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Abstract Liouville first passage percolation (LFPP) with the parameter ξ > 0 is the family of random

distance functions {Dε
h
}ε>0 on the plane obtained by integrating eξhε along paths, where {hε}ε>0 is a smooth

mollification of the planar Gaussian free field. Recent works have shown that for all ξ > 0, the LFPP metrics,

appropriately re-scaled, admit non-trivial subsequential limiting metrics. In the case ξ < ξcrit ≈ 0.41, it has

been shown that the subsequential limit is unique and defines a metric on γ-Liouville quantum gravity (LQG)

γ = γ(ξ) ∈ (0, 2). We prove that for all ξ > 0, each possible subsequential limiting metric is nearly bi-Lipschitz

equivalent to the LFPP metric Dε
h

when ε is small, even if ε does not belong to the appropriate subsequence.

Using this result, we obtain bounds for the scaling constants for LFPP which are sharp up to polylogarithmic

factors. We also prove that any two subsequential limiting metrics are bi-Lipschitz equivalent. Our results are

an input in subsequent works which shows that the subsequential limits of LFPP induce the same topology as

the Euclidean metric when ξ = ξcrit and that the subsequential limit of LFPP is unique when ξ � ξcrit.
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1 Introduction

1.1 Liouville first passage percolation

Let h be the whole-plane Gaussian free field (GFF), normalized so that its average over the unit circle is

zero. This means that h is the Gaussian process on C with covariances given by

Cov(h(z), h(w)) = log
max{|z|, 1}max{|w|, 1}

|z − w| , ∀ z, w ∈ C

(see [20, Subsection 2.1.1]). The GFF does not make sense as a random function, but it can be defined

as a random generalized function, meaning that we can define its integral against a smooth test function

with sufficiently fast decay at ∞. We refer to the expository articles [3, 18, 21] for more on the GFF.
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Recent works have shown that for ξ > 0, one can construct a random metric on C which is heuristically

obtained by “weighting lengths of paths by eξh, and then taking an infimum”. The motivation for

considering such a metric comes from the theory of Liouville quantum gravity (LQG). The reason for

the quotations is that h is a generalized function, not a true function, so eξh does not make literal sense.

Consequently, to construct this metric one needs to take a limit of a family of approximating metrics

called Liouville first passage percolation (LFPP), which we discuss just below. The goal of this paper is

to prove a quantitative estimate for how close the LFPP metrics are to the limiting metric, which neither

implies nor is implied by the convergence. As consequences of this estimate, we deduce several other

estimates for LFPP and LQG which are needed in future works.

Let us now discuss the definition of LFPP. For t > 0 and z ∈ C, we define the heat kernel pt(z)

:= 1
2πte

−|z|2/2t and we denote its convolution with h by

h∗
ε(z) := (h ∗ pε2/2)(z) =

∫

C

h(w)pε2/2(z − w)dw, ∀ z ∈ C, (1.1)

where the integral is interpreted in the sense of distributional pairing. The reason for integrating against

pε2/2(z, w) instead of pε(z, w) is so that the variance of h∗
ε(z) is of order log ε

−1 +Oε(1).

For a parameter ξ > 0, we define the ε-Liouville first passage percolation metric associated with h by

Dε
h(z, w) := inf

P

∫ 1

0

eξh
∗

ε(P (t))|P ′(t)|dt, ∀ z, w ∈ C, (1.2)

where the infimum is over all the piecewise continuously differentiable paths P : [0, 1] → C from z to w.

We are interested in (subsequential) limits of the re-normalized metrics a
−1
ε Dε

h, where the normalizing

constant is defined by

aε := median of inf

{∫ 1

0

eξh
∗

ε(P (t))|P ′(t)|dt : P is a left-right crossing of [0, 1]2
}
. (1.3)

Here, by a left-right crossing of [0, 1]2 we mean a piecewise continuously differentiable path P : [0, 1]

→ [0, 1]2 joining the left and right boundaries of [0, 1]2.

The scaling constants aε are not known explicitly, but it is shown in [8, Proposition 1.1] that for each

ξ > 0, there exists a Q = Q(ξ) > 0 such that

aε = ε1−ξQ+oε(1) as ε → 0. (1.4)

We call Q the LFPP distance exponent. The existence of Q is proven by using a subadditivity argument,

so its value is not known except that Q(1/
√
6) = 5/

√
6 1). However, reasonably good rigorous upper and

lower bounds for Q in terms of ξ are available [1, 6, 16].

LFPP undergoes a phase transition at the critical parameter value

ξcrit := inf{ξ > 0 : Q(ξ) = 2}. (1.5)

We do not know ξcrit explicitly, but the bounds from [16, Theorem 2.3] give the approximation ξcrit
∈ [0.4135, 0.4189].

Definition 1.1. We refer to LFPP with ξ < ξcrit, ξ = ξcrit and ξ > ξcrit as the subcritical, critical and

supercritical phases, respectively.

We now briefly discuss what happens in each of the three phases. We refer to the survey article [5] for

a more detailed exposition. In the subcritical phase, it was shown by Ding et al. [4] that the re-scaled

LFPP metrics a
−1
ε Dε

h admit subsequential limits in probability with respect to the topology of uniform

convergence on compact subsets of C×C. Moreover, every possible subsequential limit is a metric which

induces the same topology on C as the Euclidean metric. Later, it was shown by Gwynne and Miller [15]

1) The case ξ = 1/
√
6 corresponds to Liouville quantum gravity with γ =

√

8/3, and the relation Q(1/
√
6) = 5/

√
6 is

equivalent to the statement that the Hausdorff dimension of
√

8/3-LQG is equal to 4 (see [6] for more details).
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(building on [10,13,14]) that the subsequential limit is uniquely characterized by a certain list of axioms,

so a
−1
ε Dε

h converges as ε → 0, not just subsequentially.

The limiting metric can be viewed as the distance function associated with γ-Liouville quantum gravity

(LQG) for an appropriate value of γ = γ(ξ) ∈ (0, 2). In other words, we interpret the limit of subcritical

LFPP as the Riemannian distance function for the Riemannian metric tensor eγh(x,y)(dx2 + dy2), where

dx2 + dy2 is the Euclidean metric tensor. The relationship between γ and ξ is given by either of two

equivalent, but non-explicit, formulas:

Q(ξ) =
2

γ
+

γ

2
or, equivalently, γ = ξd(ξ), (1.6)

where d(ξ) > 2 is the Hausdorff dimension of C, equipped with the limiting metric. Neither of the

formulas (1.6) gives an explicit relationship between ξ and γ since neither Q(ξ) nor d(ξ) is known explicitly

(see [6] for further discussion).

In the supercritical and critical phases, we showed in [8] that the metrics a
−1
ε Dε

h admit non-trivial

subsequential limits with respect to the topology on lower semicontinuous functions on C×C, which we

recall in Definition 1.2 below. Every subsequential limit is a metric (not just a pseudometric). In [9], we

showed that the subsequential limit is unique, using some of the results of this paper.

In the supercritical case, if Dh is a subsequential limit of LFPP, then Dh does not induce the Euclidean

topology on C. Rather, there is an uncountable, dense, Lebesgue measure zero set of singular points z ∈ C

such that

Dh(z, w) = ∞, ∀w ∈ C \ {z}. (1.7)

Roughly speaking, the singular points correspond to the points z ∈ C for which (see [17, Proposition 1.11])

lim sup
ε→0

hε(z)

log ε−1
> Q,

where hε(z) is the average of h over the circle of the radius ε centered at z.

The (subsequential) limits of supercritical LFPP are related to Liouville quantum gravity with matter

central charge cM ∈ (1, 25). LQG with γ ∈ (0, 2) corresponds to cM = 25 − 6(2/γ + γ/2)2 ∈ (−∞, 1).

The case cM ∈ (1, 25) is much less understood, even from a physical perspective (see [8, 12] for further

discussion).

In the critical case ξ = ξcrit, there are no singular points and the subsequential limiting metrics

induce the Euclidean topology. We proved this in [7], using the results of the present paper. This case

corresponds to γ-LQG with γ = 2 or equivalently cM = 1.

The goal of this paper is to prove, for each ξ > 0, up-to-constants bounds comparing a
−1
ε Dε

h to any

possible subsequential limit of {a−1
ε Dε

h}ε>0 (see Theorem 1.8). This comparison holds even at nearly

microscopic scales, so it is not implied by the convergence of a−1
ε Dε

h. As consequences of our bounds, we

deduce estimates for the LFPP scaling constants {aε}ε>0 which are new even in the subcritical case (see

Theorem 1.11). We also prove that the scaling constants {cr}r>0 for the subsequential limiting metric, as

defined in Axiom (V) of Definition 1.5 below, can be taken to be equal to rξQ (see Theorem 1.9). In the

subcritical case, this was previously proven in [15] as a consequence of the uniqueness of the subsequential

limit. This paper gives the first proof that one can take cr = rξQ in the critical and supercritical cases.

