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Abstract. Depression is a mental disorder that may lead to self-
mutilation or suicide if left untreated. Selective serotonin reuptake 
inhibitors (SSRIs) and repetitive transcranial magnetic stimulation 
(rTMS) are among the most commonly prescribed therapies to treat 
depression. These therapies are prescribed and recommended to be taken 
over a period of time, and the main challenge is that about 50% of the 
patients might respond to these ways of treatments. In general, a psy-
chiatric recommends one way of treatment based on his/her experience 
and waits for a period of time to evaluate the results. However, if the 
way of treatment is unsuccessful to decrease the depression level that 
might increase the risk of self-mutilation or suicide. This paper proposes 
a robust software called University of North Texas-Atieh Hospital (UNT-
AT) to predict the outcomes of two different therapies for depressed 
patients based on recorded electroencephalogram (EEG) signals. The 
UNT-AT software utilizes phase space reconstruction (PSR) of EEG sig-
nals, a robust chaotic technique for tracking the brain’s nonlinear dynam-
ics, along with novel geometrical features (GFs) to decode the complex 
behavior of EEG signals. Initially, PSR of EEG signals is plotted in two-
dimensional space, and GFs are used to quantify the PSR shape. Sta-
tistically significant features are selected using the Kruskal-Wallis test 
and are then fed into traditional machine learning algorithms and arti-
ficial neural network architectures for classification using 10-fold cross-
validations to avoid bias. The UNT-AT software is evaluated using two 
different databases for SSRI and rTMS therapies, including data from 30 
and 15 depressed patients, respectively. The results show that our pro-
posed software achieves classification accuracies of 94.14% and 97.67% for 
predicting therapy outcomes for SSRI and rTMS, respectively. Our pro-
posed software is the first system in literature to be used to choose the best 
course of treatments for depressed patients. The software is efficient and 
can be used in clinics and hospitals to assist neurologists and psychiatrists 
in prescribing the most effective course of treatment for depression. 
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1 Introduction 

Depression might lead to self-harm and suicide if it is not treated [ 1]. The World 
Health Organization (WHO) reported that about seven hundred thousand peo-
ple die by suicide every year [ 2]. There are around twenty suicide attempts for 
each death caused by suicide. This shows the importance of depression nowa-
days [ 3]. Selective Serotonin Reuptake Inhibitors (SSRI) therapy and Repetitive 
Transcranial Magnetic Stimulation (rTMS) therapy are among the best ways to 
treat the depression disorder [ 4]. 

The SSRI is a mode of action for several medications where SSRIs block 
the reuptake of serotonin into neurons. However, in rTMS therapy, a coil is 
used to generate magnetic pulses. The electromagnetic coil is placed close the 
scalp skin that generates electrical currents that enter the nerve cells. This pro-
cess is repeated for a four to six weeks, five times a week. The effectiveness of 
both SSRI [ 5] and rTMS [ 6] therapies for the treatment of depression has been 
approved by the Food and Drug Administration (FDA). The response rate to 
SSRI therapy is around 50% [ 7], and for rTMS therapy is between 40% and 
60% [ 8]. In some cases, the chosen therapy is unsuccessful, which might increase 
the risk of suicide to those patients. 

The Electroencephalogram (EEG) signal is a neuroimaging technique that 
records brain activity by placing electrodes on the scalp [ 9]. The EEG recording 
is an inexpensive, easy, and real-time technique to record the brain activities. 
The EEG signals were used to detect depression disorder [ 10, 11]. The promising 
performance of EEG signals in detecting depression encourages us to design a 
novel software named University of North Texas-Atieh Hospital (UNT-AT) to 
choose the best course of treatment for depression. This is the first time in the 
literature for a software to predict the best course of treatment for depression. In 
UNT-AT software, pre-treatment EEG signals are classified into either respon-
der (R) or non-responder (NR) to different depression therapies. The UNT-AT 
software includes two different therapies for depression treatment (i.e. SSRI and 
rTMS). One task involves classifying pre-treatment EEG signals into R or NR 
for SSRI therapy, and the other involves classifying pre-treatment EEG signals 
into R or NR for rTMS therapy. 

