb + 2nkc,

and the mean curvature of the level sets is

(26) HΣ = (2n+ 1)
ρ′

ρ
.

2.2. SU(2)-invariant initial data

For n = 1, S3 is diffeomorphic to the Lie group SU(2) and hence there exist

homogeneous metrics invariant under the left or right action of SU(2) that

do not possess the enhanced U(1) isometry. Consider the following right-

invariant 1-forms [32, Appendix A]

(27)
σ1 = sinψdθ − cosψ sin θdϕ, σ2 = cosψdθ + sinψ sin θdϕ,

σ3 = dψ + cos θdϕ,

where θ ∈ (0, π), ϕ ∈ (0, 2π), and ψ ∈ (0, 4π). These satisfy the

Maurer-Cartan equations dσi = −1
2ϵijkσ

j ∧ σk, where ϵijk is totally anti-

symmetric and ϵ123 = 1. The associated right-invariant basis of dual vector
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fields ξi (where σ
i(ξj) = δij) satisfy the commutation relations [ξi, ξj ] = ϵkijξk

and hence constitute a Milnor basis (see, e.g. [19]). A general SU(2)-invariant

metric on the 3-sphere can be written gSU = hijσ
iσj , in which h is a constant

symmetric positive definite matrix. Note that hij =
1
4δij gives rise to the unit

round metric gS3 . Any such metric admits a Milnor basis {ξ1, ξ2, ξ3} which is

orthogonal in the metric gSU [19, Lemma 2.8]. Writing gSU (ξi, ξj) = (c2i /4)δij
for constants ci > 0, a straightforward computation gives the scalar curva-

ture

(28) RSU =
2

c21c
2
2c

2
3

(

2c21(c
2
2 + c23)− c41 − (c22 − c23)

2
)

and the volume form dVgSU
= c1c2c3dVg

S3 .

Consider now SU(2)-invariant initial data (M4, g, k) satisfying the hypo-

theses of Proposition 2.1. ThenM4 ∼= [0,∞)× S3, the metric takes the form

g = ds2 + hij(s)σ
iσj where hij(s) represents a smooth one-parameter family

of symmetric, positive definite matrices. By [19, Lemma 2.8 and Corollary

2.10], in a neighbourhood of a given s we may express this as

(29) g = ds2 +
1

4

(

c21(s)(σ̂
1)2 + c22(s)(σ̂

2)2 + c23(s)(σ̂
3)2
)

where σ̂i(s) are a basis of 1-forms dual to the Milnor frame ξi(s) which can

be associated to the induced metric on each level set of s. The extrinsic

curvature may be expressed as

(30) k = ka(s)ds
2 + 2k̂i(s)e

ids+ k̂ij(s)e
iej

for some smooth functions ka, k̂i, and k̂ij of s alone, where

ei(s) = (ci(s)/2)σ̂
i(s) is an orthonormal co-frame for each coordinate sphere.

Moreover, as in the proof of Proposition 2.1, it may be shown that in an

asymptotically flat end

(31) ci(s) = s+O2(s
1−τ ), ka(s), k̂i(s), k̂ij(s) = O1(s

−τ−1),

while in an asymptotically hyperbolic end

(32) ci(s) = sinh s+O2(e
(1−q)s), ka(s), k̂i(s), k̂ij(s) = O1(e

−qs).
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3. The cohomogeneity one generalized Jang equation

The goal of this section is to obtain existence and asymptotics for solutions

of a coupled system involving inverse mean curvature flow and the gener-

alized Jang equation, in the setting of SU(n+ 1)-invariant initial data sets

(M2(n+1), g, k). Recall that the generalized Jang equation [9, 10] associated

with the data set is given by

(33)

(

gij − ϕ2f if j

1 + ϕ2|∇f |2
)

(

ϕ∇ijf + ϕifj + ϕjfi
√

1 + ϕ2|∇f |2
− kij

)

= 0,

where f i = gijfj , fj = ∂jf , and ∇ is the Levi-Civita connection. Utilizing

the structure of the metric and extrinsic curvature from Proposition 2.1,

and assuming that ϕ, f are functions of s alone, we find that this equation

is equivalent to

(34) v′ +
(2n+ 1)ρ′

ρ
v +

(

ϕ′

ϕ
v − ka

)

(1− v2)− kb − 2nkc = 0,

where prime indicates differentiation with respect to s and

(35) v =
ϕf ′

√

1 + ϕ2f ′2
.

Since inverse mean curvature flow emanating from a SU(n+ 1)-invariant

apparent horizon remains SU(n+ 1)-invariant, following the proposal in [9,

10] to couple the generalized Jang equation with inverse mean curvature

flow leads to

(36) ϕ =
dρ

ds̄
=
√

1− v2ρ′ =

( |Σs̄|
ω2n+1

) 1

2n+1 H̄

2n+ 1
,

where Σs̄ is the s̄-level set surface with mean curvature H̄ with respect to

the Jang metric ḡ = g + ϕ2df2, |Σs̄| is the area, and s̄ is the corresponding

radial arclength parameter

(37) s̄ =

ˆ s

0

√

1 + ϕ2f ′2 =

ˆ s

0

1√
1− v2

.

This choice of ϕ ensures monotonicity of the Hawking mass along inverse

mean curvature flow in the Jang manifold (M2(n+1), ḡ).
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The boundary of the initial data is assumed to be an outermost apparent

horizon, and therefore we must have

(38) 0 < θ± = H ± TrΣs
k = (2n+ 1)

ρ′

ρ
± (kb + 2nkc)

for s > 0, and θ+(0) = 0 and/or θ−(0) = 0 depending on whether Σ0 =

∂M2(n+1) is a future and/or past horizon. It follows that the g-mean curva-

ture of radial surfaces is positive H = 1
2(θ+ + θ−) > 0 away from the bound-

ary, and hence on this region ϕ > 0 as long as f ′ is bounded. Inserting the

expression (36) for ϕ into the generalized Jang equation (34) and rearranging

terms produces

(39) (1− v2)v′ + (1− v2)F∓(s, v)± θ∓ = 0,

where

(40) F∓(s, v) := ∓(2n+ 1)

1± v

ρ′

ρ
+
vρ′′

ρ′
− ka.

Remark 3.1. The above computations have been performed for SU(n+ 1)-

invariant initial data with n > 1. In particular, Proposition 2.1 has been

utilized. For the special case when n = 1, we may appeal to Section 2.2 to

obtain an analogous equation (39). This is due to the fact that even though

the σ̂j depend on s, only the volume form of the SU(2) metric plays a role in

computations for the generalized Jang equation applied to radial functions.

In what follows we will treat the two cases simultaneously without noting

differences when n = 1, as the modifications needed for this dimension are

straightforward.

