
TOP-EEG: A Robust Software to Predict 
the Outcomes of Therapies for Depression 
Using EEG Signals in DGMD Domain 

Hesam Akbari1, Wael Korani1(B), Junhua Ding1, Reza Rostami2, 
and Reza Kazemi3 

1 Department of Information Science, University of North Texas, Texas, USA 
{Hesam.Akbari,Wael.Korani,junhua.ding}@unt.edu 

2 Department of Psychiatry, University of Tehran, Tehran, Iran 
rrostami@ut.ac.ir 

3 Faculty of Entrepreneurship, University of Tehran, Tehran, Iran 
rezakazemi@ut.ac.ir 

Abstract. Self-mutilation and suicide are negative consequences of 
depression disorder, if it is left untreated. Two commonly prescribed ways 
of treatments for depression are Selective serotonin reuptake inhibitors 
(SSRIs) and repetitive transcranial magnetic stimulation (rTMS) ther-
apies. Although the effectiveness of these two therapies have been 
approved by food and drug administration (FDA), the successful rate 
to these therapies is around 50%. In general, a psychiatric prescribes one 
of the therapies based on his/her experience and waits for a period of 
time to check the improvement. However, if the therapy fails to reduce 
depression levels, the risk of self-harm or suicide may increase. This paper 
proposes a robust software called Therapy Outcomes Predictor by Elec-
troencephalogram (TOP-EEG) to predict the improvement of two dif-
ferent therapies for depressed patients based on pretreatment electroen-
cephalogram (EEG) signals. The TOP-EEG software utilizes a novel 
recently proposed signal processing technique called dynamic graph mode 
decomposition (DGMD) to automatically decompose the EEG signals 
into the intrinsic mode functions (IMFs). Then, five entropy-based fea-
tures quantize the value of the complexity and randomness of the IMFs. 
Statistically significant features are selected using the Kruskal-Wallis test 
and fed into traditional machine learning algorithms and artificial neural 
network architectures for classification. A 10-fold cross-validation strat-
egy is applied during training and testing to minimize bias in the results. 
The cascade-forward neural network (CFNN) architecture shows the best 
performance among the other classification algorithms. The TOP-EEG 
software is evaluated using two different databases: SSRI and rTMS ther-
apies, including data from 30 and 15 depressed patients, respectively. The 
results show that the TOP-EEG software achieves classification accu-
racy levels of 93.16% and 94.59% to predict the outcomes of the SSRI 
and rTMS therapies, respectively. This is the first time in the litera-
ture a software is developed to predict the outcomes of two therapies for 
depression and recommend the best course of treatment. The software is 
reliable and can be used in clinics and hospitals to assist neurologists and 
psychiatrists in prescribing the most effective treatment for depression. 
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1 Introduction 

Depression might lead to self-harm and suicide if it is left untreated. The World 
Health Organization (WHO) reported that around 700,000 people die by suicide 
every year [ 15]. There are about twenty suicide attempts for each death, which 
indicates the importance of this problem [ 12]. The first recommenced treatments 
for depression are selective serotonin reuptake inhibitors (SSRI) therapy [ 16] 
and repetitive transcranial magnetic stimulation (rTMS) therapy [ 17]. In SSRI 
therapy, specific medications are prescribed for depressed patients for a period 
of four to six weeks. On the other hand, in rTMS therapy, an electromagnetic 
coil is placed near the scalp to generate magnetic pulses. It produces electrical 
currents that go though the nervous cells. This process is repeagted five times a 
week for four to six weeks. Predicting the effectiveness of therapies is a challenge 
for neurologists and psychiatrists. It is because of the complexity of the human 
brain. The response rate to SSRI therapy is 49% [ 13], and the response rate 
for rTMS is between 40% and 60% [ 14]. If the therapy fails, the risk of suicide 
increases for depressed patients. 

Electroencephalogram (EEG) signals are a neuroimaging technique that has 
become popular in the last two decades. The brain activities are recorded using 
EEG electrodes on the scalp. EEG signal recording is an inexpensive and real-
time technique. The EEG was used for detecting mental disorders like depres-
sion [ 6]. It motivates us to develop a new computer-aided decision (CAD) system 
based on the EEG signals to determine the best course treatment for depres-
sion disorder. In TOP-EEG software, pre-treatment EEG signals are classified 
as either responders (R) or non-responders (NR) to each therapy. There are 
two therapies, including SSRI and rTMS, the TOP-EEG software performs two 
binary classification tasks. In this way, the TOP-EEG software predicts the out-
comes of SSRI and rTMS therapies based on the pre-treatment EEG signals. 

