CORRELATION LENGTH OF THE
TWO-DIMENSIONAL RANDOM FIELD ISING MODEL
VIA GREEDY LATTICE ANIMAL

JIAN DING and MATEO WIRTH

Abstract

For the two-dimensional random field Ising model where the random field is given by
independent and identically distributed mean zero Gaussian variables with variance
€2, we study (one natural notion of) the correlation length, which is the critical size of
a box at which the influences of the random field and of the boundary condition on the
spin magnetization are comparable. We show that as ¢ — 0, at zero temperature the

[CIC

correlation length scales as e % (and our upper bound applies for all positive

temperatures).

1. Introduction

Let {h, : v € Z*} be independent and identically distributed (i.i.d.) Gaussian random
variables with mean zero and variance 1. For N > 1, let Ay = {v € Z? : |v]oo <
N} C Z? be the box of side length 2N centered at the origin o. For u,v € Z? with
|u —v| =1 (where | - | denotes the Euclidean norm), we say v and v are adjacent and
write ¥ ~ v. For & > 0, the random field Ising model (RFIM) Hamiltonian H £ on the
configuration space {—1, 1}~ with plus (respectively, minus) boundary condition
and external field {eh, : v € Ay} is defined to be

Hi(U,AN,é‘h)Z—( Z 0,0y = Z oy + Z shuou), (D

U~V,UVEA N u~v,ueA N, VEA N UEA N

for 0 € {—1,1}A~, where in the first sum each unordered edge appears once. For
B >0, let y,/:; An.ch be the Gibbs measure on {—1, 1}A~ at inverse-temperature 3,
defined as

1 — +
//L;;AN,Eh(O—):Ee BH ((J',AN’gh)7 (2)
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1782 DING and WIRTH

where Z is the partition function so that /fﬂt, A ch (o) is a probability measure. Note
that ,uigt, An.ch is a random measure which itself depends on {/,}. To clearly separate
the two different sources of randomness, we will use P and E to refer to the proba-
bility measure with respect to the external field {&, }; we use ,ui An.ch © denote the

Ising measures and <')Mi to denote the expectations with respect to the Ising
B.A N .€h

measures. For instance, (o," )ll«+ denotes the average value of the spin at the
B.A N .€h

origin when we sample o € {—1, 1}2~ according to u; A ch” We are interested in
the following quantity which measures the influence of the boundary condition:

E[{o,") (0 i p g en)- 3)

m = —
ﬂ,AN,&‘ ’U“;S‘F,AN,&‘h

Form € (0, 1), we consider the following notion of correlation length,

Y (B.m,e) =min{N :mg A, . <m}, ()

which (for large §) amounts to the critical scale where the random field has a com-
parable influence as the boundary condition on the spin at the origin. Here we use the
convention that min @ = co.

THEOREM 1.1
For everym € (0, 1), there exists C = C(m) > 0 such that ¥ (B, m, g) < eCe? forall
B >0 (including B = oo), and that ¥ (co,m, &) > e ¢ for B = oo.

Remark 1.2

The emergence of the 4/3 exponent is somewhat unexpected, and it is reminiscent
of the 4/3-exponent in upper bounds on distances for Liouville quantum gravity at
high temperatures (see [22]): the 4/3-exponent arises from “back-of-the-envelope”
computations that are similar in spirit for both scenarios (an interested reader may
compare [22, Section 2] with Section 2.2). However, the random field Ising model
and Liouville quantum gravity are two drastically different models, and as a result
their mathematical treatments are different except that they both employ a framework
of multi-scale analysis.

Remark 1.3

During the submission of this paper, the lower bound here was extended to low tem-
peratures (i.e., to large finite 8) by [25], which takes the result at 8 = oo as an input.
The key idea in [25] is to extend the Peierls argument in the construction of the Peierls
mapping, where the additional novelty is to also flip the signs of the disorder when
flipping the signs of spins on a simply connected component. In addition, by [23,
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Corollary 1.6] there is an exponential decay for § < ., and, moreover, the decay-
ing rate is upper-bounded by that for ¢ = 0. Furthermore, the behavior for moderate
B > B, seems rather challenging, and currently we have a weak belief that the e
scaling for the correlation length holds for all 8 > .. Ultimately, it would be very
interesting to completely understand the phase diagram of the mapping from (8, ¢) to
the rate of exponential decay (as proved in [2], [24]), but this seems out of reach for

now, and we do not have any intuition beyond what has been discussed.

