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Abstract Liouville first passage percolation (LFPP) with the parameter ¢ > 0 is the family of random
distance functions {Df }e>0 on the plane obtained by integrating efhe along paths, where {he}eso is a smooth
mollification of the planar Gaussian free field. Recent works have shown that for all £ > 0, the LFPP metrics,
appropriately re-scaled, admit non-trivial subsequential limiting metrics. In the case & < &t = 0.41, it has
been shown that the subsequential limit is unique and defines a metric on ~-Liouville quantum gravity (LQG)
v =~(&) € (0,2). We prove that for all £ > 0, each possible subsequential limiting metric is nearly bi-Lipschitz
equivalent to the LEFPP metric D} when € is small, even if € does not belong to the appropriate subsequence.
Using this result, we obtain bounds for the scaling constants for LFPP which are sharp up to polylogarithmic
factors. We also prove that any two subsequential limiting metrics are bi-Lipschitz equivalent. Our results are
an input in subsequent works which shows that the subsequential limits of LFPP induce the same topology as

the Euclidean metric when & = &4t and that the subsequential limit of LEPP is unique when & > &.yit.-
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1 Introduction

1.1 Liouville first passage percolation

Let h be the whole-plane Gaussian free field (GFF), normalized so that its average over the unit circle is
zero. This means that h is the Gaussian process on C with covariances given by

max{]2], 1} max{ |, 1}

Cov(h(z), h(w)) = log , VzweC

|z — w]
(see [20, Subsection 2.1.1]). The GFF does not make sense as a random function, but it can be defined
as a random generalized function, meaning that we can define its integral against a smooth test function
with sufficiently fast decay at oo. We refer to the expository articles [3,18,21] for more on the GFF.
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Recent works have shown that for & > 0, one can construct a random metric on C which is heuristically
obtained by “weighting lengths of paths by ¢, and then taking an infimum”. The motivation for
considering such a metric comes from the theory of Liouville quantum gravity (LQG). The reason for
the quotations is that h is a generalized function, not a true function, so " does not make literal sense.
Consequently, to construct this metric one needs to take a limit of a family of approximating metrics
called Liouwille first passage percolation (LFPP), which we discuss just below. The goal of this paper is
to prove a quantitative estimate for how close the LFPP metrics are to the limiting metric, which neither
implies nor is implied by the convergence. As consequences of this estimate, we deduce several other
estimates for LFPP and LQG which are needed in future works.

Let us now discuss the definition of LFPP. For ¢t > 0 and z € C, we define the heat kernel p;(z)
= ﬁe"zwzt and we denote its convolution with A by

hi(z) = (h*peo2)9)(2) = /Ch(w)pgz/g(z —w)dw, VzeC, (1.1)

where the integral is interpreted in the sense of distributional pairing. The reason for integrating against
Pe22(2,w) instead of p.(z,w) is so that the variance of h%(z) is of order log e 1+ 0.(1).
For a parameter £ > 0, we define the e-Liouville first passage percolation metric associated with h by

1
D5 (z,w) == i%f/ eShe (PO PI(1)dt, Vz,w e C, (1.2)
0

where the infimum is over all the piecewise continuously differentiable paths P : [0,1] — C from z to w.
We are interested in (subsequential) limits of the re-normalized metrics aZ' D5, where the normalizing
constant is defined by

1
a. := median of inf { / She(PO)| P/(t)|dt - P is a left-right crossing of [0, 1]2}. (1.3)
0
Here, by a left-right crossing of [0,1]> we mean a piecewise continuously differentiable path P : [0, 1]
— [0, 1]? joining the left and right boundaries of [0, 1]2.
The scaling constants a. are not known explicitly, but it is shown in [8, Proposition 1.1] that for each
& > 0, there exists a @ = Q(&) > 0 such that

a. = et 789Fe a5 e 0. (1.4)

We call @ the LFPP distance exponent. The existence of ) is proven by using a subadditivity argument,
so its value is not known except that Q(1/ \/6) =5/ V6. However, reasonably good rigorous upper and
lower bounds for @) in terms of £ are available [1,6, 16].

LFPP undergoes a phase transition at the critical parameter value

Eerit 1= Inf{€ > 0: Q&) = 2}. (1.5)

We do not know & explicitly, but the bounds from [16, Theorem 2.3] give the approximation &.yit
€ [0.4135,0.4189].

Definition 1.1. We refer to LFPP with & < &.it, € = Eerit and € > Eqiy as the subcritical, critical and
supercritical phases, respectively.

We now briefly discuss what happens in each of the three phases. We refer to the survey article [5] for
a more detailed exposition. In the subcritical phase, it was shown by Ding et al. [4] that the re-scaled
LFPP metrics aZ!'Df admit subsequential limits in probability with respect to the topology of uniform
convergence on compact subsets of C x C. Moreover, every possible subsequential limit is a metric which
induces the same topology on C as the Euclidean metric. Later, it was shown by Gwynne and Miller [15]

1) The case £ = 1/v/6 corresponds to Liouville quantum gravity with v = 1/8/3, and the relation Q(1/v/6) = 5//6 is
equivalent to the statement that the Hausdorff dimension of 1/8/3-LQG is equal to 4 (see [6] for more details).
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(building on [10,13,14]) that the subsequential limit is uniquely characterized by a certain list of axioms,
SO aE_lDfL converges as € — 0, not just subsequentially.

The limiting metric can be viewed as the distance function associated with y-Liouville quantum gravity
(LQG) for an appropriate value of v = (&) € (0,2). In other words, we interpret the limit of subcritical
LFPP as the Riemannian distance function for the Riemannian metric tensor e?*(®¥)(da? 4 dy?), where
dx? + dy? is the Euclidean metric tensor. The relationship between v and ¢ is given by either of two
equivalent, but non-explicit, formulas:

2 v .

Q) = 5 + 5 o equivalently, v = &d(€), (1.6)
where d(§) > 2 is the Hausdorfl dimension of C, equipped with the limiting metric. Neither of the
formulas (1.6) gives an explicit relationship between £ and + since neither Q(§) nor d(€) is known explicitly
(see [6] for further discussion).

In the supercritical and critical phases, we showed in [8] that the metrics a_ 1DZ admit non-trivial
subsequential limits with respect to the topology on lower semicontinuous functions on C x C, which we
recall in Definition 1.2 below. Every subsequential limit is a metric (not just a pseudometric). In [9], we
showed that the subsequential limit is unique, using some of the results of this paper.

In the supercritical case, if Dy, is a subsequential limit of LEFPP, then Dy, does not induce the Euclidean
topology on C. Rather, there is an uncountable, dense, Lebesgue measure zero set of singular points z € C
such that

Dy(z,w) =00, VweC\{z}. (1.7)

Roughly speaking, the singular points correspond to the points z € C for which (see [17, Proposition 1.11])

he
lim sup (z)l
e—0 loge™

> Q,

where h.(z) is the average of h over the circle of the radius € centered at z.

The (subsequential) limits of supercritical LFPP are related to Liouville quantum gravity with matter
central charge cy € (1,25). LQG with v € (0,2) corresponds to ¢y = 25 — 6(2/v +7/2)? € (—o0, 1).
The case ¢y € (1,25) is much less understood, even from a physical perspective (see [8,12] for further
discussion).

In the critical case & = & it, there are no singular points and the subsequential limiting metrics
induce the Euclidean topology. We proved this in [7], using the results of the present paper. This case
corresponds to v-LQG with v = 2 or equivalently ¢y = 1.

The goal of this paper is to prove, for each £ > 0, up-to-constants bounds comparing a_ ' D5 to any
possible subsequential limit of {aZ'D5}.~0 (see Theorem 1.8). This comparison holds even at nearly
microscopic scales, so it is not implied by the convergence of a_ 1DZ. As consequences of our bounds, we
deduce estimates for the LFPP scaling constants {a. }.~o which are new even in the subcritical case (see
Theorem 1.11). We also prove that the scaling constants {¢, },~¢ for the subsequential limiting metric, as
defined in Axiom (V) of Definition 1.5 below, can be taken to be equal to r¢% (see Theorem 1.9). In the
subcritical case, this was previously proven in [15] as a consequence of the uniqueness of the subsequential
limit. This paper gives the first proof that one can take ¢, = r¢? in the critical and supercritical cases.
This fact helps to simplify the proof of the uniqueness of the critical and supercritical LQG metrics in [9].