The EEG signals are recorded from the scalp, and different channels of the 
EEG monitor the activities of a human brain. The EEG signal is a non-linear 
and non-stationary signal with complex behavior [ 5]. Decomposing signals into 
sub-bands is a common technique for analyzing nonlinear signals such as EEG. 
Several techniques have been developed to decompose nonlinear signals in the 
literature. The short-time Fourier transform (STFT) is a known signal process-
ing technique. The EEG signals are decomposed into sub-bands by STFT in 
a straightforward way. However, the STFT cannot decompose signals that do 
not have sinusoidal and cosine waves, such as impulse functions. To address 
this limitation, the discrete wavelet transform (DWT) was proposed [ 4]. In the 
DWT, various mother wavelets can be used to decompose the input signals. For 
instance, when the signal has an impales function wave, the Har mother wavelet 
is a proper mother wavelet. The input signal is decomposed by using high-pass 
and low-pass filters at each decomposition level of DWT. The signal spectrum is 
reduced in half at each stage of DWT decomposition. Although DWT has shown
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acceptable performance in EEG signal processing applications, it is not adaptive 
to the input signal. It means that the filter band of DWT is fixed for any input 
signal. 

The empirical mode decomposition (EMD) was proposed to solve the in-
adaptability nature in the DWT method. The EMD decomposes the input sig-
nal into intrinsic mode functions (IMFs) based on the signal’s local maxima and 
minima. Although EMD is an adaptive method that is significant for applica-
tions like EEG signal analysis, it is not built on a mathematical proof. Later, 
variational mode decomposition (VMD) was introduced to overcome the previ-
ous limitation [ 7]. The VMD method provides a solid mathematical proof, which 
makes it more reliable. However, the main limitation of VMD is that it can not 
decompose multi-dimensional data such as EEG. It means that it is significant 
just for one-channel decomposition, not multi-channel decomposition. 

The multivariate VMD (MVMD) [ 11] is a variant of VMD designed for multi-
dimensional signals like EEG. MVMD was applied to EEG signals for various 
applications. However, MVMD has some limitations, such as assuming static 
connectivity structures and being unable to track dynamic interactions in time-
varying graph signals. In addition, several parameters are required to be adapted 
by the user, such as the number of IMFs. Choosing the number of IMFs is 
important and also challenging, because it affects the accuracy of decomposi-
tion. Furthermore, it is complex and computationally expensive, which makes 
it a non-significant option for analyzing large-scale real-time series. Also, the 
MVMD is restricted to a narrow frequency range that fails to capture multiscale 
dynamics in the signal. It suffers from mode mixing and duplicate mode prob-
lems, which cause inaccurate results. The MVMD cannot provide any informa-
tion about dynamic connectivity structures associated with signal components 
(i.e., channels in EEG signals). 

In 2024, the dynamic graph mode decomposition (DGMD) was developed 
to solve the weakness of MVMD [ 10]. The DGMD is a powerful signal process-
ing technique for multi-dimensional signals such as EEG. The DGMD method 
solves the static connectivity structure by inferring dynamic functional connec-
tivity structures associated with each oscillatory component. It allows DGMD 
to conduct a comprehensive analysis of network dynamics. The DGMD uses a 
successive scheme, which is not required for defining parameters by the user. So, 
it improves the data-driven capability and performance of DGMD compared to 
MVMD. In DGMD, optimization formulations and a successive decomposition 
scheme reduce computational resources while simultaneously preserving signifi-
cant performance and accuracy of decomposition. 

The signal is decomposed into narrow-band oscillatory components by 
DGMD, which gives a detailed analysis of signal variations along with differ-
ent frequency scales. DGMD uses advanced optimization techniques, a joint 
optimization formulation, and simultaneously estimating signal modes and their 
connectivity structures. Thus, the mode mixing problem is solved in DGMD. 
In addition, it infers dynamic connectivity matrices for each oscillatory compo-
nent, which leads to a better understanding of the dynamic connections across
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networks in the time-varying graph signal. DGMD provides some attributes such 
as data-driven decomposition, multiscale analysis, dynamic connectivity infer-
ence, and simultaneous mode and connectivity estimation, which promote it as a 
powerful signal processing technique for analyzing complex time-varying graph 
signals like EEG data. In the current work, the DGMD technique is used to 
analyze the nonlinear dynamics of multi-EEG signals. 

