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Abstract

For the two-dimensional random field Ising model where the random field is given by

independent and identically distributed mean zero Gaussian variables with variance

"2, we study (one natural notion of) the correlation length, which is the critical size of

a box at which the influences of the random field and of the boundary condition on the

spin magnetization are comparable. We show that as "! 0, at zero temperature the

correlation length scales as e‚."�4=3/ (and our upper bound applies for all positive

temperatures).

1. Introduction

Let ¹hv W v 2 Z
2º be independent and identically distributed (i.i.d.) Gaussian random

variables with mean zero and variance 1. For N � 1, let ƒN D ¹v 2 Z
2 W jvj1 �

N º � Z
2 be the box of side length 2N centered at the origin o. For u;v 2 Z

2 with

ju� vj D 1 (where j � j denotes the Euclidean norm), we say u and v are adjacent and

write u� v. For "� 0, the random field Ising model (RFIM) HamiltonianH˙ on the

configuration space ¹�1; 1ºƒN with plus (respectively, minus) boundary condition

and external field ¹"hv W v 2ƒN º is defined to be

H˙.�;ƒN ; "h/D �
�

X

u�v;u;v2ƒN

�u�v ˙
X

u�v;u2ƒN ;v…ƒN

�u C
X

u2ƒN

"hu�u

�

; (1)

for � 2 ¹�1; 1ºƒN , where in the first sum each unordered edge appears once. For

ˇ � 0, let �˙
ˇ;ƒN ;"h

be the Gibbs measure on ¹�1; 1ºƒN at inverse-temperature ˇ,

defined as

�˙
ˇ;ƒN ;"h.�/D 1

Z
e�ˇH ˙.�;ƒN ;"h/; (2)
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1782 DING and WIRTH

where Z is the partition function so that �˙
ˇ;ƒN ;"h

.�/ is a probability measure. Note

that �˙
ˇ;ƒN ;"h

is a random measure which itself depends on ¹hvº. To clearly separate

the two different sources of randomness, we will use P and E to refer to the proba-

bility measure with respect to the external field ¹hvº; we use �˙
ˇ;ƒN ;"h

to denote the

Ising measures and h�i
�˙

ˇ;ƒN ;"h

to denote the expectations with respect to the Ising

measures. For instance, h�C
o i

�
C
ˇ;ƒN ;"h

denotes the average value of the spin at the

origin when we sample �C 2 ¹�1; 1ºƒN according to �C
ˇ;ƒN ;"h

. We are interested in

the following quantity which measures the influence of the boundary condition:

mˇ;ƒN ;" D 1

2
E

�

h�C
o i

�
C
ˇ;ƒN ;"h

� h��
o i��

ˇ;ƒN ;"h

�

: (3)

For m 2 .0; 1/, we consider the following notion of correlation length,

 .ˇ;m; "/D min¹N W mˇ;ƒN ;" � mº; (4)

which (for large ˇ) amounts to the critical scale where the random field has a com-

parable influence as the boundary condition on the spin at the origin. Here we use the

convention that min ; D 1.

THEOREM 1.1

For every m 2 .0; 1/, there exists C D C.m/ > 0 such that  .ˇ;m; "/� eC "�4=3
for all

ˇ � 0 (including ˇ D 1), and that  .1;m; "/� eC �1"�4=3
for ˇ D 1.

Remark 1.2

The emergence of the 4=3 exponent is somewhat unexpected, and it is reminiscent

of the 4=3-exponent in upper bounds on distances for Liouville quantum gravity at

high temperatures (see [22]): the 4=3-exponent arises from “back-of-the-envelope”

computations that are similar in spirit for both scenarios (an interested reader may

compare [22, Section 2] with Section 2.2). However, the random field Ising model

and Liouville quantum gravity are two drastically different models, and as a result

their mathematical treatments are different except that they both employ a framework

of multi-scale analysis.

Remark 1.3

During the submission of this paper, the lower bound here was extended to low tem-

peratures (i.e., to large finite ˇ) by [25], which takes the result at ˇ D 1 as an input.

The key idea in [25] is to extend the Peierls argument in the construction of the Peierls

mapping, where the additional novelty is to also flip the signs of the disorder when

flipping the signs of spins on a simply connected component. In addition, by [23,
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Corollary 1.6] there is an exponential decay for ˇ < ˇc , and, moreover, the decay-

ing rate is upper-bounded by that for "D 0. Furthermore, the behavior for moderate

ˇ > ˇc seems rather challenging, and currently we have a weak belief that the e"�4=3
-

scaling for the correlation length holds for all ˇ > ˇc . Ultimately, it would be very

interesting to completely understand the phase diagram of the mapping from .ˇ; "/ to

the rate of exponential decay (as proved in [2], [24]), but this seems out of reach for

now, and we do not have any intuition beyond what has been discussed.

Remark 1.4

More than one year after the arXiv post of this paper, and more than half a year after

the arXiv post of [25], the paper [7] was posted, which proved an upper bound of

exp.eO."�2// and a lower bound of (the type of) e"�2=3
for the correlation length. In

addition, we note that the notion for the correlation length in the upper bound of [7]

governs the rate of exponential decay, and thus in terms of upper bound it is a stronger

notion than the one used in this paper.

Remark 1.5

A very natural question is whether one can prove the scaling of e"�4=3
for the correla-

tion length that governs the rate of exponential decay. As far as we can tell, to this end

one needs to combine the techniques from [24] and [2] (see also [7]) with methods

in this paper. This does not seem to be trivial since the key point of [24] and [2] is to

prove that the boundary influence has a polynomial decay with a large power, while

in this paper in order to derive a contradiction currently it seems inevitable to assume

in the contradiction hypothesis that the boundary influence is lower-bounded by a

constant. Maybe a vaguely plausible approach is to show that once the side length

exceeds e"�4=3
, the boundary influence will start seeing a decay and that also the

tortuosity assumption employed in [24] and [2] for disagreement percolation would

hold. But, by all means, this is a highly nontrivial task, and we feel better to leave it

for future study and advise an interested researcher to keep their mind open.

This result lies under the umbrella of the general Imry–Ma [37] phenomenon on

the effect of disorder on phase transitions in two-dimensional physical systems. We

next give a brief review of the development in the particular case of the random field

Ising model (RFIM). In the limit of N ! 1 with small fixed " > 0, it was shown in

[4] and [5] that mˇ;ƒN ;" decays to 0 for all ˇ � 0, which also implies the uniqueness

of the Gibbs state. The decay rate was then improved to 1=
p

log logN in [18], to

N�c (for some small c > 0) in [3], and finally to e�cN in [24] and [2] (previously,

exponential decay was shown in [8], [16], [30], [54] for large ").
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In three dimensions and above, however, the behavior is drastically different from

that in two dimensions: it was shown in [36] that long range order exists at zero

temperature with weak disorder; that is, m1;ƒN ;" does not vanish as N grows; later

an analogous result was proved in [14] (see also [11, Chapter 7]) at low temperatures.

A heuristic explanation for the different behaviors is as follows: in two dimensions

the fluctuation of (the sum of) the random field in a box is of the same order as the size

of the boundary, while in three dimensions and above the fluctuation of the random

field is substantially smaller than the size of the boundary.

In the limit as "! 0, the scaling of the correlation length in both two dimensions

and three dimensions (at some “critical” temperature) has remained largely elusive

even from the point of view of physics predictions despite extensive studies. Previous

works include (a partial list of) numeric studies [55], [48], [31], [46], [45], [47], [43],

and [49] and nonrigorous derivations [44], [33], [9], [34], [21], [12], and [13]. It is

worth noting that most of the studies in two dimensions were at zero temperature,

but even in this case there was no consensus on the scaling of the correlation length:

while a common belief seemed to be that it scales like e"�2
(or upper-bounded by

eO."�2/) as argued in [33], [9], [13], [48], and [47], there were also other predictions

including a scaling of e"�1
in a more recent work [49]. (We note that some of these

papers studied our notion of correlation length, and some studied the notion which

is the inverse of the rate of exponential decay, and some were not very careful in

distinguishing these two notions.) Prior to our work, the only mathematical result on

the correlation length was (as far as we know) an upper bound of eeO."�2/
from [18]

and [3].