1.2 Weak LQG metrics

The subsequential limits of LFPP satisfy a list of axioms which define a weak LQG metric. In this
subsection, we state the axiomatic definition of a weak LQG metric from [17]. We first define the
topology on the space of metrics that we will work with.

Definition 1.2. Let X C C. A function f : X x X — R U {—o0,+00} is lower semicontinuous
if whenever (zp,w,) € X x X with (z,,wy,) — (z,w), we have f(z,w) < liminf,,_, f(zn,wy). The
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topology on lower semicontinuous functions is the topology whereby a sequence of such functions {f,, }nen
converges to another such function f if and only if

(i) whenever (z,,w,) € X x X with (z,,w,) — (2, w), we have f(z,w) < liminf, o0 fn(zn, wn);

(ii) for each (z,w) € X x X, there exists a sequence (z,,w,) — (z,w) such that f,(z,,w,) = f(z,w).

It follows from [2, Lemma 1.5] that the topology of Definition 1.2 is metrizable (see [8, Subsection 1.2]).
Furthermore, [2, Theorem 1(a)] shows that this metric can be taken to be separable.

Definition 1.3. Let (X, d) be a metric space, with d allowed to take on infinite values.
e For a curve P : [a,b] — X, the d-length of P is defined by

#T
len(P;d) := sup Y _ d(P(t;), P(t;—1)),
i=1
where the supremum is over all the partitions T': a =ty < - -+ < tup = b of [a,b]. Note that the d-length
of a curve may be infinite.

e We say that (X,d) is a length space if for each x,y € X and each ¢ > 0, there exists a curve of
d-length at most d(x,y) 4+ € from z to y. A curve from x to y of d-length exactly d(x,y), if such a curve
exists, is called a geodesic.

e For Y C X, the internal metric of d on Y is defined by

d(z,y;Y) == Plrclg/lem(P;d)7 Va,y ey, (1.8)

where the infimum is over all the paths P in Y from « to y. Note that d(-,-;Y") is a metric on Y, except
that it is allowed to take infinite values.

o If X C C, we say that d is a lower semicontinuous metric if the function (x,y) — d(z,y) is lower
semicontinuous with respect to the Euclidean topology. We equip the set of lower semicontinuous metrics
on X with the topology on lower semicontinuous functions on X x X, as in Definition 1.2, and the
associated Borel o-algebra.

Definition 1.4. Let d be a length metric on C. For a region A C C with the topology of a Euclidean
annulus, we write d (across A) for the d-distances between the inner and outer boundaries of A and
d (around A) for the infimum of the d-lengths of paths in A which disconnect the inner and outer
boundaries of A.

Distances around and across Euclidean annuli play a similar role to “hard crossings” and “easy
crossings” of 2 x 1 rectangles in percolation theory. One can get a lower bound for the d-length of a
path in terms of the d-distances across the annuli that it crosses. On the other hand, one can “string
together” paths around Euclidean annuli to produce longer paths.

The following is (almost) a re-statement of [17, Definition 1.6].

Definition 1.5 (Weak LQG metric). Let D’ be the space of distributions (generalized functions)
on C, equipped with the usual weak topology. For & > 0, a weak LQG metric with the parameter £
is a measurable function h + Dy, from D’ to the space of lower semicontinuous metrics on C with the
following properties. Let h be a GFF plus a continuous function on C, i.e., h is a random distribution
on C which can be coupled with a random continuous function f in such a way that h — f has the law
of the whole-plane GFF. Then the associated metric Dj, satisfies the following axioms:

(I) (Length space) Almost surely, (C, D) is a length space.

(IT) (Locality) Let U C C be a deterministic open set. The Dp-internal metric Dy (-, ;U) is a.s. given
by a measurable function of A |y.

(III) (Weyl scaling) For a continuous function f: C — R, define

P:z—w

len(P;Dy,)
(% - Dy)(z,w) == inf/ SIPM gt ¥z w e C, (1.9)
0

where the infimum is over all the Dj,-continuous paths from z to w in C parametrized by the Dj-length.
Then a.s. e¢f - Dy, = Dy, 4y for every continuous function f:C — R.
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(IV) (Translation invariance) For each deterministic point z € C, a.s. Dy (.4.) = Dp(- + 2, + 2).

(V) (Tightness across scales) Suppose that h is a whole-plane GFF and let {h,(2)},>0..ec be its circle
average process. There are constants {c, },~¢ such that the following is true. Let A C C be a deterministic
Fuclidean annulus. In the notation of Definition 1.4, the random variables

¢ le O Dy (across rA) and ¢ te (0D, (around rA)

and the reciprocals of these random variables for » > 0 are tight.

For & < &epit, it is shown in [15] (as a consequence of the uniqueness of weak LQG metrics) that every
weak LQG metric satisfies an exact spatial scaling property which is stronger than Axiom (V). More
precisely, for every r > 0, a.s.

Dhry+Q1ogr(2,w) = Dp(rz,rw), Vz,weC. (1.10)

A metric which satisfies Axioms (I)~(IV) together with (1.10) is called a strong LQG metric.

In the case £ > &eit, we do not yet know that every weak LQG metric satisfies (1.10). We can think
of Axiom (V) as a substitute for (1.10). It allows us to get estimates which are uniform across different
Euclidean scales, even though we do not have an exact scale invariance property (see [10,15,17] for further
discussion of this point).

Definition 1.5 is slightly more general than the definition of a weak LQG metric used in other works
[10,15,17]. The reason is that the aforementioned papers require a (rather weak) a priori bound for the
scaling constants ¢, from Axiom (V). It follows from Theorem 1.9 below that Definition 1.5 is equivalent
to the definition in [17], so the a priori bounds for ¢, are unnecessary. We emphasize that our proof of
Theorem 1.9 does not use the results of [17].

Remark 1.6.  The scaling constants {c, },~o from Axiom (V) are not uniquely determined by the law
of Dy,. If {¢,},>0 is another sequence of non-negative real numbers and there is a constant C' > 0 such
that C~tc, < ¢, < C¢, for each r > 0, then Axiom (V) holds with ¢, instead of ¢,.. Conversely, if m,
defines the median of the random variable e=¢"+(®) D}, (around A, 2,.(0)), then Axiom (V) implies that
there is a constant C' > 0 depending only on the law of Dj, such that C !¢, < m, < C¢,. In particular,
any two possible choices for {c,},~¢ are comparable up to constant multiplicative factors.

The following theorem is proven as [17, Theorem 1.7], building on the tightness result from [8].

Theorem 1.7 (See [17]). Let £ > 0. For every sequence of €’s tending to zero, there is a weak LQG
metric D with the parameter & and a subsequence {e, }nen for which the following is true. Let h be a
whole-plane GFF, or more generally a whole-plane GFF plus a bounded continuous function. Then the
re-scaled LEPP metrics a;nlDfL", as defined in (1.2) and (1.3), converge in probability to Dy, with respect
to the metric on lower semicontinuous functions on C x C.

Theorem 1.7 implies in particular that for each £ > 0, there exists a weak LQG metric with the
parameter . In the case £ < &.i, the convergence occurs with respect to the topology of uniform
convergence on compact subsets of C x C and the subsequential limit has been shown to be unique [4,15].
For £ > &.yit, the subsequential limit is shown to be unique in [9], using some of the results of the present

paper.
1.3 Main results

Throughout this subsection, we fix £ > 0, and let h be the whole-plane GFF and Dy be a weak LQG
metric with the parameter . We recall the re-scaled LEPP metrics a_ 1D2 with the parameter £ from (1.2)
and (1.3).