Feature extraction is one of the most challenging parts of any classification 
task. The features need to be discriminative enough to decode the hidden infor-
mation within the data. Computing entropy as a system parameter has been 
used as a feature to describe brain behavior using EEG signals. In the current 
work, five different types of entropy are used to extract information from the 
EEG signals. Feature selection is used to reduce computational complexity while 
maintaining high system performance. In the current work, a statistical-based 
method named Kruskal-Wallis (KW) test is applied to the extracted features to 
select statistically significant features. The KW test was applied to EEG signal 
processing applications before, such as the detection of seizure [ 1], alcoholism [ 3] 
and schizophrenia [ 2]. 

Classification is the final step in computer-aided diagnosis systems. It is cru-
cial because it enables the system to automatically and accurately identify and 
categorize features into a proper class. Choosing the best classification tech-
nique ensures that the system is reliable and efficient. A robust classification 
technique generalizes the structure of data by decoding the connections and rela-
tionships between different features. Deep learning-based methods have shown 
significant performance in EEG signal processing applications. The architecture 
of deep learning algorithms directly impacts their performance and complex-
ity. Cascade-forward neural network (CFNN) architecture is a variant of the 
feed-forward neural network (FFNN) architecture. In the paper, we implented 
different classifier to choose the best classifier for dual tasks software. 

The rest of the paper is organized as follows: Sect. 2 covers the materials, 
describing the databases that are used in the current work. Section 3 presents 
the proposed TOP-EEG software, detailing the steps including DGMD, entropy 
feature extraction, and classification. Results and discussions are reported in 
Sect. 4. Finally, the paper concludes in Sect. 5. 

2 Materials 

Two different databases are used to evaluate the proposed TOP-EEG software. 
The database for SSRI therapy is Mumtaz database, which is a public database, 
and the database for rTMS therapy is Atieh Hospital database, which is a private 
database. 

2.1 Mumtaz Database 

The Mumtaz database is a public database that includes the EEG signals of 
30 patients diagnosed with major depressive disorder. These patients were diag-
nosed and prescribed SSRI therapy [ 8]. The Beck Depression Inventory (BDI)
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score was used to identify the level of depression in patients. The EEG signals 
were recorded for depressed patients before starting the SSRI therapy. The EEG 
signals were recorded using the 10–20 international system using 19 channels. 
The locations of EEG channels on the scalp and the brain lobes are shown in 
Fig. 1. The EEG recordings were sampled at a frequency of 256 Hz. The recom-
menced medications in Mumtaz experiments were Escitalopram (10–20 mg/day), 
Fluvoxamine (100–300 mg/day), Sertraline (50–200 mg/day), and Fluoxetine 
(20–60 mg/day). Patients were on the SSRI therapy for four weeks. After four 
weeks, the BDI score was evaluated again. The EEG signals of patients who 
showed more than a 50% improvement based on their BDI scores were labeled 
as responders (R) (12 patients); otherwise, the patients were labeled as non-
responders (NR) (18 patients) to the SSRI therapy. Figure 2 shows a sample of 
a 10-second EEG signal, which is equal to 2560 samples. 

(a) 10-20 standard (b) brain lobes 

Fig. 1. Visualization of the location of electrodes on the skin in 10–20 standard and 
brain lobes. 

2.2 Atieh Hospital Database 

Atieh hospital database is used to evaluate the performance of the proposed 
TOP-EEG software in predicting the outcomes of rTMS therapy. This database 
was recorded at Atieh Hospital, Tehran, Iran. This database has the EEG signals 
from 15 depressed patients diagnosed. Dr. Reza Rostami and Dr. Reza Kazemi 
diagnosed the patients with depression disorder and prescribed rTMS therapy 
as a treatment. The EEG signals were recorded for these patients before starting 
the rTMS therapy. The EEG signals were recorded using the international 10–20 
standard system. The sampling frequency of recorded EEG signals was 512 Hz. 
The BDI scores were evaluated for the patients. The rTMS therapy was repeated 
five times a week for four weeks. The BDI scores were evaluated again for all 
patients after finishing the rTMS therapy. The pre-treatment EEG signals of 
patients who showed more than 50% improvement based in BDI scores after the 
rTMS therapy were labeled as R to the rTMS therapy. On the other hand, the 
pre-treatment EEG signals of patients who did not show this level of improve-
ment were labeled as NR to rTMS therapy. In the Atieh Hospital database, there
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Fig. 2. a sample of R (left) and NR (right) EEG signals to SSRI (up) and rTMS 
(down), respectively. 