This fact helps to simplify the proof of the uniqueness of the critical and supercritical LQG metrics in [9].

1.2 Weak LQG metrics

The subsequential limits of LFPP satisfy a list of axioms which define a weak LQG metric. In this

subsection, we state the axiomatic definition of a weak LQG metric from [17]. We first define the

topology on the space of metrics that we will work with.

Definition 1.2. Let X ⊂ C. A function f : X × X → R ∪ {−∞,+∞} is lower semicontinuous

if whenever (zn, wn) ∈ X × X with (zn, wn) → (z, w), we have f(z, w) � lim infn→∞ f(zn, wn). The
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topology on lower semicontinuous functions is the topology whereby a sequence of such functions {fn}n∈N

converges to another such function f if and only if

(i) whenever (zn, wn) ∈ X ×X with (zn, wn) → (z, w), we have f(z, w) � lim infn→∞ fn(zn, wn);

(ii) for each (z, w) ∈ X ×X, there exists a sequence (zn, wn) → (z, w) such that fn(zn, wn) → f(z, w).

It follows from [2, Lemma 1.5] that the topology of Definition 1.2 is metrizable (see [8, Subsection 1.2]).

Furthermore, [2, Theorem 1(a)] shows that this metric can be taken to be separable.

Definition 1.3. Let (X, d) be a metric space, with d allowed to take on infinite values.

• For a curve P : [a, b] → X, the d-length of P is defined by

len(P ; d) := sup
T

#T∑

i=1

d(P (ti), P (ti−1)),

where the supremum is over all the partitions T : a = t0 < · · · < t#T = b of [a, b]. Note that the d-length

of a curve may be infinite.

• We say that (X, d) is a length space if for each x, y ∈ X and each ε > 0, there exists a curve of

d-length at most d(x, y) + ε from x to y. A curve from x to y of d-length exactly d(x, y), if such a curve

exists, is called a geodesic.

• For Y ⊂ X, the internal metric of d on Y is defined by

d(x, y;Y ) := inf
P⊂Y

len(P ; d), ∀x, y ∈ Y, (1.8)

where the infimum is over all the paths P in Y from x to y. Note that d(·, ·;Y ) is a metric on Y , except

that it is allowed to take infinite values.

• If X ⊂ C, we say that d is a lower semicontinuous metric if the function (x, y) → d(x, y) is lower

semicontinuous with respect to the Euclidean topology. We equip the set of lower semicontinuous metrics

on X with the topology on lower semicontinuous functions on X × X, as in Definition 1.2, and the

associated Borel σ-algebra.

Definition 1.4. Let d be a length metric on C. For a region A ⊂ C with the topology of a Euclidean

annulus, we write d (across A) for the d-distances between the inner and outer boundaries of A and

d (around A) for the infimum of the d-lengths of paths in A which disconnect the inner and outer

boundaries of A.

Distances around and across Euclidean annuli play a similar role to “hard crossings” and “easy

crossings” of 2 × 1 rectangles in percolation theory. One can get a lower bound for the d-length of a

path in terms of the d-distances across the annuli that it crosses. On the other hand, one can “string

together” paths around Euclidean annuli to produce longer paths.

The following is (almost) a re-statement of [17, Definition 1.6].

Definition 1.5 (Weak LQG metric). Let D′ be the space of distributions (generalized functions)

on C, equipped with the usual weak topology. For ξ > 0, a weak LQG metric with the parameter ξ

is a measurable function h 
→ Dh from D′ to the space of lower semicontinuous metrics on C with the

following properties. Let h be a GFF plus a continuous function on C, i.e., h is a random distribution

on C which can be coupled with a random continuous function f in such a way that h − f has the law

of the whole-plane GFF. Then the associated metric Dh satisfies the following axioms:

(I) (Length space) Almost surely, (C, Dh) is a length space.

(II) (Locality) Let U ⊂ C be a deterministic open set. The Dh-internal metric Dh(·, ·;U) is a.s. given

by a measurable function of h |U .
(III) (Weyl scaling) For a continuous function f : C → R, define

(eξf ·Dh)(z, w) := inf
P :z→w

∫ len(P ;Dh)

0

eξf(P (t))dt, ∀ z, w ∈ C, (1.9)

where the infimum is over all the Dh-continuous paths from z to w in C parametrized by the Dh-length.

Then a.s. eξf ·Dh = Dh+f for every continuous function f : C → R.
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(IV) (Translation invariance) For each deterministic point z ∈ C, a.s. Dh(·+z) = Dh(·+ z, ·+ z).

(V) (Tightness across scales) Suppose that h is a whole-plane GFF and let {hr(z)}r>0,z∈C be its circle

average process. There are constants {cr}r>0 such that the following is true. Let A ⊂ C be a deterministic

Euclidean annulus. In the notation of Definition 1.4, the random variables

c
−1
r e−ξhr(0)Dh (across rA) and c

−1
r e−ξhr(0)Dh (around rA)

and the reciprocals of these random variables for r > 0 are tight.

For ξ < ξcrit, it is shown in [15] (as a consequence of the uniqueness of weak LQG metrics) that every

weak LQG metric satisfies an exact spatial scaling property which is stronger than Axiom (V). More

precisely, for every r > 0, a.s.

Dh(r·)+Q log r(z, w) = Dh(rz, rw), ∀ z, w ∈ C. (1.10)

A metric which satisfies Axioms (I)–(IV) together with (1.10) is called a strong LQG metric.

In the case ξ � ξcrit, we do not yet know that every weak LQG metric satisfies (1.10). We can think

of Axiom (V) as a substitute for (1.10). It allows us to get estimates which are uniform across different

Euclidean scales, even though we do not have an exact scale invariance property (see [10,15,17] for further

discussion of this point).

Definition 1.5 is slightly more general than the definition of a weak LQG metric used in other works

[10,15,17]. The reason is that the aforementioned papers require a (rather weak) a priori bound for the

scaling constants cr from Axiom (V). It follows from Theorem 1.9 below that Definition 1.5 is equivalent

to the definition in [17], so the a priori bounds for cr are unnecessary. We emphasize that our proof of

Theorem 1.9 does not use the results of [17].

Remark 1.6. The scaling constants {cr}r>0 from Axiom (V) are not uniquely determined by the law

of Dh. If {̃cr}r>0 is another sequence of non-negative real numbers and there is a constant C > 0 such

that C−1
cr � c̃r � Ccr for each r > 0, then Axiom (V) holds with c̃r instead of cr. Conversely, if mr

defines the median of the random variable e−ξhr(0)Dh (around Ar,2r(0)), then Axiom (V) implies that

there is a constant C > 0 depending only on the law of Dh such that C−1
cr � mr � Ccr. In particular,

any two possible choices for {cr}r>0 are comparable up to constant multiplicative factors.

The following theorem is proven as [17, Theorem 1.7], building on the tightness result from [8].

Theorem 1.7 (See [17]). Let ξ > 0. For every sequence of ε’s tending to zero, there is a weak LQG

metric D with the parameter ξ and a subsequence {εn}n∈N for which the following is true. Let h be a

whole-plane GFF, or more generally a whole-plane GFF plus a bounded continuous function. Then the

re-scaled LFPP metrics a−1
εn Dεn

h , as defined in (1.2) and (1.3), converge in probability to Dh with respect

to the metric on lower semicontinuous functions on C× C.

Theorem 1.7 implies in particular that for each ξ > 0, there exists a weak LQG metric with the

parameter ξ. In the case ξ < ξcrit, the convergence occurs with respect to the topology of uniform

convergence on compact subsets of C×C and the subsequential limit has been shown to be unique [4,15].

For ξ � ξcrit, the subsequential limit is shown to be unique in [9], using some of the results of the present

paper.

1.3 Main results

Throughout this subsection, we fix ξ > 0, and let h be the whole-plane GFF and Dh be a weak LQG

metric with the parameter ξ. We recall the re-scaled LFPP metrics a−1
ε Dε

h with the parameter ξ from (1.2)

and (1.3).

Our main result says that, roughly speaking, Dh is bi-Lipschitz equivalent to the re-scaled LFPP

metrics a
−1
ε Dε

h. We cannot say that these metrics are literally bi-Lipschitz equivalent since Dh has a

fractal structure whereas a
−1
ε Dε

h is smooth. So it is not possible to get an up-to-constants comparison

of these metrics at Euclidean scales smaller than ε. We get around this problem by looking at distances

between Euclidean balls of the radius slightly larger than ε.
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Theorem 1.8. For each ζ ∈ (0, 1), there exists a C0 > 0 depending only on ζ and the law of Dh

such that the following is true. Let U ⊂ C be a deterministic, connected, bounded open set and recall the

notation for internal metrics on U from Definition 1.3. With probability tending to 1 as ε → 0,

a
−1
ε Dε

h(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C0Dh(z, w;U), ∀ z, w ∈ U (1.11)

and

Dh(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C0a
−1
ε Dε

h(z, w;U), ∀ z, w ∈ U. (1.12)

Theorem 1.8 is a new result even in the subcritical case, where we already know that a−1
ε Dε

h → Dh in

probability with respect to the topology of uniform convergence on compact subsets of C × C. Indeed,

the convergence a
−1
ε Dε

h → Dh only allows us to estimate the ratio of a−1
ε Dε

h(z, w) and Dh(z, w) when

|z−w| is of constant order, whereas Theorem 1.8 gives a non-trivial estimate when |z−w| is as small as

3ε1−ζ .