Our proof method for the upper bound on the correlation length shares the under-

lying philosophy of “using the fluctuation of the random field to fight against the

influence from the boundary” with the previous works [5], [18], [3], [24], and [2],

and, in particular, in the sense that the proof strategy shares some similarity with [5]

for deriving a contradiction for lower and upper bounds on difference of free energies.

However, our strategy of deriving the lower bound on the difference of free energies

(which is the key point for both [5] and our proof for upper bound on the correlation

length) is very different from that in [5]. The proof of the lower bound of the corre-

lation length is completely different from [5], [18], [3], [24], and [2] since this is a

bound in a different direction from these works. In fact, it shares some similarity with

[17] and [28] in terms of a connection to greedy lattice animals, as we elaborate in

what follows. Let AN be the collection of all connected subsets of ƒN (i.e., lattice

animals) that contain the origin, and let AN � AN be the collection of all simply con-

nected subsets in AN . We define (the value of) the greedy lattice animal normalized

by its boundary size as
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SN D max
A2AN

P

v2A hv

j@Aj and SN D max
A2AN

P

v2A hv

j@Aj ; (5)

where j@Aj is the number of edges with exactly one endpoint in A. Theorem 1.1 is

deeply connected to the following result (see Section 2 for an extensive discussion).

THEOREM 1.6

There exists a constant C > 0 such that for all N � 3 we have

C�1.logN/3=4 � EŒSN �� EŒSN �� C.logN/3=4:

Remark 1.7

In Theorem 1.6 we described the maxima over both connected subsets and simply

connected subsets for the following reasons: (1) both upper and lower bounds can be

obtained for simply connected subsets first and then it is relatively easy to translate

the bound to connected subsets; (2) while it is easier to prove the lower bound on the

correlation length using the upper bound for the maximum over connected subsets,

fundamentally what governs the behavior seems to be the maximum over simply con-

nected subsets as we see in three dimensions (see also the proof in [25], where the

maximum over simply connected subsets plays a fundamental role).

There is an interesting historical development on Theorem 1.6. The formulation

of the statement immediately reminded the authors of the greedy lattice animal nor-

malized by its volume (either normalized by the volume of the animal or by the vol-

ume of the box which contains the animal); this has been extensively studied for gen-

eral disorder distributions (see [19], [20], [32], [35], [38]–[40], [42]). In particular, a

rather precise description was obtained for the greedy lattice animal in [35], including

that for rather general distributions (including the Gaussian distribution) the greedy

lattice animal in a d -dimensional box of side length N normalized by N d converges

to a fixed constant (where the limiting constant depends on the distribution and the

dimension). Despite a high degree of similarity in the definitions between the greedy

lattice animal normalized by its boundary size and the version normalized by its vol-

ume, their behaviors seem to be quite different and the mathematical proofs in these

two scenarios are largely different too: in some sense, such differences are suggested

in the .logN/3=4 growth of SN , whereas in the version normalized by its volume, this

was known to converge to a constant.

In three dimensions and higher, it was shown in [17] and [28] that the simply

connected greedy lattice animal normalized by its boundary size (i.e., the analogue

of SN in higher dimensions) is O.1/, which played a useful role in the proof for the

existence of long range order at zero temperature in [36] and [14]. TheO.1/ bound in

three dimensions and higher and the .logN/3=4 growth in two dimensions for SN can
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be seen as a stronger version of the intuition underlying the Imry–Ma argument for the

transition in dimension for statistical physics models with random field. Finally, we

remark that in retrospect the proof in [17] and [28] amounts to a nontrivial application

of Dudley’s integral bound in [26] (note that the actual proof was implemented in a

self-contained manner).

Initially, the authors thought that Theorem 1.6 was new and as a result provided a

self-contained proof (for a slightly weaker version of Theorem 1.6) in the first version

of this paper. During the submission, we discovered in the literature a nonobvious

but deep connection between the greedy lattice animal normalized by its boundary

size and the matching problem in Euclidean spaces. A fundamental problem is to

match i.i.d. uniform points X1; : : : ;XN d in a d -dimensional box containing N d lat-

tice points y1; : : : ; yN d (i.e., to find a bijection � between these two set of points) in

a certain optimal way. A classic result of [6] proved that EŒmin�
1

N d

PN d

iD1 jX�.i/ �
yi j� D ‚.

p
logN/ for d D 2. Since [6] there has been extensive work on match-

ing problems, and one is encouraged to see [52] for an excellent account on the

topic, which presents a unified proof via the majorizing measure theory. Of partic-

ular relevance to Theorem 1.6 is the celebrated work of [41] which showed that

EŒmin� max1�i�N d jX�.i/ � yi j� D O..logN/3=4/ for d D 2. The power of 3=4 is

deeply connected to the power in Theorem 1.6 via Hall’s marriage lemma as we next

explain.

Putting Halls’s marriage lemma into the context of the matching problem, it states

that if for each lattice point yi there exists a collection of random points Ai such that

ˇ

ˇ

ˇ

[

i2I

Ai

ˇ

ˇ

ˇ
� jI j for all I � ¹1; : : : ;N d º; (6)

then there exists a bijection � such that X�.i/ 2Ai . In light of this, a natural choice of

Ai is the collection of all random points in a ball of radius r centered at yi . As such,

the result of [41] essentially reduces to showing that (6) holds for r DO..logN/3=4/.

It is plausible that in order to verify (6) one essentially only needs to consider I when

I is the set of lattice points in a simply connected subset I � R
d . Since the union

of the balls centered at I is an expansion of I, that is, the union of I and all points

with distance at most r from I, a moment of thinking should lead to that with high

probability for typical I (which turns out to be the ones we care most)

�.I/C cr length.@I/�
ˇ

ˇ

ˇ

[

i2I

Ai

ˇ

ˇ

ˇ
� �.I/CCr length.@I/;

where c;C > 0 are constants, �.I/ is the number of random points in I, and length.@I/

is the length of the boundary curve for I. Since �.I/ � jI j is a mean-zero random

variable, which can be roughly regarded as a Gaussian variable, and thus in spirit
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¹�.I/� jI jºI resembles the lattice animal process. In light of this discussion, heuris-

tically the result of [41] reduces to maxI
�.I/�jI j
length.@I/

DO..logN/3=4/, which resembles

the upper bound in Theorem 1.6. Indeed, this connection was nicely explained in [52],

which also nicely explains the conceptual difference for the behavior between d D 2

and d � 3.

Having explained the connection to the matching problem, we come back to what

is most relevant to us, namely, the proof of Theorem 1.6. It turns out that a proof of

Theorem 1.6 was essentially contained in [52], and in Section 4 we present this in a

more explicit manner without claiming any credit. In addition to that, in the arXiv ver-

sion of this paper (arXiv:2011.08768), we still keep our “original” proof since we feel

that our proof seems to explain some of the geometric intuition in an arguably more

intuitive way and thus we feel that this framework of multi-scale analysis may turn

out to be useful in some related problems (e.g., random metric of Liouille quantum

gravity).

We conclude the introduction by some discussions on future research. As a nat-

ural question, one may ask what is the correlation length for the random field Potts

model. We expect that the same scaling of e"�4=3
should occur. The nontrivial part is

the upper bound, for which our proof uses monotonicity properties of the Ising model

in a substantial manner.

2. Overview of the proof

In this section we introduce the main idea behind the proof of Theorem 1.1, and

in particular we give some intuition for the exponent 4=3. We will then discuss the

obstacles that arise in making this proof sketch rigorous.

2.1. Notation

For a real (or integer-valued) vector x (in any dimension), we denote its Euclidean

norm by jxj. For a finite set A, we denote its cardinality by jAj. For A � R
2 we

denote the Lebesgue measure of A by �.A/. For a curve �, we denote its length by

l.�/. We use Ac to denote the complement of the set (or event) A. If A is an event,

we denote its indicator by 1A.

In what follows, we let c; c0; c00;C;C 0;C 00 > 0 be arbitrary constants whose val-

ues may change each time they appear, and may depend on m but not on " or N .

Numbered constants c1; c2; : : : may still depend on m but their values will be fixed

throughout the paper.