are pre-treatment EEG signals of nine R and six NR to rTMS therapy. Figure 2 
shows the R and NR EEG signals to rTMS therapy. In the current work, the 
EEG signals in the rTMS database are divided into five seconds, which is equal 
to 2560 samples. 

3 Proposed TOP-EEG Software 

In this section, the steps of the proposed TOP-EEG software are discussed. First, 
the DGMD method decomposes the EEG signals into IMFs. Then the mean value 
of five entropy-based features is extracted for IMFs. Fainlly, the KW test selects 
the statistically significant features, which are fed into a CFNN architecture for 
classification. Figure 3 shows the steps of the proposed TOP-EEG software. 

3.1 Dynamic Graph Mode Decomposition 

The dynamic graph mode decomposition (DGMD) technique is a time-frequency 
method used to decompose a time-varying graph signal into intrinsic mode func-
tions (IMFs) and their associated dynamic connectivity structures [ 10]. Assume 
a given dynamic graph signal s̃(t) that comprises a set of time-series signals: 
s̃(t) = [s̃1(t), ̃s2(t), . . . ,  ̃sN (t)] where s̃n(t) represents the time-series correspond-
ing to the  nth vertex. Similarly, s̃(t) can be represented by a matrix S ∈ RN ×T 

where T denotes the number of time samples and N refers to the number of 
vertices (channels) of a time-varying graph signal. Then, the DGMD technique 
is defined as the following optimization problem: 

minimize
{ḡn},{r̄n},{ωg},{W(tm)} 

(J1 + J2) (1)
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Fig. 3. Step by step of the proposed TOP-EEG software. 

subject to 

 
 

 

g̃n(t) +  r̃n(t) =  s̃n(t), ∀n, 
W(tm) ≥ 0, W(tm) = W(tm)T 

, 
diag

(
W(tm)

)
= 0, ∀m, 

(2) 

where g̃n is the graph mode of interest, ωg represents the center frequency of each 
graph mode, r̃n denotes the residual signal, and W denotes the graph structure. 
The subscript g in Wg indicates that W is derived using a graph-based method. 

J1 =

{
α 

N∑

n=1

‖∂t[g̃n(t)e−jωgt

]
‖2 2 + 

N∑

n=1

‖hg(t) ∗ r̃n(t)‖2 2} (3) 

where α controls its significance, N denotes the number of channels,∥∥∂t

[
g̃n(t)e−jωgt

]∥∥2 

2 
signifies the derivative of the estimated oscillatory compo-

nent with respect to time, and ‖hg(t) ∗ r̃n(t)‖2 2 represents the complex conjugate 
of the estimated residual component multiplied by the estimated oscillatory com-
ponent. The hg(t) is a filter with a frequency response of hg(ω) = 1/α (ω − ωg)

2 , 
where hg(ω) → ∞  if ω → ωg. 

J2 = {β 
M∑

m=1

‖W(tm) 
g ◦ Z(tm)‖1,1 + 

γ 
2 

M∑

m=1

∥∥∥W(tm) 
g

∥∥∥
2 

F 

− 
M∑

m=1 

1T log
(
W(tm) 

g 1
)
+ µ 

M∑

m=2 

f (tm)(W(tm) 
g , W(tm−1) 

g )} 

(4) 

where β, γ, and  µ control the importance of different terms. M represents the 
number of time points, W (tm) denotes the dynamic connectivity matrix at tm,
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‖W(tm) 
g ◦ Z(tm)‖1,1 represents the element-wise product between the estimated 

oscillatory component and the dynamic connectivity matrix, 1T log(W(tm) 
g 1) 

signifies the logarithm of the product of the dynamic connectivity matrix and 
the estimated IMF. 

f (tm)(W(tm) 
g , W(tm−1) 

g ) represents a function dependent on the dynamic con-
nectivity matrices at consecutive time points. These elements collectively con-
tribute to extracting meaningful oscillatory components and their associated 
dynamic connectivity structures from time-varying graph signals through the 
optimization process. The f (tm) is a function of time that represents a measure 
of dissimilarity between the adjacency matrix at tm and the adjacency matrix 
at tm−1. Different priors for f (tm) can be chosen based on specific application 
settings. The f (tm) is chosen to be a Tikhonov smoothness prior, defined as
‖W(tm) 

g −W(tm−1) 
g ‖2 F , which promotes smooth changes in graph edges over time. 