In the critical and supercritical cases, we as of yet only have subsequential limits for a−1
ε Dε

h. In these

cases, an important consequence of Theorem 1.8 is the following. If εk → 0 is a sequence along which

a
−1
εk

Dεk
h → Dh in probability, then Dh is a weak LQG metric [17]. Therefore, Theorem 1.8 gives an

up-to-constants comparison between a
−1
ε Dε

h and Dh even if ε is not part of the sequence {εk}.
We now record several estimates which are consequences of Theorem 1.8. Our first estimate gives

up-to-constants bounds for the scaling constants in Axiom (V).

Theorem 1.9. Let {cr}r>0 be the scaling constants from Axiom (V). There is a constant C1 > 0

depending only on the law of Dh such that for each r > 0,

C1
−1rξQ � cr � C1r

ξQ. (1.13)

Due to Remark 1.6, Theorem 1.9 is equivalent to the statement that one can take cr = rξQ in Axiom (V).

In the subcritical case ξ < ξcrit, the exact scaling relation (1.10), which was proven in [15], already implies

that cr = rξQ. However, this fact was deduced as a consequence of the uniqueness of weak LQG metrics,

whereas the present paper gives a much simpler and more direct proof.

In the critical and supercritical cases, Theorem 1.9 is a new result. This result was used in [7] to show

that every subsequential limit of critical LFPP induces the Euclidean topology. It was also used in the

proof of the uniqueness of weak LQG metrics in the critical and supercritical cases [9].

Another consequence of Theorem 1.8 is the fact that any two weak LQG metrics are bi-Lipschitz

equivalent.

Theorem 1.10. Let Dh and D̃h be two weak LQG metrics with the parameter ξ > 0. There is a

deterministic constant C2 > 1 such that a.s.

C2
−1Dh(z, w) � D̃h(z, w) � C2Dh(z, w), ∀ z, w ∈ C. (1.14)

Previously, Theorem 1.10 was established for all ξ > 0, under the additional hypothesis that the

constants cr for the two metrics Dh and D̃h are the same (see [13, Theorem 1.6] and [17, Lemma 2.23]).

In the subcritical case, this was an important input of the proof of the uniqueness in [15]. Theorem 1.10

was used in the proof of the uniqueness of the critical and supercritical LQG metrics in [9]. Essentially,

the proof of the uniqueness proceeded by showing that the optimal upper and lower bi-Lipschitz constants

coincide.

Our last estimate gives bounds for the LFPP scaling constants aε. To put our result in context, we note

that the previous works have shown that aε = ε1−ξQ+oε(1) (see [15, Theorem 1.5] for the subcritical case

and [8, Proposition 1.9] for the supercritical and critical cases). In the subcritical case, the convergence

of LFPP implies that aε = φ(ε)ε1−ξQ, where φ is slowly varying [15, Corollary 1.11], but one does not get

any better bound than ε1−ξQ+oε(1) for a fixed value of ε. We improve the εoε(1) error to a polylogarithmic

error.
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Theorem 1.11. Let {aε}ε>0 be the LFPP scaling constants from (1.3). There are constants C3 > 0

and b > 0 depending only on ξ such that for each ε ∈ (0, 1/2],

C3
−1(log ε−1)−bε1−ξQ

� aε � C3(log ε
−1)bε1−ξQ. (1.15)

We expect that aε = (c+ oε(1))ε
1−ξQ for some c > 0, but the techniques of the present paper are not

strong enough to give this (see also Remark 3.10).

2 Preliminaries

2.1 Notational conventions

We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}.
For a < b, we define the discrete interval [a, b]Z := [a, b] ∩ Z.

If f : (0,∞) → R and g : (0,∞) → (0,∞), we say that f(ε) = Oε(g(ε)) (resp. f(ε) = oε(g(ε))) as

ε → 0 if f(ε)/g(ε) remains bounded (resp. tends to zero) as ε → 0. We similarly define O(·) and o(·)
errors as a parameter goes to infinity.

Let {Eε}ε>0 be a one-parameter family of events. We say that Eε occurs with polynomially high

probability as ε → 0 if there is a p > 0 (independent of ε and possibly of other parameters of interest)

such that P[Eε] � 1−Oε(ε
p).

For z ∈ C and r > 0, we write Br(z) for the open Euclidean ball of the radius r centered at z. More

generally, for X ⊂ C we write Br(X) =
⋃

z∈X Br(z). We also define the open Euclidean annulus

Ar1,r2(z) := Br2(z) \Br1(z), ∀ 0 < rr < r2 < ∞. (2.1)

2.2 Independence across concentric annuli

As is the case for many papers involving LQG distances, a key tool in our proof is the following estimate,

which is a consequence of the fact that the restrictions of the GFF h to disjoint concentric annuli are

nearly independent (see [13, Lemma 3.1] for a proof of a slightly more general result).

Lemma 2.1 (See [13]). Fix 0 < μ1 < μ2 < 1. Let {rk}k∈N be a decreasing sequence of positive

real numbers such that rk+1/rk � μ1 for each k ∈ N and let {Erk}k∈N be events such that Erk

∈ σ((h − hrk(0)) |Aμ1rk,μ2rk
(0)) for each k ∈ N (where we use the notation for Euclidean annuli from

Subsection 2.1). For each a > 0, there exist p = p(a, μ1, μ2) ∈ (0, 1) and c = c(a, μ1, μ2) > 0 such that if

P[Erk ] � p, ∀ k ∈ N, (2.2)

then

P[∃ k ∈ [1,K]Z such that Erk occurs] � 1− ce−aK , ∀K ∈ N. (2.3)

2.3 Localized approximation of LFPP

A somewhat annoying feature of our definition of LFPP is that the mollified process {h∗
ε}ε>0 does not

depend locally on h. This is because the heat kernel pε2/2(z) is non-zero on all of C. In [10, Subsection 2.1],

Dubédat et al. got around this difficulty by introducing a truncated version ĥ∗
ε of h

∗
ε which depends locally

on h. They then showed that LFPP defined by using ĥ∗
ε instead of h∗

ε itself is a good approximate for Dε
h.

The truncated version of LFPP used in [10] is not quite good enough for our purposes since with the

definitions used there, ĥ∗
ε(z) depends on h |B

ε1/2
(z). We need a range of dependence which is smaller than

ε1−ζ for every ζ > 0. So in this subsection, we introduce a truncated version of LFPP with a smaller

range of dependence. We follow closely the exposition in [10, Subsection 2.1], but some of our estimates

are sharper.
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Fix q > 0. For ε > 0, let ψε : C → [0, 1] be a deterministic, smooth, radially symmetric bump function

which is identically equal to 1 on Bε(log ε−1)q/2(0) and vanishes outside Bε(log ε−1)q (0). We can choose ψε

in such a way that (z, ε) 
→ ψε(z) is smooth. Recalling that ps(z) denotes the heat kernel, we define

ĥ∗
ε(z) := Z−1

ε

∫

C

ψε(z − w)h(w)pε2/2(z − w)dw, (2.4)

where the integral interpreted in the sense of the distributional pairing and normalizing constant is given

by

Zε :=

∫

C

ψε(w)pε2/2(w)dw. (2.5)

Let us now note some properties of ĥ∗
ε.

Since ψε vanishes outside Bε(log ε−1)q (0), we see that ĥ∗
ε(z) is a.s. determined by h |εB(log ε−1)q (z)

. It is

easy to see that ĥ∗
ε a.s. admits a continuous modification (see Lemma 2.2 below). We henceforth assume

that ĥ∗
ε is replaced by such a modification.

If c ∈ R and we define (ĥ+ c)∗ε as in (2.4) but with h+ c in place of h, then

(ĥ+ c)∗ε = ĥ∗
ε + c. (2.6)

This is because of the normalization by Z−1
ε in (2.4).

As in (2.11), we define the localized LFPP metric

D̂ε
h(z, w) := inf

P :z→w

∫ 1

0

eξĥ
∗

ε(P (t))|P ′(t)|dt, (2.7)

where the infimum is over all the piecewise continuously differentiable paths from z to w. By the definition

of ĥ∗
ε,

for any open U ⊂ C, the internal metric D̂ε
h(·, ·;U) is a.s. determined by h |Bε(log ε−1)q (U). (2.8)

Lemma 2.2. Almost surely, (z, ε) 
→ ĥ∗
ε(z) is continuous. Furthermore, for each bounded open set

U ⊂ C, a.s.

lim
ε→0

sup
z∈U

|h∗
ε(z)− ĥ∗

ε(z)| = 0. (2.9)

In particular, a.s.

lim
ε→0

D̂ε
h(z, w;U)

Dε
h(z, w;U)

= 1, uniformly over all z, w ∈ U with z 
= w. (2.10)

For the proof of Lemma 2.2, we re-use the following estimate, which is [10, Lemma 2.2].