In the field of chaos science, phase space reconstruction (PSR) is applied 
to complex time series to decode their non-linearity [ 12]. EEG signals are 
non-stationary and exhibit non-linear characteristics. The complex and chaotic 
behavior of EEG signals has been decoded using the PSR technique to detect 
several mental disorders, such as depression [ 13], seizures [ 14], mental work-
load [ 15], alcoholism [ 16], and schizophrenia [ 9]. The PSR technique is used to 
plot the time series in higher-dimensional space to illustrate its complexity and 
non-linearity. Here, the performance of PSR on EEG signals is visualized in 
higher-dimensional space to decode brain function. 

Several features have been defined to quantify the dynamics of the Phase 
Space Reconstruction (PSR) of time series, such as fractal dimension, entropy 
measures, Lyapunov exponents, and correlation dimensions. The main problem 
with these features is their complexity from both theoretical and computational
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perspectives. In addition, several parameters are required to be set to decode the 
non-linearity of the information, which is a challenging task. Recently, geomet-
rical features (GFs) have been proposed to quantify the nonlinear dynamics of 
PSR of EEG signals [ 9, 10, 14, 16, 17]. Unlike traditional chaotic-based features, 
GFs have an easy mathematical theory, which makes them quickly and easy 
to extract. Additionally, the concept of GF is based on geometry, which means 
there is no need to adjust any parameters. These advantages of GFs motivate us 
to apply GFs to the PSR of EEG signals to quantify the non-linearity of brain 
function. 

The deep learning models showed acceptable performance in classification of 
EEG signals [ 18]. The main reason is that deep learning models have the ability 
to effectively learn and analyze complex patterns within the data. Addition-
ally, deep learning models handle extensive amounts of information and many 
features simultaneously. The combination of these characteristics allows deep 
learning models to significantly identify generalized patterns in the dataset and 
use them for classification. In the literature, pre-trained architectures were used 
to classify images that were extracted from EEG signals [ 19]. Although the clas-
sification performance of pre-trained architectures was significantly high, these 
architectures had a complex structure with numerous layers and millions of neu-
rons, requiring a lot of resources. On the other hand, custom architectures are 
designed to avoid using more computational resources. In the current work, a 
custom architecture is designed for classification. 

In this paper, the UNT-AT software is proposed to predict the outcomes of 
different therapies for depression based on EEG signals. The EEG signals are 
plotted in a two-dimensional space using the PSR technique. Then, thirty-four 
GF are extracted to quantify the nonlinear dynamics of the EEG signals. The 
Kruskal-Wallis (KW) test selects features that are statistically significant. The 
selected features are fed into custom cascade-forward neural networks (CFNN). 
The binary classification task of R vs. NR is defined for both SSRI and rTMS 
therapies. The performance of the proposed UNT-AT software is evaluated using 
two databases: SSRI database and rTMS database. 

The rest of the paper is organized as follows: Sect. 2 is about the materials 
of this study. Section 3 details the proposed UNT-AT software and PSR tech-
nique. Section 4 and Sect. 5 discusses GFs extraction, and classification methods. 
Section 6 presents the results and discussion. Finally, the paper is concluded in 
Sect. 7. 

2 Materials 

In this paper, two different databases: Mumtaz and Atieh that are used to eval-
uate the performance of the proposed UNT-AT software. Mumtaz database is 
a public database for SSRI therapy and Atieh Hospital database is a private 
database for rTMS database.
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Fig. 1. A sample of R (left) and NR (right) EEG signals to SSRI (up) and rTMS 
(down), respectively. 

2.1 Mumtaz Database 

The Mumtaz database is a public database that contains the EEG signals of 
30 major depressed patients who were selected for SSRI therapy [ 20]. The EEG 
signals were recorded for all patients before starting the SSRI therapy. The 
EEG signals were recorded using the 10–20 international standard system with 
19 channels, and the sampling frequency of EEG recording 256 Hz as shown in 
Fig. 1. The location of channels on the scalp is shown in Fig. 2. In the experiment, 
Mumtaz used Escitalopram, Fluvoxamine, Sertraline, and Fluoxetine that have 
SSRI mode of action in different dosage for four weeks as described in [ 20]. After 
one month, the Beck Depression Inventory (BDI) score was evaluated for all 
patients. The EEG signals of patients who improved by more than 50% based
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Fig. 2. The locations of the channels in the 10–20 system (left) and the brain lobes 
(right). 

on the BDI score were categorized as R, and the rest were categorized as NR to 
SSRI therapy. The results show that 12 patients were R, and 18 patients were 
NR to SSRI therapy. 