The subscript g in Wg indicates that W is derived using a graph-based method. 
The vector of ones is represented by 1. The  symbol  ◦ is used for the Hadamard 
product, the matrix or vector transposition is shown by (.)T , and ‖ · ‖2 is the 
L2-norm of a vector. Additionally, Z ∈ RN ×N 

+ defines a pairwise distance matrix 
where Ztm,tm+1 = ‖s̃tm − ̃stm+1‖2. 

The restrictions ensure that the IMFs and dynamic connectivity structures 
are orthogonal. By solving this optimization problem, DGMD decomposes the 
time-varying graph signals into IMFs and their associated dynamic connectivity 
networks, providing a significant map for the nonlinear dynamics of the signal. In 
the current study, the multiscale dynamic graph signal analysis Matlab code [ 9] 
is used to implement the DGMD. The difficult parameters of the toolbox are 
used to decompose the EEG signals into IMFs. 

3.2 Feature Extraction 

Entropy is a measure of the disorder in a complex system. In signal processing, it 
is defined as the measurement of the randomness in the time series. The entropy 
is used as a feature to decode the nonlinear behavior of EEG signals, and it 
has been used for several applications, such as the detection of alcoholism and 
depression [ 3]. In the current work, entropy features are computed to decode the 
complex behaviour of the EEG signals in the R and NR groups. Five entropy 
features are computed for the IMFs of EEG signals: shannon entropy (Sh), 
log Energy entropy (Le), threshold entropy (Th), Stein’s unbiased risk estimate 
entropy (Su), and norm entropy (Nr). The summtion of one IMF of EEG signals 
is representd as x(n) = [x1, x2, . . . , xn]. The five entropy features are computed 
as follows: 

Sh = − 
n∑

i=1 

pi log(pi) (5) 

where pi is the probability of the ith sample of IMF.
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Le = 
n∑

i=1 

log(x2 
i ) (6) 

where (xi) is the ith sample of IMF. 

Th(xi) =

{
1, |xi| > λ  
0, elsewhere 

(7) 

so, 
Th  = #{i such that |xi| > λ}. (8) 

where xi and λ are the ith sample of IMF and a positive threshold, respectively. 
In this work, λ is set empirically to 0.2. 

Su = 
n∑

i=1 

min(x2 
i ,λ

2) +  λ2 
n∑

i=1 

I(|xi| > λ) − σ2 (9) 

I(|xi| > λ) =

{
1 if |xi| > λ  
0 otherwise 

(10) 

where xi is the ith sample of IMF, λ is the threshold parameter that is set to 3, 
σ2 is the noise variance, and I is the indicator function. 

Nr  =

(
n∑

i=1 

|xi|p
)1/p 

(11) 

where xi is the ith sample of IMF, and p is the norm parameter which is set to 
1.1. 

3.3 Classification 

Cascade-forward neural network (CFNN) architecture is an artificial intelligence 
architecture that is designed based on the principles of feed-forward neural net-
work (FFNN) architecture [ 2]. In CFNN architecture, like FFNN architecture, 
the flow of information is from the input layer to the output layer, and there 
is also no connection between the neurons in each layer. The CFNN has: input 
layer, hidden layers, and output layer the number of neurons in the input layer 
and the output layer is equal to the number of features and the number of classes, 
respectively. The only difference between the FFNN architecture and CFNN 
architecture is that in CFNN architecture, there is a connection between each 
layer and all the previous layers including the input layer, while in the FFNN 
architecture, there is a connection only between the successive layers. Thus, the 
CFNN can generalize the patterns and structures of data better than traditional 
FFNN architectures. The advantage of the CFNN architecture is that it maps 
any input to output, like the FFNN. Additionally, CFNN architecture finds the
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nonlinear relationships between the input and output layers while preserving the 
linear relationships between the layers. 