Lemma 2.3. For each R > 0 and ζ > 0, a.s.

sup
z∈BR(0)

sup
r>0

|hr(z)|
max{log(1/r), | log r|1/2+ζ , 1} < ∞. (2.11)

Proof of Lemma 2.2. Step 1 (Polar coordinate representation). The functions w 
→ ψε(z − w) and

w 
→ pε2/2(z, w) are each radially symmetric about z, i.e., they depend only on |z − w|. Using the circle

average process {hr}r>0, we may therefore write in polar coordinates

h∗
ε(z) =

2

ε2

∫ ∞

0

rhr(z)e
−r2/ε2dr and Zεĥ

∗
ε(z) =

2

ε2

∫ ε(log ε−1)q

0

rhr(z)ψε(r)e
−r2/ε2dr. (2.12)

From this representation and the continuity of the circle average process [11, Proposition 3.1], we infer

that (z, ε) 
→ ĥ∗
ε(z) a.s. admits a continuous modification. The rest of the proof is an elementary, but

somewhat tedious, calculation using (2.12) and Lemma 2.3.
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Step 2 (Comparing h∗
ε with Zεĥ

∗
ε). Since ψε ≡ 1 on Bε(log ε−1)q/2(z) and ψε takes values in [0, 1],

|h∗
ε(z)− Zεĥ

∗
ε(z)| �

2

ε2

∫ ∞

ε(log ε−1)q/2

r|hr(z)|e−r2/ε2dr. (2.13)

By Lemma 2.3 (applied with ζ = 1/2, say), a.s. there is a random C = C(U) > 0 such that

|hr(z)| � Cmax{log(1/r), log r, 1} for each z ∈ U and r > 0. Plugging this into (2.13) shows that

a.s.

sup
z∈U

|h∗
ε(z)− Zεĥ

∗
ε(z)| �

2C

ε2

∫ ∞

ε(log ε−1)q/2

rmax{log(1/r), log r, 1}e−r2/ε2dr. (2.14)

We claim that the right-hand side of (2.14) tends to zero as ε → 0, which implies that a.s.

supz∈U |h∗
ε(z)− Zεĥ

∗
ε(z)| → 0. To prove the claim, we first substitute r = εu/

√
2 and dr = (ε/

√
2)du to

get

2

ε2

∫ ∞

ε(log ε−1)q/2

rmax{log(1/r), log r, 1}e−r2/ε2dr

=

∫ ∞

(log ε−1)q/
√
2

umax

{
log

√
2

εu
, log

εu√
2
, 1

}
e−u2/2du. (2.15)

We now split the right-hand side of (2.15) into the integrals over [
√
2/ε,∞) and over [(log ε−1)q/

√
2,
√
2/ε].

The integral over [
√
2/ε,∞) is bounded above by

∫ ∞

√
2/ε

[log u+ 1]ue−u2/2du, (2.16)

which clearly tends to zero as ε → 0. The integral over [(log ε−1)q/
√
2,
√
2/ε] is bounded above by

[
log

(
2

ε(log ε−1)q

)
+ 1

] ∫ √
2/ε

(log ε−1)q/
√
2

ue−u2/2du

�

[
log

(
2

ε(log ε−1)q

)
+ 1

] ∫ ∞

(log ε−1)q/
√
2

ue−u2/2du

=

[
log

(
2

ε(log ε−1)q

)
+ 1

]
e−(log ε−1)2q/4, (2.17)

which also tends to zero as ε → 0. Hence, the right-hand side of (2.14) tends to zero.

Step 3 (Zε close to 1). To eliminate the normalizing factor Zε in (2.14), we first note that∫
C
pε2/2(w)dw = 1. From this and (2.5), we have

0 � 1− Zε �
2

ε2

∫ ∞

0

r(1− ψε(r))e
−r2/ε2dr

�
2

ε2

∫ ∞

ε(log ε−1)q/2

re−r2/ε2dr

=

∫ ∞

(log ε−1)q/
√
2

ue−u2/2du (by substituting r = εu/
√
2)

= e−(log ε−1)2q/4. (2.18)

Furthermore, using Lemma 2.3 and (2.12), we get a.s.

sup
z∈U

|Zεĥ
∗
ε(z)| �

2

ε2

∫ ε(log ε−1)q

0

r|hr(z)|e−r2/ε2dr (by (2.12) and the fact that |ψε(r)| � 1)

=

∫ (log ε−1)q/
√
2

0

|hεu/
√
2(z)|ue−u2/2du (by substituting r = εu/

√
2)
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�
∫ (log ε−1)q/

√
2

0

[
log

√
2

ε
+ log u−1

]
ue−u2/2du (by Lemma 2.3)

�
[
log

√
2

ε

]
+

∫ (log ε−1)q/
√
2

0

[log u−1]ue−u2/2du

�
[
log

√
2

ε

]
+ (log ε−1)q (since (log u−1)ue−u2/2

� 1 on [0, 1])

� (log ε−1)max{q,1}, (2.19)

where � denotes the inequality up to a possibly random constant factor which does not depend on ε.

By the triangle inequality,

sup
z∈U

|h∗
ε(z)− ĥ∗

ε(z)| � sup
z∈U

|h∗
ε(z)− Zεĥ

∗
ε(z)|+ (1− Zε)Z

−1
ε sup

z∈U
|Zεĥ

∗
ε(z)|. (2.20)

By (2.14), the first term on the right-hand side of (2.20) tends to zero a.s. as ε → 0. By (2.18) and (2.19),

the second term tends to zero a.s. as ε → 0 as well. We thus obtain (2.9). The relation (2.10) is immediate

from (2.9) and the definitions of Dε
h and D̂ε

h.

3 Proofs

Throughout this section, we fix ξ > 0, and let h be a whole-plane GFF and Dh be a weak LQG metric

as in Definition 1.5. We prove Theorem 1.8 in Subsections 3.2–3.4, and then deduce our other main

theorems from Theorem 1.8 in Subsection 3.5.

3.1 Outline of the proof

The idea of the proof of Theorem 1.8 is as follows. In Subsection 3.2, we use a basic scaling calculation

together with the tightness of LFPP (see [4, 8]) and the tightness across scales condition for Dh (see

Axiom (V)) to get the following. There is a constant C > 0 such that for each r ∈ [ε, 1] and each z ∈ C,

it holds with high probability that

a
−1
ε Dε

h (around A2r,3r(z)) � C
raε/r

craε
Dh (across Ar,2r(z)), (3.1)

where we use the notation for distances across and around annuli from Definition 1.4. Moreover, one has

an analogous inequality with the roles of Dh and a
−1
ε Dε

h interchanged. Actually, for technical reasons we

mostly work with the localized LFPP metric D̂ε
h from Subsection 2.3 instead of Dε

h itself.

In Subsection 3.3, we restrict attention to values of r in the set

Rε :=

{
10−jε1−ζ : j = 1, . . . ,

⌊
ζ

2
log10 ε

−1

⌋
− 11

}
⊂ [ε, ε1−ζ ]. (3.2)

We use a multi-scale argument based on Lemma 2.1 to say that if R̃ε ⊂ Rε is a subset with

#R̃ε � #Rε/100, then the following is true. For each open set U ⊂ C, it holds with high probability

that we can cover U by balls Br(z) for z ∈ U and r ∈ R̃ε for which the event in (3.1) occurs. By stringing

together paths around annuli of the form A2r,3r(z) whose Dε
h-lengths are under control, we then deduce

that with high probability,

a
−1
ε Dε

h(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C

(
max
r∈R̃ε

raε/r

craε

)
Dh(z, w;U), ∀ z, w ∈ U (3.3)

for a possibly larger constant C. One also has an analogous inequality with the roles of Dh and a
−1
ε Dε

h

interchanged. The argument leading to (3.3) is similar to the proof of the bi-Lipschitz equivalence of two

metrics coupled with the GFF in [13, Section 4].
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The inequality (3.3) implies Theorem 1.8 if we have up-to-constants bounds for the ratios
raε/r

craε
for

r ∈ R̃ε. In Subsection 3.4, we obtain such up-to-constants bounds via the following bootstrap argument

based on (3.3). If we fix distinct points z, w ∈ U , then a
−1
ε Dε

h(z, w) and Dh(z, w) are each typically of

constant order. The inequality (3.3) therefore implies that maxr∈R̃ε

raε/r

craε
� A−1 for some constant A,

which does not depend on r or ε. Using the analog of (3.3) with the roles of Dh and a
−1
ε Dε

h interchanged

and possibly increasing A, we also see that minr∈R̃ε

raε/r

craε
� A. Since R̃ε is an arbitrary subset of Rε of

cardinality at least #Rε/100, this implies that all but (2/100)#Rε values of r ∈ Rε are “good” in the

sense that
raε/r

craε
∈ [A−1, A] . We then obtain Theorem 1.8 by applying (3.3) (and its analog with a

−1
ε Dε

h

and Dh interchanged) with R̃ε equal to the set of “good” values of r ∈ Rε.