We say two points u;v 2 Z
2 are adjacent to each other if ju � vj D 1, in which

case we write u � v. When convenient, we will think of Z2 as being embedded in

R
2 in the obvious way. For any set A � Z

2, we let @AD ¹.u; v/ W u � v;u 2 A;v 2
Z

2 nAº denote the edge boundary of A in the nearest neighbor graph on Z
2.
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2.2. Emergence of the 3=4 exponent

Let �˙.ƒN ; "h/ be the ground states with respect to the plus and minus boundary

conditions; that is, they are minimizers of the Hamiltonians H˙.ƒN ; "h/, respec-

tively. (Since our field h has a continuous distribution, the ground state with respect

to each boundary condition is unique with probability 1.) Suppose ��
o .ƒN ; "h/D 1

and S is the connected component of ¹v 2 ƒN W ��
v .ƒN ; "h/ D 1º that contains o.

Then necessarily we have
P

v2S "hv � j@S j, because, otherwise, flipping spins on S

would decrease the Hamiltonian and contradict the definition of the ground state. In

other words,

��
o .ƒN ; "h/D 1 implies that max

A2AN

P

v2A "hv

j@Aj � 1: (7)

This explains why the greedy lattice animal normalized by its boundary size is con-

nected to the random field Ising model. From the discussion above, an upper bound

on the greedy lattice animal directly gives a lower bound on the correlation length

for ˇ D 1. In what follows, we will sketch an argument leading to the emergence of

3=4-exponent in the lower bound of Theorem 1.6.

For convenience of exposition, we will pass to the continuum. To each vertex

v 2 Z
2 we can associate the axis-aligned unit square Rv centered at v, and to each

subset A� Z
2 the set AD

S

v2ARv . Notice that the perimeter of A (which we denote

by l.@A// is equal to the boundary size j@Aj. Next, we letW be a standard white noise

on R
2 such that W.Rv/D hv for each v 2 Z

2. In particular, for any A� Z
2 we have

P

v2A hv DW.A/. We will sketch a procedure to construct a polygon P � Œ�N;N �2
(for N � eC "�4=3

/ such that each side of P has length at least 1 (we will refer to this

as a polygon animal in what follows) and "W.P / > l.@P /. The idea is to recursively

expand P by possibly joining to it a triangle T such that the standard deviation of

"W.T / is of the same order as l.@.P [ T // � l.@P /. We remark that we choose to

add triangles instead of rectangles for the reason that adding a triangle with the same

area results in a substantially smaller increase in the perimeter.

We begin with the polygon P1 D Œ�N=2;N=2�2. Having constructed Pk , we

construct PkC1 as follows. For each side s of Pk , we consider the isosceles trian-

gle Ts with base given by the “middle” segment of s of length l.s/=2 and of height

"2=3l.s/=8 that points out of Pk . We add Ts to the polygon if W.Ts/ > 0 (which

occurs with probability 1=2). If we do not add Ts , we split s into four sides of equal

length. We let PkC1 be the polygon obtained by applying this procedure to each side

of Pk . See Figure 1 for an illustration of the process.

Next, we let ak D EŒ"W.Pk/� l.@Pk/�. Our goal is to lower-bound akC1 � ak .

For each side s of Pk , we have �.Ts/ D "2=3l.s/2=32 (recall that � denotes the

Lebesgue measure on R
2), and an elementary calculation shows that adding Ts to

Pk increases the perimeter by �s < "
4=3l.s/=16. If we ignore the potential overlap
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between the triangles corresponding to different iterations of the scheme, then we

would have EŒ"W.Ts/ j W.Ts/ > 0� > 2�s . Summing over all sides of Pk , we get

that

akC1 � ak � 1

16
"4=3

E
�

l.@Pk/
�

� 1

16
"4=3l.@P1/:

Further, since at each step each side s is split into four sides of length at least l.s/=4,

we see that for k� D blog16N c each side ofPk� has length at least 1 deterministically.

This implies that for N � 105 exp.105"�4=3/, we have (noting that a1 D �l.@P1/)

ak� D a1 C
k��1
X

kD1

.akC1 � ak/� 1

16
.k� � 1/"4=3l.@P1/� l.@P1/� l.@P1/D 4N:

The construction above captures the main idea of the proof for the lower bound in

Theorem 1.6: while we ignored a number of technical details and we carried out the

analysis in the continuum, it is straightforward to complete a formal argument. We

will not do so since the proof of the upper bound on the correlation length contains a

complete argument which is strictly more involved than the proof of the lower bound

on the greedy lattice animal (formally, one can follow the proof in Section 3 with

	.A/D
P

v2A "hv).

While the above construction suggests the emergence of the 4=3 exponent in

RFIM, it falls short of establishing either the upper or lower bound on the correlation

length in Theorem 1.1. In the next two subsections, we will point out the main obsta-

cles and describe at an overview level our approaches to address these challenges.

2.3. Upper bound on correlation length

Our goal is to prove that for every m 2 .0; 1/ there exists C1 D C1.m/ > 0 (indepen-

dent of ˇ) such that for all " 2 .0; 1/ and N � exp.C1"
�4=3/,

mˇ;ƒ4N ;" � m: (8)

Figure 1. From left to right: P1 with potential triangles to be added; P1 with triangles added (i.e.,

P2); P2 with potential triangles to be added.
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(We have used 4N instead of N in the above for later notational convenience.) While

the construction in Section 2.2 hints at the emergence of the 4=3 exponent, the fol-

lowing is a main obstacle in making this a rigorous proof for the upper bound on the

correlation length even in the special case when ˇ D 1: the existence of A 2 A4N

such that "
P

v2A hv > j@Aj is not sufficient for ��
o .ƒ4N ; "h/D 1 (e.g., if "hv D 20

for some v � o and "ho D �5, then A D ¹v; oº satisfies the desired property but

��
o .ƒ4N ; "h/D �1; this is because when j"hvj> 4 the ground state at v agrees with

the sign of hv). To overcome this challenge, we will define a suitable 	-function for

general ˇ, and in the special case of ˇ D 1 the function (very roughly speaking) can

certify ��
o .ƒ4N ; "h/D 1 (the rigorous meaning of this is via an argument by contra-

diction). For 
� Z
2 and an external field f W Z2 7! R, we define H˙.�;
;f / and

�˙
ˇ;�;f

as in (1) and (2) except replacing ƒN , "h by 
, f . Define the free energy

F˙.
;f /D F˙.ˇ;
;f /D � 1
ˇ

log
X

�2¹�1;1º�

e�ˇH ˙.�;�;f /: (9)

ForA�
, our 	-function is defined to be the difference of the free energies on
nA
with respect to the positive and negative boundary conditions, as follows:

	.A;
;f /D�F.
 nA;f /

where �F.B;f /D FC.B;f /�F �.B;f /: (10)

Before proceeding, we make a few remarks about why we choose the 	-function as

the difference of free energies on 
 nA instead of A. In our analysis, we will let the

reference domain be 
 D ƒ2N and construct a sequence .An/n�1 with increasing

(expected) value of 	 . To this end, we need the increment 	.A[B/� 	.A/ to have

nice monotonicity properties as a function of "h so that we can keep track of the

probabilistic behavior of the increment when employing a recursive construction as

in Section 2.2. The choice of 
 nA gives the desired direction of monotonicity; see

Lemma 3.1.

With 	 defined as in (10), our proof proceeds by demonstrating a contradiction

if we assume (8) fails. On the one hand, we have the following upper bound (cf. [5,

Proposition 5.2(iii)]).

LEMMA 2.1

j	.A;
;f /j � 2j@.
 nA/j for all .A;
;f / with A�
.

The proof in the case of the Ising model is elementary. It follows from the fact

that jHC.�;B;f /�H�.�;B;f /j � 2j@Bj and

�F.ˇ;B;f /D � 1
ˇ

log
�˝

exp
�

�ˇ
�

HC.�;B;f /�H�.�;B;f /
��˛

��
ˇ;B;f

�

:
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On the other hand, assuming (8) fails, we will show that the variance of the incre-

ment 	.A [ B;ƒ2N ; "h/ � 	.A;ƒ2N ; "h/ is comparable to that of
P

v2B "hv and

then we can hope to follow the argument in Section 2.2 to construct a set whose 	-

function value is larger than its boundary size. As mentioned, a crucial feature we

use in proving this is a monotonicity property for the increment of the 	-function, as

incorporated in Lemma 3.1.