In the paper, a CFNN architecture is used to classify R or NR groups. The 
performance of CFNN architecture is compared to an FFNN architecture with 
the same number of layers and neurons to show the effectiveness of the CFNN 
architecture rather than FFNN. Additionally, the performance of the CFNN is 
compared to other traditional machine learning algorithms: k -nearest neighbors 
(K NN), support vector machine (SVM), and random forest (RF). The 10-fold 
cross-validation (CV) strategy is employed to train the model to avoid any bias 
in the results. Table 1 shows the parameter setting of the classification. 

3.4 Results and Discussion 

The EEG signals are divided into packages, and each package has a length of 
2560 samples. The size of each package is (19 × 2560) where 19 is the number 
of channels and 2560 is the length of the package. The Mumtaz database has a 
total of 862 packages: 522 packages NR and 340 packages R to SSRI therapy. 
Atieh Hospital database has 444 packages: 168 packages NR and 276 packages 
R to rTMS therapy. Two binary classification tasks are implemented to predict 
the outcome of the two therapies using pre-treatment EEG signals. One task 
is to classify the pretreatment EEGs to R and NR to SSRI therapy using the 
Mumtaz database. The other task is to classify the pretreatment EEGs to R 
and NR to rTMS therapy using the Atieh Hospital database. Figure 2 illustrates 
the 19-channel EEG signal after the segmentation process into packages for both 
datasets. Figure 2 depicts the complexity of visually predicting treatment results 
for depression using the multi-channel EEG signal. 

Table 1. Parameters setting of classification methods. 

Classification method Parameter Value 
CFNN and FFNN Architecture [10, 10, 10, 10, 10, 10, 10] 

Maximum number of epochs 50 
RF Number of trees 20 
SVM Kernel Function linear 
KNN Distance metric Euclidean 

Number of neighbors 5 
CV Number of folds 10 

The steps of the proposed TOP-EEG software are shown in Fig. 3. First step, 
the EEG signals are decomposed into the IMFs using DGMD. Then, five entropy 
features are computed from each IMF, and the mean values of the features are 
considered final features. Assume that the EEG signals are decomposed into M 
IMFs, then five features are computed from each IMF of each channel, which
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means 5 × M features are extracted from each channel. The mean value of 
each feature is computed for all IMFs (i.e., mean of (1 × M)). For example, 
the Sh entropy is calculated for IMFs of one channel, then the mean value of 
all IMFs is considered as a feature. This process is repeated for all channels 
and entropy features. Thus, five features are extracted for each channel, and 
a total of 19 × 5 = 95  features are extracted for each 19-channel EEG signal 
package. Giving the fact that the number of modes in DGMD are automatically 
defined and changed from one package to another, we compute the mean values 
of entropy features for all IMFs to extract the same number of features for all 
packages. The variation of the entropy-based features on the scalp is shown 
in Fig. 4. Figure 4 shows that the extracted entropy-based features in DGMD 
domain can show a significant difference between R and NR EEG signals in both 
SSRI and rTMS therapies. It shows that the values of entropy-based features in 
NR group are higher than R group. Entropy measures the value of randomness 
and also show the status of human brain activity. The lower value of entropy 
feature in R group than NR group, it might be due to the brain is in more stable 
state, which can be considerd as a biomarker. This fact show that EEG signals 
in R group are more predictable with less irregular behavior than in the NR 
group. Thus, the R EEG signals show the possibility to respond positively to 
therapeutic interventions than the NR. 

The KW test shows statistically significant difference between different 
groups (features). Features that have a p-value less than 0.01 are considered 
statistically significantly difference. The results show that 60 and 49 features 
out of 95 are statistically significantly difference. Classification accuracy, sen-
sitivity, and specificity are used to evaluate the performance of the proposed 
TOP-EEG software. The accuracy (ACC) is computed to classify R and NR 
patients. Sensitivity (SEN) is computed to show how confident the patient will 
be NR to a specific therapy. Specificity (SPE) is computed to show how confident 
the patient will be R to specific therapy. 