3.2 Event for LFPP and LQG distances

Fix q > 0 and for ε > 0, let D̂ε
h be the localized LFPP metric of Subsection 2.3. For z ∈ C, ε ∈ (0, 1),

r ∈ [ε, 1] and C > 0, let Eε
r(z;C) be the event that the following are true:

Dh (across Ar,2r(z)) � C−1
cre

ξhr(z),

Dh (around A2r,3r(z)) � Ccre
ξhr(z),

a
−1
ε D̂ε

h (across Ar,2r(z)) � C−1 raε/r

aε
eξhr(z),

a
−1
ε D̂ε

h (around A2r,3r(z)) � C
raε/r

aε
eξhr(z).

(3.4)

We eventually apply the independence of the GFF across disjoint concentric annuli (see Lemma 2.1)

and a union bound to show that if C is large enough, then with high probability there are many points z

and radii r for which Er(z) occurs. Let us now explain why the event Er(z;C) fits into the framework

of Lemma 2.1.

If r > 2ε(log ε−1)q, then by the locality of Dh (see Axiom (II)) and (2.8), the event Eε
r(z;C) is a.s.

determined by the restriction of h to the annulus Ar/2,4r(z). This locality property for Eε
r(z;C) is the

reason why we use D̂ε
h instead of Dε

h in the definition. Since Dh and D̂ε
h transform in the same way

when we add a constant to h (see Axiom 1.5 and (2.6)), we see that in fact Eε
r(z;C) is a.s. determined

by h |Ar/2,4r(z) viewed modulo additive constants.

Using tightness across scales (see Axiom (V)) along with the tightness and scaling properties of LFPP,

we can show that Er(z;C) occurs with high probability when C is large.

Lemma 3.1. For each p ∈ (0, 1), there exists a C > 0 depending on p, ξ and the law of Dh such that

P[Eε
r(z;C)] � p, ∀ z ∈ C, ∀ 0 < ε � r � 1. (3.5)

Proof. Since the event Eε
r(z;C) is determined by h, viewed modulo additive constants, the law of h is

translation invariant modulo additive constants, and Dh and D̂ε
h depend on h in a translation invariant

way, we see that P[Eε
r(z;C)] does not depend on z. So we can restrict attention to the case z = 0.

Let Ẽε
r(C) be defined in the same manner as the event Eε

r(0;C) of (3.4), but with the ordinary LFPP

metric Dε
h instead of the truncated LFPP metric D̂ε

h. The reason we want to look at Dε
h is the scaling

property in (3.8) below.

Due to the uniform comparison between the fields ĥ∗
ε and h∗

ε involved in the definitions of D̂ε
h and Dε

h

(see Lemma 2.2), it suffices to show that for each p ∈ (0, 1), there exists a C = C(p, ξ) > 0 such that

P[Ẽε
r(C)] � p, ∀ 0 < ε � r � 1. (3.6)

To prove (3.6), we first use tightness across scales (see Axiom (V)) to find C > 0 as in the lemma

statement such that for each r ∈ (0, 1], it holds with probability at least (1 + p)/2 that

Dh (across Ar,2r(0)) � C−1
cre

ξhr(0) and Dh (around A2r,3r(0)) � Ccre
ξhr(0). (3.7)
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To lower-bound the probabilities of the conditions for a
−1
ε Dε

h in the definition of Ẽε
r(C), we write

hr = h(r·)− hr(0), which has the same law of h. A simple scaling calculation using the definitions of h∗
ε

and Dε
h shows that

a
−1
ε Dε

h(ru, rv) =
raε/r

aε
eξhr(0) × a

−1
ε/rD

ε/r
hr (u, v), ∀u, v ∈ C (3.8)

(see [10, Lemma 2.6]). Since hr d
= h, we can use the tightness of crossing distances for LFPP [8,

Proposition 4.1] to get that after possibly increasing C, for each 0 < ε � r � 1, we can deduce with

probability at least (1 + p)/2 that

a
−1
ε/rD

ε/r
hr (across A1,2(0)) � C−1 and a

−1
ε/rD

ε/r
hr (around A2,3(0)) � C. (3.9)

By (3.8) and (3.9), for each 0 < ε � r � 1, it holds with probability at least (1 + p)/2 that

a
−1
ε Dε

h (across Ar,2r(0)) � C−1 raε/r

aε
eξhr(0) and a

−1
ε Dε

h (around A2r,3r(0)) � C
raε/r

aε
eξhr(0). (3.10)

Combining (3.7) with (3.10) gives (3.6).

3.3 Comparing LFPP and LQG distances using distances at smaller scales

Let us now define the set of radii which we will consider when we apply Lemma 2.1. Fix ζ ∈ (0, 1) and

for ε ∈ (0, 1), let

Nε :=

⌊
ζ

2
log10 ε

−1

⌋
− 10.

Let

Rε := {10−jε1−ζ : j = 1, . . . , Nε − 1} ⊂
[
ε1−ζ/2,

1

100
ε1−ζ

]
. (3.11)

We note that #Rε = Nε and for any r, r′ ∈ Rε with r < r′, we have r′/r � 10.

The following lemma tells us that if R̃ε ⊂ Rε is a large enough subset, then with high probability we

can compare Dh-distances and a
−1
ε D̂ε

h-distances at scales larger than ε1−ζ , up to a factor depending on

the ratios raε/r/(craε) for r ∈ R̃ε.

Lemma 3.2. There exists a C4 > 0 depending on ζ and the law of Dh such that the following is

true. Let U ⊂ C be a deterministic, connected, bounded open set. Also let ε ∈ (0, 1) and R̃ε ⊂ Rε be a

deterministic subset with #R̃ε � Nε/100. It holds with polynomially high probability as ε → 0, at a rate

depending only on U , ζ and the law of Dh, that the following is true. For each z, w ∈ U , we have

a
−1
ε D̂ε

h(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C4

(
max
r∈R̃ε

raε/r

craε

)
Dh(z, w;U) (3.12)

and

Dh(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C4

(
min
r∈R̃ε

raε/r

craε

)−1

a
−1
ε D̂ε

h(z, w;U). (3.13)

The statement of Lemma 3.2 is similar to the statement of Theorem 1.8, except that in Lemma 3.2

our estimates have an extra factor which depends on the ratios raε/r(craε) for r ∈ R̃ε. In Subsection 3.4,

we deduce Theorem 1.8 from Lemma 3.2 by finding a choice of R̃ε for which these ratios are of constant

order.

The proof of Lemma 3.2 is similar to the proof in [13, Section 4] that two metrics coupled with the

GFF which satisfy certain conditions are bi-Lipschitz equivalent. We first use Lemma 2.1 to find lots of

points z and radii r ∈ R̃ε for which Eε
r(z;C) occurs (see Lemma 3.3). By the definition (3.4) of Eε

r(z;C),

for each such z and r,

a
−1
ε D̂ε

h (around A2r,3r(z)) � C2 raε/r

craε
Dh (across Ar,2r(z)) (3.14)
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and a similar inequality holds with the roles of a−1
ε D̂ε

h and Dh interchanged. To prove (3.12), we consider

a Dh-geodesic P . We then string together paths around annuli of the form A2r,3r(z) which intersect P in

order to produce a path with approximately the same endpoints as P . Using (3.14), we can arrange that

the a
−1
ε D̂ε

h-length of this new path is bounded above in terms of the Dh-length of P . The bound (3.13)

is proven via a similar argument with the roles of a−1
ε D̂ε

h and Dh interchanged.

Lemma 3.3. Assume the setup of Lemma 3.2. There exists a C5 > 0 depending only on ζ and the

law of Dh such that with polynomially high probability as ε → 0, at a rate depending only on U , ζ and

the law of Dh, the following is true. For each u ∈ ( ε
100Z

2) ∩B1(U), there exists an r ∈ R̃ε such that the

event Eε
r(u;C5) occurs.

Proof. We have #R̃ε � Nε/100 � � ζ
200 log10 ε

−1�. Moreover, by (3.11), if we list the elements of R̃ε

in the numerical order, then the ratio of any two consecutive elements is at least 10. For each r ∈ R̃ε,

we have r � ε1−ζ/2 � ε(log ε−1)q, so as explained just after (3.4), the event Eε
r(u;C) is a.s. determined

by h |Ar/2,4r(u), viewed modulo additive constants. By Lemma 3.1, for any p ∈ (0, 1) we can choose

C = C(p, ξ) > 0 such that P[Eε
r(u;C)] � p for each r ∈ R̃ε and each u ∈ C. From this and Lemma 2.1

(applied with K = #R̃ε, the radii rk equal to the elements of R̃ε, and a equal to a large constant times

1/ζ), we find that there exists a C5 > 0 as in the lemma statement such that for each u ∈ C,

P[∃ r ∈ R̃ε such that Eε
r(u;C5) occurs] = 1−Oε(ε

100).