With all these intuitions in place, the actual proof in Section 3 is written in a

way that both fills in the gaps left by the heuristics from Section 2.2 and addresses

the challenges from the random field Ising model. For the former, for instance, Fig-

ure 2 illustrates how we address the gap from correlations between different rounds

of recursive constructions by making the decision for the triangle T1;i only based on

disorder in the smaller blue triangle T �
1;i . For the latter, Lemma 3.11 manifests the

power of Lemma 3.1 and says that the correlation through the Ising measure is in our

desirable direction and Lemma 3.12 says that the marginal effect from the disorder in

a triangle to our observable is similar to the white noise value of this triangle.

2.4. Lower bound on correlation length

In light of (7), the lower bound on the correlation length for ˇ D 1 can be proved

via an upper bound on the greedy lattice animal. This is an example of the classic

question of computing the (expected) supremum of a Gaussian process. This has been

well understood in general, culminating in Talagrand’s majorizing measure theorem

in [51], which improved previous results in [26] and [27]: as a highlight, an up-to-

constant estimate for the supremum of a general Gaussian process was provided in

terms of the (so-called) �2-functional associated with this process. Specifically for

the example of our lattice animal process, the upper bound was already hinted in

[41], as we explained earlier, whose proof together with proofs for various results on

matching problems were unified and streamlined in [52]. In particular, the following

result was essentially contained in [52].

PROPOSITION 2.2

Let BN be the collection of simply connected lattice animals contained inƒN . There

exists a constant C1 > 0 such that for N > 1 we have

P

�

max
B2BN

P

v2B hv

j@Bj >C1.logN/3=4 C u
�

� exp.�u2=2/ 8u > 0:

To conclude this section, we prove the lower bound in Theorem 1.1 and the upper

bound in Theorem 1.6 using Proposition 2.2.
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Proof of lower bound in Theorem 1.1 and upper bound in Theorem 1.6

The main step of the proof is relating the bound on simply connected lattice animals

to a bound on lattice animals. Let BN be the collection of connected lattice animals

contained in ƒN . We claim that

max
B2BN

j
P

v2B hvj
j@Bj D max

B02BN

j
P

v2B0 hvj
j@B 0j : (11)

For any lattice animal B , let QB be the collection of vertices that is enclosed by B ,

that is, disconnected by B from 1. Let B1; : : : ;Bk be the connected components of
QB nB . Note that B1; : : : ;Bk are simply connected, since if v is separated from 1 by

Bi , then v 2 QB , and, in addition, since B is connected, it follows that v … B . Since

@B is the disjoint union of @ QB and @B1; : : : ; @Bk , we have

j
P

v2B hvj
j@Bj � 1

j@Bj

k
X

iD1

ˇ

ˇ

ˇ

X

v2Bi

hv

ˇ

ˇ

ˇ

D
k

X

iD1

j@Bi j
j@Bj

j
P

v2Bi
hvj

j@Bi j

� max
iD1;:::;k

j
P

v2Bi
hvj

j@Bi j
;

where the last inequality follows from the fact that the coefficients j@Bi j=j@Bj sum up

to 1. This completes the verification of (11). By Proposition 2.2 (and the fact that h is

symmetric), the maximum on the left-hand side of (11) is of order .logN/3=4, which

proves the upper bound in Theorem 1.6. This also shows that it is less than "�1 with

high probability as long as N � exp."4=3=C /. By (7) (and a symmetric condition

for �C
o .ƒN ; "h/), this implies that �˙

o .ƒN ; "h/D ˙1 with high probability and thus

completes the proof of the lower bound in Theorem 1.1.

3. Upper bound on correlation length

This section is devoted to the proof of the upper bound on the correlation length,

as incorporated in (8). Recall the definition of 	-function given in (10). Recall from

Lemma 2.1 that 	.A;
;f / � 2j@.
 n A/j for all .A;
;f /. With this at hand, we

use the bulk of this section to show that if (8) fails, then there exists a random subset

P� �ƒ2N such that

E
�

	.P�;ƒ2N ; "h/� 2
ˇ

ˇ@.ƒ2N n P
�/

ˇ

ˇ

�

> 0; (12)

which is a contradiction. As mentioned in Section 2.3, a key element of our analysis

is a monotonicity property of the 	-function which we incorporate in Lemma 3.1.
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In Section 3.2, we construct P� by enhancing the procedure in Section 2.2 in order

to address additional complications due to the complexity of the 	-function. In Sec-

tion 3.3 we carry out the probabilistic analysis and prove (12) under the assumption

that (8) fails.

3.1. Monotonicity property of the 	-function

LEMMA 3.1

For disjoint subsets A;B � 
, we have that .	.A [ B;
;f / � 	.A;
;f // is

increasing in ¹fv W v 2 Bº, decreasing in ¹fv W v … A [ Bº, and does not depend

on ¹fv W v 2Aº.

Proof

Recall the definition of �F in (10). Write

�h�viˇ;�;f D 1

2

�

h�C
v i

�
C
ˇ;�;f

� h��
v i��

ˇ;�;f

�

:

We compute partial derivatives and get that

@fv
�F.A0/D �2�h�viˇ;A0;f 1v2A0 (13)

for any A0 � Z
2 (where the minus sign inherits from that in the definition of free

energy). Write

G.A;B;
;f /D 	.A[B;
;f /� 	.A;
;f /

D�F
�


 n .A[B/;f
�

��F.
 nA;f /: (14)

Using (13) and the monotonicity of the Ising model (cf. [3, Section 2.2]) we get that

for v 2
 n .A[B/,

@fv
G.A;B;
;f /D 2

�

�h�viˇ;�nA;f ��h�viˇ;�n.A[B/;f

�

� 0I

for v 2B ,

@fv
G.A;B;
;f /D 2�h�viˇ;�nA;f � 0I

and for v 2A, @fv
G.A;B;
;f /D 0. This completes the proof of the lemma.

It is also worth noting that it follows from the expressions obtained for the partial

derivatives of G that

ˇ

ˇ@fv
G.A;B;
;f /

ˇ

ˇ � 2 for all A;B �
 and v 2
: (15)
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Figure 2. (Color online) P1 with .T1;i /
4
iD1. The blue triangles are .T �

1;i /
4
iD1.

3.2. Randomized geometric constructions

In this subsection we give the details of the construction of the random set P� (fol-

lowing Section 2.2) and prove a few geometric lemmas.

3.2.1. Construction of P�

In order to construct P�, we will recursively construct a sequence of polygons

.Pn/n�1 contained in Œ�2N;2N �2 and a corresponding sequence of subsets .Pn/n�1

given by Pn D Pn \ Z
2. Let m 2 .0; 1/, and let ı D 10�2."m/2=3 (where 10�2 is

chosen as a small but otherwise arbitrary constant). As an initialization for our

procedure, we set P1 D Œ�N;N �2 and let .S1;i /
4
iD1 be the sides of P1, numbered

in counterclockwise order with S1;1 being the bottom side. We next describe our

recursive construction.

For n � 1, assume that Pn has been constructed and that Pn has 4n sides

.Sn;i /
4n

iD1 numbered in counterclockwise order. For each i , let rn;i D l.Sn;i /=4 and

partition Sn;i into four segments of length rn;i . Let Tn;i be the isosceles triangle with

base given by the two middle segments of Sn;i and height ırn;i such that Tn;i points

out from Pn (note that Tn;i is measurable with respect to Pn; see Remark 3.2(ii)).

Let Tn;i D Tn;i \ Z
2. Further, let T �

n;i � Tn;i be the triangle consisting of all points

in Tn;i which have distance at least 2ırn;i=3 from the base, and let T�
n;i D T �

n;i \ Z
2.

See Figure 2 for an illustration. We will decide whether to add the triangle Tn;i to

the polygon based on the current polygon and the field in T �
n;i only (instead of the

field in Tn;i ); this ensures that our construction explores disjoint regions in different

iterations (see Lemma 3.7).

