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The spacetime Penrose inequality for
cohomogeneity one initial data

MARCUS KHURI AND HARI KUNDURI

We prove the spacetime Penrose inequality for asymptotically flat
2(n + 1)-dimensional initial data sets for the Einstein equations,
which are invariant under a cohomogeneity one action of SU(n +
1). Analogous results are obtained for asymptotically hyperbolic
initial data that arise as spatial hypersurfaces in asymptotically
Anti de-Sitter spacetimes. More precisely, it is shown that with
the dominant energy condition, the total mass is bounded below
by an explicit function of the outermost apparent horizon area.
Furthermore, the inequality is saturated if and only if the initial
data isometrically embed into a Schwarzschild(-AdS) spacetime.
This generalizes the only previously known case of the conjectured
spacetime Penrose inequality, established under the assumption of
spherical symmetry. Additionally, in the time symmetric case, we
observe that the inequality holds for 4(n + 1)-dimensional and 16-
dimensional initial data invariant under cohomogeneity one actions
of Sp(n + 1) and Spin(9), respectively, thus treating the inequality
for all cohomogeneity one actions in this regime.
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1. Introduction

In an effort to find a counterexample to the weak cosmic censorship conjec-
ture [37], Penrose put forward a precise inequality [38] relating the ADM
mass m of an asymptotically flat 4-dimensional spacetime to any cross-
sectional area A, of the event horizons it contains, in the form

1) S

It is typical to reformulate this inequality in the setting of initial data sets.
Consider a triple (M9, g,k) consisting of a d-dimensional connected and

orientable manifold M? with boundary, a complete Riemannian metric g,
and a symmetric 2-tensor k denoting the extrinsic curvature of an embedding
into spacetime, with all objects being smooth. These quantities must satisfy
the constraint equations

(2) 16mp = R+ (Trgk)? — |k[2, 8mJ = divy (k — (Tryk)g),

where R is scalar curvature, and p, J represent the energy-momentum den-
sity of matter fields. We will say that the dominant energy condition is satis-
fied if > |J|4. Moreover, the data will be referred to as asymptotically flat
if outside a compact set C there is a diffeomorphism ¢ : M4\ C — R%\ By,
such that in the Caretesian coordinates x provided by this map

3 peg — 8= Oa(lz|77), ek = Oy(|z]7771),
p,d = O0(|z|7772), Trgh = O1(J2|>77),

for some 7 > %. The additional decay on the trace of k is usually not
included in the definition of asymptotically flatness, but will be useful when
working with the generalized Jang equation below. With these asymptotics
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the ADM energy and linear momentum are well-defined [5, 16] and given by

1 .
Pt iy
(4) 2(d - 1)wd_1 Tlglo s, (g 75 g ,j)l/ V.
1 .
P=———— lim (k’@] — (Trgk)gij)l/]dv,

(d—1Dwg—y r=o Jg,

where S, are coordinate spheres with unit outer normal v and wy_; is the
volume of the unit (d — 1)-sphere. The ADM mass is then the Lorentz length
of the energy-momentum vector, m = \/E? — | P|2.

The role of the event horizon is replaced by that of an apparent horizon,
which may be computed directly from the initial data. Recall that the grav-
itational field’s strength near a hypersurface ¥ C M% may be probed by the
null expansions (null mean curvatures)

(5) 6. = Hy, + Trek,

where Hy, denotes the mean curvature with respect to the normal pointing
towards infinity. These give the rate of change for area of a shell of light
emanating from the surface in the outward future/past direction (+/—).
Future or past trapped surfaces are defined by the inequalities 8+ < 0 or
f_ < 0, respectively, and may be interpreted as lying within a region of
strong gravity. When 6, =0 or #_ =0 the surface is called a future or
past apparent horizon; these naturally arise as boundaries of future or past
trapped regions [4]. Furthermore, such a surface will be called an outermost
apparent horizon if it is not enclosed by any other apparent horizon. The
conjectured Penrose inequality for general dimensions may then be recast as

(6) m>;(Ah)

Wd—1

whenever the dominant energy condition holds, where Ay is the smallest
area required to enclose the outermost apparent horizon. Equality should
be achieved only for slices of the Schwarzschild spacetime.

In the (Riemannian) time symmetric case when k = 0, the 3-dimensional
Penrose inequality has been confirmed by Huisken-Ilmanen [28] and
Agostiniani-Mantegazza-Mazzieri-Oronzio [1] for a single black hole via
inverse mean curvature flow and p-harmonic functions repsectively, and by
Bray [7] for multiple black holes using a conformal flow. The latter approach
has been generalized by Bray-Lee [11] up to dimension 7. Within the context
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of the general spacetime setting, there are very few results. In fact, for this
regime the conjectured inequality has only been verified in the spherically
symmetric case [26, 33] with the rigidity statement also obtained in [9, 12],
[31, Theorem 7.46]; these results hold in all dimensions.

In the present note we consider cohomogeneity one initial data sets.
Recall that a Riemannian manifold (M?, g) is said to have cohomogeneity
one if a (compact connected) Lie group G acts by isometries on M? such
that the principal orbits G/H are of codimension one, where # is a princi-
pal isotropy subgroup (for general initial data sets we also assume that k is
invariant under the action of G). Within the setting of interest, the manifold
will be asymptotically flat or asymptotically hyperbolic with an outermost
apparent horizon boundary; note that smooth outermost apparent horizons
inherit the symmetries of the initial data from which they arise [12, Lemma
3.1] ([3, Theorem 8.1], [36]). Therefore, the principal orbit theorem implies
that the orbit space M9 /G is diffeomorphic to a half line [0, c0) with the ori-
gin corresponding to the apparent horizon, and M? 22 [0, 00) x G/H. This
is discussed further in Section 2, where it is also shown that the struc-
ture at infinity ensures that the surfaces of homogeneity will be spheres.
A classification of the possible homogeneous metrics on spheres has been
obtained by Ziller [42]. In addition to the standard round metric, there are
odd-dimensional cases corresponding to

S2ntl — SU(n +1)/SU(n), 54743 — Sp(n +1)/Sp(n),

M 15 Spin(9) /Spin(7).

We will establish the spacetime Penrose inequality for the first of these cases
in the asymptotically flat and asymptotically hyperbolic contexts, namely
for initial data of dimension d = 2(n + 1), n > 1 which are invariant under
the action of SU(n 4 1). Note that in contrast to the spherically symmet-
ric case, this class of initial data includes those with non-vanishing angular
momentum, and there are explicit rotating black hole solutions arising from
data in this class, see Appendix B. To accomplish this goal we will exploit
a method proposed by Bray and the first author [9, 10] which involves cou-
pling inverse mean curvature flow to the so called generalized Jang equation.
In these higher dimensions, lack of the Gauss-Bonnet theorem presents dif-
ficulties for monotonicity of Hawking mass, however in the current setting
a fortuitous cancellation occurs (in Proposition 4.1) which allows the proce-
dure to go through.
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Theorem 1.1. Let (M?"tD g k), n > 1 be an asymptotically flat SU(n +
1)-invariant initial data set, with outermost apparent horizon boundary of
area A. If the dominant energy condition is satisfied then

(8) le( A >2n+1’
2 \ won41

and equality occurs if and only if the initial data arise from an isometric
embedding into a Schwarzschild spacetime.