We now conclude via a union bound over Oε(ε
2) elements of ( ε

100Z
2) ∩B1(U).

We now turn our attention to the proof of Lemma 3.2. Let C5 > 0 be as in Lemma 3.3. Throughout the

proof, we assume that the event of Lemma 3.3 occurs, which happens with polynomially high probability

as ε → 0. We show (via a purely deterministic argument) that (3.12) holds. The proof of (3.13) is similar,

with the roles of a−1
ε D̂ε

h and Dh interchanged.

To this end, fix distinct points z, w ∈ U and let P : [0, T ] → U be a path in U from z to w of Dh-length

at most 2Dh(z, w;U). We assume that P is parametrized by its Dh-length. We will build a path from

Bε1−ζ (z) to Bε1−ζ (w) which approximates P and whose a
−1
ε D̂ε

h-length is bounded above.

To do this, we first inductively define a sequence of times {tk}k∈N0 ⊂ [0, T ] (see Figure 1 for an

illustration of the definitions). Let t0 = 0. Inductively, assume that k ∈ N0 and tk has been defined. If

tk = T , we set tk+1 = T . Otherwise, we choose uk ∈ ( ε
100Z

2)∩B1(U) such that P (tk) ∈ Bε(uk). Since we

are assuming that the event of Lemma 3.3 occurs, we can choose rk ∈ R̃ε such that Eε
rk
(uk;C5) occurs.

By the definition (3.4) of Eε
rk
(uk;C5), there exists a path πk ⊂ A2rk,3rk(uk) which disconnects the inner

and outer boundaries of this annulus such that

(a−1
ε D̂ε

h-length of πk) � 2C5

rkaε/rk
aε

eξhrk
(uk). (3.15)

πk

P
uk

P (tk)

Brk(zk)

P (tk+1)

Figure 1 (Color online) Illustration of the objects involved in one step of the iterative construction of the times tk. The

red path is a segment of P and the two annuli in the figure are Ark,2rk (uk) and A2rk,3rk (uk)
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We can take πk to be a Jordan curve (i.e., a homeomorphic image of the circle). Let tk+1 be the first

time after tk at which the path P hits πk, or tk+1 = T if no such time exists. Let

K := max{k ∈ N : tk < T}.

By the definition (3.11) ofRε, we have rk � ε for each k, so by our choice of uk we have P (tk) ∈ Brk(uk).

Since πk ⊂ A2rk,3rk(uk), we see that if k + 1 � K, then P must cross between the inner and outer

boundaries of Ark,2rk(uk) between times tk and tk+1. Since P is parametrized by the Dh-length and

by (3.4),

tk+1 − tk � Dh (across Ark,2rk(uk)) � C5
−1

crke
ξhrk

(uk), ∀ k � K − 1. (3.16)

Therefore,

K−1∑

k=0

(a−1
ε D̂ε

h-length of πk) �
K−1∑

k=0

2C5

rkaε/rk
aε

eξhrk
(uk) (by (3.15))

�

K−1∑

k=0

2C5
2 rkaε/rk

crkaε
(tk+1 − tk) (by (3.16))

� 2C5
2

(
sup
r∈R̃ε

raε/r

craε

)K−1∑

k=0

(tk+1 − tk)

� 4C5
2

(
sup
r∈R̃ε

raε/r

craε

)
Dh(z, w;U) (by our choice of P ). (3.17)

By definition, each of the paths πk for k = 0, . . . ,K intersects P , which is contained in U , and has the

Euclidean diameter at most 6rk � ε1−ζ . Therefore,

K−1⋃

k=0

πk ⊂ Bε1−ζ (U). (3.18)

In light of (3.16) and (3.18), to conclude the proof of (3.12) (with 4C5
2 instead of C4) it remains to

prove the following topological lemma.

Lemma 3.4. In the notation above, the union of the paths πk for k = 0, . . . ,K − 1 contains a path

from Bε1−ζ (z) to Bε1−ζ (w).

Indeed, once Lemma 3.4 is established, (3.17) implies that the a
−1
ε D̂ε

h-length of the path from the

lemma is at most 2C5
2(supr∈R̃ε

raε/r

craε
)Dh(z, w;U) and (3.18) implies that the path from the lemma is

contained in Bε1−ζ (U). Hence (3.12) holds with C4 = 4C5
2.

Proof of Lemma 3.4. For k = 0, . . . ,K − 1, let Vk be the open region which is disconnected from ∞
by the path πk. Since πk is a Jordan curve, we have that Vk is bounded and ∂Vk = πk. By construction,

P ⊂
⋃K−1

k=0 Vk. Furthermore, the Euclidean diameter of each Vk is at most 6rk � ε1−ζ . Let K ⊂ [0,K−1]Z
be a subset which is minimal in the sense that P ⊂ ⋃

k∈K Vk and P is not covered by any proper

subcollection of the sets Vk for k ∈ K.

Since P is connected, it follows that
⋃

k∈K Vk is connected. Indeed, if this set had two proper

disjoint open subsets, then each would have to intersect P (by minimality) which would contradict

the connectedness of P . Furthermore, by minimality, none of the sets Vk for k ∈ K is properly contained

in a set of the form Vk′ for k′ ∈ K.

We claim that
⋃

k∈K πk is connected. Indeed, if this was not the case then we could partition K =

K1∪K2 such that K1 and K2 are non-empty and
⋃

k∈K1
πk and

⋃
k∈K2

πk are disjoint. By the minimality

of K, it cannot be the case where any of the sets Vk′ for k′ ∈ K2 is contained in
⋃

k∈K1
Vk. Furthermore,

since
⋃

k∈K1
πk and

⋃
k∈K2

πk are disjoint, it cannot be the case where any set of the form Vk′ for k′ ∈ K2

intersects both
⋃

k∈K1
Vk and C \

⋃
k∈K1

Vk: indeed otherwise Vk′ would have to intersect ∂Vk = πk for

some k ∈ K1, which would mean that either Vk′ ⊃ Vk or πk′ intersects πk. The first case is impossible by
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the preceding paragraph and the second case is impossible by our choices of K1 and K2. Hence Vk′ must

be entirely contained in C \
⋃

k∈K1
Vk. Therefore,

⋃
k∈K1

Vk and
⋃

k∈K2
Vk are disjoint. This contradicts

the connectedness of
⋃

k∈K Vk, and therefore gives our claim.

Since
⋃

k∈K Vk contains P , each of the sets Vk has the Euclidean diameter at most ε1−ζ , and
⋃

k∈K πk

is connected, it follows that
⋃

k∈K πk contains a path from Bε1−ζ (z) to Bε1−ζ (w), as required (recalling

that P (0) = z and P (T ) = w).

3.4 Up-to-constants comparison of LFPP and LQG distances

In order to deduce Theorem 1.8 from Lemma 3.2, we need to produce a large subset of Rε such that the

ratios raε/r/(craε) for r ∈ Rε are of constant order. The existence of such a subset turns out to be a

consequence of Lemma 3.2. Indeed, for fixed distinct points z, w ∈ C we know a priori that a−1
ε D̂ε

h(z, w)

and Dh(z, w) are each typically of constant order. If there were a large number of scales r ∈ Rε for which

raε/r/(craε) is very small, then Lemma 3.2 would imply that a−1
ε D̂ε

h(z, w) is typically much smaller than a

small constant times Dh(z, w), which is impossible. Similarly, there cannot be too many values of r ∈ Rε

for which raε/r/(craε) is very large. Hence this ratio must be of constant order for “most” r ∈ Rε. Let

us now make this reasoning precise.

Lemma 3.5. There exists a C6 > 1 depending only on ζ and the law of Dh such that for each ε ∈ (0, 1),

there are at least Nε/2 values of r ∈ Rε such that

C6
−1

�
raε/r

craε
� C6. (3.19)

Proof. For any ε0 > 0, the scaling constants aε for ε ∈ [ε0, 1] are bounded above and below by constants

depending only on ε0 and ξ and the constants cr for r ∈ [ε0, 1] are bounded above and below by constants

depending only on ε0 and the law of Dh. Hence, we can choose C6 > 1 depending only on ε0, ζ and

the law of Dh such that (3.19) holds for all ε ∈ [ε0, 1] and all r ∈ [ε, ε1−ζ ]. Therefore, it suffices to find

C6 > 1 as in the lemma statement such that the lemma statement holds for each small enough ε > 0

(depending on ζ and the law of Dh).

For T > 1, let R̃ε
T,+ (resp. R̃ε

T,−) be the set of r ∈ Rε such that raε/r/(craε) > T (resp. raε/r/(craε)

< T−1). If the lemma statement does not hold with C6 = T , then either #R̃ε
T,+ � Nε/4 or #R̃ε

T,−
� Nε/4. Assume that #R̃ε

T,+ � Nε/4 (while the other case is treated similarly with the roles of Dh and

a
−1
ε D̂ε

h interchanged). We show that T is bounded above by a constant depending on ζ and the law of

Dh.