Remark 1.4

More than one year after the arXiv post of this paper, and more than half a year after
the arXiv post of [25], the paper [7] was posted, which proved an upper bound of
exp(eo(g_z)) and a lower bound of (the type of) ¢~ for the correlation length. In
addition, we note that the notion for the correlation length in the upper bound of [7]
governs the rate of exponential decay, and thus in terms of upper bound it is a stronger
notion than the one used in this paper.

Remark 1.5

A very natural question is whether one can prove the scaling of ¢~ for the correla-
tion length that governs the rate of exponential decay. As far as we can tell, to this end
one needs to combine the techniques from [24] and [2] (see also [7]) with methods
in this paper. This does not seem to be trivial since the key point of [24] and [2] is to
prove that the boundary influence has a polynomial decay with a large power, while
in this paper in order to derive a contradiction currently it seems inevitable to assume
in the contradiction hypothesis that the boundary influence is lower-bounded by a
constant. Maybe a vaguely plausible approach is to show that once the side length
exceeds 6874/3, the boundary influence will start seeing a decay and that also the
tortuosity assumption employed in [24] and [2] for disagreement percolation would
hold. But, by all means, this is a highly nontrivial task, and we feel better to leave it
for future study and advise an interested researcher to keep their mind open.

This result lies under the umbrella of the general Imry—Ma [37] phenomenon on
the effect of disorder on phase transitions in two-dimensional physical systems. We
next give a brief review of the development in the particular case of the random field
Ising model (RFIM). In the limit of N — oo with small fixed ¢ > 0, it was shown in
[4] and [5] that mg A , . decays to O for all B > 0, which also implies the uniqueness
of the Gibbs state. The decay rate was then improved to 1/./loglog N in [18], to
N~¢ (for some small ¢ > 0) in [3], and finally to e~ N in [24] and [2] (previously,
exponential decay was shown in [8], [16], [30], [54] for large ¢).
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In three dimensions and above, however, the behavior is drastically different from
that in two dimensions: it was shown in [36] that long range order exists at zero
temperature with weak disorder; that is, mso A ¢ does not vanish as N grows; later
an analogous result was proved in [14] (see also [1 1, Chapter 7]) at low temperatures.
A heuristic explanation for the different behaviors is as follows: in two dimensions
the fluctuation of (the sum of) the random field in a box is of the same order as the size
of the boundary, while in three dimensions and above the fluctuation of the random
field is substantially smaller than the size of the boundary.

In the limit as ¢ — 0, the scaling of the correlation length in both two dimensions
and three dimensions (at some “critical” temperature) has remained largely elusive
even from the point of view of physics predictions despite extensive studies. Previous
works include (a partial list of) numeric studies [55], [48], [31], [46], [45], [47], [43],
and [49] and nonrigorous derivations [44], [33], [9], [34], [21], [12], and [13]. It is
worth noting that most of the studies in two dimensions were at zero temperature,
but even in this case there was no consensus on the scaling of the correlation length:
while a common belief seemed to be that it scales like e~ (or upper-bounded by
80(8_2)) as argued in [33], [9], [13], [48], and [47], there were also other predictions
including a scaling of ¢~ in a more recent work [49]. (We note that some of these
papers studied our notion of correlation length, and some studied the notion which
is the inverse of the rate of exponential decay, and some were not very careful in
distinguishing these two notions.) Prior to our work, the only mathematical result on

the correlation length was (as far as we know) an upper bound of e o™ from [18]
and [3].

Our proof method for the upper bound on the correlation length shares the under-
lying philosophy of “using the fluctuation of the random field to fight against the
influence from the boundary” with the previous works [5], [18], [3], [24], and [2],
and, in particular, in the sense that the proof strategy shares some similarity with [5]
for deriving a contradiction for lower and upper bounds on difference of free energies.
However, our strategy of deriving the lower bound on the difference of free energies
(which is the key point for both [5] and our proof for upper bound on the correlation
length) is very different from that in [5]. The proof of the lower bound of the corre-
lation length is completely different from [5], [18], [3], [24], and [2] since this is a
bound in a different direction from these works. In fact, it shares some similarity with
[17] and [28] in terms of a connection to greedy lattice animals, as we elaborate in
what follows. Let 4y be the collection of all connected subsets of Ay (i.e., lattice
animals) that contain the origin, and let 2y C 4y be the collection of all simply con-
nected subsets in 4. We define (the value of) the greedy lattice animal normalized
by its boundary size as
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where |0A| is the number of edges with exactly one endpoint in A. Theorem 1.1 is
deeply connected to the following result (see Section 2 for an extensive discussion).