Consider now asymptotically hyperbolic initial data relevant for asymp-
totically Anti-de Sitter (AdS) spacetimes. Let (H?, b) denote the d-dimensio-
nal hyperbolic space with metric expressed in geodesic polar coordinates
as b= dr? + (sinh?)gga-1. Recall that hyperbolic space arises as a totally
geodesic spacelike slice of the Anti-de Sitter (AdS) spacetime,
(R x HY, —(cosh? r)dt? + b). An initial data set (M, g, k) satisfying the mod-
ified constraints

(9) 16mpu =R+ (Trgk)® — k2 +d(d—1),  8rJ =divy (k — (Trgk)g),

will be referred to as asymptotically hyperbolic if outside a compact set C
there is a diffeomorphism ¢ : M?\ C — H?\ By such that

(10) g:=¢ug—b=0s(""),  pk=01(e"),  p,J=0( %),

for ¢ > d/2. The dominant energy condition in this setting is again expressed
as p > |J|g4. Initial data satisfying (9) and (10) arise as spacelike hypesurfaces
in asymptotically AdS spacetimes with (negative) cosmological constant A =
—@. Well-defined global Hamiltonian charges, interpreted as the total
energy-momentum for such data, were obtained by Chrusciel-Nagy [17] (see
also [35] and the exposition in [13]). In particular, if U = coshr denotes the

time translation lapse function then the total energy is given by

1
By = —————— 1i dived) — (4T
(1) WP = 5 Dy A J, [U1Ave) = U(dTng)

+(Trpg)dU — g(VoU)] (v)dV,
where v, is the unit outward normal (measured in b) to the coordinate

spheres S,.. An analogous expression gives rise to the total linear momentum
by replacing U with the lapse functions U; = 2’sinhr, i = 1,...d defined
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on H? where z' are Cartesian coordinates restricted to the unit sphere
S9=1. A version of the spacetime Penrose inequality is conjectured to hold
in this asymptotically hyperbolic setting [8, 14, 23, 34|, and is relevant in
the context of the gauge theory/gravity correspondence [21]. The inequality
has been established in spherical symmetry by Engelhardt-Folkestad [20,
Theorem 6], Folkestad [22, Theorem 1], and Husain-Singh [29], with various
hypotheses. Moreover, it has been proved when k = 0 for small perturbations
of the Schwarzschild-AdS manifold by Ambrozio [2] (see also [30]), and for
graphs by Dahl-Gicquaud-Sakovich [18] and Girao-de Lima [25]. We prove
the following result.

Theorem 1.2. Let (M?>"*D g k), n>1 be an asymptotically hyperbolic
SU(n + 1)-invariant initial data set, with outermost apparent horizon bound-
ary of area A. If the dominant energy condition is satisfied then

2n+42

1 % 1 2n+1
(12) Ehyp Z o < A > ' + = < A > : y
2 Won+1 2 Wan+1

and equality occurs if and only if the initial data arise from an isometric

embedding into a Schwarzschild-AdS spacetime.

A different type of asymptotically hyperbolic initial data, with second
fundamental form k converging to g rather than vanishing at infinity, appears
naturally as asymptotically umbilic slices in asymptotically flat spacetimes
and are referred to as asymptotically hyperboloidal. In this setting, the Pen-
rose inequality [41] takes the form (8) instead of (12), and the case of equal-
ity should give rise to an embedding into the Schwarzschild spacetime. This
has also been established in spherical symmetry by Hou [27], in the time
symmetric graphical context by Girao-de Lima [24], and we expect that the
strategy outlined in [15] together with arguments of the current paper will
yield the SU(n + 1)-invariant case as well.

Lastly, in the Riemannian asymptotically flat context, we are able to
treat the Penrose inequality for the full range of cohomogeneity one man-
ifolds. In addition to the SU(n + 1)-invariant case, this also includes the
Sp(n + 1) and Spin(9)-invariant cases. The proof will rely on a combination
of Bray’s conformal flow with inverse mean curvature flow.

Theorem 1.3. Let (M<%,g), d >3 be a cohomogeneity one Riemannian
manifold which is asymptotically flat, with outermost minimal surface bound-
ary. If the scalar curvature is nonnegative R > 0, then inequality (6) holds.
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Moreover, equality is achieved if and only if the manifold is isometric to the
canonical slice of a Schwarzschild spacetime.

This article is organized as follows. In Section 2 we describe cohomogene-
ity one initial data sets in detail, while in Section 3 existence is established
for the coupled Jang-IMCF system of equations in this setting. The proofs
of Theorems 1.1, 1.2, and 1.3 are then given in Sections 4, 5, and 6. Finally,
two appendices are provided with the first showing that linear momentum
vanishes in the asymptotically flat case, and the second exhibiting examples
of relevant initial data.

Acknowledgements. The authors would like to thank McKenzie Wang
for helpful comments.

2. Cohomogeneity one initial data sets

Consider a cohomogeneity one Riemannian manifold (A<, g) which is asymp-
totically flat or asymptotically hyperbolic, and possesses a smooth outer-
most apparent horizon boundary. If G is the compact connected Lie group
of isometries giving rise to the cohomogeneity one structure, then as dis-
cussed in the introduction the manifold is diffeomorphic to a product M? =
[0,00) X G/H, where H is a principal isotropy subgroup. To see this, first
note that smooth outermost apparent horizons inherit the symmetries of the
initial data from which they arise [12, Lemma 3.1] ([3, Theorem 8.1], [36]),
more precisely OM? is left invariant by G. Therefore, we have a well-defined
G-action on M%)\ M, and may then apply the principal orbit theorem to
conclude that the orbit space (M?\ dM?)/G is diffeomorphic to a open half
line (0, 00), with the origin corresponding to the apparent horizon, and thus
M4\ OM? = (0,00) x G/H. The desired conclusion now follows.

We next claim that in light of the asymptotics, the orbits G/H must
topologically be the sphere S?~!. Note that if s: M¢ — R, is the dis-
tance function to the boundary dM?, then g = ds® + g, where g is a 1-
parameter family of G-invariant metrics on G/H. Let ¥, denote the s-level
set, then there exists a sufficiently large so such that ¥, lies completely
within the asymptotic end M?\ C. If not, then there exists a sequence of
distances s; — oo with |s; — s;| > 1 for ¢ # j such that X, N C # (. Since C
is compact, a sequence of points p; € 35, N C must have a convergent subse-
quence. However this contradicts |s; — sj| > 1, and we conclude that there
isaX;,, CM d \ C. Because X, is compact, there exists a large coordinate
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sphere S,, C R? whose preimage under the asymptotic diffeomorphism ¢
separates g, from infinity. Let sto be the image of €2, inside R?\ By,
where Qg ., is the region bounded between X4, and ¢~ 1(S,,). By flowing
along radial lines in R?% we may continuously deform €, into S,,. This
induces a deformation retract of M go onto Mf,fJ , where these are the closure
of the noncompact component of M?\ ¥, and M?\ ¢~1(S,,), respectively.
Since M go is homotopy equivalent to ¥, and Mﬁlo is homotopy equivalent
to = 1(S,,), it follows that Y, is a homotopy sphere. Therefore, by the
resolution of the generalized Poincaré conjecture we have that G/H = X is
homeomorphic to the standard sphere S¢ 1. Moreover, since exotic spheres
do not admit smooth homogeneous space structures [40, Theorem 1.1], it
follows that G/# is diffeomorphic S%1!.

The classification of homogeneous metrics on spheres has been given by
Ziller [42, page 352]. In all dimensions there is a unique SO(d)-invariant
metric (up to homothety) on S9! = SO(d)/SO(d — 1), of constant curva-
ture. This leads to spherically symmetric initial data, a setting in which the
spacetime Penrose inequality has already been established. In odd dimen-
sions the Hopf fibrations S! < §2"*+1 — CP" give rise to a l-parameter
family or 2-parameter family of SU(n + 1)-invariant metrics on $2"+1 =
SU(n 4+ 1)/SU(n) depending on whether n > 1 or n = 1, respectively. For
n > 1, these metrics have an extra U(1) symmetry, and will be discussed
in detail below. The remaining cases include a 3-parameter family of met-
rics on S*"*3 = Sp(n + 1)/Sp(n) and a l-parameter family of metrics on
S1% = Spin(9)/Spin(7) up to homothety, which will be examined further in
Section 6.

In what follows, an initial data set (M¢?, g, k) will be referred to as G-
invariant if the Riemannian manifold (M?,g) is cohomogeneity one with
respect to G, and the Lie derivative vanishes L,k = 0 for any Killing field n
associated with the isometries of g.

2.1. SU(n + 1)-invariant initial data, n > 1

The 1-parameter family of Berger metrics on the ‘squashed’ sphere $27+1
are given by

(13) g = MNd + A)? + grs,

where 9 is a 2m-periodic coordinate on the circles of the Hopf fibration, grg
is the Fubini-Study metric on CP" scaled so that Ric(grs) = 2(n + 1)grs,
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and A is a connection 1-form such that w = dA/2 is the associated Kéhler
form. The normalization is chosen so that g; is the unit round metric on
5§27+l Note that the squashing parameter A controls the size of the S* fibers
in the fibration, and the metric (13) is invariant under the U(1) isometry
generated by the Killing field d,,. Moreover, since the round metric inherits
the subgroup of isometries SU(n + 1) from C™*! and the action descends by
isometries to the complex projective space quotient, we find that L, (dy +
A) =0 for any Killing field n associated with the SU(n + 1) symmetry. It
follows that the Berger metrics inherit this symmetry, and they are the
building blocks of SU(n + 1)-invariant initial data.