Our main result says that, roughly speaking, D is bi-Lipschitz equivalent to the re-scaled LFPP
metrics aZ!D5. We cannot say that these metrics are literally bi-Lipschitz equivalent since Dy, has a
fractal structure whereas aZ' D5 is smooth. So it is not possible to get an up-to-constants comparison
of these metrics at Euclidean scales smaller than e. We get around this problem by looking at distances
between Euclidean balls of the radius slightly larger than e.
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Theorem 1.8.  For each { € (0,1), there exists a Cy > 0 depending only on ¢ and the law of Dy,
such that the following is true. Let U C C be a deterministic, connected, bounded open set and recall the
notation for internal metrics on U from Definition 1.3. With probability tending to 1 as ¢ — 0,

Cls_lD}sl(le—g(Z),Bal—((w);Bgl—c(U)) < OoD}L(Z,w;U), Vz,welU (111)

and

Dy(Bai-c(2), Ba—¢(w); Ba—c(U)) < Coaz ' D5 (2,w;U), YV z,w € U. (1.12)

Theorem 1.8 is a new result even in the subcritical case, where we already know that aZ'D§ — D), in
probability with respect to the topology of uniform convergence on compact subsets of C x C. Indeed,
the convergence a; ' D5 — Dy, only allows us to estimate the ratio of a; ' D (z,w) and Dy (z,w) when
|z — w| is of constant order, whereas Theorem 1.8 gives a non-trivial estimate when |z — w| is as small as
3el=¢.

In the critical and supercritical cases, we as of yet only have subsequential limits for a_ lDfL. In these
cases, an important consequence of Theorem 1.8 is the following. If €, — 0 is a sequence along which
agleZ" — Dy, in probability, then D), is a weak LQG metric [17]. Therefore, Theorem 1.8 gives an
up-to-constants comparison between a_ ' D§ and D), even if € is not part of the sequence {ey}.

We now record several estimates which are consequences of Theorem 1.8. Our first estimate gives
up-to-constants bounds for the scaling constants in Axiom (V).

Theorem 1.9.  Let {c¢,},~0 be the scaling constants from Aziom (V). There is a constant C; > 0
depending only on the law of Dy, such that for each r > 0,

O, 7189 <, < O1rtQ. (1.13)

Due to Remark 1.6, Theorem 1.9 is equivalent to the statement that one can take ¢, = r¢% in Axiom (V).
In the subcritical case £ < &.it, the exact scaling relation (1.10), which was proven in [15], already implies
that ¢, = r¢9. However, this fact was deduced as a consequence of the uniqueness of weak LQG metrics,
whereas the present paper gives a much simpler and more direct proof.

In the critical and supercritical cases, Theorem 1.9 is a new result. This result was used in [7] to show
that every subsequential limit of critical LEFPP induces the Euclidean topology. It was also used in the
proof of the uniqueness of weak LQG metrics in the critical and supercritical cases [9].

Another consequence of Theorem 1.8 is the fact that any two weak LQG metrics are bi-Lipschitz
equivalent.

Theorem 1.10. Let Dy, and E;L be two weak LQG metrics with the parameter & > 0. There is a
deterministic constant Cy > 1 such that a.s.

Cy 7 Dy (z,w) < Dy(z,w) < CoDp(z,w), Vz,w e C. (1.14)

Previously, Theorem 1.10 was established for all £ > 0, under the additional hypothesis that the
constants ¢, for the two metrics Dy, and D}, are the same (see [13, Theorem 1.6] and [17, Lemma 2.23]).
In the subcritical case, this was an important input of the proof of the uniqueness in [15]. Theorem 1.10
was used in the proof of the uniqueness of the critical and supercritical LQG metrics in [9]. Essentially,
the proof of the uniqueness proceeded by showing that the optimal upper and lower bi-Lipschitz constants
coincide.

Our last estimate gives bounds for the LEPP scaling constants a.. To put our result in context, we note
that the previous works have shown that a. = ¢!=¢@+°<(1) (see [15, Theorem 1.5] for the subcritical case
and [8, Proposition 1.9] for the supercritical and critical cases). In the subcritical case, the convergence
of LFPP implies that a. = ¢(¢)e!~¢?, where ¢ is slowly varying [15, Corollary 1.11], but one does not get
any better bound than e!=¢Q+0=(1) for a fixed value of . We improve the £%(1) error to a polylogarithmic
error.
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Theorem 1.11.  Let {a.}eso be the LFPP scaling constants from (1.3). There are constants Cs > 0
and b > 0 depending only on & such that for each e € (0,1/2],

C3 '(loge ™) e 79 < a. < Cs(logeh)bel 0, (1.15)

We expect that a. = (¢ 4 0.(1))e' 49 for some ¢ > 0, but the techniques of the present paper are not
strong enough to give this (see also Remark 3.10).

2 Preliminaries

2.1 Notational conventions

We write N = {1,2,3,...} and Nyo = NU {0}.

For a < b, we define the discrete interval [a, b]z := [a,b] N Z.

If f:(0,00) = R and g : (0,00) — (0,00), we say that f(e) = O-(g(¢)) (resp. f(e) = 0:(g(g))) as
e — 0 if f(e)/g(e) remains bounded (resp. tends to zero) as € — 0. We similarly define O(-) and o(+)
errors as a parameter goes to infinity.

Let {E®}.~o be a one-parameter family of events. We say that E° occurs with polynomially high
probability as e — 0 if there is a p > 0 (independent of ¢ and possibly of other parameters of interest)
such that P[E€] > 1 — O.(eP).

For z € C and r > 0, we write B,.(z) for the open Euclidean ball of the radius r centered at z. More
generally, for X C C we write B,.(X) = ,cx Br(z). We also define the open Euclidean annulus

Ay (2) =By (2) \ Bry(2), V0O<r, <rgy<oo. (2.1)
2.2 Independence across concentric annuli

As is the case for many papers involving LQG distances, a key tool in our proof is the following estimate,
which is a consequence of the fact that the restrictions of the GFF h to disjoint concentric annuli are
nearly independent (see [13, Lemma 3.1] for a proof of a slightly more general result).

Lemma 2.1 (See [13]). Fiz 0 < py < p2 < 1. Let {ri}ren be a decreasing sequence of positive
real numbers such that rpi1/ry < py for each k € N and let {E,, }ren be events such that E,,
€ ((h = hr(0) |a,, 1y pye, (0)) for each k € N (where we use the notation for Euclidean annuli from
Subsection 2.1). For each a > 0, there exist p = p(a, p1, p2) € (0,1) and ¢ = ¢(a, p1, u2) > 0 such that if

P[E, ]| >p, VkeEN, (2.2)

then
P[3k € [1, K]z such that E,, occurs) >1—ce ¥ VK eN. (2.3)

2.3 Localized approximation of LFPP

A somewhat annoying feature of our definition of LFPP is that the mollified process {h}}.~o does not
depend locally on h. This is because the heat kernel p.2 /5(2) is non-zero on all of C. In [10, Subsection 2.1],
Dubédat et al. got around this difficulty by introducing a truncated version ﬁ: of h} which depends locally
on h. They then showed that LEFPP defined by using ﬁ; instead of A} itself is a good approximate for D5 .

The truncated version of LEPP used in [10] is not quite good enough for our purposes since with the
definitions used there, E; (z) depends on h | B_1(2): We need a range of dependence which is smaller than
e!=¢ for every ¢ > 0. So in this subsection, we introduce a truncated version of LFPP with a smaller
range of dependence. We follow closely the exposition in [10, Subsection 2.1], but some of our estimates
are sharper.
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Fix ¢ > 0. For € > 0, let ¥, : C — [0, 1] be a deterministic, smooth, radially symmetric bump function
which is identically equal to 1 on B_(1qgc-1)a/2(0) and vanishes outside B (155 --1)4(0). We can choose 9.
in such a way that (z,e) — 9¥.(z) is smooth. Recalling that ps(z) denotes the heat kernel, we define

%@wzzﬂéwg—wmwmm@—wwm (2.4)

where the integral interpreted in the sense of the distributional pairing and normalizing constant is given
by

Ze = [ dewlpes sl (2.5)

Let us now note some properties of h}.