Figure 5a and  5b show the accuracy, sensitivity, and specificity using different 
classifiers. The results show that CFNN architecture is the best classifier for both 
SSRI and rTMS therapies. Table 2 show the numerical values for all classifiers. 
The CFNN architecture achieves a classification accuracy of 93.16%, sensitivity 
of 96.36%, and specificity of 88.24% for SSRI therapy and accuracy of 94.59%, 
sensitivity of 90.48%, and specificity of 97.10% for rTMS therapy. Although the 
FFNN architecture achieves an acceptable accuracy of 90.77% for rTMS therapy, 
it is lower than CFNN. Among the traditional machine learning algorithms, the 
performance of RF is better than KNN and SVM in both SSRI and rTMS 
therapies. However, the performance of CFNN and FFNN architectures as deep 
learning models is still better than all traditional machine learning algorithms. 

In this paper, we introduce a software called Therapy Outcomes Predictor by 
EEG (TOP-EEG) that can be installed and utilized on any personal computers. 
Figure 6 shows the developed out TOP-EEG software. The developed TOP-EEG 
software is built on the DGMD, entropy-based features. It is accurate and reliable 
by achieving promising classification performance in a 10-fold CV strategy for
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(a) Sh of R to SSRI (b) Sh of NR to SSRI (c) Sh of R to rTMS (d) Sh of NR to rTMS 

(e) Le of R to SSRI (f) Le of NR to SSRI (g) Le of R to rTMS (h) Le of NR to rTMS 

(i) Th  of R to SSRI (j) Th  of NR to SSRI (k) Th  of R to rTMS (l) Th  of NR to rTMS 

(m) Su of R to SSRI (n) Su of NR to SSRI (o) Su of R to rTMS (p) Su of NR to rTMS 

(q) Nr  of R to SSRI (r) Nr  of NR to SSRI (s) Nr  of R to rTMS (t) Nr  of NR to rTMS 

Fig. 4. The variation of the extracted entropy-based features on the skin. 

prediction the outcomes of the SSRI therapy and rTMS therapy. In addition, it 
is fast, because it is simple. Thus, the developed TOP-EEG software does not 
require many computational resources and can be run on any standard computer 
available in clinics and hospitals. Figure 6 shows the developed TOP-EEG in four 
possible outcomes. 

In Table 3, the performance of TOP-EEG is compared to recently proposed 
models in the literature for predicting the outcomes of SSRI and rTMT therapies. 
It achieves better performance in terms of ACC, SEN, and SPE compared to [ 8] 
method. The database used in [ 8] for SSRI therapy was also Mumtaz database.
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Fig. 5. Comparison of the performance of classification methods on SSRI (a) and rTMS 
(b) therapies. 

The performance of our TOP-EEG is lower than the proposed method in [ 14]. 
In [ 14], the continuous wavelet transform was used to convert EEG signals into 
time-frequency images to feed two pre-trained convolutional neural networks: 
EfcientNetB0 and VGG16 to extract the feature matrix. Then, a fully connected 
layer was aligned with two successive long-term short memory (LSTM) networks 
to classify the feature matrix. 

Although the performance of the proposed method in [ 14] achieved higher 
accuracy than ours, the developed TOP-EEG extracts entropy-based features 
from the EEG signals in DGMD domain, which is faster than generating the 
time-frequency images by continuous wavelet transform and using two pre-
trained architectures to extract the feature matrix, as proposed in [ 14]. In addi-
tion, we propose a simple CFNN architecture for classification, while in [ 14], 
a fully connected layer was aligned with two successive LSTM layers, which 
is more complex and computationally expensive. Furthermore, the proposed 
method in [ 14] was trained on more samples 46 patients to predict the outcome 
of rTMS therapy, while ours is trained using 17 depressed patients.
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Table 2. Performance of classification methods. 

SSRI therapy 
CFNN FFNN KNN RF SVM 

ACC(%) 93.16 83.29 77.15 83.18 65.21 
SEN(%) 96.36 91.95 86.97 90.61 73.12 
SPE(%) 88.24 70.00 62.06 71.76 69.76 

rTMS therapy 
CFNN FFNN KNN RF SVM 

ACC(%) 94.59 90.77 84.23 87.61 73.30 
SEN(%) 90.48 83.93 71.43 80.95 79.08 
SPE(%) 97.10 94.93 92.03 91.67 76.90 

By reviewing the literature, it should be noted that this is the first time a 
software is developed to predict the outcomes of two different therapies to treat 
depression. 

Table 3. Comparison of the performance of the proposed TOP-EEG software with 
previous works. 