Proposition 2.1. Let n > 1. Consider an asymptotically flat or asymp-
totically hyperbolic SU(n 4 1)-invariant initial data set (M?*"HD g k), with
outermost apparent horizon boundary. Then M2+l o~ [0,00) x S2"+L and
the metric and extrinsic curvature take the form

(14)
g =ds® + p(s)? [e—4nB(s)(dw+A)2 +ezB(s)gFS} :
k =kads® + 2kspe "B ds(dy + A) + p? [kpe "B (dy + A)? + kee*Pgrs]

for some smooth functions B, kq, ky, ke, ks, and p >0 of s alone. In an
asymptotically flat end

p(s) =s+0a(s'"7), B=0y(s"),

15
( ) kaa k;ba k;C) ks — 01(5_7_1)) Trgk — Ol (5_27-_1))

while in an asymptotically hyperbolic end
(16)
p(s) = sinhs + Og(e179%), B =0a(e7%), kq, kp, ke, ks = O1(e7%).

Proof. According to the discussion at the beginning of this section, and the
classification of [42], the manifold is topologically M2(*+1) = [0, 00) x §27+1
and the metric is given by

(17) g =ds>+ P(s)*(d + A)? + Q(s)*grs

for some smooth positive functions P(s) and Q(s). We may then set

(18)  p(s) = [POQE)™MTT, PO = (gw
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so that
(19) Q(s) = e"¥p(s),  P(s) = e Plp(s).

The desired expression for the metric now follows.
Consider now the structure of k. It is useful to introduce the orthonormal
coframe

el =ds, e? = p(s)e "B (dip + A),

20 . .
(20) e’:p(s)eB(s)é’, i=3,...,2(n+1),
where ¢’ are members of an orthornoaml coframe for the Fubini-Study met-
ric. The dual basis vectors are given by
(21)

e; = 0s, e = p(s)*leQ”B(s)&/,, e; = p(s) e PO (¢, — A(€;)0y) -

We may then expand the extrinsic curvature as k = kijei ® € for some sym-
metric matrix of functions kij, with i,j =1,...,2(n + 1). First observe that
k;; has no dependence on 1, since the Killing field 0, commutes with the
frame (21). Next, note that grg is the unique SU(n + 1)-invariant metric
(up to a scaling) on CP". This implies that there can be no nontrivial
SU(n + 1)-invariant 1-forms o on CP", for otherwise grs + Ao? would pro-
duce another invariant family of metrics. It follows that an invariant & cannot
contain terms of the form e' ® e’ or e ® e’ for any i > 2. To see this, write
kue' ® e = ef ® K, where K; = kye' and £ = 1,2. Let n be a Killing field
associated with the SU(n + 1) symmetry, then L, (e’ ® K;) = ' ® L, K,.
However, since L, K, is a linear combination of e’ for i > 2, there is no
possibility of canceling this term with any other expression in L,k. We then
have that L, K, = 0. Thus, K, is a SU(n + 1)-invariant 1-form as n was arbi-
trary, so that K, = 0. From this, one may further conclude that k11, k12, and
koo depend only on s, and that o = Ei,j>2 /-cijei ® ¢’ is SU(n + 1)-invariant.
The latter statement implies that o must be a multiple of grg, otherwise for
small € the expression grpg + € would furnish an invariant metric on CP"
in violation of the uniqueness property of the Fubini-Study metric. Putting
this all together yields the desired structure for k.

Lastly, to obtain the fall-off in (15), write the Euclidean metric of (3)
in polar form with the coordinate spheres expressed with respect to the
Hopf fibration, and compare with the coefficients of ¢, g. This gives relations
between the two sets of coordinates and the quantities p, B, from which



The spacetime Penrose inequality 1915

the desired decay may be derived. An analogous procedure applies to the
extrinsic curvature. Moreover, the asymptotically hyperbolic case is treated
similarly. O

It will be useful to record some facts about the class of metrics (14).
First note that the s-level set spheres ¥; have volume form

(22) dVs = p*"dy A dVepr = p*" T dVgania,

and scalar curvature

2nP?  dn(n+1) 2N [ 4B _op
(23) Re=—"0r + 5 :—§<e (+DB _9(p 4 1)e )
while the scalar curvature of g as expressed in (17) is given by

(24)
R=—

4nQ"  2P"  2nP?  4nP'Q’ N dn(n+1) 2n(2n—1)Q"”

Q P Q* PQ Q? Q?
where the prime notation indicates differentiation with respect to s. Fur-
thermore

(25) Tryk = ko + ky + 2nke, Trok = kp + 2nk,,
and the mean curvature of the level sets is

(26) Hy = (2n+ 1)’:.

2.2. SU(2)-invariant initial data

For n = 1, $3 is diffeomorphic to the Lie group SU(2) and hence there exist
homogeneous metrics invariant under the left or right action of SU(2) that
do not possess the enhanced U(1) isometry. Consider the following right-
invariant 1-forms [32, Appendix A]

ol = sindf — cossinBdp, o2 = coshdf + sin 1 sin Od,

27
(27) 03 = dip + cos 0dg,

where 6 € (0,7),¢ € (0,27), and 1 € (0,4w). These satisfy the
Maurer-Cartan equations do’ = —%eijkoj A ¥, where €;jk is totally anti-
symmetric and €123 = 1. The associated right-invariant basis of dual vector
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fields & (where % (¢;) = 6;) satisfy the commutation relations [&;, {;] = ekij‘fk
and hence constitute a Milnor basis (see, e.g. [19]). A general SU(2)-invariant
metric on the 3-sphere can be written ggy = hijaiaj, in which h is a constant
symmetric positive definite matrix. Note that h;; = %&j gives rise to the unit
round metric ggs. Any such metric admits a Milnor basis {£1, &2, £3} which is
orthogonal in the metric gy [19, Lemma 2.8]. Writing gsu (&, &5) = (¢7/4)i;
for constants ¢; > 0, a straightforward computation gives the scalar curva-
ture

2
28 Rsy = 555
> REET

(2615 + 63) — ¢l = (c3 — 3)°)
and the volume form dVy, = cicac3dVy,.

Consider now SU(2)-invariant initial data (M*, g, k) satisfying the hypo-
theses of Proposition 2.1. Then M* 22 [0, 00) x S3, the metric takes the form
g = ds? + hjj(s)o'c? where h;j(s) represents a smooth one-parameter family
of symmetric, positive definite matrices. By [19, Lemma 2.8 and Corollary
2.10], in a neighbourhood of a given s we may express this as

29)  g=dst+  (EE)E + O +B6)6Y)

where 6%(s) are a basis of 1-forms dual to the Milnor frame &;(s) which can
be associated to the induced metric on each level set of s. The extrinsic
curvature may be expressed as

(30) k = ka(s)ds? 4 2ki(s)e'ds + kqj(s)e'e’

for some smooth functions k,, l;:i, and l;:ij of s alone, where
e'(s) = (ci(s)/2)6(s) is an orthonormal co-frame for each coordinate sphere.
Moreover, as in the proof of Proposition 2.1, it may be shown that in an
asymptotically flat end

(B als) =s+0a(s"7) ka(s),ki(s), ig(s) = Ou(s7TY),

while in an asymptotically hyperbolic end

(32)  ci(s) =sinh s + Oy(e179%), ka(s), ki(s), kij(s) = O1(e™%).
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3. The cohomogeneity one generalized Jang equation

The goal of this section is to obtain existence and asymptotics for solutions
of a coupled system involving inverse mean curvature flow and the gener-
alized Jang equation, in the setting of SU(n + 1)-invariant initial data sets
(M2 +1) g k). Recall that the generalized Jang equation [9, 10] associated
with the data set is given by

(33) <gz-j G2 fifI ) (d’vijf +dif + $ifi k]> o

1+ @2V VI+ RNV

where f'=g"f;, fj =0;f, and V is the Levi-Civita connection. Utilizing
the structure of the metric and extrinsic curvature from Proposition 2.1,
and assuming that ¢, f are functions of s alone, we find that this equation
is equivalent to