Theorem 3.2. Let (M2(n+1), g, k), n ≥ 1 be an asymptotically flat or asymp-

totically hyperbolic SU(n+ 1)-invariant initial data set, with outermost appar-

ent horizon boundary. If the boundary mean curvature satisfies H(0) ̸= 0,

then given α ∈ (−1, 1) there exists a unique solution

v ∈ C1([0,∞)) ∩ C∞((0,∞)) of (39) such that −1 < v(s) < 1 for s > 0 and

v(0) = α. This remains true when α = ±1 if ∂M2(n+1) is a past (future)

apparent horizon, respectively. If H(0) = 0, then the same existence state-

ment holds with v(0) = 0 and v ∈ C0([0,∞)) ∩ C∞((0,∞)). Furthermore, in
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all cases the solution admits the following decay

(41) |v(s)|+ s|v′(s)| ≤ Cs−2τ0

in the asymptotically flat setting for any τ0 < min{τ, n+ 1
2}, and the decay

(42) |v(s)|+ |v′(s)| ≤ Ce−q0s

in the asymptotically hyperbolic setting for any q0 < min{q, 2n+ 2}, where
C is a constant depending on g (up to second derivatives) and k as well as

on τ0 or q0, respectively.

Proof. Assume first that the initial data are asymptotically flat. Consider

the case when v(0) = α with |α| < 1 and H(0) ̸= 0. By standard methods

there exists a C1 solution on some maximal interval [0, s̄) of nonzero length.

We claim that the solution must satisfy the basic uniform pointwise bound

(43) |v(s)| < 1 for all s.

To see this, proceed by contradiction and assume that the estimate fails, then

there exists a first s0 > 0 such that v(s0) = ±1. Without loss of generality

we may take v(s0) = 1, then there is an increasing sequence si → s0 with

v′(si) ≥ 0 and |v(si)| < 1. It follows that

(44)
0 ≤ lim

i→∞
(1− v2)v′(si) = lim

i→∞

[

−θ−(si)− (1− v2)F−(si, v(si))
]

= −θ−(s0) < 0,

which yields a contradiction. We conclude that (43) is valid. In fact, this

estimate may be improved. Observe that since H(0) > 0, with the help of

Proposition 2.1 and the discussion preceding this theorem, we have that

ρ′(s) ≥ c globally for some constant c > 0. Thus, there exists a positive radial

function F̄− satisfying

(45) |F−(v, s)| ≤ F̄−(s) ≤
c1

1 + s
for all s ∈ [0,∞) whenever v(s) ≥ 0,

for some constant c1. If ∂M
2(n+1) is not a past apparent horizon, that is

θ−(0) > 0, then there exists a constant δ > 0 such that F̄−(s)
−1θ−(s) > δ;

the constant may also be chosen small enough to satisfy v(0) = α <
√
1− δ.
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If s1 is the first point at which v(s1) =
√
1− δ then v′(s1) ≥ 0 and conse-

quently

(46) 0 ≤ −θ−(s1) + (1− v2(s1))F̄−(s1),

which implies that 1− v2(s1) > δ yielding a contradiction. We conclude that

v(s) <
√
1− δ at all points, and a similar argument with F− replaced by F+

provides a lower bound when ∂M2(n+1) is not a future apparent horizon. If

∂M2(n+1) is a past apparent horizon, that is θ−(0) = 0, then since θ− ≥ 0

we have

(47) v′(s) = −θ−(s)(1− v2(s))−1 − F−(s, v(s)) ≤ F̄−(s) ≤ c1

whenever v is nonnegative. It follows that v(s) ≤ c1s+ α for s ∈ [0, s̄1) where

s̄1 = min{s̄, c−1
1 (1− α)}. Since θ− is strictly positive at s̄1/2, by applying

the same arguments in the non-past apparent horizon case to the region

s ≥ s̄1/2, we find that globally v(s) <
√
1− δ for some δ > 0 depending on

α. As before, analogous arguments with F− replaced by F+ yield a lower

bound when ∂M2(n+1) is a future apparent horizon. Therefore, in all cases

(48) |v(s)| <
√
1− δ

on the domain of existence. These pointwise estimates imply uniform control

on first derivatives immediately from equation (39). The function v is then

uniformly continuous, and thus has a unique and continuous extension to

[0, s̄]. By differentiating the equation, the same holds true for all derivatives

of v. Hence the solution has an unrestricted domain, that is v ∈ C∞([0,∞)).

Consider now the case when α = 1, ∂M2(n+1) is a past apparent horizon,

and H(0) ̸= 0. Observe that for −3
2 ≤ w ≤ 1

2 or equivalently |v| ≤ 1 equation

(39) may be expressed as

(49) (1 + v(w))w′ = −θ− + F−(s, v(w))
(

1− 2w − 2
√
1− 2w

)

,

where w = v − v2

2 and v(w) = 1−
√
1− 2w. Notice that (49) is no longer

degenerate in that the principal symbol does not vanish. To produce a solu-

tion in the required range, we may take a limit of solutions wε with initial

condition wε(0) =
1
2 − ε. Due to the nondegeneracy of this equation and the

estimate (48), the solution w := limε→0wε is C1 up to the boundary, and

satisfies −3
2 ≤ w ≤ 1

2 . In fact, since θ−(s) > 0 for s > 0 we must have that

w(s) < 1
2 for s > 0; similarly, replacing the F− with F+ as before shows that
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also w(s) > −3
2 . It may further be shown that the corresponding v has con-

tinuous first derivatives up to the boundary. To see this rewrite equation

(39) once more as

(50) (u+ F−)u
′ = 2vθ−,

where u = 1− v2 −F− and F− =
´ s
0 2vF−. Integrating (50) and then divid-

ing by s2 yields a quadratic equation for u/s, with coefficients that have

finite limits as s→ 0. This implies existence of the first derivative for v at

s = 0, which may be found as the nonpositive solution of

(51) 2v′(0)2 + 2F−(0)v
′(0)− θ′−(0) = 0.

It follows that v ∈ C1([0,∞)) ∩ C∞((0,∞)) satisfies (39) with v(0) = 1. An

analogous argument shows that one may solve the equation with v(0) = −1

when ∂M2(n+1) is a future apparent horizon.

Lastly, consider the case when H(0) = 0. The primary difference in

this situation concerns the functions F∓, namely they must blow-up at the

boundary due to the term v ρ
′′

ρ′ , unless v(0) = 0. Thus, in this case we will

only consider the initial condition v(0) = 0. Note that with this condition,

the principal part of the equation is nondegenerate near s = 0, however there

is a singular behavior in the coefficients:

(52) v′ +
ρ′′

ρ′
v = ka +

(2n+ 1)ρ′

(1 + v)ρ
− θ−

1− v2
.