By (3.13) of Lemma 3.2 applied with R̃ε = R̃ε
T,+ and U = B2(0), there exists a C4 > 0 such that with

polynomially high probability as ε → 0,

Dh(Bε1−ζ (z), Bε1−ζ (w);B2+ε1−ζ (0)) � C4T
−1

a
−1
ε D̂ε

h(z, w;B2(0)), ∀ z, w ∈ B2(0), (3.20)

which implies that

Dh (across A1+ε1−ζ ,2−ε1−ζ (0)) � C4T
−1

a
−1
ε D̂ε

h (across A1,2(0)). (3.21)

By tightness across scales (see Axiom (V)), there exists an S > 0 depending only on the law of Dh such

that whenever ε < 1/100, we have

P[Dh (across A1+ε1−ζ ,2−ε1−ζ (0)) � S−1] �
3

4
. (3.22)

By [8, Proposition 4.1] and Lemma 2.2, after possibly increasing S we can arrange that also

P[a−1
ε D̂ε

h (across A1,2(0)) � S] �
3

4
. (3.23)

By combining (3.21)–(3.23), we obtain that with probability at least 1/4 − oε(1) (with the rate of

convergence of oε(1) depending only on ζ and the law of Dh), we have

S−1
� C4T

−1S,
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i.e., T � C4S
2. Hence, if ε is small enough so that 1/4 − oε(1) > 0, then T � C4S

2. Therefore, the

lemma statement holds with C6 = C4S
2.

As a consequence of Lemma 3.5, we obtain a version of Theorem 1.8 with D̂ε
h in place of Dε

h.

Proposition 3.6. For each ζ ∈ (0, 1), there exists a C0 > 0 depending only on ζ and the law of

Dh such that the following is true. Let U ⊂ C be a deterministic, connected, bounded open set. With

polynomially high probability as ε → 0,

a
−1
ε D̂ε

h(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C0Dh(z, w;U), ∀ z, w ∈ U (3.24)

and

Dh(Bε1−ζ (z), Bε1−ζ (w);Bε1−ζ (U)) � C0a
−1
ε D̂ε

h(z, w;U), ∀ z, w ∈ U. (3.25)

Proof. Let C6 be as in Lemma 3.5 and let R̃ε be the set of r ∈ Rε for which (3.19) holds. By Lemma 3.5,

we have #R̃ε � Nε/2, so we can apply Lemma 3.2 to get that with polynomially high probability as

ε → 0, the bounds (3.12) and (3.13) hold for our above choice of R̃ε. We then use (3.19) to bound

the maximum and minimum appearing in (3.12) and (3.13) in terms of C6. This gives the proposition

statement with C0 = C4C6.

Proof of Theorem 1.8. This is immediate from Lemma 2.2 and Proposition 3.6.

3.5 Bounds for scaling constants and bi-Lipschitz equivalence

In this subsection, we prove Theorems 1.9–1.11.

Theorem 1.8 provides non-trivial bounds relating a
−1
ε D̂ε

h(z, w) and Dh(z, w) whenever |z − w| is of

larger order than ε1−ζ . From this and the scaling properties of LFPP, we get bounds for the ratios
raε/r

craε

whenever r is much larger than ε1−ζ . These bounds will be the main input in the proofs of Theorems 1.9

and 1.11.

Lemma 3.7. There is a constant C7 > 1 depending only on ζ and the law of Dh such that the

following is true. For each R � 1, there exists an ε∗ = ε∗(R, ζ) > 0 such that for each ε ∈ (0, ε∗] and

each r ∈ [100ε1−ζ , R],

C7
−1

�
raε/r

craε
� C7. (3.26)

We emphasize the distinction between Lemmas 3.5 and 3.7: the former gives bounds for the ratios
raε/r

craε
which hold for most r ∈ Rε ⊂ [ε, ε1−ζ ] whereas the latter gives bounds for all r ∈ [100ε1−ζ , 1].

Proof of Lemma 3.7. We find C7 and ε∗ such that the upper bound in (3.26) holds. The lower bound

is obtained via a similar argument with the roles of a−1
ε D̂ε

h and Dh interchanged.

Fix R � 1. By Theorem 1.8 applied with U = B3R(0), there exists a C0 > 0 depending only on ζ

and the law of Dh such that with polynomially high probability as ε → 0 (with the rate of convergence

depending on R, ζ and the law of Dh), we have

a
−1
ε D̂ε

h(Bε1−ζ (z), Bε1−ζ (w);B3R+ε1−ζ (0)) � C0Dh(z, w;B3R(0)), ∀ z, w ∈ B3R(0).

By applying this last inequality to points on the inner and outer boundaries of Ar−ε1−ζ ,2r+ε1−ζ (0), we

get that with polynomially high probability as ε → 0 for each r ∈ [100ε1−ζ , R],

a
−1
ε D̂ε

h (across Ar,2r(0)) � C0Dh (across Ar−ε1−ζ ,2r+ε1−ζ (0)). (3.27)

Using tightness across scales (see Axiom (V)) and tightness of LFPP crossing distances (see [8,

Proposition 4.1]), as in the proof of Lemma 3.1, we find that there exists an S > 0 depending only

on the law of Dh such that for each r ∈ [100ε1−ζ , R],

P

[
a
−1
ε D̂ε

h (across Ar,2r(z)) � S−1 raε/r

aε
eξhr(0)

]
�

3

4
,

P

[
Dh (across Ar−ε1−ζ ,2r+ε1−ζ (z)) � Scre

ξhr(0)

]
�

3

4
.

(3.28)
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By combining (3.27) and (3.28), we get that for each r ∈ [100ε1−ζ , R], it holds with probability at least

1/4− oε(1) (with the rate of convergence depending only on R, ζ and the law of Dh) that

S−1 raε/r

aε
� C0Scr.

Hence, if ε is small enough so that 1/4− oε(1) > 0, then

raε/r

craε
� C0S

2.

This gives the upper bound in (3.26) with C7 = C0S
2. As noted above, the lower bound is proven

similarly.

We deduce our bounds for cr and aε (see Theorems 1.9 and 1.11) from Lemma 3.7 together with

elementary deterministic arguments. For the proof of Theorem 1.9, we need the following classical

lemma, which tells us that if a sequence {xn}n∈N is both subadditive and superadditive, up to a constant

additive error, then xn/n converges to a limit and one can bound the rate of convergence.

Lemma 3.8 (Subadditive rate lemma). Let {xn}n∈N be a sequence of real numbers and assume that

there is a c > 0 such that

xn + xm − c � xn+m � xn + xm + c, ∀n,m ∈ N. (3.29)

Then there is an α > 0 such that

|xn/n− α| � c/n, ∀n ∈ N. (3.30)

Lemma 3.8 follows from the proof of [19, Lemma 1.9.1] (applied with xn/c in place of xn). The

statement of [19, Lemma 1.9.1] gives |xn/n − α| � c instead of (3.30), but the proof shows that in

fact (3.30) holds.

We also need a basic a priori estimate comparing the scaling constants cr for different values of r.

Lemma 3.9. For each K > 1, there exists a C > 1 depending on K and the law of Dh such that

C−1
cr � cr′ � Ccr whenever r > 0 and r′ ∈ [K−1r,Kr].

Proof. Fix a Euclidean annulus A ⊂ C. We can find finitely many Euclidean annuli A1, . . . , Ak

satisfying that for each s ∈ [K−1,K], there exists a j ∈ [1, k]Z such that sA is contained in Aj and

disconnects the inner and outer boundaries of Aj (with the aspect ratios of Aj ’s larger than the aspect

ratio of A). Similarly, we can find finitely many Euclidean annuli A′
1, . . . , A

′
k (whose aspect ratios will be

smaller than the aspect ratio of A) satisfying that for each s ∈ [K−1,K], there exists a j′ ∈ [1, k]Z such

that A′
j′ is contained in sA and disconnects the inner and outer boundaries of sA. We have

Dh (around Aj) � Dh (around sA) � Dh (around A′
j′),

Dh (across A′
j′) � Dh (across sA) � Dh (across Aj).

From this and Axiom (V), applied to each of the annuli A1, . . . , Ak and A′
1, . . . , A

′
k, we see that the

random variables

c
−1
r e−ξhr(0) sup

r′∈[K−1r,Kr]

Dh (around r′A) (3.31)

are tight, and the same holds if we replace the sup by an inf and take the reciporicals of the random

variables, and/or we replace “across” by “around”. Furthermore, since t 
→ he−t(0) is a standard

Brownian motion (see the calculations in [11, Subsection 3.1]), we see that the random variables

sup
r′∈[K−1r,Kr]

exp(ξ|hr′(0)− hr(0)|) (3.32)

are tight. Combining (3.31) and (3.32) shows that the random variables

c
−1
r sup

r′∈[K−1r,Kr]

e−ξhr′ (0)Dh (around r′A)
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are tight, and the same holds if we replace the sup by an inf and take the reciporicals of the random

variables, and/or we replace “across” by “around”. Consequently, Axiom (V) holds with cr replaced by

the scaling factor c̃r which equals cKn whenever r ∈ [Kn,Kn+1]. By Remark 1.6, we see that there is

a constant C > 1 such that C−1
cKn � cr � CcKn whenever r ∈ [Kn,Kn+1]. This implies the lemma

statement with C2 in place of C.