2.2 Atieh Hospital Database 

The performance of the proposed UNT-AT software for predicting the outcomes 
of rTMS therapy is evaluated using a private database collected at Atieh Hospi-
tal, Tehran, Iran. Fifteen depressed patients received rTMS therapy. The diagno-
sis of depression disorder was evaluated by two psychiatrists Dr. Reza Rostami 
and Dr. Reza Kazemi at Atieh Hospital. The EEG signals were recorded for 
patients before starting the rTMS therapy, and the BDI scores were evaluated. 
The EEG signals were recorded at a sampling frequency 500 Hz as shown in 
Fig. 1. The international 10–20 standard system was used during the recording 
of the EEG signals. Then the rTMS therapy was recommended for four weeks. 
After one month, the BDI scores of the patients were evaluated once again. The 
patients who got improved over 50% based on the BDI score were considered 
as R, and the rest as NR to rTMS therapy. The results show that nine patients 
were considered R, and six patients were considered NR to rTMS therapy. 

3 Proposed UNT-AT Software 

This section describes the step-by-step process of our proposed UNT-AT soft-
ware. After recording the data, the EEG signals are plotted in two-dimensional 
space using the PSR technique. Then, the GFs are extracted from all channels. 
Statistically significant features are selected by the Kruskal-Wallis (KW) test and 
fed into artificial neural network (ANN) architectures. The outcome of the clas-
sifier is R and NR to two different depression therapies: SSRI and rTMS. Finally, 
the UNT-AT will recommend how confidence medical care providers should be 
to prescribe each depression therapy as shown in Fig. 9. Figure 3 illustrates the
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Fig. 3. Step by step of the proposed UNT-AT software. 

step-by-step process of our proposed UNT-AT software. The design and imple-
mentation of our proposed UNT-AT are conducted using MATLAB software and 
Windows computer with i7-8700 CPU (3.20 GHz) and 3.2 GB RAM. 

3.1 Phase Space Reconstruction 

The PSR technique is used to discover the nonlinear dynamics of complex sys-
tems [ 21]. In the current work, the PSR of EEG signals is used to illustrate the 
non-linear nature of the brain in a depressed state. The PSR plots the EEG sig-
nals in a higher dimensional space to provide more information about the effects 
of depression on brain activity. The PSR has two parameters to be optimized 
called delay (. τ) and embedded dimension (. d). Let us assume that a channel of 
EEG signal is represented as .E = [e1, e2, e3..., en] where . n is the length of the 
signal. Then, the PSR is defined as follows: 

.PSR =
(
Em, Em+τ , . . . , Em+(d−1)τ

)
(1) 

where .m = 1, 2, . . . , n − (d − 1)τ . There are several techniques to estimate the 
. τ and . d parameters. The leveling-off of the Average Mutual Information (AMI) 
function and the false nearest neighbor are the most common methods to approx-
imate . τ and . d, respectively [ 22]. However, AMI and false nearest neighbor meth-
ods use more computational resources. Selecting the proper values for these two 
parameters directly impacts the information provided by the PSR. If these two 
parameters are set too high, the resulting PSR shape is more complex than the 
EEG signals themselves. On the other hand, if these two parameters are set too 
low, the resulting PSR is not able to decode the hidden nonlinear dynamics of 
the EEG signals. In [ 12], the values of .τ = 1 and .d = 2 were recommended 
for analyzing EEG signals. In the current work, these two parameters are used 
to compute the PSR of EEG signals. Since .d = 2, a two-dimensional space is 
defined to plot the PSR of EEG signals as follows: 

.X = Em = [e1, ..., en−1] (2)
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Fig. 4. PSR of CZ channel for R(left) and NR(right) to SSRI(up) and rTMS(down), 
respectively. 

.Y = Em+1 = [e2, ..., en] (3) 
Plotting X versus Y is defined as PSR. 