(34) v+ WU + <(Zv - k:a> (1 —v%) — ky — 2nk. = 0,

where prime indicates differentiation with respect to s and

of

Since inverse mean curvature flow emanating from a SU(n + 1)-invariant

(35) v =

apparent horizon remains SU(n + 1)-invariant, following the proposal in [9,
10] to couple the generalized Jang equation with inverse mean curvature
flow leads to

d — S| \#mr A

Wan+1 2n+ 1’

where Y is the 3-level set surface with mean curvature H with respect to
the Jang metric § = g + ¢2df?, |Xs| is the area, and 5 is the corresponding
radial arclength parameter

(37) 3:/0 \/1+¢2f’2:/0 \/11_7

This choice of ¢ ensures monotonicity of the Hawking mass along inverse

n+l) =

mean curvature flow in the Jang manifold (M2+1) g).
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The boundary of the initial data is assumed to be an outermost apparent
horizon, and therefore we must have

/

(38) 0<0y=H+Trs k= (2n+ 1)% + (ky + 2nk,)

for s >0, and 64+(0) =0 and/or #_(0) =0 depending on whether ¥y =
OM?("+1) is a future and/or past horizon. It follows that the g-mean curva-
ture of radial surfaces is positive H = (64 4+ 6_) > 0 away from the bound-
ary, and hence on this region ¢ > 0 as long as f’ is bounded. Inserting the
expression (36) for ¢ into the generalized Jang equation (34) and rearranging
terms produces

(39) (1 —v?)v' + (1 — v?)Fx(s,v) £ 0+ =0,
where

(40) Fr(s,v):=F %o + — — kg

2n+1)p"  vp”

p
Remark 3.1. The above computations have been performed for SU(n + 1)-
invariant initial data with n > 1. In particular, Proposition 2.1 has been
utilized. For the special case when n = 1, we may appeal to Section 2.2 to
obtain an analogous equation (39). This is due to the fact that even though
the 67 depend on s, only the volume form of the SU(2) metric plays a role in
computations for the generalized Jang equation applied to radial functions.
In what follows we will treat the two cases simultaneously without noting
differences when n = 1, as the modifications needed for this dimension are
straightforward.

Theorem 3.2. Let (M?>"+1) g k), n > 1 be an asymptotically flat or asymp-
totically hyperbolic SU(n + 1)-invariant initial data set, with outermost appar-
ent horizon boundary. If the boundary mean curvature satisfies H(0) # 0,
then  given  «a€(—1,1) there exists a  unique  Ssolution
v e CL([0,00)) N C®((0,0)) of (39) such that —1 < v(s) <1 for s >0 and
v(0) = a. This remains true when o = £1 if OM>"+Y) is o past (future)
apparent horizon, respectively. If H(0) = 0, then the same existence state-
ment holds with v(0) = 0 and v € C°([0,00)) N C*((0, )). Furthermore, in
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all cases the solution admits the following decay

(41) [o(s)] + sl (5)] < C5~2

in the asymptotically flat setting for any 19 < min{r,n + %}, and the decay
(42) [v(s)| +[v'(s)| < Ce™®*

in the asymptotically hyperbolic setting for any qo < min{q,2n + 2}, where
C' is a constant depending on g (up to second derivatives) and k as well as
on Ty or qo, respectively.

Proof. Assume first that the initial data are asymptotically flat. Consider
the case when v(0) = a with |a| < 1 and H(0) # 0. By standard methods
there exists a C'! solution on some maximal interval [0, 3) of nonzero length.
We claim that the solution must satisfy the basic uniform pointwise bound

(43) lu(s)| <1 for all s.

To see this, proceed by contradiction and assume that the estimate fails, then
there exists a first so > 0 such that v(sp) = £1. Without loss of generality
we may take v(sg) = 1, then there is an increasing sequence s; — sg with
v'(s;) > 0 and |v(s;)| < 1. It follows that

0 < lim (1 —v*)v'(s;) = lim [~0_(s;) — (1 — v*)F_(s5,0(s;))]

(44) 1—00 1—00

= —9_(80) <0,

which yields a contradiction. We conclude that (43) is valid. In fact, this
estimate may be improved. Observe that since H(0) > 0, with the help of
Proposition 2.1 and the discussion preceding this theorem, we have that
p'(s) > ¢ globally for some constant ¢ > 0. Thus, there exists a positive radial
function F_ satisfying

c1
1+s

(45) |F_(v,s)]| < F_(s) < for all s € [0, 00) whenever v(s) > 0,

for some constant ¢;. If M2t is not a past apparent horizon, that is
6_(0) > 0, then there exists a constant § > 0 such that F_(s)716_(s) > J;
the constant may also be chosen small enough to satisfy v(0) = a < /1 — 4.
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If s1 is the first point at which v(s1) = +/1 — 0 then v/(s1) > 0 and conse-
quently

(46) 0<—0_(s1)+ (1 —2%(s1))F_(s1),

which implies that 1 — v?(s1) > § yielding a contradiction. We conclude that
v(s) < v/1 — ¢ at all points, and a similar argument with F_ replaced by Fl;
provides a lower bound when dM2(™*1) is not a future apparent horizon. If
OM?+1) is a past apparent horizon, that is #_(0) = 0, then since #_ > 0
we have

(47) V() = —0-(s)(1 = v*(5)) "' — F_(5,0(5)) < F_(s) S 1

whenever v is nonnegative. It follows that v(s) < ¢1s + a for s € [0, §1) where
51 = min{s, 01_1(1 — a)}. Since 0_ is strictly positive at 51/2, by applying
the same arguments in the non-past apparent horizon case to the region
s > §1/2, we find that globally v(s) < v/1 —§ for some ¢ > 0 depending on
a. As before, analogous arguments with F_ replaced by F., yield a lower
bound when dM2("*1) is a future apparent horizon. Therefore, in all cases

(48) lv(s)| < V1—-6

on the domain of existence. These pointwise estimates imply uniform control
on first derivatives immediately from equation (39). The function v is then
uniformly continuous, and thus has a unique and continuous extension to
[0, §]. By differentiating the equation, the same holds true for all derivatives
of v. Hence the solution has an unrestricted domain, that is v € C°°([0, 0)).

Consider now the case when o = 1, 9M2("*1) is a past apparent horizon,
and H(0) # 0. Observe that for —2 < w < % or equivalently [v| < 1 equation

(39) may be expressed as
(49) (14 v(w))w' = —0_ + F_(s,0(w)) (1 — 2w — 2v1 - 2w),

where w = v — % and v(w) =1 — /T — 2w. Notice that (49) is no longer
degenerate in that the principal symbol does not vanish. To produce a solu-
tion in the required range, we may take a limit of solutions w. with initial
condition w,(0) = % — €. Due to the nondegeneracy of this equation and the
estimate (48), the solution w := lim._,ow. is C* up to the boundary, and
satisfies —% <w< % In fact, since 6_(s) > 0 for s > 0 we must have that

w(s) < % for s > 0; similarly, replacing the F_ with F; as before shows that
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also w(s) > —3. It may further be shown that the corresponding v has con-
tinuous first derivatives up to the boundary. To see this rewrite equation
(39) once more as

(50) (u+ F_)u' =2v0_,

where u =1 —v? — F_ and F_ = [ 20F_. Integrating (50) and then divid-
ing by s? yields a quadratic equation for u/s, with coefficients that have
finite limits as s — 0. This implies existence of the first derivative for v at
s = 0, which may be found as the nonpositive solution of

(51) 20'(0)? + 2F_(0)2'(0) — 6"_(0) = 0.

It follows that v € C1([0,00)) N C°°((0, c0)) satisfies (39) with v(0) = 1. An
analogous argument shows that one may solve the equation with v(0) = —1
when dM2("+1) is a future apparent horizon.

Lastly, consider the case when H(0) =0. The primary difference in
this situation concerns the functions F4, namely they must blow-up at the
boundary due to the term vp—,,', unless v(0) = 0. Thus, in this case we will
only consider the initial condition v(0) = 0. Note that with this condition,
the principal part of the equation is nondegenerate near s = 0, however there
is a singular behavior in the coefficients:

52) A C IR A

/

Approximate solutions v, € C*([e, 1)), with v.(¢) = 0 and |v;| < 1, may be
obtained with uniform estimates on compact subsets of (0, 1) as € — 0. Thus,
a diagonal argument ensures subconvergence to a solution v € C*°((0,1)).
Using the inverse of the linear operator on the left-hand side of (52), we find
that the limit function may be represented by v(s) = p/(s)™! [§ p'u where u
is uniformly bounded. It follows that the solution is continuous up to the
boundary with v(0) = 0, and this may then be extended globally using the
methods above, so that v € C°([0,00)) N C*°((0, c0)).