Since 1. vanishes outside B_(o5--1y4(0), we see that ﬁ:(z) is a.s. determined by h ‘83(1 ). It is

oge—1)a (=
easy to see that h’ a.s. admits a continuous modification (see Lemma 2.2 below). We henceforth assume
that A} is replaced by such a modification.

If ¢ € R and we define (h/J-r\c): as in (2.4) but with A + ¢ in place of h, then

—

(h+c)f=h*+e. (2.6)

This is because of the normalization by Z-! in (2.4).
As in (2.11), we define the localized LFPP metric

~

1

D5 (z,w) := inf She(PO)| P/(1)|dt, (2.7)
P:z—w 0

where the infimum is over all the piecewise continuously differentiable paths from z to w. By the definition

of b},

for any open U C C, the internal metric ﬁi(, - U) is a.s. determined by h|p (2.8)

s(loga*l)Q(U).

Lemma 2.2.  Almost surely, (z,€) — B: (2) is continuous. Furthermore, for each bounded open set
UcCC, as.

lim sup |h*(z) — hi(z)] = 0. (2.9)
eﬁozeﬁ
In particular, a.s.
Pe (2.0
lim w(zwiU) =1, wuniformly over all z,w € U with z # w. (2.10)

250 D (2o wi 0)

For the proof of Lemma 2.2, we re-use the following estimate, which is [10, Lemma 2.2].

Lemma 2.3. For each R >0 and ( > 0, a.s.

hy
. ho(2)

su < 0. 2.11
2€Bg(0) >0 max{log(1/r),|logr|/2+¢, 1} ( )

Proof of Lemma 2.2.  Step 1 (Polar coordinate representation). The functions w +— 9.(z — w) and

w > P2 2(z, w) are each radially symmetric about z, i.e., they depend only on |z — w|. Using the circle
average process {h; }r~o, we may therefore write in polar coordinates

2 o0 2 2 ~
hi(z) = 5—2/0 rhe(2)e™ /S dr and  Z.h'(z) =

) e(loge™1)? 0, o

5—2/ rhy(2)0(r)e™" /< dr. (2.12)
0

From this representation and the continuity of the circle average process [11, Proposition 3.1], we infer

that (z,e) — h(z) a.s. admits a continuous modification. The rest of the proof is an elementary, but

somewhat tedious, calculation using (2.12) and Lemma 2.3.
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Step 2 (Comparing h} with ZsE:). Since ¥ =1 on B_(1ogc-1)a/2(2) and 1. takes values in [0, 1],

~ 9 [
|h(2) — Zh2(2)| < / rlhe ()]~ /= dr. (2.13)
€% Je(loge—1)a/2

By Lemma 2.3 (applied with ( = 1/2, say), a.s. there is a random C = C(U) > 0 such that

|h(2)] < Cmax{log(1/r),logr,1} for each z € U and r > 0. Plugging this into (2.13) shows that
a.s.

~ 20 [*° 2,2
sup |hl(z) — Z:h2(z)| < —2/ rmax{log(1/r),logr, 1}e™" /< dr. (2.14)
zeU € e(loge—1)a/2

We claim that the right-hand side of (2.14) tends to zero as e — 0, which implies that a.s.

sup,cy |hi(2) — Z-h%(z)| — 0. To prove the claim, we first substitute r = eu/v/2 and dr = (¢/v/2)du to
get

2 o 2 2
—2/ rmax{log(1/r),logr,1}e™" /< dr
€% Je(loge—1)a/2
e 2
= / umax { log i, log ﬂ, 1}e_“2/2du. (2.15)
(loge=1)2/v/2 20 \/§

We now split the right-hand side of (2.15) into the integrals over [v/2/¢, 00) and over [(loge™1)9/+/2,/2/€].
The integral over [v/2/e, 00) is bounded above by

/ [logu + 1]ue*“2/2du, (2.16)
V2/e

which clearly tends to zero as ¢ — 0. The integral over [(loge™1)?/v/2,/2/¢] is bounded above by

2 v2/e 2
s () ] [ e
5(10g5 )q (loge—1)a/v/2
2 > —u?)/2
< | log 1 +1 ue du
5(10g5 )q (loge—1)a//2

2 —1\2q
— 11 I 1| e~ (loge™)*/4 217
[Og(eaogel)q) " } | 247

which also tends to zero as ¢ — 0. Hence, the right-hand side of (2.14) tends to zero.
Step 3 (Z. close to 1). To eliminate the normalizing factor Z. in (2.14), we first note that
JoPe2j2(w)dw = 1. From this and (2.5), we have

2 oo
0<1-2. < 8—2/ r(1— ql)g(r))e_r2/52dr
0

2 oo
< 7/ re”" /< dr
€% Je(loge—1)a/2

= / ue™ " 2dy (by substituting r = eu/v/2)
(loge=1)1/v/3

= o (loge™ /1, (2.18)
Furthermore, using Lemma 2.3 and (2.12), we get a.s.

- g pelloge)e
sup |Z.h2 (2)] < ?2/ rlhe(2)e™" /=" dr (by (2.12) and the fact that [, (r)] < 1)
zeU 0

(loge™")?/v2 .
= / w3 (2)ue™ 2du (by substituting 7 = eu/v/2)
0
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(loge™)/v2 )
/ [log — +logu~t|ue™* /?du (by Lemma 2.3)
0

{ \[] (loge™1)9/v2
)

S
< (loge™tymax{a1} (2.19)

PN
o

lo [log u_l]ue_“2/2du

+ (loge™)? (since (log u_l)ue_“Q/2 < 1lon [0,1])

IA

1*f]

where < denotes the inequality up to a possibly random constant factor which does not depend on ¢.
By the triangle inequality,

sup hZ(2) — h(2)| < sup |hZ(2) = Z2(2)| + (1 = Z)Z2 " sup | Z2hi(2)- (2.20)
zeU zeU zeU
By (2.14), the first term on the right-hand side of (2.20) tends to zero a.s. as € — 0. By (2.18) and (2.19),

the second term tends to zero a.s. as ¢ — 0 as well. We thus obtain (2.9). The relation (2.10) is immediate
from (2.9) and the definitions of D5 and D5,. O

3 Proofs

Throughout this section, we fix £ > 0, and let h be a whole-plane GFF and Dj, be a weak LQG metric
as in Definition 1.5. We prove Theorem 1.8 in Subsections 3.2-3.4, and then deduce our other main
theorems from Theorem 1.8 in Subsection 3.5.

3.1 Outline of the proof

The idea of the proof of Theorem 1.8 is as follows. In Subsection 3.2, we use a basic scaling calculation
together with the tightness of LFPP (see [4,8]) and the tightness across scales condition for Dy (see
Axiom (V)) to get the following. There is a constant C' > 0 such that for each r € [, 1] and each z € C,
it holds with high probability that

TAg)r
CrQg

a_ ' D5 (around Agps.(2)) < C Dy, (across A 2,(2)), (3.1)
where we use the notation for distances across and around annuli from Definition 1.4. Moreover, one has
an analogous inequality with the roles of Dp, and a_ 1Dz interchanged. Actually, for technical reasons we
mostly work with the localized LEPP metric Dj, from Subsection 2.3 instead of Dy, itself.