In order to construct PnC1, we will decide whether to add the triangle Tn;i for

1� i � 4n depending on whether the expected increase to the value of the 	-function

is larger than the resulting increase in the boundary size of the polygon. To formal-

ize this idea, we will recursively define a sequence of polygons .Pn;i /
4n

iD0 and their

corresponding lattice subsets Pn;i D Pn;i \ Z
2. For the base case, we let Pn;0 D Pn.

For 1 � i � 4n, let Fn;i be the � -algebra generated by Pn;i�1 and ¹hv W v 2 T�
n;iº
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(by definition, Tn;i is measurable with respect to Pn as mentioned earlier, and thus

from our recursive construction below Tn;i is also measurable with respect to Pn;i�1,

as elaborated in Remark 3.10). Note that Fn;i is not increasing. In particular, Fn;i

contains information about ¹hv W v 2
Si�1

i 0D1 T
�
n;i 0º only via Pn;i�1. Define

�n;i D E
�

	.Pn;i�1 [ Tn;i ;ƒ2N ; "h/� 	.Pn;i�1;ƒ2N ; "h/ j Fn;i

�

(16)

as the aforementioned expected increment of 	 (see Remark 3.2(iv)). Then we define

Pn;i D
´

Pn;i�1 [ Tn;i ; if �n;i � 10ı2rn;i ;

Pn;i�1; if �n;i < 10ı
2rn;i :

We let PnC1 D Pn;4n and let .SnC1;i /
4nC1

iD1 be the sides of PnC1, numbered in counter-

clockwise order so that SnC1;j � Sn;i [Tn;i for 1� i � 4n and 4.i�1/C1� j � 4i .

That is, for each i the sides of PnC1 that “come from” Sn;i are .SnC1;j /
4i
j D4.i�1/C1

.

This concludes the construction of PnC1.

Finally, we let n� D blog16.N /c, P � D Pn� , and P� D Pn� . This choice of n�

ensures that ırn;i is large for all n� n�, which will allow us to approximate jT�
n;i j by

the area of T �
n;i .

Before proceeding, we make a few expository remarks on our construction.

Remark 3.2

(i) We have assumed that for each n � 1, the triangles .Tn;i /
4n

iD1 are disjoint and

Tn;i \Pn � Sn;i for all i . This is justified by Lemma 3.3. We also note that if �n;i �
10ı2rn;i (i.e., Tn;i is not included in PnC1), then Sn;i is split into four sides of PnC1

with internal angle � between them. These two assumptions ensure that PnC1 is a

polygon with 4nC1 sides.

(ii) It will be useful in our proof that the numbering of the sides of Pn is deter-

ministic so that the sequence .Tn;i /
4n

iD1 is measurable with respect to Pn. The specific

choice given in the construction is made for convenience.

(iii) Our choice of ı is based on similar considerations to those given in Sec-

tion 2.2. The condition �n;i > 10ı
2rn;i is based on the following calculation. Since

l.@.Pn;i�1 [ Tn;i // � l.@Pn;i�1/ � ı2rn;i , if adding Tn;i to Pn;i�1 increases 	 by

10ı2rn;i , then the difference between 	 and 8l.@P / will increase (the constant 8 will

be explained in Section 3.3.2).

(iv) Note that �n;i depends on ¹hv W v 2
S

.k;j /<.n;i/ T�
k;j

º only through Pn;i�1

due to our particular choice of Fn;i (here .k; j / < .n; i/ if k < n, or k D n and j < i ).

The reason we choose Fn;i this way is that we can show the expected value of the

derivative of the increment with respect to hv for v 2 T
�
n;i is bounded from below by

mˇ;ƒ4N ;", which is at least m by our assumption that (8) fails. Therefore, the lower

bound on the variance obtained this way is comparable to the upper bound on the
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variance obtained from general Gaussian concentration inequality, and this is a useful

property in our analysis later. If instead �n;i was defined by conditioning on the field

in T �
k;j

for .k; j /� .n; i/, then the field in previously rejected triangles would affect

�n;i but potentially only very weakly. This would mean that our lower bound on the

variance of �n;i would be much smaller than the upper bound from Gaussian concen-

tration inequality since now the upper bound would be from the field in a much larger

region.

3.2.2. Geometric lemmas

In this subsection we prove a few lemmas which ensure that the polygons .Pn/
1
nD1

have desirable geometric properties.

LEMMA 3.3

For all n� 1, the triangles .Tn;i /
4n

nD1 are disjoint and Tn;i \Pn � Sn;i for 1� i � 4n.

LEMMA 3.4

Tn;i � Œ�2N;2N �2 for all n� 1 and 1� i � 4n.

We first state and prove a lemma which easily implies Lemmas 3.3 and 3.4.

We begin with some notation. Let I D ¹.n; i/ W n � 1; 1 � i � 4nº, and let G be the

directed forest with vertex set I and edge set

®�

.n; i/; .nC 1; j /
�

W 4.i � 1/C 1� j � 4i
¯

:

That is, there is an edge from .n; i/ to .nC 1; j / if SnC1;j � Sn;i [Tn;i . In this case,

we say that SnC1;j is a child of Sn;i (or Sn;i is the parent of SnC1;j ). We let Gn;i be

the subtree of G rooted at .n; i/. That is, the subgraph of G on the vertices .k; j / 2 I

for which there exists a directed path from .n; i/ to .k; j /. If .k; j / 2 Gn;i we call

.k; j / a descendant of .n; i/.

LEMMA 3.5

Let .n; i/ 2 I and Tn;i be the isosceles triangle with base Sn;i and height 2ırn;i that

contains Tn;i . Then for every .k; j / 2 Gn;i , we have Tk;j � Tn;i .

See Figure 3 for an illustration of .T1;i /
4
iD1.

Proof

It suffices to show that if .nC 1; j / is a child of .n; i/, then Tn;i contains TnC1;j . For

concreteness, we take i D 1 and therefore 1 � j � 4. It is immediate that TnC1;j �
Tn;1 for j 2 ¹1; 4º and that TnC1;j � Tn;1 for j 2 ¹2; 3º if Tn;1 is not contained in
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PnC1. Assuming Tn;1 � PnC1, we can use the fact that Tn;1 is similar to Tn;1 (and

in fact their sides are parallel) to show that the distance between @Tn;1 n Sn;1 and

@Tn;1 n Sn;1 is given by dn;1 D ıp
1Cı2

rn;1. See Figure 4 for an illustration. Further,

the height of TnC1;2 and TnC1;3 is given by ı
p

1Cı2

2
rn;1. Since ı < 1, this height is

strictly smaller than dn;1 and therefore TnC1;2 and TnC1;3 are contained in Tn;1 as

claimed.

Proof of Lemma 3.3

Let � D arctan.ı/, and note that � is the internal angle (with respect to Tn;i ) between

Sn;i and the other sides of Tn;i . The same holds for Tn;i . Since ı < 1, we have � <

�=4.

It suffices to show that for every .n; i/; .n; j / 2 I we have Tn;i \ Tn;j D Sn;i \
Sn;j . We prove this by induction. It clearly holds for P1 D Œ�N;N �2. By Lemma 3.5,

if it holds for Pn, then TnC1;i \ TnC1;j D SnC1;i \ SnC1;j when .nC 1; i/ and .nC
1; j / are not siblings (i.e., they do not have the same parent). When .nC1; i/ and .nC
1; j / are siblings, it is immediate that TnC1;i \ TnC1;j D ; unless SnC1;i and SnC1;j

are adjacent (i.e., ji�j j D 1). Assuming SnC1;i and SnC1;j are adjacent, we note that

the external (with respect to PnC1) angle between them is at least � � � . Recall that

the internal (with respect to TnC1;i ) angle between SnC1;i and the other sides of TnC1;i

is � , and the same holds for j . Since 3� < 3�
4
< � , we see that TnC1;i \ TnC1;j D

SnC1;i \ SnC1;j (see Figure 5 for an illustration of this argument).

Proof of Lemma 3.4

Since ı < 1=2, we have T1;j � Œ�2N;2N �2 for j D 1; 2; 3; 4, so the conclusion fol-

lows from Lemma 3.5.

Figure 3. (Color online) P2 with
S16

iD1 T2;i in blue and
S4

iD1 T1;i n
S16

iD1 T2;i in red.
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Figure 4. (Color online) d1;1 is the distance between @T1;1 n S1;1 and @T1;1 n S1;1.