Finally, it will be shown that v has the correct asymptotics at infinity.
Recall that we have already assumed the asymptotically flat hypothesis. By
the fall-off conditions (15) and the estimate (48), we may write equation (39)
as

on +1)s~1
(2n+1)s y

[ .2 =O0(s 7 L4 s o)), s> 89> 0.
—v

(53) v+
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The solution on this exterior region can then be represented by
(54)
5(9 1 -1
’U(S) =exp </ (n—l_);dT)
s 1—w

0

s T -1
X [/O(rQTl—krTlM)exp (/ Mdt) dr—i—v(so)} .
So s -V

[¢]

From this it follows that v decays to zero polynomially. To estimate the rate,
choose any positive 79 < min{7,n + %} and denote the exponential function
inside the integral as £(r). Note that r=2™&(r) is increasing for r > s¢ if
so is large enough. Then extracting this function from the integral at its
maximum value shows that the term involving O(r~27~!) decays on the
order of s727; clearly also the last term involving v(sg) decays at this rate
as well. For the term involving |v|, extracting 7~ &(r) in the same way yields
decay for v on the order of s~™. Inserting this estimate back into the same
term and extracting r =27 &(r) produces the desired decay, namely, with the
help of (53) for the derivative fall-off we find that

(55) [u(s)] + sl (s)] < Cs27

for some constant C.

Assume now that the initial data are asymptotically hyperbolic. Only a
slight modification of the above arguments is needed to obtain global exis-
tence of a solution satisfying the required initial conditions. More precisely,
in this case F_ = —(2n+ 1)+ O(e™2*) and 6_ =2n+ 1+ O(e~%%) in the
asymptotic end, and therefore the function F_(s) used in (45)-(47) should
be taken instead to be a large constant. Consider now the asymptotics of
the solution, and with the help of (16) rewrite equation (39) as

2n+1)p p” _ _
(56) v+ ((1—1}2),0+,0/ v=0(e" "+ e ¥, s> sg > 0.

The solution on this exterior region can then be represented by

S

v(s) = e Joo AT < O(e™ + e~ [v])elso 2O g 4 v(so)> :
S0

(2n+1)d
As)=——F— +—.
) A=) g
From this it follows that v decays to zero exponentially. Since A(s) = 2n +
2 + o(1), an argument analogous to that in the asymptotically flat case may

(57)
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be used to obtain
(58) [o(s)| + [v'(s)] < Ce™7,
for any qo < min{q,2n + 2}. O

4. Proof of theorem 1.1:
Asymptotically flat Penrose inequality

Here we will establish the spacetime Penrose inequality for asymptotically
flat SU(n 4 1)-invariant initial data sets. This will be accomplished with an
averaged monotonicity for the Hawking mass along inverse mean curvature
flow within the Jang deformed manifold. A crucial observation in this setting,
which replaces the use of Gauss-Bonnet, is that the scalar curvature of the
leaves cannot be ‘too large’. Let ¥ C (M¢?, g) be a smooth hypersurface in a
d-dimensional Riemannian manifold, then the Hawking mass of ¥ is given
by

(59) my((X) ::é( &2 ) 1- ! /EHQdV :

Wd—1 (d - 1)%wi 1 |S]

where H is the mean curvature of ¥ and |X| denotes its area. If {¥:}7°,
denotes a smooth inverse mean curvature flow, then a direct computation
(see e.g. [31, Theorem 4.27] for the case d = 3) shows that

(60)

d 1/ |2 1 [ d—2 1
et =5 (50) (i o [ v
d-1 (d— 1)2wi 1[5y /2

1 < |2 )‘“ 1
2 \wg_1 (d—l)QwE\Eﬂﬁ

o= [] [ ‘/

where Ry is the scalar curvature and I is the second fundamental form
of Zt.

Proposition 4.1. Let (MQ("‘H),g) be an asymptotically flat or asymptot-
ically hyperbolic SU(n + 1)-invariant Riemannian manifold with outermost
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minimal surface boundary, for n > 1. If ¥ is a level set of the distance func-
tion to the boundary then

(61) / RedV < e 5[5
>

2
2n+1

where ¢, = 2n(2n + l)w%il. Moreover, equality is achieved if and only if
18 a round sphere.

Proof. Consider first the case n > 1. According to Proposition 2.1, (22), and
(23) we have

1

2n+1— —— p— /Rng
(62) 2nwynt |B] Tt I

=20+ 1+ ¢ 2 HNBE) 9 4 1)e2B0),

Setting o = e 728 yields the polynomial
(63) Iu(0) = 2n + 1+ *™D —9(n 4+ 1)p.

This function satisfies I,,(0) = 2n + 1, it monotonically decreases on (0, 1)
to a minimum I,(1) =0, and then increases monotonically for o > 1. It
follows that (62) is always nonnegative, and vanishes only when B = 0 which
coincides with a round 3.

Consider now the case n = 1. According to Section 2.2 we have

1 /
——— | Ryav
2023 n[1/3 Jx

1

(010203)4/3 [

(64)
2,2, 2 4 2 2\2
=3 - 2ci(c3 +¢3) — ¢ — (3 —3)7] .
Since this quantity is invariant under rescalings of the metric, we may set
c3 = 1 and rearrange terms to find that it becomes

1— C2 _ C2 2
((clc12>4/32) — d(crez)?/?.

(65) 11(61,02) =3+
In the first quadrant ¢;, co > 0 this function has a local minimum I;(1,1) =
0, which corresponds to the round metric, and there are no other critical
points on this domain. Limits to the ¢; and co-axes are infinitely positive,
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except at the two points (¢, c2) = (1,0) or (0, 1) where the limit is 3. More-
over, limits to infinity are also infinitely positive, except in one direction
when ¢; = ¢y where the limit is 3. It follows again that (62) is nonnegative,
and vanishes only for a round X.. O

This proposition shows that the first line of (60) is nonnegative along
a SU(n + 1)-invariant inverse mean curvature flow. When combined with
weak nonnegativity of the scalar curvature for the Jang deformation, it will
lead to an averaged monotonicity for Hawking mass in the Jang setting.
The next result gives the expected upper bound for the limiting Hawking
mass in terms of the ADM energy E. In dimension three this has been
established [31, Proposition 4.52], [28, Lemma 7.4] using the Gauss-Bonnet
Theorem. Here we avoid the need for Gauss-Bonnet with help from the proof
of Proposition 4.1.

Proposition 4.2. Let (M?"+1) g) be an asymptotically flat SU(n + 1)-
inva-riant Riemannian manifold with outermost minimal surface boundary,
forn > 1. If ¥4 denotes the surface of distance s from the boundary, then

(66) lim my(X;) < E.

5—00

Proof. We will closely follow the arguments of [31, Proposition 4.52]. Taking
two traces of the Gauss equations along 3¢ yields

(67) H? = 2Ric(v,v) — R+ Rs + |II?,

where v is the unit normal pointing towards infinity. Let d = 2(n + 1) and
note that by Cauchy-Schwarz (d — 1)|11|> > H?, therefore

(68)  —(d—2)H? < —(d—1)Ry — 2(d — 1)Ric(v,v) + (d — 1)R.