Approximate solutions vε ∈ C∞([ε, 1)), with vε(ε) = 0 and |vε| < 1, may be

obtained with uniform estimates on compact subsets of (0, 1) as ε→ 0. Thus,

a diagonal argument ensures subconvergence to a solution v ∈ C∞((0, 1)).

Using the inverse of the linear operator on the left-hand side of (52), we find

that the limit function may be represented by v(s) = ρ′(s)−1
´ s
0 ρ

′u where u

is uniformly bounded. It follows that the solution is continuous up to the

boundary with v(0) = 0, and this may then be extended globally using the

methods above, so that v ∈ C0([0,∞)) ∩ C∞((0,∞)).

Finally, it will be shown that v has the correct asymptotics at infinity.

Recall that we have already assumed the asymptotically flat hypothesis. By

the fall-off conditions (15) and the estimate (48), we may write equation (39)

as

(53) v′ +
(2n+ 1)s−1

1− v2
v = O(s−2τ−1 + s−τ−1|v|), s ≥ s0 > 0.
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The solution on this exterior region can then be represented by

(54)

v(s) =exp

(

−
ˆ s

s0

(2n+ 1)r−1

1− v2
dr

)

×
[
ˆ s

s0

O(r−2τ−1+r−τ−1|v|) exp
(
ˆ r

s0

(2n+ 1)t−1

1− v2
dt

)

dr+v(s0)

]

.

From this it follows that v decays to zero polynomially. To estimate the rate,

choose any positive τ0 < min{τ, n+ 1
2} and denote the exponential function

inside the integral as E(r). Note that r−2τ0E(r) is increasing for r ≥ s0 if

s0 is large enough. Then extracting this function from the integral at its

maximum value shows that the term involving O(r−2τ−1) decays on the

order of s−2τ0 ; clearly also the last term involving v(s0) decays at this rate

as well. For the term involving |v|, extracting r−τ0E(r) in the same way yields

decay for v on the order of s−τ0 . Inserting this estimate back into the same

term and extracting r−2τ0E(r) produces the desired decay, namely, with the

help of (53) for the derivative fall-off we find that

(55) |v(s)|+ s|v′(s)| ≤ Cs−2τ0

for some constant C.

Assume now that the initial data are asymptotically hyperbolic. Only a

slight modification of the above arguments is needed to obtain global exis-

tence of a solution satisfying the required initial conditions. More precisely,

in this case F− = −(2n+ 1) +O(e−2s) and θ− = 2n+ 1 +O(e−2s) in the

asymptotic end, and therefore the function F̄−(s) used in (45)-(47) should

be taken instead to be a large constant. Consider now the asymptotics of

the solution, and with the help of (16) rewrite equation (39) as

(56) v′ +

(

(2n+ 1)ρ′

(1− v2)ρ
+
ρ′′

ρ′

)

v = O(e−qs + e−qs|v|), s ≥ s0 > 0.

The solution on this exterior region can then be represented by

(57)

v(s) = e−
´

s

s0
A(r)dr

(
ˆ s

s0

O(e−qr + e−qr|v|)e
´

r

s0
A(t)dtdr + v(s0)

)

,

A(s) =
(2n+ 1)ρ′

(1− v2)ρ
+
ρ′′

ρ′
.

From this it follows that v decays to zero exponentially. Since A(s) = 2n+

2 + o(1), an argument analogous to that in the asymptotically flat case may
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be used to obtain

(58) |v(s)|+ |v′(s)| ≤ Ce−q0s,

for any q0 < min{q, 2n+ 2}. □

4. Proof of theorem 1.1:

Asymptotically flat Penrose inequality

Here we will establish the spacetime Penrose inequality for asymptotically

flat SU(n+ 1)-invariant initial data sets. This will be accomplished with an

averaged monotonicity for the Hawking mass along inverse mean curvature

flow within the Jang deformed manifold. A crucial observation in this setting,

which replaces the use of Gauss-Bonnet, is that the scalar curvature of the

leaves cannot be ‘too large’. Let Σ ⊂ (Md, g) be a smooth hypersurface in a

d-dimensional Riemannian manifold, then the Hawking mass of Σ is given

by

(59) mH(Σ) :=
1

2

( |Σ|
ωd−1

)
d−2

d−1



1− 1

(d− 1)2ω
2

d−1

d−1|Σ|
d−3

d−1

ˆ

Σ
H2dV



 ,

where H is the mean curvature of Σ and |Σ| denotes its area. If {Σt}∞t=0

denotes a smooth inverse mean curvature flow, then a direct computation

(see e.g. [31, Theorem 4.27] for the case d = 3) shows that

(60)

d

dt
mH(Σt) =

1

2

( |Σt|
ωd−1

)
d−2

d−1





d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1|Σt|
d−3

d−1

ˆ

Σt

RΣdV





+
1

2

( |Σt|
ωd−1

)
d−2

d−1 1

(d− 1)2ω
2

d−1

d−1|Σt|
d−3

d−1

×
ˆ

Σt

( |∇ΣH|2
H2

+ |II|2 − H2

d− 1
+R

)

dV,

where RΣ is the scalar curvature and II is the second fundamental form

of Σt.

Proposition 4.1. Let (M2(n+1), g) be an asymptotically flat or asymptot-

ically hyperbolic SU(n+ 1)-invariant Riemannian manifold with outermost
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minimal surface boundary, for n ≥ 1. If Σ is a level set of the distance func-

tion to the boundary then

(61)

ˆ

Σ
RΣdV ≤ cn|Σ|

2n−1

2n+1 ,

where cn = 2n(2n+ 1)ω
2

2n+1

2n+1. Moreover, equality is achieved if and only if Σ

is a round sphere.

Proof. Consider first the case n > 1. According to Proposition 2.1, (22), and

(23) we have

(62)
2n+ 1− 1

2nω
2

2n+1

2n+1|Σ|
2n−1

2n+1

ˆ

Σ
RΣdV

= 2n+ 1 + e−4(n+1)B(s) − 2(n+ 1)e−2B(s).

Setting ϱ = e−2B yields the polynomial

(63) In(ϱ) = 2n+ 1 + ϱ2(n+1) − 2(n+ 1)ϱ.

This function satisfies In(0) = 2n+ 1, it monotonically decreases on (0, 1)

to a minimum In(1) = 0, and then increases monotonically for ϱ ≥ 1. It

follows that (62) is always nonnegative, and vanishes only when B = 0 which

coincides with a round Σ.

Consider now the case n = 1. According to Section 2.2 we have

(64)

3− 1

2ω
2/3
3 |Σ|1/3

ˆ

Σ
RΣdV

= 3− 1

(c1c2c3)4/3

[

2c21(c
2
2 + c23)− c41 − (c22 − c23)

2
]

.