4 Geometrical Features 

The quantification of behavior of the PSR can be obtained by nonlinear features 
such as Lyapunov exponent and fractal dimension. However, computing these 
features requires significant time and effort. The graphical features of EEG sig-
nals are used to show the complexity and variability of the PSR [ 9, 10, 16, 17]. In 
this section, we aim to extract graphical features from EEG signals to differenti-
ate between the R and NR classes. A total of 34 nonlinear graphical features are 
extracted utilizing PSR and Euclidean geometry. Summation of consecutive cir-
cles area (SCCA), summation of consecutive triangles area (SCTA), summation 
of Heron’s circulars area (SHCA), summation of distances between Heron’s cir-
culars (SDHC), summation of the angles between Heron’s circular (SAHC), sum-
mation of successive vector lengths (SSVL), shortest distance from each point 
relative to the 45-degree line (SH45), summation of shortest distance from each 
point relative to the 135-degree line (SH135), area of octagon (AOCT), sum-
mation of distances to a coordinate center (SDTD), summation of the angles 
between three consecutive points (SABP), summation of triangles area made 
successive points and coordinate center (TACR), summation of consecutive rect-
angular area (SCRA), two-dimensional standard descriptors (TDSD), elliptical
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Fig. 5. Illustration of the geometrical features. 

area (ELPA), central tendency measure (CTM) are extracted from the PSR. The 
detailed explanation and mathematical formulas for these graphical features are 
shown in Table  1 and Fig. 5 [ 9]. 

5 Classification 

The cascade-forward neural network (CFNN) architecture is a kind of the feed-
forward neural network (FFNN) architecture. In the proposed UNT-AH soft-
ware, CFNN architecture is trained and tested using two different databases. 
The flow of the information is in a forward direction for both FFNN and CFNN 
architectures. Also, there is no connections between the neurons in the same 
layer. There are three main layers for any architecture: the input layer, hidden 
layers, and output layer. The number of neurons in the input layer is equal to 
the number of extracted features. In the same way, the number of neurons in the 
output layer is equal to the number of classes. CFNN architecture has connec-
tions from the input layer to the output layer directly and through the hidden 
layers as well. A CFNN learns any finite input-output relationship by setting a 
proper number of layers and neurons in the hidden layer [ 23]. The advantage 
of the CFNN architecture is that it maps any input to output, like the FFNN. 
Additionally, CFNN architecture finds the nonlinear relationships between the 
input and output layers while preserving the linear relationships between the 
layers. 

In the current work, a CFNN architecture is used for the classification respon-
dent and non-respondent patients. The performance of CFNN architecture is 
compared to an FFNN architecture with the same number of layers and neu-
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Table 1. Description of the geometrical features. 

Feature Definition 
SCCA The SCCA measures the degree of variability of PSR. Figure 5(a) illustrates the 

SCCA, where C represents the area of each circle: SCCA = C1 + C2 + C3 
SCTA The SCTA measures the degree of variability of PSR by providing greater 

adaptability compared to the SCCA. Figure 5(b) presents the SCTA, where T denotes 
the area of each triangle: SCTA = T1 + T2 + T3 + T4 + T5 

SHCA The SHCA measures the auto correlation of PSR. Figure 5(c) displays the SHCA, 
where . r is the radius of each circle: SHCA = . πr21 + πr22 + πr23 + πr24 + πr25

SDHC The SDHC measures the auto correlation and level of complexity of PSR. Figure 5(d) 
shows the SDHC, where D represents the distance between each successive Heron’s 
circles: SDHC = D1 + D2 + D3 + D4 

SAHC The SAHC measures the correlation of PSR to each other that refers to similarity in 
the time domain. Figure 5(e) illustrates the SAHC, where A is the angle between the 
centers of successive Heron’s circles: SAHC = A1 + A2 

SSVL The SSVL measures the degree of variation for PSR, which refers to amplitude 
variability in the time domain. Figure 5(f) depicts the SSVL, where L is the length of 
each vector formed by successive points: SSVL = L1 + L2 + L3 + L4 + L5 

SH45 The SH45 measures the scattering of data points of PSR on the second and fourth 
quarters. Figure 5(g) shows the SH45, where the distance from each point to the 
45-degree line is computed as follows SH45 = SH1 + SH2 + SH3 + SH4 + SH5 

SH135 The SH135 measures the scattering of data points of PSR in the first and third 
quarters. Figure 5(h) illustrates the SH135, where the distance from each point to the 
135-degree line is computed as follows: SH135 = SH1 + SH2 + SH3 + SH4 + SH5 