In Subsection 3.3, we restrict attention to values of 7 in the set

R® = {10_j51_< cj=1,..., B logyq g_lJ - 11} C le, e ¢ (3.2)

We use a multi-scale argument based on Lemma 2.1 to say that if RE C RE is a subset with
#ﬁs > #R/100, then the following is true. For each open set U C C, it holds with high probability
that we can cover U by balls B,(z) for z € U and r € R* for which the event in (3.1) occurs. By stringing
together paths around annuli of the form Ao, 3,(2) whose Dj-lengths are under control, we then deduce
that with high probability,

=15 (Bor ¢ (2), By ¢ (w); Barc(U)) < c( max ¢/

)Dh(z w;U), VzwelU (3.3)
reRre Crle

for a possibly larger constant C. One also has an analogous inequality with the roles of Dy, and aZ'D5
interchanged. The argument leading to (3.3) is similar to the proof of the bi-Lipschitz equivalence of two
metrics coupled with the GFF in [13, Section 4].
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The inequality (3.3) implies Theorem 1.8 if we have up-to-constants bounds for the ratios Tca%/’ for

r € Re. In Subsection 3.4, we obtain such up-to-constants bounds via the following bootstrap argument
based on (3.3). If we fix distinct points z,w € U, then aZ'D§(2,w) and Dj(z,w) are each typically of
constant order. The inequality (3.3) therefore implies that max, cRe T:Ea/: > A~ for some constant A,
which does not depend on 7 or . Using the analog of (3.3) with the roles of Dy, and aZ! D5 interchanged
and possibly increasing A, we also see that min__z. :‘1;/; < A. Since R¢ is an arbitrary subset of R® of
cardinality at least #R°/100, this implies that all but (2/100)#R* values of r € R® are “good” in the

sense that ~=/= ¢ [A~1, A] . We then obtain Theorem 1.8 by applying (3.3) (and its analog with a;1D;

[

and Dy, interchanged) with RE equal to the set of “good” values of r € R®.

3.2 Event for LFPP and LQG distances

Fix ¢ > 0 and for € > 0, let 152 be the localized LFPP metric of Subsection 2.3. For z € C, € € (0,1),
r € [e,1] and C > 0, let EZ(z;C) be the event that the following are true:

Dy, (across A,.o.(2)) = CLepefh(®)]

Dh (around AQ’I’,3T’(Z)) < Ccreghr(z),

~ rag/,
a_ ' D5 (across A op(2)) = C_l%eéhr(z), (3.4)
€

a;lﬁi (around Ag, 3,(2)) < C“;;/Teéhr(z).
€

We eventually apply the independence of the GFF across disjoint concentric annuli (see Lemma 2.1)
and a union bound to show that if C' is large enough, then with high probability there are many points z
and radii r for which E,.(z) occurs. Let us now explain why the event E,.(z;C) fits into the framework
of Lemma 2.1.

If » > 2e(loge™1)4, then by the locality of Dy, (see Axiom (II)) and (2.8), the event E%(z;C) is a.s.
determined by the restriction of & to the annulus A, /5 4.(2). This locality property for E;(z;C) is the
reason why we use ﬁi instead of Dj in the definition. Since Dy, and ﬁz transform in the same way
when we add a constant to h (see Axiom 1.5 and (2.6)), we see that in fact FZ(z;C) is a.s. determined
by h |AT/2,4T

Using tightness across scales (see Axiom (V)) along with the tightness and scaling properties of LFPP,
we can show that E,.(z;C) occurs with high probability when C' is large.

(=) viewed modulo additive constants.

Lemma 3.1.  For each p € (0,1), there exists a C > 0 depending on p, & and the law of Dy, such that
PIE;(%C) 2p, VzeC, VO<e<r<l (3.5)

Proof.  Since the event E2(z;C) is determined by h, viewed modulo additive constants, the law of h is
translation invariant modulo additive constants, and Dy and ﬁi depend on h in a translation invariant
way, we see that P[FS(z;C)] does not depend on z. So we can restrict attention to the case z = 0.
Let E2(C) be defined in the same manner as the event E2(0;C) of (3.4), but with the ordinary LFPP
metric Dj instead of the truncated LFPP metric ﬁi The reason we want to look at Dj is the scaling
property in (3.8) below.

Due to the uniform comparison between the fields TL; and h} involved in the definitions of lA),EL and Dj
(see Lemma 2.2), it suffices to show that for each p € (0,1), there exists a C' = C(p,&) > 0 such that

PIES(C)>p, YO0<e<r<lL (3.6)

To prove (3.6), we first use tightness across scales (see Axiom (V)) to find C' > 0 as in the lemma
statement such that for each r € (0, 1], it holds with probability at least (1 + p)/2 that

Dy, (across A,.2,(0)) = C1e,ef (O and Dy, (around Ay, 3,(0)) < Ce,e8h (), (3.7)
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To lower-bound the probabilities of the conditions for aZ!D§ in the definition of Eﬁ (C), we write
h™ = h(r-) — h,(0), which has the same law of h. A simple scaling calculation using the definitions of h}
and Dj shows that

ras/p _ r
az L D5 (ru, rv) = %/eshr(m x a_} Dy (u,v), Vu,veC (3.8)
€

(see [10, Lemma 2.6]). Since h" 2 h, we can use the tightness of crossing distances for LFPP [8,
Proposition 4.1] to get that after possibly increasing C, for each 0 < ¢ < r < 1, we can deduce with
probability at least (1 + p)/2 that

aa_/er,ELCT (across A 2(0)) > C~' and ae_/TDZiT (around Ay 3(0)) < C. (3.9)

By (3.8) and (3.9), for each 0 < € < r < 1, it holds with probability at least (1 + p)/2 that

Qe /r _ Qe /r
a- ' D5 (across A,.2,.(0)) > C_l%efh’(o) and aZ'D; (around Ay, 3,.(0)) < C%ef}”(o). (3.10)
€ €

Combining (3.7) with (3.10) gives (3.6). O
3.3 Comparing LFPP and LQG distances using distances at smaller scales

Let us now define the set of radii which we will consider when we apply Lemma 2.1. Fix ¢ € (0,1) and
for e € (0,1), let

N¢ = Lg log, elJ — 10.

Let
RE:={1077e""¢:j=1,...,N° —1} C {51—4/2, 151—4]. (3.11)
100
We note that #R° = N°¢ and for any r,r’ € R with r < 7/, we have v’ /r > 10.

The following lemma tells us that if RECREisa large enough subset, then with high probability we

can compare Dp-distances and a_ 1132—distances at scales larger than e'~¢, up to a factor depending on
the ratios ra./,./(¢c,ac) for r € RE.
Lemma 3.2. There exists a Cy > 0 depending on ¢ and the law of Dy, such that the following is
true. Let U C C be a deterministic, connected, bounded open set. Also let € € (0,1) and RE C RE be a
deterministic subset with #ﬁa > N¢/100. It holds with polynomially high probability as ¢ — 0, at a rate
depending only on U, ¢ and the law of Dy, that the following is true. For each z,w € U, we have

~ (s B
a_ ' D5 (Bai-c(2), Ba-¢(w); Ba-c(U)) < Oy < max Tc a/ )Dh(z,w; U) (3.12)
reRre Lrle
and .
Dp(Bei-<(2), Ba-c(w); Ba-<(U)) < 04( min T:Z”) o' D (z,w; U). (3.13)
reRes Lrle

The statement of Lemma 3.2 is similar to the statement of Theorem 1.8, except that in Lemma 3.2
our estimates have an extra factor which depends on the ratios ra. . (c,a.) for r € Re. In Subsection 3.4,
we deduce Theorem 1.8 from Lemma 3.2 by finding a choice of RE for which these ratios are of constant
order.

The proof of Lemma 3.2 is similar to the proof in [13, Section 4] that two metrics coupled with the
GFF which satisfy certain conditions are bi-Lipschitz equivalent. We first use Lemma 2.1 to find lots of
points z and radii r € R¢ for which E£(z; C) occurs (see Lemma 3.3). By the definition (3.4) of EZ(z;C),
for each such z and r,

~ A /pr
a_ ' D5 (around A, 3,.(2)) < Cz%Dh (across Ay 2,(2)) (3.14)
Ve
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and a similar inequality holds with the roles of a_ 132 and Dy, interchanged. To prove (3.12), we consider
a Dp-geodesic P. We then string together paths around annuli of the form As, 3,-(z) which intersect P in
order to produce a path with approximately the same endpoints as P. Using (3.14), we can arrange that
the a;lﬁi—length of this new path is bounded above in terms of the Dj-length of P. The bound (3.13)
is proven via a similar argument with the roles of aglﬁ,i and D), interchanged.