Proof of Theorem 1.9. Throughout the proof, we assume that all the implicit constants in � depend

only on the law of Dh. Let r, s > 0. By three applications of Lemma 3.7 applied with ζ = 1/2, if ε is

sufficiently small (depending on r and s), then

crcs �
raε/r

aε
× saε/(sr)

aε/r
=

sraε/(sr)

aε
� csr. (3.33)

For n ∈ N, write xn = log c2−n . By taking s and r to be powers of 2 and taking the log of both sides

of (3.33), we conclude that {xn}n∈N satisfies (3.29). Therefore, Lemma 3.8 implies that there exists an

α > 0 such that |xn/n− α| � c/n for all n, or equivalently,

c2−n � 2−αn.

By [8, Proposition 4.2], for 0 < ε < r, we have

raε/r

aε
= rξQ+or(1)

with the rate of convergence of or(1) depending only on the law ofDh. By combining this with Lemma 3.7,

we infer that α = ξQ. This gives (1.13) when r is a negative power of 2.

The case of a general choice of r ∈ (0, 1] follows from the case r = 2−n together with Lemma 3.9. To

treat the case r > 1, we apply (3.33) with s = 1/r < 1 to get cr � c1/c1/r � rξQ.

Proof of Theorem 1.11. Let ε∗ > 0 be as in Lemma 3.7 with ζ = 1/4 and R = 1. By possibly

shrinking ε∗, we can arrange that also 100ε3/4 � ε1/2 for each ε ∈ (0, ε∗]. Lemma 3.7 (applied with

ζ = 1/4) combined with Theorem 1.9 implies that there is a constant A = A(ξ) > 1 (in particular,

A = C1C7) such that if 0 < ε � ε∗ and r ∈ [ε1/2, 1], then

A−1rξQ−1
�

aε/r

aε
� ArξQ−1. (3.34)

After possibly increasing A, we can remove the constraint that ε � ε∗.

For k ∈ N0, we apply (3.34) with ε = 2−2k and r = 2−2k/δ to find that

A−1δ1−ξQ2(1−ξQ)2k
�

aδ

a
2−2k

� Aδ1−ξQ2(1−ξQ)2k , ∀ δ ∈ [2−2k , 2−2k−1

]. (3.35)

In particular, taking δ = 2−2k−1

gives

A−12(1−ξQ)2k−1

�
a
2−2k−1

a
2−2k

� A2(1−ξQ)2k−1

. (3.36)

We apply this inequality with j instead of k, and then multiply over all j = 1, . . . , k to get

A−k2(1−ξQ)(2k−1)
�

a1/2

a
2−2k

� Ak2(1−ξQ)(2k−1). (3.37)

Re-arranging the above inequalities shows that there is a constant C = C(ξ) > 0 such that

C−1A−k2−(1−ξQ)2k
� a

2−2k � CAk2−(1−ξQ)2k , ∀ k ∈ N, (3.38)

where we absorbed a1/2 into C.

For a given δ ∈ (0, 1/2], choose k ∈ N such that δ ∈ [2−2k , 2−2k−1

]. Note that

k ∈ [log2 log2 δ
−1, log2 log2 δ

−1 + 1]. (3.39)
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By (3.35) and (3.38),

C−1A−k−1δ1−ξQ
� aδ � CAk+1δ1−ξQ. (3.40)

By (3.39), Ak+1 is bounded above by a ξ-dependent constant times (log δ−1)b for some b = b(ξ) > 0.

Thus (3.40) implies (1.15).

Remark 3.10. Our proof does not yield bounds better than polylogarithmic upper and lower bounds

for aε/ε
1−ξQ. Indeed, the estimate (3.34) for r ∈ [ε1/2, 1] is still satisfied, e.g., if aε = (log ε−1)bε1−ξQ for

some b ∈ R (with the constant A depending on b). In order to get bounds better than polylogarithmic

bounds, we would need to improve on (3.34) so that either it holds for all r ∈ [φ(ε)ε, 1], where

limε→0 log φ(ε)/ log ε = 0, or it holds with A replaced by something of order 1 + oε(1). Either of these

improvements would require non-trivial new ideas.

Proof of Theorem 1.10. This can be deduced from Theorem 1.9 and a generalization of the bi-Lipschitz

equivalence criterion from [13, Theorem 1.6]. However, we instead give a more self-contained proof.

Let U ⊂ C be a deterministic, connected, bounded open set. We apply Theorem 1.8 (with ζ = 1/2)

to compare each of Dh and D̃h to a
−1
ε D̂ε

h. We obtain that there is a deterministic constant C2 > 0

depending only on the laws of Dh and D̃h such that with probability tending to 1 as ε → 0,

D̃h(Bε1/2(z), Bε1/2(w);Bε1/2(U)) � C2Dh(z, w;U), ∀ z, w ∈ U (3.41)

and

Dh(Bε1/2(z), Bε1/2(w);Bε1/2(U)) � C2D̃h(z, w;U), ∀ z, w ∈ U. (3.42)

In particular, C2 is the product of the constants appearing in Theorem 1.8 for Dh and D̃h, respectively.

Shrinking ε makes the conditions (3.41) and (3.42) stronger. Since these conditions hold with probability

tending to 1 as ε → 0, we infer that a.s. there is a random ε∗ = ε∗(U) > 0 such that (3.41) and (3.42)

hold for each ε � ε∗.

Now let {Un}n∈N be an increasing family of bounded open sets whose union is all of C. From the

preceding paragraph, we infer that a.s. there is a random sequence of positive numbers {εn}n∈N such that

for each n ∈ N, the conditions (3.41) and (3.42) hold with U = Un for each ε � εn.

Almost surely, every Dh-bounded set is Euclidean-bounded [17, Lemma 3.12]. Consequently, it is a.s.

the case where for any two distinct points z, w ∈ C which are non-singular for Dh, there exists an n ∈ N

such that every path from z to w whose Dh-length is at most 2Dh(z, w) is contained in Un. This implies

that Dh(z, w;Un) = Dh(z, w). By combining this with the preceding paragraph, we find that for each

ε ∈ (0, εn],

D̃h(Bε1/2(z), Bε1/2(w)) � D̃h(Bε1/2(z), Bε1/2(w);Bε1/2(Un)) � C2Dh(z, w).

Since D̃h is lower semicontinuous, if we take the liminf of the left-hand side of this inequality as ε → 0,

we obtain D̃h(z, w) � C2Dh(z, w). This holds for any two points z, w ∈ C which are non-singular for Dh.

If either z or w is a singular point for Dh, then Dh(z, w) = ∞ so D̃h(z, w) � C2Dh(z, w) vacuously. We

thus obtain the upper bound in (1.14). The lower bound is obtained similarly with the roles of Dh and

D̃h interchanged.
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10 Dubédat J, Falconet H, Gwynne E, et al. Weak LQG metrics and Liouville first passage percolation. Probab Theory

Related Fields, 2020, 178: 369–436

11 Duplantier B, Sheffield S. Liouville quantum gravity and KPZ. Invent Math, 2011, 185: 333–393

12 Gwynne E, Holden N, Pfeffer J, et al. Liouville quantum gravity with matter central charge in (1, 25): A probabilistic

approach. Comm Math Phys, 2020, 376: 1573–1625

13 Gwynne E, Miller J. Local metrics of the Gaussian free field. Ann Inst Fourier (Grenoble), 2020, 70: 2049–2075

14 Gwynne E, Miller J. Confluence of geodesics in Liouville quantum gravity for γ ∈ (0, 2). Ann Probab, 2020, 48:

1861–1901

15 Gwynne E, Miller J. Existence and uniqueness of the Liouville quantum gravity metric for γ ∈ (0, 2). Invent Math,

2021, 223: 213–333

16 Gwynne E, Pfeffer J. Bounds for distances and geodesic dimension in Liouville first passage percolation. Electron

Commun Probab, 2019, 24: 56

17 Pfeffer J. Weak Liouville quantum gravity metrics with matter central charge c ∈ (−∞, 25). arXiv:2104.04020, 2021

18 Sheffield S. Gaussian free fields for mathematicians. Probab Theory Related Fields, 2007, 139: 521–541

19 Steele J M. Probability Theory and Combinatorial Optimization. CBMS-NSF Regional Conference Series in Applied

Mathematics, vol. 69. Philadelphia: SIAM, 1997

20 Vargas V. Lecture notes on Liouville theory and the DOZZ formula. arXiv:1712.00829, 2017

21 Werner W, Powell E. Lecture notes on the Gaussian free field. arXiv:2004.04720, 2020