AOCT AOCT measures the degree of spreading of PSR. Figure 5(i) shows the AOCT 
SDTD The SDTD measures the degree of variability of PSR according to the center of the 

coordinate. Figure 5(j) shows the SDTC, where Cr is the distance from each point to 
the coordinate center: SDTC = Cr1 + Cr2 + Cr3 + Cr4 + Cr5 

SABP The SABP measures the fluctuation of angles, which refers to the degree of intricacy 
in time domain. Figure 5(k) presents the SABP, with A representing the angle 
between successive vectors formed by successive points: SABP = A1 + A2 + A3 + A4 

TACR The TACR is a composite metric that integrates the SSVL and SDTD to measure 
both the variation and auto-correlation of PSR. Figure 5(l) shows the TACR, where 
Tcr is the area of each triangle formed by two successive points and the coordinate 
center: TACR = Tcr1 + Tcr2 + Tcr3 + Tcr4 

SCRA The SCRA integrates the SH45, SH135, and SDTC features to measure the 
dispersion of data from the central point, .45◦, and  .135◦ lines with higher sensitivity. 
Figure 5(m) shows the SCRA, where R is the area of each formed rectangle by central 
points and .45◦, and  .135◦ lines: SCRA = R1 + R2 + R3 + R4 

TDSD The TDSD measures the dispersion of points of PSR. Figure 5(n) shows the TDSD as 
a graphical feature, where STD1 and STD2 are the .45◦ and .135◦ lines 

ELPA The PSR shape exhibits an elliptical form. Figure 5(o) shows the ELPA, where the 
blue dotted ellipse represents the ELPA, and . b and . a are the minor and major axes of 
the ellipse, respectively 

CTM The CTM measures the variation level of PSR by computing the percentage of 
dispersed points on the coordinate plane as shown in Fig. 5(p). The range of CTM is 
[5: 5: 95], where the start radius is 5, and the incremental is 5, the end radius is 95. 
Thus, CTM extracts 19 features from PSR
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rons to show the effectiveness of the CFNN architecture. Additionally, the per-
formance of the CFNN is compared to other traditional machine learning tech-
niques: k-nearest neighbors (KNN), support vector machine (SVM), and random 
forest (RF). The 10-fold cross-validation (CV) strategy is employed to avoid 
bias in the our results. Table 2 shows the parameter setting of the classification 
methods. 

Table 2. Parameters setting of classification methods. 

Classification method Parameter Value 
CFNN and FFNN Architecture [,20,20,2] 

Maximum number of epochs 50 
RF Number of trees 20 
SVM Kernel Function linear 
KNN Distance metric Euclidean 

Number of neighbors 5 
CV Number of folds 10 

6 Results and Discussion 

The EEG signals from both the Mumtaz and Atieh hospital databases are split 
into segments. The length of each segment is 1024 samples. The size of each 
segment is .(19× 1024). A total of 2185 segments are obtained from the Mumtaz 
database, including 1323 segments for NR and 862 segments for R to SSRI 
therapy. On the other hand, a total of 2193 segments are obtained from the 
Atieh Hospital database, including 831 segments for NR and 1362 segments for 
R to rTMS therapy. Two binary classification tasks are defined for distinguishing 
between R and NR EEG signals based on the therapy: R to SSRI vs. NR to SSRI 
using the Mumtaz database, and R to rTMS vs. NR to rTMS using the Atieh 
Hospital database, respectively. 

Figure 3 shows the proposed UNT-AT software step-by-step to predict the 
outcomes of two depression therapies using EEG signals. In the process of 
extracting the GFs, EEG channel is plotted on two-dimensional space using the 
PSR technique. Figure 4 shows that the complex and nonlinear dynamic behav-
ior of the EEG signals can be tracked by PSR technique. In Fig. 4, the  PSR of R  
signals narrower than NR EEG signals in both therapies. It shows that the PSR 
scattering behavior of R group is higher than NR group. Also, it shows that the 
data points of PSR in NR groups are more closer to each other than R group. 

In order to distinguish between the PSR of R and NR EEG signals in the 
SSRI and rTMS therapies, geometrical features are extracted. A total of 34 
features are extracted from the PSR of each channel, resulting in .34× 19 = 646
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features for each segment. As a result, the extracted feature matrix for the R and 
NR groups is .862 × 646 and .1323 × 646 for SSRI therapy, respectively. On the 
other hand, the extracted feature matrix for the R and NR groups is . 1362× 646
and .831× 646 for rTMS therapy, respectively. 