Figure 5. (Color online) The fact that � < �=3 ensures that T2;1 and T2;2 intersect only at their

common vertex.

We prove a few more lemmas that will be useful for probabilistic analysis in

Section 3.3.

LEMMA 3.6

Let P be a polygon with q sides and P D P \Z
2. Then j@Pj �

p
2l.@P /C 2q.

Proof

Note that j@Pj is bounded above by the number of edges that intersect @P (if @P

contains a vertex in Z
2, then we count this as two intersections). In addition, the

number of edges intersecting any line segment is upper-bounded by 2 plus the `1

distance between its endpoints, which is in turn bounded by 2 plus
p
2 times the

Euclidean length of the segment. This yields the desired bound.

LEMMA 3.7

Let .n; i/, .k; j / 2 I be such that .n; i/¤ .k; j /. Then T �
n;i \ T �

k;j
D ;.

Proof

We assume without loss of generality that n � k. Let j 0 be the unique integer such

that .k; j / is a descendant of .n; j 0/ (if k D n, then j D j 0). By Lemma 3.5 we have

T �
n;i � Tn;i and T �

k;j
� Tn;j 0 . We showed in the proof of Lemma 3.3 that if j 0 ¤ i ,

then Tn;i \ Tn;j 0 D Sn;i \ Sn;j 0 , which implies T �
n;i \ T �

k;j
D ; since T �

n;i \ Sn;i D
;. Therefore, we assume j 0 D i (i.e., Sk;j is a descendant of Sn;i ). Note that this

implies that k > n. To conclude the proof, we consider separately the case that Tn;i is
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Figure 6. (Color online) If Z1;1 D 0, then T �
1;1 is disjoint from .T2;i /

4
iD1.

contained in PnC1 and the case that it is not. For concreteness, we let i D 1. If Tn;1 is

not contained in PnC1, then T �
n;i is disjoint from TnC1;a for a 2 ¹1; 2; 3; 4º since the

base of TnC1;a is a subset of Sn;1, the height of TnC1;a is ırn;i=2, and T �
n;i consists of

points with distance at least 2ırn;1=3 from Sn;1 (see Figure 6 for an illustration). By

Lemma 3.5, T �
k;j

� TnC1;a for some a 2 ¹1; 2; 3; 4º so it follows T �
n;i is disjoint from

T �
k;j

. If Tn;1 is a subset of PnC1, then so is T �
n;1. By Lemma 3.3, T �

k;j
is disjoint from

Pk which contains PnC1 (because k � nC 1), so T �
n;i and T �

k;j
are disjoint.

For the next lemmas, we consider I to be ordered by lexicographical ordering

(i.e., .n0; i 0/ < .n; i/ if n0 < n, or n0 D n and i 0 < i ). For .n; i/ 2 I, let

Zn;i D 1�n;i >10ı2rn;i
: (17)

LEMMA 3.8

Let .k; j /; .n; i/ 2 I. If .k; j /� .n; i/ and Zk;j D 0, then T �
k;j

\Pn;i D ;.

Proof

If Zk;j D 0, then by Lemma 3.5 we have Pn;i \ Tk;j �
S4j

aD4.j �1/C1
TkC1;a. Since

T �
k;j

is contained in Tk;j , it suffices to show that if .k C 1; a/ is a child of .k; j / and

Zk;j D 0 then T �
k;j

\ TkC1;a D ;, which was shown in the proof of Lemma 3.7 (see

Figure 6 for an illustration).

LEMMA 3.9

For .n; i/ 2 I the collection ¹Zk;j W .k; j / � .n; i/º is measurable with respect to

Pn;i .

Remark 3.10

Given ¹Zk;j W .k; j / < .n; i/º, we can recover the construction up until the .n; i/th

step, so we can recover ¹Pk;j W .k; j / < .n; i/º and, in particular, we can recover

¹P1; : : : ;Pnº. Since Tk;j is measurable with respect to Pk , it follows from Lemma 3.9

that the collection ¹Tk;j W .k; j /� .n; i/º is measurable with respect to Pn;i�1.
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Proof of Lemma 3.9

First, we prove thatZk;j D 1Tk;j �Pn;i
. By definition, ifZk;j D 1, then Tk;j � Pk;j �

Pn;i . By Lemma 3.8, if Zk;j D 0, then Tk;j is not contained in Pn;i .

Therefore, it suffices to show that Tk;j is measurable with respect to Pn;i . We

prove this by induction on .k; j /. It clearly holds for k D 1 because .T1;j /
4
j D1 are

deterministic. If k � 2 and Ts;a is measurable with respect to Pn;i for all .s; a/ <

.k; j /, then it follows that ¹Zs;a W .s; a/ < .k; j /º is measurable with respect to Pn;i

and, in particular, Pk is measurable with respect to Pn;i . Since Tk;j is measurable

with respect to Pk , this concludes the proof.

3.3. Probabilistic analysis of the geometric construction

In this subsection, we provide the probabilistic analysis of our randomized geometric

construction. A key ingredient is a resampling inequality, leveraging the monotonicity

of the increments of the 	-function established in Lemma 3.1.

3.3.1. A resampling inequality

For .n; i/ 2 I, we let

Bn;i D
[

.k;j /2I;.k;j /�.n;i/

T
�
k;j

be the set of vertices in Z
2 where the external field is explored for the construction of

Pn;i . By Lemma 3.7, T�
n;i \Bn;i�1 D ;.

LEMMA 3.11

For .n; i/ 2 I, let g be a random field such that gv D hv for v …Bn;i�1 and ¹gv W v 2
Bn;i�1º is a collection of independent mean-zero Gaussian variables with variance 1

that is independent of h. Recall that Fn;i is the � -algebra generated by Pn;i�1 and

¹hv W v 2 T�
n;iº. Let

Q�n;i D E
�

	.Pn;i�1 [ Tn;i ;ƒ2N ; "g/� 	.Pn;i�1;ƒ2N ; "g/ j Fn;i

�

:

Then �n;i � Q�n;i almost surely.

In words, the lemma states that if we resample the field on Bn;i�1 after construct-

ing Pn;i�1, then the expected increment to 	 from adding Tn;i to Pn;i�1 decreases.

Proof of Lemma 3.11

Let Cn;i�1 DBn;i�1 \Pn;i�1 and Dn;i�1 DBn;i�1 nPn;i�1. By Lemma 3.9, Bn;i�1

is measurable with respect toPn;i�1. It follows thatCn;i�1 andDn;i�1 are measurable

with respect to Pn;i�1. By Lemma 3.8,
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Cn;i�1 D
[

.k;j /2I;.k;j /<.n;i/;Zk;j D1

T
�
k;j ;

Dn;i�1 D
[

.k;j /2I;.k;j /<.n;i/;Zk;j D0

T
�
k;j :

Let Q be a polygon such that P.Pn;i�1 D Q/ > 0. We let Bn;i�1.Q/ be the value

of Bn;i�1 on the event ¹Pn;i�1 DQº, and similarly for Cn;i�1.Q/ and Dn;i�1.Q/.

Note that the event ¹Pn;i�1 DQº is measurable with respect to hjBn;i�1.Q/ (here hjA
denotes the restriction of h to A).

We claim that the event ¹Pn;i�1 DQº is decreasing with respect to hjDn;i�1.Q/

and increasing with respect to hjCn;i�1.Q/. That is, if f is a realization of the field

such that Pn;i�1.f / D Q and f 0 is a realization of the field such that f 0
v � fv for

all v 2 Cn;i�1.Q/ and f 0
v � fv for all v 2 Dn;i�1.Q/, then Pn;i�1.f

0/ D Q. To

see this, we prove inductively that Pk;j .f / D Pk;j .f
0/ for each .k; j / � .n; i/.

It clearly holds for .k; j / D .1; 0/ since P1;0 D Œ�N;N �2 deterministically. If

.k; j /� .n; i/ and Pk;j �1.f /D Pk;j �1.f
0/, then �k;j .f /� �k;j .f

0/ if Zk;j .f /D
1 and �k;j .f / � �k;j .f

0/ if Zk;j .f / D 0 (this is because �k;j is a function of

.Pk;j �1; hjT�
k;j
/ and is increasing in hjT�

k;j
for fixed Pk;j �1). This implies that

Zk;j .f /DZk;j .f
0/, and, as a result, Pk;j .f /D Pk;j .f

0/, completing the proof by

induction.