Since this quantity is invariant under rescalings of the metric, we may set

c3 = 1 and rearrange terms to find that it becomes

(65) I1(c1, c2) = 3 +
(1− c21 − c22)

2

(c1c2)4/3
− 4(c1c2)

2/3.

In the first quadrant c1, c2 > 0 this function has a local minimum I1(1, 1) =

0, which corresponds to the round metric, and there are no other critical

points on this domain. Limits to the c1 and c2-axes are infinitely positive,
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except at the two points (c1, c2) = (1, 0) or (0, 1) where the limit is 3. More-

over, limits to infinity are also infinitely positive, except in one direction

when c1 = c2 where the limit is 3. It follows again that (62) is nonnegative,

and vanishes only for a round Σ. □

This proposition shows that the first line of (60) is nonnegative along

a SU(n+ 1)-invariant inverse mean curvature flow. When combined with

weak nonnegativity of the scalar curvature for the Jang deformation, it will

lead to an averaged monotonicity for Hawking mass in the Jang setting.

The next result gives the expected upper bound for the limiting Hawking

mass in terms of the ADM energy E. In dimension three this has been

established [31, Proposition 4.52], [28, Lemma 7.4] using the Gauss-Bonnet

Theorem. Here we avoid the need for Gauss-Bonnet with help from the proof

of Proposition 4.1.

Proposition 4.2. Let (M2(n+1), g) be an asymptotically flat SU(n+ 1)-

inva-riant Riemannian manifold with outermost minimal surface boundary,

for n ≥ 1. If Σs denotes the surface of distance s from the boundary, then

(66) lim
s→∞

mH(Σs) ≤ E.

Proof. We will closely follow the arguments of [31, Proposition 4.52]. Taking

two traces of the Gauss equations along Σs yields

(67) H2 = 2Ric(ν, ν)−R+RΣ + |II|2,

where ν is the unit normal pointing towards infinity. Let d = 2(n+ 1) and

note that by Cauchy-Schwarz (d− 1)|II|2 ≥ H2, therefore

(68) −(d− 2)H2 ≤ −(d− 1)RΣ − 2(d− 1)Ric(ν, ν) + (d− 1)R.

We then have

mH(Σs) ≤
(d− 1)

2(d− 2)

( |Σs|
ωd−1

)
d−2

d−1





d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1|Σs|
d−3

d−1

ˆ

Σs

RΣdV





− 1

(d− 2)(d− 1)ωd−1

( |Σs|
ωd−1

) 1

d−1
ˆ

Σs

G(ν, ν)dV,

(69)
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where G = Ric− 1
2Rg is the Einstein tensor. According to the discussion in

Section 2 it holds that

(70)

( |Σs|
ωd−1

) 1

d−1

= s+O(s1−τ ),

and hence [31, Theorem 3.14] implies the last term converges to the ADM

energy to produce

(71) lim
s→∞

mH(Σs) ≤ lim
s→∞

1

2(d− 1)

( |Σs|
ωd−1

)
d−2

d−1

In(s) + E,

where In(s) is the function from the proof of Proposition 4.1. Since B =

O(s−τ ) for n > 1 and ci = 1 +O(s−τ ) for n = 1, a calculation shows that

In(s) = O(s−2τ ). Hence

(72) lim
s→∞

mH(Σs) ≤ E + lim
s→∞

O(sd−2−2τ ) = E,

as τ > d−2
2 . □

We are now in a position to complete the proof of Theorem 1.1. Let

(M2(n+1), ḡ) be the Jang manifold associated with the given initial data set,

which is constructed from the solution given in Theorem 3.2 with v(0) =

±1 if ∂M2(n+1) is a past (future) apparent horizon having H(0) ̸= 0, or

with v(0) = 0 if H(0) = 0; in this last case the boundary is both a past

and future apparent horizon. Note that this manifold is asymptotically flat,

SU(n+ 1)-invariant, and possesses an outermost minimal surface boundary.

This last assertion follows from the fact that the ḡ-mean curvature of surfaces

having constant distance to the boundary is H̄ =
√
1− v2H, so that H̄(0) =

0 and H̄(s̄) > 0 for s̄ > 0. Moreover, these surfaces provide a smooth inverse

mean curvature {Σt̄}∞t̄=0 in the Jang manifold. Next, recall that the scalar

curvature of the Jang metric [9, 10] takes the form

(73) R̄ = 16π(µ− J(w)) + |h− k|2ḡ + 2|X|2ḡ − 2ϕ−1divḡ(ϕX),

where

(74)

wi =
ϕfi

√

1 + ϕ2|∇f |2g
, hij =

ϕ∇ijf + ϕifj + ϕjfi
√

1 + ϕ2|∇f |2g
,

Xi =
ϕf j

√

1 + ϕ2|∇f |2g
(hij − kij).
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Here h is the second fundamental form of the Jang graph in a dual Lorentzian

setting, and |w|g ≤ 1. Although the computation appearing in [9, 10] was set

in dimension three, it extends without modification to all higher dimensions.

We may now integrate (60) from t̄ = 0 to ∞, apply the coarea formula as

well as Propositions 4.1 and 4.2, to find

(75)

Ē − 1

2

( A
ω2n+1

) 2n

2n+1

≥ 1

2(2n+ 1)2ω2n+1

ˆ

M2(n+1)

( |Σt̄|
ω2n+1

) 1

2n+1

H̄R̄dVḡ

≥ 1

(2n+ 1)ω2n+1

(
ˆ

∂M2(n+1)

ϕX(ν̄)dV −
ˆ

Σ∞

ϕX(ν̄)dV

)

where Ē is the ADM energy with respect to the Jang metric and A =

|∂M2n+1|. In the second inequality the dominant energy condition used,

as well as the expression (36) for ϕ together with the divergence theorem for

the last term in (73). Here ν̄ = ∂s̄ =
√
1− v2∂s, and Σ∞ indicates a limit to

the asymptotic end along s-level sets.

Consider now the boundary terms of (75). According to [10, pg. 582],

the Jang equation implies that

(76)
(h− k)(ν, ν) = (1 + ϕ2|∇f |2g)



− ϕν(f)
√

1 + ϕ2|∇f |2g
H +TrΣk





= (1− v2)−1(−vH +TrΣk)

for any level set Σ of f with unit normal ν. Therefore, on each Σs it holds

that

(77)

ϕX(ν̄) = ϕ
√

1− v2

(

ϕf ′
√

1 + ϕ2f ′2

)

(hss − kss) = vρ′ ((±1− v)H ∓ θ∓) .