Lemma 3.3. Assume the setup of Lemma 3.2. There exists a Cs > 0 depending only on ¢ and the
law of Dy, such that with polynomially high probability as e — 0, at a rate depending only on U, ¢ and
the law of Dy, the following is true. For each u € (ﬁZQ) N B1(U), there exists an r € RE such that the
event ES(u; Cs) occurs.

Proof.  We have #R° > N</100 > L%O log,, e~ |. Moreover, by (3.11), if we list the elements of ﬁs
in the numerical order, then the ratio of any two consecutive elements is at least 10. For each r € R,
we have 7 > '7¢/2 > £(loge=1)9, so as explained just after (3.4), the event EZ(u;C) is a.s. determined
by h ‘Ar/2,4r(u)7
C = C(p,€) > 0 such that P[EZ(u; C)] > p for each r € R and each u € C. From this and Lemma 2.1
(applied with K = #ﬁa , the radii r; equal to the elements of Re , and a equal to a large constant times
1/¢), we find that there exists a C5 > 0 as in the lemma statement such that for each u € C,

viewed modulo additive constants. By Lemma 3.1, for any p € (0,1) we can choose

P[3r € R® such that EZ(u; Cs) occurs] = 1 — O, (%),

We now conclude via a union bound over O, (g?) elements of (1552%) N B1(U). O

We now turn our attention to the proof of Lemma 3.2. Let C'5 > 0 be as in Lemma 3.3. Throughout the
proof, we assume that the event of Lemma 3.3 occurs, which happens with polynomially high probability
as ¢ = 0. We show (via a purely deterministic argument) that (3.12) holds. The proof of (3.13) is similar,
with the roles of a_ 1132 and Dy, interchanged.

To this end, fix distinct points z,w € U and let P : [0,T] — U be a path in U from z to w of Dy-length
at most 2Dy, (z,w;U). We assume that P is parametrized by its Dp-length. We will build a path from
B.1-¢(z) to B,i-¢(w) which approximates P and whose a;lﬁi—length is bounded above.

To do this, we first inductively define a sequence of times {t}ren, C [0,7] (see Figure 1 for an
illustration of the definitions). Let to = 0. Inductively, assume that k € Ny and ¢, has been defined. If
tr =T, we set ty41 = T. Otherwise, we choose uy, € (7552%) N B1(U) such that P(tx) € Be(uy). Since we
are assuming that the event of Lemma 3.3 occurs, we can choose 7 € R such that EZ (uy;Cs) occurs.
By the definition (3.4) of Ef, (uy;Cs), there exists a path 7 C Ao, 3., (ux) which disconnects the inner
and outer boundaries of this annulus such that

(aglf)i—length of ) < 2C’5Me5h’“k (ur), (3.15)

ae

Figure 1 (Color online) Illustration of the objects involved in one step of the iterative construction of the times ¢;. The
red path is a segment of P and the two annuli in the figure are Ay, 2r, (ug) and Aoy, 3., (ug)
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We can take 7 to be a Jordan curve (i.e., a homeomorphic image of the circle). Let {y4+1 be the first
time after ¢, at which the path P hits 7y, or tx41 = T if no such time exists. Let

K :=max{k e N:t, <T}.

By the definition (3.11) of R¢, we have 1, > ¢ for each k, so by our choice of uy, we have P(t;) € By, (ug).
Since m, C Agyy 3r, (ug), we see that if £+ 1 < K, then P must cross between the inner and outer
boundaries of A,, o, (ug) between times ¢, and tg4q. Since P is parametrized by the Dj-length and
by (3.4),

th+1 — tr = Dy (across Ay, or, (ug)) = C’g,flcrkefh"k (“’“), VkE< K —-1. (3.16)
Therefore,
K-1 R L
(aZ ! Dj-length of m,) < 90 LT by, (wr) (by (3.15))
k=0 k=0 O
Kl TLa
< N 20525 gy 0 — ) (by (3.16))
Cry Oe
k=0
rae/ e
2 e/r
< 205 ( Seugs Cras) Z (trg1 —tr)
r k=0
gy _
< 4052( sup e/ )Dh(z,w; U) (by our choice of P). (3.17)
rere Crle

By definition, each of the paths 7 for £ =0, ..., K intersects P, which is contained in U, and has the
Euclidean diameter at most 67, < e!~¢. Therefore,

K-1

U m € Ba-c(U). (3.18)
k=0

In light of (3.16) and (3.18), to conclude the proof of (3.12) (with 4C5? instead of Cy) it remains to
prove the following topological lemma.

Lemma 3.4. In the notation above, the union of the paths mp for k = 0,..., K — 1 contains a path
from Ba-¢(2) to Ba-¢(w).

Indeed, once Lemma 3.4 is established, (3.17) implies that the a;lﬁi—length of the path from the

lemma is at most 26’52(supreﬁs rciaa/a")Dh(z,w; U) and (3.18) implies that the path from the lemma is
contained in B.i-¢(U). Hence (3.12) holds with Cy = 4C5?.
Proof of Lemma 3.4.  For k =0,..., K — 1, let V} be the open region which is disconnected from oo
by the path 7. Since 7 is a Jordan curve, we have that V}, is bounded and 0V}, = 7. By construction,
P C Uf:_ol Vj,. Furthermore, the Euclidean diameter of each Vj, is at most 6, < e'=¢. Let K C [0, K—1]z
be a subset which is minimal in the sense that P C (J,cxc Vi and P is not covered by any proper
subcollection of the sets V}, for k € K.

Since P is connected, it follows that (J,cc Vi is connected. Indeed, if this set had two proper
disjoint open subsets, then each would have to intersect P (by minimality) which would contradict
the connectedness of P. Furthermore, by minimality, none of the sets Vj for k € K is properly contained
in a set of the form Vs for k¥’ € K.

We claim that |J, o, mr is connected. Indeed, if this was not the case then we could partition K =
K1 UK such that Iy and Ko are non-empty and Uke)q 7, and Ukeic2 m, are disjoint. By the minimality
of K, it cannot be the case where any of the sets V. for &’ € K5 is contained in Ukelcl V. Furthermore,
since Upexe, Tk and Uy g, Tk are disjoint, it cannot be the case where any set of the form Vi for &' € Kz
intersects both (J, i, Vi and C \ Ukelq Vi.: indeed otherwise Vj» would have to intersect 9V}, = . for
some k € K1, which would mean that either Vi, D V), or m/ intersects 7. The first case is impossible by
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the preceding paragraph and the second case is impossible by our choices of K7 and Ks. Hence Vi must
be entirely contained in C\ [J,cx, Va- Therefore, Jycx, Vi and Ui, Vi are disjoint. This contradicts
the connectedness of | J, o, Vi, and therefore gives our claim.

Since (Jpcx Vi contains P, each of the sets Vj has the Euclidean diameter at most e'=¢ and Urex mx
is connected, it follows that (J, o, T, contains a path from B.i-¢(z) to B.i-¢(w), as required (recalling
that P(0) = z and P(T) = w). O

3.4 Up-to-constants comparison of LFPP and LQG distances

In order to deduce Theorem 1.8 from Lemma 3.2, we need to produce a large subset of R such that the
ratios ra././(crac) for r € R® are of constant order. The existence of such a subset turns out to be a
consequence of Lemma 3.2. Indeed, for fixed distinct points z,w € C we know a priori that aglﬁi(,% w)
and Dy, (z,w) are each typically of constant order. If there were a large number of scales r € R¢ for which
rae/r/(cra:) is very small, then Lemma 3.2 would imply that a;lﬁi(z, w) is typically much smaller than a
small constant times Dy, (z, w), which is impossible. Similarly, there cannot be too many values of r € R¢
for which ra.,,./(crac) is very large. Hence this ratio must be of constant order for “most” r € R°. Let
us now make this reasoning precise.