KW test is applied to the extracted features to select the statistically signif-
icant features [ 24]. Features with a p-value less than 0.01 are selected as proper 
features. The size of the feature matrix after applying the KW test for the R 
and NR groups is .862 × 506 and .1323 × 506 for SSRI therapy, respectively. On 
the other hand, the size of the feature matrix after applying the KW test for the 
R and NR groups is .1362 × 579 and .831 × 579 for rTMS therapy, respectively. 
Usually, KW test is used as feature selection algorithm, approximately 21.68% 
of features are dropped in SSRI therapy, while around 9.51% of features are 
dropped in rTMS therapy. This reduction in features improve the performance 
of the trained classifier. The selected features are fed into several classifiers using 
10-fold CV strategy. The performance of the classifier will be evaluated using 
Accuracy, Sensitivity, and specificity. The accuracy (ACC) is computed to clas-
sify R and NR patients. Sensitivity (SEN) is computed to show how confident 
the patient will be NR to specific therapy. Specificity (SPE) is computed to show 
how confident the patient will be R to specific therapy. 

Table 3. Performance of classification methods. 

SSRI therapy 
CFNN FFNN KNN RF SVM 

ACC (%) 94.14 91.53 80.18 88.74 63.54 
SEN (%) 96.22 94.48 88.13 93.73 72.11 
SPE (%) 90.95 87.01 67.98 81.09 51.24 

rTMS therapy 
CFNN FFNN KNN RF SVM 

ACC (%) 97.67 97.49 79.43 89.64 73.16 
SEN (%) 96.38 95.90 62.89 84.59 61.87 
SPE (%) 98.45 98.45 89.86 92.73 59.96 

Table 3 shows the results of five different classifiers. Figure 6a and Fig. 6b 
show the performance of all classifiers for SSRI and rTMS therapies. The results 
show that the CFNN architecture achieves the best classification performance 
compared to other classification methods. The performance of RF algorithm 
is better than KNN and SVM. Although FFNN outperforms other traditional 
classifiers (i.e., KNN, RF, SVM), the CFNN architecture outperforms the FFNN. 

Identifying specific locations in human brain that show significant response 
to specific depression therapy may help psychiatrists to choose the best course 
of treatment. In order to evaluate the effectiveness of each channel in predicting 
the outcome of a depression therapy, the performance of the UNT-AT software
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Fig. 6. Comparison of the performance of classification methods on SSRI and rTMS 
therapies. 

is evaluated using a single channel EEG signal. The evaluation is repeated for 
each channel using the best classifier CFNN. Figure 7 shows the performance of 
each channel for SSRI and rTMS therapies. The results indicate that T3 and F7 
are the best channels for predicting the outcomes of SSRI and rTMS therapies, 
respectively. T3 and F7 are located in the left side of the brain next to each 
other as shown in Fig. 2. 

Fig. 7. Performance of the proposed UNT-AT software for each single channel. 

The performance of the T3 and F7 channels in the SSRI and rTMS therapies 
are statistically evaluated (mean and standard deviation) for the extracted GFs
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Fig. 8. Statistical analyzing the extracted GFs from the T3 and F7 channels in the 
SSRI (left) and rTMS (right) therapies, respectively. 

to understand the dynamics of these channels in R and NR situations as shown 
in Fig. 8. 

The results demonstrate that the mean values of the GF in the R group are 
higher than in the NR group in both SSRI and rTMS therapies. This means that 
the PSR of the R EEG signals occupies more area than the NR EEG signals. 
Additionally, the higher value of the standard deviation indicates that the PSR 
of EEG signals in the R group is more complex, irregular, and unpredictable 
than in the NR group. This fact can be seen in Fig. 4 for the T3 and F7 channels 
of EEG signals in SSRI and rTMS therapies, respectively. In fact, the PSR of 
the T3 and F7 channels can be used as a biomarker to visually inspect brain 
function in SSRI and rTMS therapies, respectively. 