We then have

(69)

1) (8] N |d—2 1
mp(3,) < (d-1) ( b2 > d - 5 / RydV
2(d —2) \wa—1 d—1 (d— 1)2wE|Zs|% s,

- 2)(d1— Dwas QE_L) o /E G(v,v)dV,
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where G = Ric — %Rg is the Einstein tensor. According to the discussion in
Section 2 it holds that

(70) (5_') o s+0(s'"7),

and hence [31, Theorem 3.14] implies the last term converges to the ADM
energy to produce

. L (mE
<
(71) Jim mp (%) < lim 2(d— 1) (wd1> In(s) + B,

where I,,(s) is the function from the proof of Proposition 4.1. Since B =
O(s77) for n > 1 and ¢; =1+ O(s™7) for n =1, a calculation shows that
I,,(s) = O(s727). Hence

(72) lim my(3,) < E+ lim O(s272") = E,

S—0Q S§—r00
as T > %. O

We are now in a position to complete the proof of Theorem 1.1. Let
(M2 +1) ) be the Jang manifold associated with the given initial data set,
which is constructed from the solution given in Theorem 3.2 with v(0) =
+1 if M+ is a past (future) apparent horizon having H(0) # 0, or
with v(0) =0 if H(0) = 0; in this last case the boundary is both a past
and future apparent horizon. Note that this manifold is asymptotically flat,
SU(n + 1)-invariant, and possesses an outermost minimal surface boundary.
This last assertion follows from the fact that the g-mean curvature of surfaces
having constant distance to the boundary is H = v/1 — v2H, so that H(0) =
0 and H(5) > 0 for 5 > 0. Moreover, these surfaces provide a smooth inverse
mean curvature {¥z}2° in the Jang manifold. Next, recall that the scalar
curvature of the Jang metric [9, 10] takes the form

(73) R =167(u— J(w)) + | — k|2 + 2| X|2 — 2¢~ divy(¢X),

where
Wi = L Bs — (bvijf + ¢zfg + (ﬁ]fz
i = s ij = ,
1+ @2V I3 14 2|V f[2
e e
Xi = ———=—(hij — kij).

L+ @2V
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Here h is the second fundamental form of the Jang graph in a dual Lorentzian
setting, and |w|, < 1. Although the computation appearing in [9, 10] was set
in dimension three, it extends without modification to all higher dimensions.
We may now integrate (60) from ¢ = 0 to oo, apply the coarea formula as
well as Propositions 4.1 and 4.2, to find

2n

1 Py
-3 (an)
2 \ wan41

1 ’Z—| 2ntl _ _
(75) / <t> HRdV,
- 2(2n + 1)2w2n+1 M2(n+1) \ Wont1 g
1
e X (0)dV —/ X (v dV)
(2n + Dwant1 (/@M2(n+1) oX () Yo PX()

where E is the ADM energy with respect to the Jang metric and A =
|OM?"+1|. In the second inequality the dominant energy condition used,
as well as the expression (36) for ¢ together with the divergence theorem for
the last term in (73). Here 7 = 05 = V1 — 1205, and Y. indicates a limit to
the asymptotic end along s-level sets.

Consider now the boundary terms of (75). According to [10, pg. 582],
the Jang equation implies that

V

ov(f)

VT

=(1- U2)71(—1}H + Trxk)

(h—Fk)(v,v)=(1+ ¢2]Vf\§) H + Trsk

(76)

for any level set ¥ of f with unit normal v. Therefore, on each X, it holds
that
(77)

X (V) = o/ 1 —0? <\/%> (hss — kss) = vp' ((£1 —v)H F 0%).

Since |v(s)| = O(s72™) for 279 > d — 2 = 2nand H, 01 = O(s~!), the bound-
ary integral at infinity converges to zero. Moreover, if the boundary is a past
(future) apparent horizon with H(0) # 0 then v(0) = £1, and if the bound-
ary is an apparent horizon with H(0) = 0 then v(0) = 0. It follows that the
inner boundary integral vanishes in all cases. The desired Penrose inequality
(8) involving ADM mass now follows from the agreement between the ADM
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energies F = E in light of the decay of v, and the vanishing ADM linear
momentum as shown in Appendix A.

It remains to establish the rigidity statement. If equality holds in (8),
then equality must hold in Proposition 4.1 for each surface ¥5. This shows
that each such surface is round, implying that the original initial data set
(M?+1) g k) is spherically symmetric. In this case it is known that the
Jang graph yields the desired embedding into the Schwarzschild spacetime
[12, Theorem 3.4].

5. Proof of theorem 1.2:
Asymptotically hyperbolic Penrose inequality

In this section we will show how the arguments presented for the asymptot-
ically flat case can be modified to establish the spacetime Penrose inequal-
ity in the asymptotically hyperbolic setting. A 3-dimensional ‘hyperbolic
Hawking mass’ was defined by Bray-Chusciel in [8, Section 4.1], and its
generalization to d-dimensions may be expressed as

(78)
( 1 > 1+< k2 ) - SR /H%lv
Wd—1 Wd—1 (d—l)ij:HE\ﬁ z

Under a smooth inverse mean curvature flow its first variation is given by
(79)

d 1 \Et| d—2 1
amI}’P(Zt) = 3 <w T —— — / RxdV
d—1 (d_1)2w§:11|2t’ﬁ pIN

BN

e
|
[

1 < || >“ 1
2 \wg_1 (d—l)zwg\zﬂg

|VsH|? , H?
) — —1 :
x/< 7D +|11| d_1+R+d(d ))dV.

Note that this differs from the asymptotically flat formula only by the addi-
tion of the last term involving d(d — 1), which is relevant for the hyperbolic
dominant energy condition. In the SU(n + 1)-invariant case, Proposition 4.1
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implies that the first line is again nonnegative, moreover the following ana-
logue of Proposition 4.2 yields the appropriate asymptotics for this quasi-
local mass.

Proposition 5.1. Let (M2t g) be an asymptotically hyperbolic SU(n +
1)-invariant Riemannian manifold with outermost minimal surface bound-
ary, for n > 1. If X5 denotes the surface of distance s from the boundary,
then

(80) lim m%P (%) = Ehyp.

S—00

Proof. We will assume that n > 1, as the case n = 1 may be treated similarly.
The hyperbolic defect tensor from the definition of hyperbolic mass (11),
when expressed in the coordinates provided by Proposition 2.1, is given by

(81) g=g—b= (p26_4"B — sinh? s) (dy + A2+ (,0262B — sinh? s) grs-

We proceed to compute the relevant terms of (11). Note that g(u,-) =0,
and therefore

(82) (divyg) () = ] V'gi; = —(V'])ai; = —(coth 5)Tryg,
where V denotes covariant differentiation with respect to b. Moreover

(83)

14 2 —4nB 2B
Trbg = —(2n + 1) + (m) (6 + 2ne ) s g(va) Vb) = 07

in which U = cosh s is the lapse function. A further calculation and rear-
rangement shows that the energy becomes

1

Evwe = 50 " g, Jm f [U(divyg) — U(dTreg) + (Treg)dU
—g(VoU)] (v)dV
(84) — lim (sinh s)?" - p? B 2p2 cosh? s N 2pp’ cosh s
 s—00 sinh? s sinh? s sinh s
2 2 h inh 2n—1
© g PO
$—00 n
with
—4nB 9 2B
(85) v = e T +zne™ =14+ O(e—ZqS)_

2n+1
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Observe that the last term of (84) decays on the order of O(e(27+2-24)s),
and hence
(86)

Enyp

: 2n 2
= lim M 14 p2 _ pl2 + p/_ p(‘ZOSh S n O(e(2n+2_2Q)5>
§—00 2 sinh s

_ 1 hyp
= Jim mi(2),

since
h P2 2 2
(87) m; " (%) = 7(1 +p* = ")

and ¢ >n + 1. O

We are now in a position to complete the proof of Theorem 1.2. As in
the asymptotically flat case, let (M 2(nt1) g) be the Jang manifold associated
with the given initial data set, which is constructed from the solution given in
Theorem 3.2 with v(0) = %1 if 9M2("*+Y) is a past (future) apparent horizon
having H(0) # 0, or with v(0) = 0 if H(0) = 0. The asymptotics of v imply
that g = g + O2(e2%%) where qo > n + 1, and hence the Jang manifold is
asymptotically hyperbolic. It is also SU(n + 1)-invariant, has an outermost
minimal surface boundary, and the surfaces {¥}2°, of constant g-distance
from the boundary give a smooth inverse mean curvature flow. Utilizing (79),
the hyperbolic dominant energy condition, and the weak nonnegativity of
the Jang scalar curvature (73), together with the arguments leading to (75)
produces

2n+2

E_‘ 1< A )2511 1 < A >2n+1
WP g Won+1 2 \wont1

2% </ X (7)dV —/ ¢X(u)dV> ,
(2n+ Dujpy VJomees e

where Ehyp is the total energy with respect to the Jang metric and Propition
5.1 has been employed. The boundary integral vanishes for the same reasons

(88)

as presented in the proof of Theorem 1.1. Furthermore the decay recorded
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in Section 2 and (42) imply
(89) 6X () = vp' (—vH + Trsk) = O <e(1_2q°)5> .