Lemma 3.5.  There exists a Cg > 1 depending only on ¢ and the law of Dy, such that for each e € (0, 1),
there are at least N¢/2 values of r € R such that

ra
Co ' < —L < ¢ (3.19)
0

Proof.  For any gy > 0, the scaling constants a. for € € [gg, 1] are bounded above and below by constants
depending only on gy and £ and the constants ¢, for r € [q, 1] are bounded above and below by constants
depending only on ¢y and the law of D;. Hence, we can choose Cg > 1 depending only on ¢(, ¢ and
the law of Dy, such that (3.19) holds for all ¢ € [g,1] and all r € [g,'~¢]. Therefore, it suffices to find
Cs > 1 as in the lemma statement such that the lemma statement holds for each small enough ¢ > 0
(depending on ¢ and the law of Dy,).

For T > 1, let 7€5T+ (resp. 7%%7) be the set of r € R® such that ra.,./(c,a:) > T (resp. ra././(crac)
< T7Y). If the lemma statement does not hold with Cs = T, then either #ﬁETHr > N¢/4 or #7%‘}7_
> N¢/4. Assume that #75%4_ > N¢/4 (while the other case is treated similarly with the roles of Dj and
a;lﬁi interchanged). We show that 7" is bounded above by a constant depending on ¢ and the law of
Dy,.

By (3.13) of Lemma 3.2 applied with R® = 75%,+ and U = Bs(0), there exists a Cy > 0 such that with
polynomially high probability as e — 0,

Dp(Boi—<(2), Ba-c(w); Boyo1-<(0)) < C4T aZ D5 (z,w; B(0)),  Vz,w € By(0), (3.20)
which implies that
Dy, (across Ajyo1-¢ 5 1-¢(0)) < C’4T*1a;1ﬁ,€l (across A 2(0)). (3.21)

By tightness across scales (see Axiom (V)), there exists an S > 0 depending only on the law of D}, such
that whenever ¢ < 1/100, we have

3
P[Dy, (across Ay 1-co a-c(0)) =571 > T (3.22)
By [8, Proposition 4.1] and Lemma 2.2, after possibly increasing S we can arrange that also
~ 3
PlaZ' D5 (across A 2(0)) < S] > T (3.23)

By combining (3.21)—(3.23), we obtain that with probability at least 1/4 — o.(1) (with the rate of
convergence of o.(1) depending only on ¢ and the law of Dj,), we have

St <o, rts,
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ie., T < C4S% Hence, if € is small enough so that 1/4 — o.(1) > 0, then T < C4S%. Therefore, the
lemma statement holds with Cg = C4.52. ]

As a consequence of Lemma 3.5, we obtain a version of Theorem 1.8 with ZA)i in place of Dy .

Proposition 3.6.  For each ¢ € (0,1), there exists a Cy > 0 depending only on ¢ and the law of
Dy, such that the following is true. Let U C C be a deterministic, connected, bounded open set. With
polynomially high probability as € — 0,

a;lﬁ;(lefg(Z),lefc(w);lefg(U)) < CoDp(z,w;U), Vz,weU (3.24)

and
Dy (B.i-c(2), Ba—c(w); Ba—c(U)) < CoaZ ' D (z,w;U), Vz,w e U. (3.25)

Proof.  Let Cg be as in Lemma 3.5 and let R¢ be the set of € R* for which (3.19) holds. By Lemma 3.5,
we have #7%5 > N¢/2, so we can apply Lemma 3.2 to get that with polynomially high probability as
£ — 0, the bounds (3.12) and (3.13) hold for our above choice of R°. We then use (3.19) to bound
the maximum and minimum appearing in (3.12) and (3.13) in terms of Cs. This gives the proposition
statement with Cy = C4Cs. O

Proof of Theorem 1.8.  This is immediate from Lemma 2.2 and Proposition 3.6. O

3.5 Bounds for scaling constants and bi-Lipschitz equivalence

In this subsection, we prove Theorems 1.9-1.11.

Theorem 1.8 provides non-trivial bounds relating a‘lﬁs(z w) and Dy (z,w) whenever |z — w| is of
larger order than e!~¢. From this and the scaling properties of LFPP, we get bounds for the ratios mi/ -
whenever 7 is much larger than ¢!~¢. These bounds will be the main input in the proofs of Theorems 1 9
and 1.11.

Lemma 3.7. There is a constant C7; > 1 depending only on ¢ and the law of Dy such that the
following is true. For each R > 1, there exists an €, = €,(R,() > 0 such that for each € € (0,e,] and

each v € [100e' ¢, R],
TCIE/T

Crle

Cr ' < < Cr. (3.26)

We emphasize the distinction between Lemmas 3.5 and 3.7: the former gives bounds for the ratios
Tci;/: which hold for most r € R® C [e,e17¢] whereas the latter gives bounds for all » € [100e!7¢, 1].
Proof of Lemma 3.7.  We find C7 and e, such that the upper bound in (3.26) holds. The lower bound
is obtained via a similar argument with the roles of a_ 1ﬁ2 and Dy, interchanged.

Fix R > 1. By Theorem 1.8 applied with U = Bs3r(0), there exists a Cp > 0 depending only on ¢
and the law of Dy, such that with polynomially high probability as ¢ — 0 (with the rate of convergence

depending on R, ¢ and the law of Dy), we have

o' Dj,(Ba-<(2), Ba-c(w); Bypyer-<(0) < CoDi(z,wi Byr(0)), V2w € Bag(0).

By applying this last inequality to points on the inner and outer boundaries of A, _.1-¢ 5, 4.1-¢(0), we
get that with polynomially high probability as ¢ — 0 for each r € [100e!~¢, R],

a;lﬁi (across A, 2.(0)) < CoDy, (across A, _.1-¢ 9,4 c1-¢(0)). (3.27)

Using tightness across scales (see Axiom (V)) and tightness of LFPP crossing distances (see [8,
Proposition 4.1]), as in the proof of Lemma 3.1, we find that there exists an S > 0 depending only
on the law of Dy, such that for each » € [100e'~¢, R],

=~ W

~ a
P[alefL (across Ay2,(2)) > 517’:/7“6@1,(0)} > -
€

(3.28)
£ha(0) 3
P| Dy (across A, _.1-¢ 9,4 c1-¢(2)) < Sce > T
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By combining (3.27) and (3.28), we get that for each r € [100e' ¢, R], it holds with probability at least
1/4 — 0.(1) (with the rate of convergence depending only on R, ¢ and the law of D) that

ras/r

st < CoSey.

€
Hence, if € is small enough so that 1/4 — 0.(1) > 0, then

TQg)r
CrQg

< CpS2.

This gives the upper bound in (3.26) with C; = C5S2.  As noted above, the lower bound is proven
similarly. O

We deduce our bounds for ¢, and a. (see Theorems 1.9 and 1.11) from Lemma 3.7 together with
elementary deterministic arguments. For the proof of Theorem 1.9, we need the following classical
lemma, which tells us that if a sequence {2, }»en is both subadditive and superadditive, up to a constant
additive error, then x,,/n converges to a limit and one can bound the rate of convergence.

Lemma 3.8 (Subadditive rate lemma).  Let {2, }nen be a sequence of real numbers and assume that
there is a ¢ > 0 such that

T+ Tm —C< Tpam < Tp+Tm +¢, Yn,meN. (3.29)

Then there is an o > 0 such that
|z /n—a| <e/n, ¥YneN (3.30)

Lemma 3.8 follows from the proof of [19, Lemma 1.9.1] (applied with z,/c in place of z,). The
statement of [19, Lemma 1.9.1] gives |z, /n — @ < c¢ instead of (3.30), but the proof shows that in
fact (3.30) holds.

We also need a basic a priori estimate comparing the scaling constants ¢, for different values of 7.

Lemma 3.9. For each K > 1, there exists a C' > 1 depending on K and the law of Dy, such that
C~ ¢, < ¢ < Cc, whenever r > 0 and r' € [K~1r, Kr].