Since |v(s)| = O(s−2τ0) for 2τ0 > d− 2 = 2n andH, θ± = O(s−1), the bound-

ary integral at infinity converges to zero. Moreover, if the boundary is a past

(future) apparent horizon with H(0) ̸= 0 then v(0) = ±1, and if the bound-

ary is an apparent horizon with H(0) = 0 then v(0) = 0. It follows that the

inner boundary integral vanishes in all cases. The desired Penrose inequality

(8) involving ADM mass now follows from the agreement between the ADM
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energies Ē = E in light of the decay of v, and the vanishing ADM linear

momentum as shown in Appendix A.

It remains to establish the rigidity statement. If equality holds in (8),

then equality must hold in Proposition 4.1 for each surface Σs. This shows

that each such surface is round, implying that the original initial data set

(M2(n+1), g, k) is spherically symmetric. In this case it is known that the

Jang graph yields the desired embedding into the Schwarzschild spacetime

[12, Theorem 3.4].

5. Proof of theorem 1.2:

Asymptotically hyperbolic Penrose inequality

In this section we will show how the arguments presented for the asymptot-

ically flat case can be modified to establish the spacetime Penrose inequal-

ity in the asymptotically hyperbolic setting. A 3-dimensional ‘hyperbolic

Hawking mass’ was defined by Bray-Chuściel in [8, Section 4.1], and its

generalization to d-dimensions may be expressed as

(78)
mhyp
H (Σ)

:=
1

2

( |Σ|
ωd−1

)
d−2

d−1



1 +

( |Σ|
ωd−1

) 2

d−1

− 1

(d− 1)2ω
2

d−1

d−1|Σ|
d−3

d−1

ˆ

Σ
H2dV



 .

Under a smooth inverse mean curvature flow its first variation is given by

(79)

d

dt
mhyp
H (Σt) =

1

2

( |Σt|
ωd−1

)
d−2

d−1





d− 2

d− 1
− 1

(d− 1)2ω
2

d−1

d−1|Σt|
d−3

d−1

ˆ

Σt

RΣdV





+
1

2

( |Σt|
ωd−1

)
d−2

d−1 1

(d− 1)2ω
2

d−1

d−1|Σt|
d−3

d−1

×
ˆ

Σt

( |∇ΣH|2
H2

+|II|2− H2

d− 1
+R+ d(d− 1)

)

dV.

Note that this differs from the asymptotically flat formula only by the addi-

tion of the last term involving d(d− 1), which is relevant for the hyperbolic

dominant energy condition. In the SU(n+ 1)-invariant case, Proposition 4.1
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implies that the first line is again nonnegative, moreover the following ana-

logue of Proposition 4.2 yields the appropriate asymptotics for this quasi-

local mass.

Proposition 5.1. Let (M2(n+1), g) be an asymptotically hyperbolic SU(n+

1)-invariant Riemannian manifold with outermost minimal surface bound-

ary, for n ≥ 1. If Σs denotes the surface of distance s from the boundary,

then

(80) lim
s→∞

mhyp
H (Σs) = Ehyp.

Proof. We will assume that n > 1, as the case n = 1 may be treated similarly.

The hyperbolic defect tensor from the definition of hyperbolic mass (11),

when expressed in the coordinates provided by Proposition 2.1, is given by

(81) g = g − b =
(

ρ2e−4nB − sinh2 s
)

(dψ +A)2 +
(

ρ2e2B − sinh2 s
)

gFS .

We proceed to compute the relevant terms of (11). Note that g(νb, ·) = 0,

and therefore

(82) (divbg)(νb) = νjb∇∇∇i
gij = −(∇∇∇iνjb )gij = −(coth s)Trbg,

where ∇∇∇ denotes covariant differentiation with respect to b. Moreover

(83)

Trbg = −(2n+ 1) +
( ρ

sinh s

)2
(

e−4nB + 2ne2B
)

, g(∇bU, νb) = 0,

in which U = cosh s is the lapse function. A further calculation and rear-

rangement shows that the energy becomes

(84)

Ehyp =
1

2(d− 1)ωd−1
lim
s→∞

ˆ

Σs

[U(divbg)− U(dTrbg) + (Trbg)dU

−g(∇bU)] (νb)dV

= lim
s→∞

(sinh s)2n

2

[

1− γ

(

ρ2

sinh2 s
− 2

ρ2 cosh2 s

sinh2 s
+ 2

ρρ′ cosh s

sinh s

)]

+ lim
s→∞

2nρ2 cosh s(sinh s)2n−1

(2n+ 1)
B′(e−4nB − e2B),

with

(85) γ =
e−4nB + 2ne2B

2n+ 1
= 1 +O(e−2qs).
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Observe that the last term of (84) decays on the order of O(e(2n+2−2q)s),

and hence

(86)
Ehyp

= lim
s→∞

[

(sinh s)2n

2

(

1 + ρ2 − ρ′2 +

(

ρ′− ρ cosh s

sinh s

)2
)

+O
(

e(2n+2−2q)s
)

]

= lim
s→∞

mhyp
H (Σs),

since

(87) mhyp
H (Σs) =

ρ2n

2
(1 + ρ2 − ρ′2)

and q > n+ 1. □

We are now in a position to complete the proof of Theorem 1.2. As in

the asymptotically flat case, let (M2(n+1), ḡ) be the Jang manifold associated

with the given initial data set, which is constructed from the solution given in

Theorem 3.2 with v(0) = ±1 if ∂M2(n+1) is a past (future) apparent horizon

having H(0) ̸= 0, or with v(0) = 0 if H(0) = 0. The asymptotics of v imply

that ḡ = g +O2(e
−2q0s) where q0 > n+ 1, and hence the Jang manifold is

asymptotically hyperbolic. It is also SU(n+ 1)-invariant, has an outermost

minimal surface boundary, and the surfaces {Σt̄}∞t̄=0 of constant ḡ-distance

from the boundary give a smooth inverse mean curvature flow. Utilizing (79),

the hyperbolic dominant energy condition, and the weak nonnegativity of

the Jang scalar curvature (73), together with the arguments leading to (75)

produces

(88)

Ēhyp −
1

2

( A
ω2n+1

) 2n

2n+1

− 1

2

( A
ω2n+1

)
2n+2

2n+1

≥ 1

(2n+ 1)ω
2

2n+1

2n+1

(
ˆ

∂M2(n+1)

ϕX(ν̄)dV −
ˆ

Σ∞

ϕX(ν̄)dV

)

,

where Ēhyp is the total energy with respect to the Jang metric and Propition

5.1 has been employed. The boundary integral vanishes for the same reasons

as presented in the proof of Theorem 1.1. Furthermore the decay recorded
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in Section 2 and (42) imply

(89) ϕX(ν̄) = vρ′(−vH +TrΣk) = O
(

e(1−2q0)s
)

.