Ref. Database Therapy Accuracy (%) Sensitivity (%) Specificity (%) 
[ 8] 12 R vs. 18 NR SSRI 91.60 90.00 90.00 
TOP-EEG 12 R vs. 18 NR SSRI 93.16 96.36 88.24 
[ 14] 23 R vs. 23 NR rTMS 97.10 97.30 97.00 
TOP-EEG 9 R vs. 6 NR rTMS 94.59 90.48 97.10 

The contributions and important points of the current study are listed as 
follows: 

– This is the first time in the literature that an application is developed for the 
DGMD technique as a robust and adaptive signal processing technique. 

– The is first time in the literature, the effectiveness of entropy-based features is 
evaluated to predict the outcomes of depression therapies rather than detect-
ing depression disorders. 

– It is the first time in the literature that a method is developed to predict the 
outcome of two depression therapies (i.e., SSRI and rTMS); all other previous 
studies were developed to predict the outcome of one depression therapy (i.e., 
SSRI or rTMS). 

– The value of entropy features in NR patients is higher than in R patients. 
We conclude that the recorded behavior of human brain in the R situation 
is more stable than NR situation. On the other hand, a higher entropy value 
in the NR patients indicates that the human brain might be in unstable
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(a) R to both SSRI and rTMS therapies. (b) NR to both SSRI and rTMS therapies. 

(c) R to SSRI therapy and NR to rTMS therapy. (d) NR to SSRI therapy and R to rTMS therapy. 

Fig. 6. The developed TOP-EEG software. 

status. We conclude that the unstable behavior might reflect greater neural 
activities compared to the R state, which might affect NR patients to respond 
to depression therapies. 

– This is the first time to use entropy feature as a biomarker to detect the 
outcome of different depression therapies as shown in the software GUI Fig. 6. 
The topograph shows the distribution of entropy values on human scalp, 
which is used as a biomarker for therapies outcomes. 

– A simple CFNN architecture is proposed, which is less computationally expen-
sive than other studies in the literature. 

– The proposed TOP-EEG software is evaluated on two databases with different 
sampling frequencies, which shows the robustness of our proposed software 
and its insensitivity to sampling frequencies. 

– The TOP-EEG is reliable to be used in real-world applications since it is 
trained and tested using 10-fold CV strategy. 

– We offer a cost-effective, highly accurate, and efficient TOP-EEG software 
that utilizes pretreatment EEG signals to predict the outcomes of SSRI and 
rTMS depression therapies. The design and implementation of our proposed 
software is performed using MATLAB software. The simple design and imple-
mentation shows that it can be utilized in hospitals and clinics to predict 
therapy outcomes for depressed patients.
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4 Conclusion 

Suicide and self-harm are the major consequences of depression if it is left 
untreated. The SSRI and rTMS therapies are two common treatments for depres-
sion. Although the effectiveness of SSRI and rTMS therapies has been approved 
by the FDA as a depression treatment, the response rates of these two therapies 
are about 50%. It means if they are ineffective, the risk of suicide and self-harm 
for the depressed patients will increase. In this study, the TOP-EEG software 
is developed using the DGMD technique and CFNN architecture to predict the 
outcomes of SSRI and rTMS therapies based on the pretreatment EEG signals 
of depressed patients. The TOP-EEG is trained and tested using the EEG sig-
nals of 45 depressed patients, including 30 patients for SSRI therapy and 15 
patients for rTMS therapy. The software achieved classification accuracy levels 
of 93.16% and 94.59% to predict the outcomes of the SSRI and rTMS therapies, 
respectively. The results indicate that the entropy-based features of EEG signals 
in the DGMD domain are high for non-responding (NR) patients, and we inter-
pret the increase in entropy level due to more brain activities. Each depression 
therapy is suitable to suppress a certain level of brain activity that is caused by 
depression. Thus, NR patients might not respond to a certain therapy, because 
the therapy cannot suppress the level of brain activity for those patients. In the 
future, the performance of the TOP-EEG software will be extended to predict 
the outcome of more depression treatments such as psychological therapies like 
tricyclic antidepressants (TCAs) and Monoamine oxidase inhibitors (MAOIs), 
and somatic treatments such as electroconvulsive therapy (ECT), vagus nerve 
stimulation (VNS), deep brain stimulation (DBS), transcranial direct current 
stimulation (tDCS), light therapy, ketamine, and esketamine. 
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