Proof. Fix a Euclidean annulus A C C. We can find finitely many Euclidean annuli Aq,..., Ag
satisfying that for each s € [K~!, K|, there exists a j € [1,k]z such that sA is contained in A; and
disconnects the inner and outer boundaries of A; (with the aspect ratios of A;’s larger than the aspect
ratio of A). Similarly, we can find finitely many Euclidean annuli A/, ..., A} (whose aspect ratios will be
smaller than the aspect ratio of A) satisfying that for each s € [K ™1, K], there exists a j’ € [1,k]z such
that A;-, is contained in sA and disconnects the inner and outer boundaries of sA. We have

Dy, (around A;)

Dy, (across A’)

Dy, (around sA) < Dy, (around AY),
Dy, (across sA) < Dy, (across Aj).

NN

From this and Axiom (V), applied to ecach of the annuli Ay,..., A, and Af,..., A}, we sce that the
random variables

¢ tem&hr(0) su D dr'A

n p p (around 1’ A) (3.31)

r'e[K—1r,Kr]

are tight, and the same holds if we replace the sup by an inf and take the reciporicals of the random
variables, and/or we replace “across” by “around”. Furthermore, since ¢t — h.-+(0) is a standard
Brownian motion (see the calculations in [11, Subsection 3.1]), we see that the random variables

sup  exp(|hy(0) — R (0)]) (3.32)
r'e[K—1r,Kr]

are tight. Combining (3.31) and (3.32) shows that the random variables

¢t sup e O D, (around ' A)

r'e[K—1r,Kr]
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are tight, and the same holds if we replace the sup by an inf and take the reciporicals of the random
variables, and/or we replace “across” by “around”. Consequently, Axiom (V) holds with ¢, replaced by
the scaling factor ¢, which equals cxn whenever r € [K", K"*!]. By Remark 1.6, we see that there is
a constant C' > 1 such that C legn < ¢, < Cegn whenever r € [K",K”‘H]. This implies the lemma
statement with C? in place of C. O

Proof of Theorem 1.9.  Throughout the proof, we assume that all the implicit constants in =< depend
only on the law of Dj. Let r,s > 0. By three applications of Lemma 3.7 applied with ( = 1/2, if ¢ is
sufficiently small (depending on r and s), then

T/ y S0c/(sr) _ STQg/(sr)
a. Clg/r Qe

CpCg < = Cyp. (3.33)

For n € N, write z,, = log¢cs—». By taking s and r to be powers of 2 and taking the log of both sides
of (3.33), we conclude that {z, }nen satisfies (3.29). Therefore, Lemma 3.8 implies that there exists an
a > 0 such that |z,/n — a] < ¢/n for all n, or equivalently,

Cg—n X 274,
By [8, Proposition 4.2], for 0 < € < r, we have
TOs/r _ £Q+o.(1)
Qe

with the rate of convergence of 0,.(1) depending only on the law of Dj,. By combining this with Lemma 3.7,
we infer that o = £Q. This gives (1.13) when r is a negative power of 2.

The case of a general choice of r € (0, 1] follows from the case r = 27" together with Lemma 3.9. To
treat the case r > 1, we apply (3.33) with s = 1/r < 1 to get ¢, < ¢ /¢y, < 759, O

Proof of Theorem 1.11.  Let e, > 0 be as in Lemma 3.7 with ¢ = 1/4 and R = 1. By possibly
shrinking e,, we can arrange that also 1003/* < €'/2 for each € € (0,¢,]. Lemma 3.7 (applied with
¢ = 1/4) combined with Theorem 1.9 implies that there is a constant A = A(¢) > 1 (in particular,
A = C,0y) such that if 0 < ¢ < e, and 7 € [¢!/2,1], then

A1 ¢ CL—/ < ApSQ-1, (3.34)

After possibly increasing A, we can remove the constraint that € < e,.
For k € Ny, we apply (3.34) with ¢ = 272" and r =22 /9 to find that

2k71

AT151-€Q0(—¢@)2" B p51-€Q9(1-6Q)2"  y5 ¢ 972" 972", (3.35)
CL2_2k,
In particular, taking § = 272" gives
A-19(1—€Q)2" ! < Gp-2kt < A9(1—€Q)2F 1 (3.36)
Cl2,2k
We apply this inequality with j instead of k, and then multiply over all j =1,...,k to get
A-Fo-e@)2F-1)  M1/2 - 4ko(1-€Q)(2*-1) (3.37)
Cl2,2k
Re-arranging the above inequalities shows that there is a constant C' = C(£) > 0 such that
CTA R 162" < g < 0AR2(176Q2"  yp e N, (3.38)

where we absorbed a, /5 into C.
For a given § € (0,1/2], choose k € N such that § € [272",272"""]. Note that

k € [logylog, 671, log, logy 61 4 1]. (3.39)
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By (3.35) and (3.38),

CTTATRIG178Q L g5 < CAFTISI-EQ, (3.40)
By (3.39), A¥*1 is bounded above by a ¢-dependent constant times (logd~1)® for some b = b(¢) > 0.
Thus (3.40) implies (1.15). O

Remark 3.10.  Our proof does not yield bounds better than polylogarithmic upper and lower bounds
for a./e' 79, Indeed, the estimate (3.34) for r € [¢!/2,1] is still satisfied, e.g., if a. = (loge~1)?e?~¢? for
some b € R (with the constant A depending on b). In order to get bounds better than polylogarithmic
bounds, we would need to improve on (3.34) so that either it holds for all r € [@(¢)e, 1], where
lim._,0log ¢(¢)/loge = 0, or it holds with A replaced by something of order 1+ o.(1). Either of these
improvements would require non-trivial new ideas.

Proof of Theorem 1.10.  This can be deduced from Theorem 1.9 and a generalization of the bi-Lipschitz
equivalence criterion from [13, Theorem 1.6]. However, we instead give a more self-contained proof.

Let U C C be a deterministic, connected, bounded open set. We apply Theorem 1.8 (with ¢ = 1/2)
to compare each of D; and 511 to a_ 1ﬁi We obtain that there is a deterministic constant Cy > 0
depending only on the laws of D, and 5h such that with probability tending to 1 as ¢ — 0,

Dp(B.1/2(2), Baaj2(w); Boay2(U)) € CoDp(z,w;U), Vz,weU (3.41)

and
Di(B.1y2(2), Boajz(w); Boayz (U)) < CoDp(z,w;U), Vz,w e U. (3.42)

In particular, Cs is the product of the constants appearing in Theorem 1.8 for D;, and 5}1, respectively.
Shrinking € makes the conditions (3.41) and (3.42) stronger. Since these conditions hold with probability
tending to 1 as € — 0, we infer that a.s. there is a random &, = ¢,(U) > 0 such that (3.41) and (3.42)
hold for each € < e,.

Now let {U, }nen be an increasing family of bounded open sets whose union is all of C. From the
preceding paragraph, we infer that a.s. there is a random sequence of positive numbers {e,, },en such that
for each n € N, the conditions (3.41) and (3.42) hold with U = U, for each ¢ < ¢,,.

Almost surely, every Dp-bounded set is Euclidean-bounded [17, Lemma 3.12]. Consequently, it is a.s.
the case where for any two distinct points z, w € C which are non-singular for Dj,, there exists an n € N
such that every path from z to w whose Dj-length is at most 2Dy, (z,w) is contained in U,,. This implies
that Dy (z,w;U,) = Dp(z,w). By combining this with the preceding paragraph, we find that for each
e € (0,e,)],

Dp(B.1j2(2), B2 (w)) < Dp(Beiya(2), Baays (w); Boay2(Uyn)) < CoDp(z,w).

Since Eh is lower semicontinuous, if we take the liminf of the left-hand side of this inequality as € — 0,
we obtain Dy,(z,w) < CyDp (2, w). This holds for any two points z, w € C which are non-singular for Dj,.
If either z or w is a singular point for Dy, then Dy (z,w) = 0o so Dp(z, w) < CoDp(z,w) vacuously. We
thus obtain the upper bound in (1.14). The lower bound is obtained similarly with the roles of Dy, and
Dy, interchanged. O
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