It follows that the last term in (88) is also zero, since the integrals of Σs
fall-off on the order of O(e(2n+2−2q0)s). Therefore, if the original energy Ehyp

agrees with that of the Jang manifold Ēhyp, then (86) confirms the desired

Penrose inequality (12). To see that this is indeed valid, first observe that

(90)

(

dρ

ds̄

)2

= (1− v2)

(

dρ

ds

)2

=

(

dρ

ds

)2

+O
(

e(2−2q0)s
)

,

and then apply (87) as well as Proposition 5.1 to find

(91) Ēhyp = lim
s̄→∞

m̄hyp
H (Σs̄) = lim

s→∞

(

mH(Σs) +O
(

e(2n+2−2q0)s
))

= Ehyp,

where m̄hyp
H denotes Hawking mass with respect to the Jang metric.

It remains to establish the rigidity statement. If equality holds in (12),

then equality must hold in Proposition 4.1 for each surface Σs̄. This shows

that each such surface is round, implying that the Jang manifold is spheri-

cally symmetric. Furthermore, from (79) it follows that R̄ = −(2n+ 1)(2n+

2) is constant, and we conclude that (M2(n+1), ḡ) is isometric to a constant

time slice of the Schwarzschild-AdS spacetime. Therefore, (36) implies the

following expression for the change of raidal coordinates

(92) ḡ = ds̄2 + ρ2(s̄)gS2n+1 =
dρ2

ϕ2(ρ)
+ ρ2gS2n+1

where gS2n+1 is the unit sphere metric, with

(93) ϕ2(ρ) = 1− 2Ehyp

ρ2n
+ ρ2.

Note that this formula ϕ may also be found from (87), together with the fact

that the Hawking mass is constant m̄hyp
H (Σs̄) = Ehyp. The original metric

g = ḡ − ϕ2df2 is then induced from the graph (over a constant time slice)

given by f inside Schwarzschild-AdS. Lastly, the second fundamental form

of this isometric embedding agrees with k due to the fact that the second

term (in fact each term except for µ) of (73) vanishes.
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6. Proof of theorem 1.3: all cohomogeneity one cases

In this section we will establish the Riemannian Penrose inequality for all

cohomogeneity one manifolds. According to the discussion at the beginning

of Section 2, in addition to the SU(n+ 1)-invariant setting considered above

there are two other cases to consider, namely the Sp(n+ 1) and Spin(9)-

invariant cases. Let (Md, g), d ≥ 3 be an asymptotically flat cohomogeneity

one Riemannian manifold with outermost minimal surface boundary and

nonnegative scalar curvature. As previously mentioned,Md ∼= [0,∞)× Sd−1

and g = ds2 + gs where s is the distance function to the boundary, and gs is

a 1-parameter family of G-invariant metrics on Sd−1. Interestingly, when G
is either Sp(n+ 1) or Spin(9), the analogue of Proposition 4.1 does not hold

in general, and therefore the inverse mean curvature flow approach breaks

down. To deal with this issue, we utilize the conformal flow method of Bray

[7] until the outermost minimal surface reaches an appropriate location in

the asymptotic end. From there, a modified version of this proposition may

be implemented to complete the argument with inverse mean curvature flow.

This bypasses the more involved problem of showing that the conformal flow

converges to Schwarzschild in the asymptotic end.

6.1. Sp(n + 1)-invariant metrics

Let d = 4n+ 4 for n ≥ 0. The group G = Sp(n+ 1) acts transitively on the

sphere S4n+3 with isotropy subgroup H = Sp(n). Any G-invariant metric gc
on this sphere depends (up to an overall scaling) on three positive parameters

c = (c1, c2, c3), and arises as a Riemannian submersion for the Hopf fibration

S3 →֒ S4n+3 → HP
n in which the parameters scale the fiber directions and

the base is equipped with the canonical Einstein metric on quaternionic

projective space. In this notation, the round metric of unit curvature is

then described by c = (1, 1, 1). Moreover, the s-level set metrics from the

discussion above are then given by gs = ρ2(s)gc(s) for some positive function

ρ(s). According to [6, Section 8] the scalar curvature of gc takes the form

Rc =
2

c1c2c3

(

c21 + c22 + c23 − (c2 − c3)
2 − (c3 − c1)

2 − (c1 − c2)
2
)

− 4n(c1 + c2 + c3) + 16n2 + 32n.
(94)
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Notice that setting ci = c2 yields

(95) Rc =
6

c2
− 12nc2 + 16n2 + 32n,

showing that a collapse of the Hopf fibers results in blow-up of curvature,

which is in contrast to the SU(n+ 1)-invariant setting. Furthermore due to

this behavior, Proposition 4.1 does not hold here without additional qual-

ification. The next result provides a regime for which the result remains

valid.

Proposition 6.1. Let (M4(n+1), g) be an asymptotically flat Sp(n+ 1)-inv-

ariant Riemannian manifold with outermost minimal surface boundary, for

n ≥ 0. There exists a distance s0 > 0 such that if Σs denotes the surface of

distance s to the boundary and s ≥ s0, then

(96)

ˆ

Σs

RΣdV ≤ Cn|Σs|
4n+1

4n+3

where Cn = (4n+ 2)(4n+ 3)ω
2

4n+3

4n+3, with equality achieved in this regime if

and only if Σs is a round sphere.

Proof. Since the volume form for gc is given by dV = (c1c2c3)
1/2dVS4n+3 , we

have

(97)
I(c) := (4n+ 2)(4n+ 3)− 1

ω
2

4n+3

4n+3|Σs|
4n+1

4n+3

ˆ

Σs

RΣdV

= (4n+ 2)(4n+ 3)− (c1c2c3)
1/(4n+3)Rc.

A direct calculation shows that c = (1, 1, 1) is a local isolated minimum for

the function I. Thus, since Σs uniformly approaches the unit round sphere

as s→ ∞, there exists s0 such that s ≥ s0 implies I(c(s)) ≥ I(1, 1, 1) with

equality if and only if gs is a round metric. Moreover, as in the proof of

Proposition 2.1, asymptotic flatness produces

(98) ρ(s) = s+O2(s
1−τ ), ci(s) = 1 +O2(s

−τ ), i = 1, 2, 3.