There are few number of studies to predict the outcome of depression ther-
apies including SSRI and rTMS. Table 4 lists a comparison of our proposed 
UNT-AT software and recently methods for predicting the outcomes of SSRI 
and rTMT therapies. The proposed UNT-AT software achieves better perfor-
mance in terms of ACC, SEN, and SPE compared to other previous studies. 
Our results outperforms the results in [ 20], where the authors used the same 
Mumtaz database for SSRI therapy. In addition, our results outperforms the 
results in [ 8]; however, the author used different private rTMS database. 

The UNT-AT software is a novel tool that can be utilized in hospitals and 
clinics to predict the outcomes of depression therapies, and it is the first in the 
literature. Figure 9 shows the developed UNT-AT software and the results of 
all four possible outcomes. The proposed UNT-AT software is built on the PSR 
technique and extracts GFs, which aligns with a CFNN with a simple architec-
ture. The proposed UNT-AT software is reliable and fast due to its simplicity. In 
addition, the developed UNT-AT software does not require much computational 
resources and can be run a standard computer available in clinics and hospitals. 

The contributions of the proposed UNT-AT software are listed as follows:
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Table 4. Comparison of the performance of the proposed UNT-AT software with 
previous works. 

Ref. Database Therapy ACC (%) SEN (%) SPE (%) 
[ 20] 12 R vs. 18 NR SSRI 91.60 90.00 90.00 
Ours 12 R vs. 18 NR SSRI 94.14 96.22 90.95 
[ 8] 23 R vs. 23 NR rTMS 97.10 97.30 97.00 
Ours 9 R vs. 6 NR rTMS 97.67 96.38 98.45 

Fig. 9. The developed UNT-AT software. 

– First time to predict the outcome of two different depression therapies: SSRI 
and rTMS. 

– The GFs is used for the first time to predict therapy outcomes, rather than 
detecting mental disorders. 

– A fast and reliable software is developed using simple CFNN architecture. 
– The proposed UNT-AT software is tested using two databases with different 

sampling frequencies that shows it is not sensitive to sampling frequency. 
– The 10-fold CV strategy is implemented during training and testing to avoid 

bias in the results. This shows the effectiveness of the proposed UNT-AT 
software in the real-world applications. 

– Offering a cost-effective, highly accurate, and efficient UNT-AT software that 
utilizes pretreatment EEG signals to predict the outcomes of SSRI and rTMS 
therapies for depressed patients. All design and implementation of the UNT-
AT is implemented in MATLAB that makes it a significant software tool for 
use in hospitals and clinics to predict therapy outcome for depressed patients.



358 H. Akbari et al.

7 Conclusion 

Suicide and self-harm are results of depression when it is not treated properly. 
SSRI and rTMS therapies are two courses of treatment for depression disorder. 
The FDA approved the effectiveness of these two therapies for depression. How-
ever, the response rate to these therapies for depressed patients is around 50%. 
If the treatment is unsuccessful that will increase the possibility of suicide and 
self-harm for depressed patients. In the current work, the UNT-AT software is 
developed based on GFs of EEG signals in the PSR domain and aligned with a 
CFNN architecture to predict the outcome of SSRI and rTMS therapies. 

The proposed UNT-AT software is evaluated using EEG signals of 45 
depressed patients, of whom 30 were candidates for SSRI therapy and 15 were 
candidates for rTMS therapy. The results show a classification accuracy of 
94.14% and 97.67% in predicting the outcomes of SSRI and rTMS therapies, 
respectively. In addition, the results show that the PSR of EEG signals for R 
patients is more complex and wider than NR. On the other hand, the PSR 
of EEG signals in NR patients is more predictable and has lower irregularity, 
which might be due to the decrease in neuronal connections in NR patients’ 
brains. The best channels to predict the outcomes of SSRI and rTMS therapy 
are located T3 and F7, respectively. In addition, the PSR of these two channels 
can be used as biomarkers to predict the outcomes of depression therapy. In the 
future, the performance of the proposed UNT-AT software will be evaluated for 
psychological treatments such as tricyclic antidepressants (TCAs), Monoamine 
oxidase inhibitors (MAOIs) as well as somatic treatments such as electrocon-
vulsive therapy (ECT), vagus nerve stimulation (VNS), deep brain stimulation 
(DBS), transcranial direct current stimulation (tDCS), light therapy, ketamine, 
and esketamine. 
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