It follows that the last term in (88) is also zero, since the integrals of 3
fall-off on the order of O(e(2"+272@)s) Therefore, if the original energy Elyp
agrees with that of the Jang manifold Elyy, then (86) confirms the desired
Penrose inequality (12). To see that this is indeed valid, first observe that

(90) (Z)Q = (1-2?) (Zg)z = <Z§>2 0 <e<z—2qo>s) 7

and then apply (87) as well as Proposition 5.1 to find

(91) Ehyp = lim mYP(S5) = lim (mH(ZS) +o (e<2"+2—2%>8)) = By,

5—00 §—00

where rhlgp denotes Hawking mass with respect to the Jang metric.

It remains to establish the rigidity statement. If equality holds in (12),
then equality must hold in Proposition 4.1 for each surface 5. This shows
that each such surface is round, implying that the Jang manifold is spheri-
cally symmetric. Furthermore, from (79) it follows that R = —(2n + 1)(2n +
2) is constant, and we conclude that (M2(+1), g) is isometric to a constant
time slice of the Schwarzschild-AdS spacetime. Therefore, (36) implies the
following expression for the change of raidal coordinates

dp?
92 §=ds* + p*(5)gsmn = 5 + p ggemn
52) ) ¢*(p)

where ggzn+1 is the unit sphere metric, with

Ehyp

(93) $p) =1— w4 g2,
Note that this formula ¢ may also be found from (87), together with the fact
that the Hawking mass is constant m H P(5) = Enyp- The original metric
g =g — ¢?df? is then induced from the graph (over a constant time slice)
given by f inside Schwarzschild-AdS. Lastly, the second fundamental form
of this isometric embedding agrees with k due to the fact that the second
term (in fact each term except for p) of (73) vanishes.
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6. Proof of theorem 1.3: all cohomogeneity one cases

In this section we will establish the Riemannian Penrose inequality for all
cohomogeneity one manifolds. According to the discussion at the beginning
of Section 2, in addition to the SU(n + 1)-invariant setting considered above
there are two other cases to consider, namely the Sp(n + 1) and Spin(9)-
invariant cases. Let (M?, g), d > 3 be an asymptotically flat cohomogeneity
one Riemannian manifold with outermost minimal surface boundary and
nonnegative scalar curvature. As previously mentioned, M9 = [0, c0) x S4!
and g = ds® 4 g, where s is the distance function to the boundary, and g is
a 1-parameter family of G-invariant metrics on S?~!. Interestingly, when G
is either Sp(n + 1) or Spin(9), the analogue of Proposition 4.1 does not hold
in general, and therefore the inverse mean curvature flow approach breaks
down. To deal with this issue, we utilize the conformal flow method of Bray
[7] until the outermost minimal surface reaches an appropriate location in
the asymptotic end. From there, a modified version of this proposition may
be implemented to complete the argument with inverse mean curvature flow.
This bypasses the more involved problem of showing that the conformal flow
converges to Schwarzschild in the asymptotic end.

6.1. Sp(n + 1)-invariant metrics

Let d = 4n + 4 for n > 0. The group G = Sp(n + 1) acts transitively on the
sphere S4"3 with isotropy subgroup H = Sp(n). Any G-invariant metric g
on this sphere depends (up to an overall scaling) on three positive parameters
c = (c1, ¢9,¢c3), and arises as a Riemannian submersion for the Hopf fibration
S3 < §4+3 5 HP™ in which the parameters scale the fiber directions and
the base is equipped with the canonical Einstein metric on quaternionic
projective space. In this notation, the round metric of unit curvature is
then described by ¢ = (1,1, 1). Moreover, the s-level set metrics from the
discussion above are then given by gs = p?(s) Je(s) for some positive function
p(s). According to [6, Section 8] the scalar curvature of g. takes the form

2
(94) R, = enn (G+c3+3—(ca—c3)” = (c3—c1)® = (c1 — ¢2)?)

—4n(er +ca+e3) + 16n? + 32n.
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Notice that setting ¢; = ¢? yields
6 2 2
(95) Re = — — 12nc” + 16n° + 32n,
c

showing that a collapse of the Hopf fibers results in blow-up of curvature,
which is in contrast to the SU(n + 1)-invariant setting. Furthermore due to
this behavior, Proposition 4.1 does not hold here without additional qual-
ification. The next result provides a regime for which the result remains
valid.

Proposition 6.1. Let (M*"*D g be an asymptotically flat Sp(n + 1)-inv-
ariant Riemannian manifold with outermost minimal surface boundary, for
n > 0. There exists a distance sg > 0 such that if s denotes the surface of
distance s to the boundary and s > sg, then

(96) / RydV < Cy|S,|5nts
DIN

where Cy, = (4n + 2)(4n + 3)wy s, with equality achieved in this regime if
and only if Xs is a round sphere.

Proof. Since the volume form for g is given by dV = (¢1cac3)/2dVganss, we
have

1
I(C) = (4n+2)(4n—|—3) — 24”+1/ Rng
(97) SR N LR

= (4n + 2)(4n + 3) — (crepe3) /UM R,.

A direct calculation shows that ¢ = (1,1,1) is a local isolated minimum for
the function I. Thus, since ¥ uniformly approaches the unit round sphere
as s — 0o, there exists sy such that s > sp implies I(c(s)) > I(1,1,1) with
equality if and only if g4 is a round metric. Moreover, as in the proof of
Proposition 2.1, asymptotic flatness produces

(98)  p(s) = s+ Oo(s'™7), ci(s)=1+02(s"7), i=1,2,3.

Hence, since I(l, 1, 1) = ’VI(L 1, 1)’ =0 we have I(C(S)) = 0(3_27) as
S — OQ. |
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6.2. Spin(9)-invariant metrics

The group G = Spin(9) acts transitively on S'° with isotropy subgroup H =
Spin(7). Any G-invariant metric g. on this sphere depends (up to an overall
scaling) on one positive parameters ¢, and arises as a Riemannian submersion
for the Hopf fibration S7 < S — S® in which the parameter scales the fiber
and the base is equipped with the unit round metric. In this notation, the
round metric of unit curvature on S'° is then described by ¢ = 1. Moreover,
the s-level set metrics from the discussion at the beginning of this section
are then given by g, = p?(s) 9e(s) for some positive function p(s). According
to [6, Section 8| the scalar curvature of g. takes the form

42
(99) R. = —= — 56¢ + 224.
C

Notice that as in the Sp(n + 1)-invariant case, collapse of the Hopf fibers
results in blow-up of curvature, again in contrast to the SU(n + 1)-invariant
setting. Thus, we must again replace Proposition 4.1 with an asymptotic
version.

Proposition 6.2. Let (M, g) be an asymptotically flat Spin(9)-invariant
Riemannian manifold with outermost minimal surface boundary. There
exists a distance so > 0 such that if %5 denotes the surface of distance s
to the boundary and s > sg, then

(100) / RydV < C|S,|5
3

2

where C = 210w, with equality achieved in this regime if and only if X, is
a round sphere.

Proof. Since the volume form for g, is given by dV = ¢"/2dVgis, we have

(101) I(c) := 210 — 1/ RydV =210 — ¢"/15R,.

wig |Ss[1s /B
A direct calculation shows that ¢ =1 is a local isolated minimum for the
function I. Thus, since ¢ uniformly approaches the unit round sphere as
s — 00, there exists sp such that s> sy implies I(c(s)) > I(1,1,1) with
equality if and only if g5 is a round metric. Moreover, as in the proof of
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Proposition 2.1, asymptotic flatness produces
(102)  p(s) = s+ Ox(s'77), c(s)=14+05(s"7), i=1,23.

Hence, since I(1) = |I'(1)] = 0 we have I(c(s)) = O(s727) as s — oo. O

6.3. Combining the conformal flow with inverse mean curvature
flow

Let (M9, g) be as described at the start of this section, with G = Sp(n + 1)

n—2

or Spin(9). Consider the conformal flow of metrics defined by g = u; *¢
where %ut = 1, satisfies

Agvp =0 on Mg, vy=0 on AMZ,

vi(z) = —et as x| — oo,

(103)
and v; = 0 on M\ M{. Here M{ denotes the region outside of the outer-
most minimal surface (denoted dM{) in (M?, g;). The conformal flow was
initially studied [7] in dimension 3, and was extended to higher dimensions
n [11]. In particular, the flow exists as long as the outermost minimal sur-
faces involved remain smooth. In the current cohomogeneity one setting, the
relevant minimal surfaces dM{ must be level sets of the distance function
to OM?, and are therefore smooth. Moreover, the functions vy as well as u;
depend only on s, showing that the conformal metrics g; are also G-invariant.
According to [11, Lemma 2.3], existence of the flow guarantees that the areas
|0M{| remain constant in t. Furthermore, the mass decrease law, which was
partially responsible for the dimensional restriction in [11] due to its reliance
on the positive mass theorem, is valid here since each Mtd is a spin manifold.
More precisely, the positive mass theorem is applied to a doubled manifold
with one of the two ends being compactified, and in this context we may
apply the ‘corners’ version of this result obtained with harmonic spinors [39,
Theorem 3.1]. It follows that the mass m(t) of (M, g;) is nonincreasing in t.