Hence, since I(1, 1, 1) = |∇I(1, 1, 1)| = 0 we have I(c(s)) = O(s−2τ ) as

s→ ∞. □
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6.2. Spin(9)-invariant metrics

The group G = Spin(9) acts transitively on S15 with isotropy subgroup H =

Spin(7). Any G-invariant metric gc on this sphere depends (up to an overall

scaling) on one positive parameters c, and arises as a Riemannian submersion

for the Hopf fibration S7 →֒ S15 → S8 in which the parameter scales the fiber

and the base is equipped with the unit round metric. In this notation, the

round metric of unit curvature on S15 is then described by c = 1. Moreover,

the s-level set metrics from the discussion at the beginning of this section

are then given by gs = ρ2(s)gc(s) for some positive function ρ(s). According

to [6, Section 8] the scalar curvature of gc takes the form

(99) Rc =
42

c
− 56c+ 224.

Notice that as in the Sp(n+ 1)-invariant case, collapse of the Hopf fibers

results in blow-up of curvature, again in contrast to the SU(n+ 1)-invariant

setting. Thus, we must again replace Proposition 4.1 with an asymptotic

version.

Proposition 6.2. Let (M16, g) be an asymptotically flat Spin(9)-invariant

Riemannian manifold with outermost minimal surface boundary. There

exists a distance s0 > 0 such that if Σs denotes the surface of distance s

to the boundary and s ≥ s0, then

(100)

ˆ

Σs

RΣdV ≤ C|Σs|
13

15

where C = 210ω
2

15

15 , with equality achieved in this regime if and only if Σs is

a round sphere.

Proof. Since the volume form for gc is given by dV = c7/2dVS15 , we have

(101) I(c) := 210− 1

ω
2

15

15 |Σs|
13

15

ˆ

Σs

RΣdV = 210− c7/15Rc.

A direct calculation shows that c = 1 is a local isolated minimum for the

function I. Thus, since Σs uniformly approaches the unit round sphere as

s→ ∞, there exists s0 such that s ≥ s0 implies I(c(s)) ≥ I(1, 1, 1) with

equality if and only if gs is a round metric. Moreover, as in the proof of
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Proposition 2.1, asymptotic flatness produces

(102) ρ(s) = s+O2(s
1−τ ), c(s) = 1 +O2(s

−τ ), i = 1, 2, 3.

Hence, since I(1) = |I ′(1)| = 0 we have I(c(s)) = O(s−2τ ) as s→ ∞. □

6.3. Combining the conformal flow with inverse mean curvature

flow

Let (Md, g) be as described at the start of this section, with G = Sp(n+ 1)

or Spin(9). Consider the conformal flow of metrics defined by gt = u
4

n−2

t g

where d
dtut = vt satisfies

(103)
∆gvt = 0 on Md

t , vt = 0 on ∂Md
t ,

vt(x) → −e−t as |x| → ∞,

and vt = 0 on Md \Md
t . Here M

d
t denotes the region outside of the outer-

most minimal surface (denoted ∂Md
t ) in (Md, gt). The conformal flow was

initially studied [7] in dimension 3, and was extended to higher dimensions

in [11]. In particular, the flow exists as long as the outermost minimal sur-

faces involved remain smooth. In the current cohomogeneity one setting, the

relevant minimal surfaces ∂Md
t must be level sets of the distance function

to ∂Md, and are therefore smooth. Moreover, the functions vt as well as ut
depend only on s, showing that the conformal metrics gt are also G-invariant.
According to [11, Lemma 2.3], existence of the flow guarantees that the areas

|∂Md
t | remain constant in t. Furthermore, the mass decrease law, which was

partially responsible for the dimensional restriction in [11] due to its reliance

on the positive mass theorem, is valid here since eachMd
t is a spin manifold.

More precisely, the positive mass theorem is applied to a doubled manifold

with one of the two ends being compactified, and in this context we may

apply the ‘corners’ version of this result obtained with harmonic spinors [39,

Theorem 3.1]. It follows that the mass m(t) of (Md
t , gt) is nonincreasing in t.

We now claim that the flow surfaces ∂Md
t reach the asymptotic end of

Md in finite time, and in fact eventually leave every compact set. This was

originally established in dimension 3 [7, Theorem 13], while in [11] this issue

is avoided altogether. Although the original proof relied on the Gauss-Bonnet

theorem which is not available here, a weaker version of this result [7, The-

orem 12] extends to higher dimensions with only minor changes. An imme-

diate corollary of this theorem shows that ∂Md
t cannot be entirely enclosed
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by a single coordinate sphere in the asymptotic end, for all t. Because the

flow surfaces in the current setting are G-invariant, if they did not even-

tually leave every compact set then they would be entirely enclosed by a

coordinate sphere. Thus, we may apply the higher dimensional analogue of

Bray’s observation to obtain the desired conclusion. Note that the proof of

[7, Theorem 12] makes use of harmonic asymptotics, however this is not

necessary as the relevant harmonic functions may be expanded in spherical

harmonics to produce the same outcome.

To complete the proof, run the conformal flow until time t0 when ∂Md
t0

reaches sufficiently far out in the asymptotic end to enclose Σs0 , the desig-

nated surface appearing in Propositions 6.1 and 6.2. Properties of the flow

discussed above guarantee that

(104) m ≥ m(t0), |∂Md
t0 | = A,

where m is the ADM mass of (Md, g) and A is the area of its boundary. On

the other hand, the aforementioned propositions give rise to monotonicity for

the Hawking mass in (Md
t0 , gt0), as in Section 4. Moreover, since the functions

I from the proof of these propositions vanishes to second order at the round

metric, the asymptotic limit of the Hawking mass is no greater than m(t0);

this is established in the same manner as Proposition 4.2. Therefore

(105) m(t0) ≥
1

2

(

|∂Md
t0 |

ωd−1

)
d−2

d−1

,

and combining (104) with (105) produces the desired Penrose inequality

since Ah = A. Lastly, consider the case of equality for (6). This forces equal-

ity between the masses of (104), and thus the rigidity statement of the pos-

itive mass theorem used for the (conformal flow) mass decrease law, implies

that (Md
t , gt) is spherically symmetric for t ≤ t0. In particular, (Md, g) is

spherically symmetric and is therefore isometric to the canonical slice of a

Schwarzschild spacetime [12, Theorem 3.4].

Appendix A. Vanishing of linear momenta

In this appendix we show that under the hypotheses of Theorem 1.1, the

ADM linear momenta Pi vanish so that the ADM mass agrees with the

ADM energy m = E. Let n > 1 and use the expressions for the metric and

extrinsic curvature given in Proposition 2.1, to compute the following two
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components of the momentum density

(A.1)

J(e1) = J(∂s) = −k′b − 2nk′c +
(2n+ 1)ρ̇

ρ
ka

− (kb + 2nkc)
ρ′

ρ
+ 2nB′(kb − kc),

(A.2) J(e2) = k′s + ks

(

(2n+ 2)
ρ̇

ρ
− 2nB′

)

,

where e1 and e2 are a part of the orthonormal frame from (21). Recalling

the formula for Trgk in (25) motivates a rewriting of (A.1) by

(A.3) k′a + (2n+ 2)
ρ′

ρ
ka = J(e1) + (Trgk)

′ +
ρ′

ρ
Trgk − 2nB′(kb − kc).