THEOREM 1.6
There exists a constant C > 0 such that for all N > 3 we have

C '(logN)¥* <E[6n] <E[8y] < C(log N)*/*.

Remark 1.7

In Theorem 1.6 we described the maxima over both connected subsets and simply
connected subsets for the following reasons: (1) both upper and lower bounds can be
obtained for simply connected subsets first and then it is relatively easy to translate
the bound to connected subsets; (2) while it is easier to prove the lower bound on the
correlation length using the upper bound for the maximum over connected subsets,
fundamentally what governs the behavior seems to be the maximum over simply con-
nected subsets as we see in three dimensions (see also the proof in [25], where the
maximum over simply connected subsets plays a fundamental role).

There is an interesting historical development on Theorem 1.6. The formulation
of the statement immediately reminded the authors of the greedy lattice animal nor-
malized by its volume (either normalized by the volume of the animal or by the vol-
ume of the box which contains the animal); this has been extensively studied for gen-
eral disorder distributions (see [19], [20], [32], [35], [38]—[40], [42]). In particular, a
rather precise description was obtained for the greedy lattice animal in [35], including
that for rather general distributions (including the Gaussian distribution) the greedy
lattice animal in a d -dimensional box of side length N normalized by N¢ converges
to a fixed constant (where the limiting constant depends on the distribution and the
dimension). Despite a high degree of similarity in the definitions between the greedy
lattice animal normalized by its boundary size and the version normalized by its vol-
ume, their behaviors seem to be quite different and the mathematical proofs in these
two scenarios are largely different too: in some sense, such differences are suggested
in the (log N)3/* growth of 8, whereas in the version normalized by its volume, this
was known to converge to a constant.

In three dimensions and higher, it was shown in [17] and [28] that the simply
connected greedy lattice animal normalized by its boundary size (i.e., the analogue
of Gy in higher dimensions) is O(1), which played a useful role in the proof for the
existence of long range order at zero temperature in [36] and [14]. The O(1) bound in
three dimensions and higher and the (log N')3/# growth in two dimensions for Gy can
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be seen as a stronger version of the intuition underlying the Imry—Ma argument for the
transition in dimension for statistical physics models with random field. Finally, we
remark that in retrospect the proof in [17] and [28] amounts to a nontrivial application
of Dudley’s integral bound in [26] (note that the actual proof was implemented in a
self-contained manner).

Initially, the authors thought that Theorem 1.6 was new and as a result provided a
self-contained proof (for a slightly weaker version of Theorem 1.6) in the first version
of this paper. During the submission, we discovered in the literature a nonobvious
but deep connection between the greedy lattice animal normalized by its boundary
size and the matching problem in Euclidean spaces. A fundamental problem is to
match i.i.d. uniform points X1,..., Xy« in a d-dimensional box containing N4 lat-
tice points yp,...,yya (i.€., to find a bijection m between these two set of points) in
a certain optimal way. A classic result of [6] proved that E[min, N—ld vazdl | X () —
yill = ©(/Tog N) for d = 2. Since [6] there has been extensive work on match-
ing problems, and one is encouraged to see [52] for an excellent account on the
topic, which presents a unified proof via the majorizing measure theory. Of partic-
ular relevance to Theorem 1.6 is the celebrated work of [41] which showed that
E[min, max, ; <y« | Xxq) — yill = O((log N)¥*) for d = 2. The power of 3/4 is
deeply connected to the power in Theorem 1.6 via Hall’s marriage lemma as we next
explain.