By the Fortuin–Kasteleyn–Ginibre (FKG) inequality for product measures

(see [29]), we get that conditional on ¹Pn;i�1 D Qº we have the following:

.hjCn;i�1.Q/;�hjDn;i�1.Q// stochastically dominates .gjCn;i�1.Q/;�gjDn;i�1.Q//

(note the minus sign for the field onDn;i�1.Q/). By construction, hjƒ2N nBn;i�1.Q/ D
gjƒ2N nBn;i�1.Q/ on ¹Pn;i�1 DQº. Therefore, conditional on ¹Pn;i�1 DQº and on

hjT�
n;i

.Q/ (thus also conditional on gjT�
n;i

.Q/ since hjT�
n;i

.Q/ D gjT�
n;i

.Q/), the field

.hjPn;i�1.Q/[Tn;i .Q/;�hjƒ2N n.Pn;i�1.Q/[Tn;i .Q/// stochastically dominates the field

.gjPn;i�1.Q/[Tn;i .Q/;�gjƒ2N n.Pn;i�1.Q/[Tn;i .Q///. Let �Q W Rƒ2N ! R be the func-

tion given by

�Q.f /D 	
�

Pn;i�1.Q/[ Tn;i .Q/;ƒ2N ; f
�

� 	
�

Pn;i�1.Q/;ƒ2N ; f
�

:

By Lemma 3.1, �Q is increasing in f jPn;i�1.Q/[Tn;i .Q/ and decreasing in

f jƒ2N n.Pn;i�1.Q/[Tn;i .Q//. It follows that given ¹Pn;i�1 D Qº and hjT�
n;i

, we have

that �Q."h/ stochastically dominates �Q."g/. Since

�n;i 1Pn;i�1DQ D E
�

�Q."h/ j Fn;i

�

1Pn;i�1DQ

and

Q�n;i 1Pn;i�1DQ D E
�

�Q."g/ j Fn;i

�

1Pn;i�1DQ;
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this proves the lemma.

3.3.2. Quantitative probabilistic analysis

We first show that each triangle Tn;i has a decent probability to be included in P�.

Recall that ı D 10�2.m"/2=3.

LEMMA 3.12

For m 2 .0; 1/, there exist constants C2; c2 > 0 (depending on m) such that the fol-

lowing holds. Suppose that (8) fails for some N � eC2"�4=3
. Then for all 1 � n �

log16.N / and 1� i � 4n,

P.�n;i � 10ı2rn;i /� c2:

Proof

In light of Lemma 3.11, in order to prove the lemma it suffices to show that for all

.n; i/ 2 I with n� log16.N / we have

P. Q�n;i � 10ı2rn;i /� c2: (18)

As in the proof of Lemma 3.11, we will work conditionally on Pn;i�1. We let g be as

in Lemma 3.11. Note that g is a collection of independent standard Gaussian random

variables. Recall the definition of G given in (14). We have

Q�n;i D E
�

G.Pn;i�1;Tn;i ;ƒ2N ; "g/jPn;i�1; gjT�
n;i

�

: (19)

Since G.A;B;
;f / is an odd function of f j�nA for all fixed .A;B;
/, we see

that G.Pn;i�1;Tn;i ;ƒ2N ; "g/ is an odd function of gjƒ2N nPn;i�1
when Pn;i�1 is

fixed. Since g is independent of Pn;i�1 (because Pn;i�1 is measurable with respect to

hjBn;i�1
) and g has a symmetric distribution, this implies that Q�n;i is an odd function

of gjT�
n;i

when Pn;i�1 is fixed. In particular, we have

EŒ Q�n;i j Pn;i�1�D 0: (20)

Next, we give a lower bound on the variance of Q�n;i . By (19) and the formulas derived

in the proof of Lemma 3.1 for the partial derivatives of the increment of 	 , we obtain

that, for v 2 T�
n;i ,

EŒ@gv
Q�n;i j Pn;i�1�D 2"E

�

�h�viƒ2N nPn;i�1;"g j Pn;i�1

�

:

Recall the definition of mˇ;ƒN ;" in (3). For
� Z
2, define mˇ;�;" similarly by replac-

ing ƒN with 
. By monotonicity of the Ising model (cf. [3, Section 2.2]), we have

that mˇ;�;" is decreasing in 
, and therefore, for v 2 T
�
n;i ,
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EŒ@gv
Q�n;i j Pn;i�1�� 2"mˇ;ƒ2N �v;" � 2"mˇ;ƒ4N ;" � 2"m;

where the last inequality follows from our assumption that (8) fails. It then follows

from [15, Proposition 3.5] that

EŒ Q�2
n;i j Pn;i�1�D VarŒ Q�n;i j Pn;i�1�� .2"m/2jT�

n;i j: (21)

In addition, by (15) we see that Q�n;i is a Lipschitz function of gjT�
n;i

with Lipschitz

constant 2"
q

jT�
n;i j (with respect to the `2 norm) for each fixed Pn;i�1. Therefore,

by (20) and by the Gaussian concentration inequality (see [10], [50]; see also [1,

Theorem 2.1], [53, Theorem 3.25]) we get that

EŒ Q�4
n;i j Pn;i�1�� 105"4jT�

n;i j2: (22)

A simple computation gives that, for any t > 0,

EŒ Q�2
n;i j Pn;i�1�� t2 C E. Q�2

n;i 1 Q�2
n;i

�t2 j Pn;i�1/

� t2 C
q

E. Q�4
n;i j Pn;i�1/

q

P. Q�2
n;i � t2 j Pn;i�1/:

Setting t D "m
q

jT�
n;i j and combining with (22) and (21), we obtain that

P. Q�n;i � "m
q

jT�
n;i j j Pn;i�1/D 1

2
P

�

Q�2
n;i � ."m/2jT�

n;i j j Pn;i�1

�

� 10�5
m

4; (23)

where the first equality follows from the fact that, conditioned on Pn;i�1, the law

of Q�n;i is symmetric around 0. It is obvious that the number of lattice points in any

isosceles triangle in R
2 with base length and height larger than 100 is at least half of

the area of the triangle. Since N � eC2"�4=3
and 1� n� log16.N /, we have that the

base length and the height of T �
n;i (which are

2rn;i

3
and

ırn;i

3
, respectively) are both

larger than 100 as long as C2 is a large enough constant. Therefore,

jT�
n;i j � 2�1�.T �

n;i /D 18�1ır2
n;i :

Combined with (23) and ı D 10�2."m/2=3, it completes the proof of (18).

We are now ready to conclude the proof on the upper bound for the correlation

length.

Proof of (8)

We will prove (12), provided that (8) fails for N � eC1"�4=3
for a large enough con-

stant C1, and thus obtain a contradiction with Lemma 2.1. This in turn proves (8), as

required.
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Since for each n� 1, Pn has 4n sides and n� � log16.N /, we see that P � has at

most N 1=2 sides. By construction, l.@P �/� l.@P1/D 8N . Therefore, by Lemma 3.6

we have

j@P�j �
p
2l.@P �/C 2N 1=2 � 2l.@P �/:

In addition, j@.ƒ2N n P�/j D j@P�j C 16N . Therefore, it suffices to show that

E
�

	.P�;ƒ2N ; "h/� 8l.@P �/
�

> 0: (24)

For n � 1, let Xn D 	.Pn;ƒ2N ; "h/ � 8l.@Pn/. For .n; i/ 2 I, let Xn;i D 	.Pn;i ;

ƒ2N ; "h/�8l.@Pn;i / and Yn;i DXn;i �Xn;i�1. We assume from now on that n < n�.

We have

l
�

@.Pn;i�1 [ Tn;i /
�

� l.@Pn;i�1/D 2
p

1C ı2rn;i � 2rn;i � ı2rn;i :

Recalling definition of Zn;i as in (17), we get that:

� if Zn;i D 0, then Pn;i D Pn;i�1 and thus Yn;i D 0;

� if Zn;i D 1, then

Yn;i D
�

	.Pn;i�1 [ Tn;i ;ƒ2N ; "h/� 	.Pn;i�1;ƒ2N ; "h/
�

� 8
�

l
�

@.Pn;i�1 [ Tn;i /
�

� l.@Pn;i�1/
�

;

where the difference in the perimeter is bounded by ı2rn;i .