Since the asymptotically flat fall-off conditions (3) imply that the right-hand

side is O(s−2τ−2), it follows that

(A.4) ka = ρ−2τ−2

[
ˆ s

s0

ρ2τ+2O(t2τ+2)dt+ C

]

= O(s−2τ−2)

for some constant C. Similarly, we also find that ks = O(s−2τ−2) from (A.2).

Moreover, because the only possible nonzero components of the ADM linear

momentum involve only k(e1, e1) = ka or k(e1, e2) = ks, and τ > n, we con-

clude that the ADM linear momentum vanishes. The case n = 1 is treated

analogously using Section 2.2. Note that the additional decay of Trgk from

(3) is only used here, to obtain the vanishing linear momentum.

Appendix B. An example

In this last appendix we will exhibit cohomogeneity one asymptotically flat

and asymptotically hyperbolic initial data, which deviate in a significant

manner from spherical symmetry by allowing for nonzero angular momen-

tum. Consider the 2-parameter family of asymptotically flat SU(n+ 1)-

invariant initial data ([r+,∞)× S2n+1, g, k) in which

(B.5)
g = U(r)2dr2 + P (r)2 (dψ +A)2 + r2gFS ,

k = −r−1U(r)W ′(r)P (r)3dr(dψ +A),
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where ψ, A, and gFS are as in (13) and

(B.6)
U(r)2 =

(

1− 2m

r2n
+

2ma2

r2n+2

)−1

, P (r) = r

(

1 +
2ma2

r2n+2

)1/2

,

W (r) =
2ma

r2nP (r)2
,

with m and a denoting the mass and angular momentum parameters. The

value r+ is the largest positive root of U(r)−2, and corresponds to an out-

ermost minimal surface. This initial data set arises from the 2-parameter

family of Myers-Perry stationary asymptotically flat black hole solutions of

the vacuum Einstein equations given by

(B.7)

g = −r2U(r)−2P (r)−2dt2 + U(r)2dr2 + P (r)2 (dψ +A−W (r)dt)2 + r2gFS .

Note that when a = 0 the Schwawrzschild solution is recovered. The event

horizon is located at r = r+ and has null generator

(B.8) ξ = ∂t +Ω∂ψ, Ω =
2ma

r
2(n+1)
+ + 2ma2

,

where Ω is the angular velocity. Moreover, a calculation shows that for

the black hole to be subextremal the parameters must satisfy r2+ > n−1(n+

1)a2, with equality corresponding to an extreme Myers-Perry solution hav-

ing a degenerate horizon. It is convenient to use r+ and a express relevant

quantities. In particular, the mass parameter m coincides with the ADM

mass and takes the form

(B.9) m =
r
2(n+1)
+

2(r2+ − a2)
,

while the area of a cross section of the event horizon becomes

(B.10) A = ω2n+1P (r+)r
2n
+ =

ω2n+1r
2(n+1)
+

√

r2+ − a2
,

and the only nonzero ADM angular momentum occurs in the ψ-direction

and is given by Jψ = ma where by definition

(B.11) Jψ =
1

2(n+ 1)ω2n+1

ˆ

S∞

(k − (Trk)g)(∂r, ∂ψ)dV.
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We now have the relation

(B.12) m =

(

r2+
r2+ − a2

)

n+1

2n+1 1

2

( A
ω2n+1

) 2n

2n+1

.

Note that this satisfies the Penrose inequality since a2r−2
+ < 1, and equality

holds only for the case of Schwarzschild, when a = 0.

An asymptotically hyperbolic generalization of the above rotating black

hole initial data may be obtained by setting

(B.13) U(r)2 =

(

1 + r2 − 2m(1− a2)

r2n
+

2ma2

r2n+2

)−1

.

The resulting data coincides with the canonical slice of a Myers-Perry-AdS

black hole, a solution of the stationary vacuum Einstein equations with

negative cosmological constant, having equal angular momenta. Again let-

ting r+ denote the largest positive root of U(r)−2, there will be an event

horizon at r = r+ provided m > 0 and 0 ≤ a < 1. Notice that when m = 0

the spacetime is the (2n+ 3)-dimensional AdS space, whereas when a = 0

the solution reduces to Schwarzschild-AdS. A computation reveals the total

energy to be

(B.14) Ehyp = m

(

1 +
a2

2n+ 1

)

,

while as before the angular momentum is Jψ = ma. Expressing the mass

parameter in terms of r+ and a yields

(B.15) m =
(1 + r2+)r

2(n+1)
+

2(r2+(1− a2)− a2)
,

and therefore

(B.16)

m =
1

2 (1− α)
n+1

2n+1 (1− β)

( A
ω2n+1

) 2n

2n+1

+
1

2 (1− α)
n

2n+1 (1− β)

( A
ω2n+1

)
2n+2

2n+1

where

(B.17) α =
a2

r2+
, β =

a2

r2+(1− a2)
.
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Next observe that a calculation provides the nondegeneracy condition

(B.18) r2+(n+ (n+ 1)r2+)− a2(1 + n)(1 + r2+)
2 ≥ 0.

Hence, because restrictions on the parameters imply that α < 1 and β < 1,

and Ehyp ≥ m with equality only when a = 0, it follows that the hyperbolic

Penrose inequality holds with saturation only for Schwarzschild-AdS.
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1168.

[19] N. Eldredge, M. Gordina, and L. Saloff-Coste. Left-invariant geometries

on SU(2) are uniformly doubling. Geom. Funct. Anal. 28 (2018), 1321–

1367.

[20] N. Engelhardt, and A. Folkestad. General bounds on holographic com-

plexity. J. High Energy Phys. (2022) 040.

[21] N. Engelhardt, and G. Horowitz. Holographic argument for the Penrose

inequality in AdS spacetimes. Phys. Rev. D 99 (2019) 126009.

[22] A. Folkestad. Penrose inequality as a constraint on the low energy limit

of quantum gravity. Phys. Rev. Lett. 130 (2023) 21501.

[23] G. Gibbons. Some comments on gravitational entropy and the inverse

mean curvature flow. Classical Quantum Gravity 16 (1999), 1677–1687.



1942 M. Khuri and H. Kunduri

[24] F. Girão, and L. de Lima. Positive mass and Penrose type inequalities

for asymptotically hyperbolic hypersurfaces. Gen. Relativity Gravitation

47 (2015), 3.

[25] F. Girão, and L. de Lima. An Alexandrov-Fenchel-type inequality in

hyperbolic space with an application to a Penrose inequality. Ann. Henri
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