We now claim that the flow surfaces OM{ reach the asymptotic end of
M? in finite time, and in fact eventually leave every compact set. This was
originally established in dimension 3 [7, Theorem 13], while in [11] this issue
is avoided altogether. Although the original proof relied on the Gauss-Bonnet
theorem which is not available here, a weaker version of this result [7, The-
orem 12] extends to higher dimensions with only minor changes. An imme-
diate corollary of this theorem shows that M cannot be entirely enclosed
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by a single coordinate sphere in the asymptotic end, for all t. Because the
flow surfaces in the current setting are G-invariant, if they did not even-
tually leave every compact set then they would be entirely enclosed by a
coordinate sphere. Thus, we may apply the higher dimensional analogue of
Bray’s observation to obtain the desired conclusion. Note that the proof of
[7, Theorem 12] makes use of harmonic asymptotics, however this is not
necessary as the relevant harmonic functions may be expanded in spherical
harmonics to produce the same outcome.

To complete the proof, run the conformal flow until time ¢y when (“)lefj
reaches sufficiently far out in the asymptotic end to enclose X, the desig-
nated surface appearing in Propositions 6.1 and 6.2. Properties of the flow
discussed above guarantee that

(104) m > m(ty), 0M| = A,

where m is the ADM mass of (M?, g) and A is the area of its boundary. On
the other hand, the aforementioned propositions give rise to monotonicity for
the Hawking mass in (M, g;,), as in Section 4. Moreover, since the functions
I from the proof of these propositions vanishes to second order at the round
metric, the asymptotic limit of the Hawking mass is no greater than m(to);
this is established in the same manner as Proposition 4.2. Therefore

OME o
(105) m(t0)>1<’ to‘) ,

T2\ wg

and combining (104) with (105) produces the desired Penrose inequality
since A, = A. Lastly, consider the case of equality for (6). This forces equal-
ity between the masses of (104), and thus the rigidity statement of the pos-
itive mass theorem used for the (conformal flow) mass decrease law, implies
that (Mg, g¢) is spherically symmetric for ¢ < to. In particular, (M?, g) is
spherically symmetric and is therefore isometric to the canonical slice of a
Schwarzschild spacetime [12, Theorem 3.4].

Appendix A. Vanishing of linear momenta

In this appendix we show that under the hypotheses of Theorem 1.1, the
ADM linear momenta P; vanish so that the ADM mass agrees with the
ADM energy m = E. Let n > 1 and use the expressions for the metric and
extrinsic curvature given in Proposition 2.1, to compute the following two
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components of the momentum density

2 1)p
J(er) = J(0,) = —k, — 2nk! + L2t 1D
(A1) J P
— (k‘b + 2”"30)* + QHBI(kb — k‘c),
p

ka

(A.2) J(eg) = ki + ks <(2n + 2)2 - 2nB'> ,

where e; and ez are a part of the orthonormal frame from (21). Recalling
the formula for Tryk in (25) motivates a rewriting of (A.1) by

~

/
(A3) K+ @n+2) 2k, = J(er) + (Trgk) + %Trgk — B (ky — ko).

p

Since the asymptotically flat fall-off conditions (3) imply that the right-hand
side is O(s727~2), it follows that

(A4) ko = p 2772 [ / pPITRPOWT)dt + O = O(s*77?)

So

for some constant C. Similarly, we also find that ks = O(s27~2) from (A.2).
Moreover, because the only possible nonzero components of the ADM linear
momentum involve only k(ey, e1) = k, or k(e1, e2) = ks, and 7 > n, we con-
clude that the ADM linear momentum vanishes. The case n = 1 is treated
analogously using Section 2.2. Note that the additional decay of Tryk from
(3) is only used here, to obtain the vanishing linear momentum.

Appendix B. An example

In this last appendix we will exhibit cohomogeneity one asymptotically flat
and asymptotically hyperbolic initial data, which deviate in a significant
manner from spherical symmetry by allowing for nonzero angular momen-
tum. Consider the 2-parameter family of asymptotically flat SU(n + 1)-
invariant initial data ([ry,o0) x S?"*1 g k) in which

g =U)2dr? + P(r)? (dy + A)? + rgps,

(B.5) k= —r U)W (r)P(r)3dr(dy + A),
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where ¢, A, and grg are as in (13) and

om  2ma?\ 2ma? \ /?
2 _ —
U(T‘) _(1’1"2n+7"2n+2> 5 P(’I“)—’r‘<1+r2n+2) 5
(B.6) )
ma
W(T) - TZnP(T)Q’

with m and a denoting the mass and angular momentum parameters. The
value ry is the largest positive root of U(r)~2, and corresponds to an out-
ermost minimal surface. This initial data set arises from the 2-parameter
family of Myers-Perry stationary asymptotically flat black hole solutions of
the vacuum Einstein equations given by

(B.7)

g = —r2U(r)2P(r)72dt> + U(r)2dr?® + P(r)? (dip + A — W (r)dt)? + 1r2gps.

Note that when a = 0 the Schwawrzschild solution is recovered. The event
horizon is located at r = r4 and has null generator

2ma

ri(nﬂ) + 2ma? 7

(B.8) § =0+ Q0y, Q=

where ) is the angular velocity. Moreover, a calculation shows that for
the black hole to be subextremal the parameters must satisfy ri >n"t(n+
1)a?, with equality corresponding to an extreme Myers-Perry solution hav-
ing a degenerate horizon. It is convenient to use r and a express relevant
quantities. In particular, the mass parameter m coincides with the ADM
mass and takes the form

T2(n+1)
(B.9) m=—t—
2(7“?Ir —a?)

while the area of a cross section of the event horizon becomes

2(n+1)
(B.10) A = w1 P(ry e = 22k

2 _ 2
Ty a

and the only nonzero ADM angular momentum occurs in the 1-direction
and is given by Jy = ma where by definition

1

(B.11) T = S o /Sm(k — (Trk)g)(y, Dy)dV.
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We now have the relation

Ti ﬁ 1 A 23%
+ 2n+1

Note that this satisfies the Penrose inequality since a2r;2 < 1, and equality

holds only for the case of Schwarzschild, when a = 0.
An asymptotically hyperbolic generalization of the above rotating black
hole initial data may be obtained by setting

2m(1 —a?)  2ma? !
r2n + pr2n+2

(B.13) Ur)? = <1 + 72—

The resulting data coincides with the canonical slice of a Myers-Perry-AdS
black hole, a solution of the stationary vacuum Einstein equations with
negative cosmological constant, having equal angular momenta. Again let-
ting v, denote the largest positive root of U(r)~2, there will be an event
horizon at » = r4 provided m > 0 and 0 < a < 1. Notice that when m =0
the spacetime is the (2n 4 3)-dimensional AdS space, whereas when a = 0
the solution reduces to Schwarzschild-AdS. A computation reveals the total
energy to be

2
a
B.14 Eyyp = 1
( ) hyp m ( + m + 1> )
while as before the angular momentum is J, = ma. Expressing the mass
parameter in terms of r4 and a yields

(14 r2)r2 D

(B.15) ™= T ) )

and therefore

2n

. 1 ( A )M
(B.16) 2(1 - a) T (1—B) \wWant1
' 1 ( A > e
+ o
2(1—a)=7 (1 - p0) \Want1

where

2 2
(B.17) a=2, [ —
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Next observe that a calculation provides the nondegeneracy condition
(B.18) ri(n+ (n+1)rd) —a*(L+n)(1+73)* > 0.

Hence, because restrictions on the parameters imply that a < 1 and g < 1,
and Ky, > m with equality only when a = 0, it follows that the hyperbolic
Penrose inequality holds with saturation only for Schwarzschild-AdS.
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