Altogether, we have that

Yn;i �Zn;i

�

	.Pn;i�1 [ Tn;i ;ƒ2N ; "h/� 	.Pn;i�1;ƒ2N ; "h/� 8ı2rn;i

�

:

Recalling the definition of �n;i as in (16), we obtain

E
�

Zn;i

�

	.Pn;i�1 [ Tn;i ;ƒ2N ; " � h/� 	.Pn;i�1;ƒ2N ; " � h/
��

D E
�

E
�

Zn;i

�

	.Pn;i�1 [ Tn;i ;ƒ2N ; " � h/� 	.Pn;i�1;ƒ2N ; " � h/ j Fn;i

���

D EŒZn;i�n;i �� EŒ10ı2rn;iZn;i �;

where we used the fact that Zn;i is measurable with respect to Fn;i . Therefore,

EŒYn;i �� 2ı2
EŒrn;iZn;i �:

It follows from the construction of Pn that for every .n; i/ 2 I we have l.Sn;i / �
l.@P1/4

�n. Therefore, rn;i � l.@P1/4
�n�1. Plugging this into the previous display

gives

EŒYn;i �� 2ı24�n�1l.@P1/P.�n;i > 10ı
2rn;i /:

Finally, we will set C1 � C2 so we can apply Lemma 3.12 and get

EŒYn;i �� 2c2ı
24�n�1l.@P1/:
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Summing over i gives

EŒXnC1 �Xn�� 2�1c2ı
2l.@P1/:

Since 	 is an odd function of h, we have EŒX1�D �l.@P1/. Therefore

EŒXn� �D EŒX1�C
n��1
X

nD1

EŒXnC1 �Xn��
�

c2ı
2.n� � 1/=2� 1

�

l.@P1/:

Plugging in n� D blog16.N /c and ı D 10�2."m/2=3, we see that EŒXn� � > 0 (which is

a rewrite of (24)) for N � eC1"�4=3
, provided that C1 � C2 is a large enough constant

(depending on m).

4. Upper bound on greedy lattice animal

This section is devoted to the proof of Proposition 2.2, which is essentially [52, Theo-

rem 4.4.2]. We make the connection between [52, Theorem 4.4.2] and Proposition 2.2

slightly more explicit, and we claim no credit for material in this section.

For a Gaussian process X indexed on a set T , define the canonical metric dX W
T � T ! Œ0;1/ for .T;X/ by

dX .s; t/D E
��

X.s/�X.t/
�2�1=2

: (25)

Next, we review the �˛;ˇ -functionals which measure the size of a metric space in a

way that can be used to control the maximum of a Gaussian process. We begin with

an auxiliary definition.

Definition 4.1

Given a set T , an admissible sequence on T is an increasing sequence of partitions

.…n/n�0 of T such that j…0j D 1 and j…nj � 22n
for n� 1.

For a partition …n of a set T and an element t 2 T , we will denote by �n.t/ the

element of …n that contains t . Now we are ready to define the �˛;ˇ functionals.

Definition 4.2

Given a set T , a metric d on T , and numbers ˛;ˇ > 0, let

�˛;ˇ .T; d/D inf
.…n/

sup
t2T

h

X

n�0

�

2n=˛
diam

�

�n.t/; d
��ˇ

i1=ˇ

;

where the infimum is taken over all admissible sequences and diam.�n.t/; d/ is the

d -diameter for �n.t/. In addition, define �2.T; d/D �2;1.T; d/.
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With this definition in place, we can state Talagrand’s majorizing measure the-

orem (see [51] and [52, Theorem 2.2.22]) which gives a tight bound on the expec-

tation of the supremum of a Gaussian process in terms of the �2-functional. Write

kXkT D supt2T Xt .

THEOREM 4.3

There exists a universal constant K such that the following holds. If T is a set and X

is a centered Gaussian process indexed on T , then we have

E
�

kXkT

�

�K�2.T; dX /:

Next, we state the Borell–Tsirelson–Ibragimov–Sudakov (Borell–TIS) inequal-

ity. For a set T and a Gaussian process .Xt /t2T indexed on T , let �2
X D supt2T Var.Xt /.

The Borell–TIS inequality says that the tails of the maximum of X behave roughly

like those of a Gaussian random variable with variance �2
X (see [10], [50], or [1,

Theorem 2.1] for a proof):

P
�ˇ

ˇkXT k �E
�

kXT k
�ˇ

ˇ> z
�

� 2 exp
�

� z2

2�2
X

�

for all z > 0: (26)

Note that we do not need to assume X is centered for (26). Note also that for any

lattice animal A we have Var.
P

v2A hv/ D jAj � j@Aj2, so if T is a set of lattice

animals and Xt is the sum of the Gaussian variables in the lattice animal t normalized

by its boundary size, we have �2
X � 1.

Having introduced these tools, we turn to the proof of Proposition 2.2. It is more

convenient to work with the unnormalized lattice animal processes, so we will parti-

tion the lattice animals by the lengths of their boundaries. The following lemma is the

key to the proof of Proposition 2.2.

LEMMA 4.4

For a vertex v 2 Z
2 and an integer k � 2, let Av;k be the collection of simply con-

nected lattice animals A such that j@Aj � 2k , v 2A, and there exists u� v such that

u is not in A. For A 2 Av;k , let YA D
P

v2A hv . Then there exists a constant C > 0

such that

P
�

max
A2Av;k

YA � Ck3=42k C u2k
�

� 2e�u2=2 for all u > 0:

In Lemma 4.4, we restricted to A containing v on its boundary so that we have

jAk;vj � 22kC1
(as explained in the proof of Lemma 4.4 below). Lemma 4.4 can be

deduced as a consequence of the following two lemmas in [52].
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LEMMA 4.5 ([52, Lemma 4.4.6])

Let n � 1 and T be a set such that jT j � 22n
. Let d be a metric on T . Then (

p
d is

also a metric and)

�2.T;
p
d/� n3=4�1;2.T; d/

1=2:

LEMMA 4.6 ([52, Proposition 4.4.5])

There exists a constant C > 0 such that

�1;2.Av;k; d
2
Y /� C22k :

Note that [52, Proposition 4.4.5] was stated in a slightly different context, but the

metric space it applies to is easily seen to be isomorphic to Av;k with distance d2
Y

since d2
Y .A;A

0/D EŒ.YA � YA0/2� is simply the cardinality of the symmetric differ-

ence of A and A0.

Proof of Lemma 4.4

In order to apply Lemma 4.5, we need a bound on the cardinality of Ak;v . By con-

sidering a simply connected lattice animal A as the lattice points enclosed by a loop

consisting of j@Aj edges of the dual lattice .1=2; 1=2/ C Z
2, it is easy to see that

jAk;vj � 22kC1
(this is because one can construct a loop by starting an edge near v

and adding new edges sequentially where each new edge has at most four choices).

At this point, it is immediate from Lemmas 4.5 and 4.6 that �2.Ak;v; dY /� Ck3=42k .

Thus by Theorem 4.3, we have that EŒmaxA2Av;k
YA�� Ck3=42k . Therefore, we can

obtain Lemma 4.4 by (26) and the fact that Var.YA/� 22k for all A 2 Av;k .

Proof of Proposition 2.2

The proof is the same as the proof of [52, Theorem 4.4.2] using [52, Proposition

4.4.3]. Note that the total length of all edges in ƒN is 2 � .2N C 1/ � 2N , and let

k� D min¹k W 2k � 2 � .2N C 1/ � 2N º. We have k� � C logN , and for any A 2 AN

there exists 2� k � k� such that 2k�1 � j@Aj � 2k . Therefore, using Lemma 4.4 and

a union bound over v and k we have for some constant C > 0,

P

�

max
A2AN

YA

j@Aj � C.logN/3=4 C x
�

� Celog N �x2=2:

Letting x D C 0.logN/3=4 C u for a large enough constant C 0 concludes the proof.
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