Putting Halls’s marriage lemma into the context of the matching problem, it states
that if for each lattice point y; there exists a collection of random points A; such that

s

iel

>|I| forall I C{l,...,N%}, (6)

then there exists a bijection 7 such that X ;) € A;. In light of this, a natural choice of
Aj; is the collection of all random points in a ball of radius r centered at y;. As such,
the result of [41] essentially reduces to showing that (6) holds for r = O((log N)3/4).
It is plausible that in order to verify (6) one essentially only needs to consider / when
I is the set of lattice points in a simply connected subset | C R?. Since the union
of the balls centered at / is an expansion of I, that is, the union of | and all points
with distance at most r from |, a moment of thinking should lead to that with high
probability for typical / (which turns out to be the ones we care most)

A1) + cr length(3l) < )U A; ) < (1) 4+ Crlength(3l),
iel

where ¢, C > 0 are constants, A(l) is the number of random points in |, and length(dl)
is the length of the boundary curve for I. Since A(l) — |/]| is a mean-zero random
variable, which can be roughly regarded as a Gaussian variable, and thus in spirit
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{A(I) — |I]}1 resembles the lattice animal process. In light of this discussion, heuris-

tically the result of [41] reduces to max; 1521;('31”) = O((log N)3/*), which resembles

the upper bound in Theorem 1.6. Indeed, this connection was nicely explained in [52],

which also nicely explains the conceptual difference for the behavior between d = 2
and d > 3.

Having explained the connection to the matching problem, we come back to what
is most relevant to us, namely, the proof of Theorem 1.6. It turns out that a proof of
Theorem 1.6 was essentially contained in [52], and in Section 4 we present this in a
more explicit manner without claiming any credit. In addition to that, in the arXiv ver-
sion of this paper (arXiv:2011.08768), we still keep our “original” proof since we feel
that our proof seems to explain some of the geometric intuition in an arguably more
intuitive way and thus we feel that this framework of multi-scale analysis may turn
out to be useful in some related problems (e.g., random metric of Liouille quantum
gravity).

We conclude the introduction by some discussions on future research. As a nat-
ural question, one may ask what is the correlation length for the random field Potts
model. We expect that the same scaling of ¢™*? should occur. The nontrivial part is
the upper bound, for which our proof uses monotonicity properties of the Ising model
in a substantial manner.

2. Overview of the proof

In this section we introduce the main idea behind the proof of Theorem 1.1, and
in particular we give some intuition for the exponent 4/3. We will then discuss the
obstacles that arise in making this proof sketch rigorous.

2.1. Notation

For a real (or integer-valued) vector x (in any dimension), we denote its Euclidean
norm by |x|. For a finite set A, we denote its cardinality by |A|. For A C R? we
denote the Lebesgue measure of A by A(A). For a curve n, we denote its length by
[(n). We use A€ to denote the complement of the set (or event) A. If A is an event,
we denote its indicator by 14.

In what follows, we let ¢,c¢’,¢”,C,C’,C"” > 0 be arbitrary constants whose val-
ues may change each time they appear, and may depend on m but not on € or N.
Numbered constants ¢y, ¢3, ... may still depend on m but their values will be fixed
throughout the paper.

We say two points u, v € Z? are adjacent to each other if |u — v| = 1, in which
case we write u ~ v. When convenient, we will think of Z2 as being embedded in
R? in the obvious way. For any set A C Z2, we let 34 = {(u,v) :u ~v,u € A,v €
72\ A} denote the edge boundary of A in the nearest neighbor graph on Z2.



1788 DING and WIRTH

2.2. Emergence of the 3/4 exponent

Let 0% (A y.eh) be the ground states with respect to the plus and minus boundary
conditions; that is, they are minimizers of the Hamiltonians H ¥ (A, eh), respec-
tively. (Since our field / has a continuous distribution, the ground state with respect
to each boundary condition is unique with probability 1.) Suppose o, (An,eh) =1
and S is the connected component of {v € Ay : 0, (An,eh) = 1} that contains o.
Then necessarily we have ), ¢ ehy, > 0S|, because, otherwise, flipping spins on .S
would decrease the Hamiltonian and contradict the definition of the ground state. In
other words,

h
o, (An.,eh) =1 implies that max M >1.

7
AG:A:N |8A| - ( )

This explains why the greedy lattice animal normalized by its boundary size is con-
nected to the random field Ising model. From the discussion above, an upper bound
on the greedy lattice animal directly gives a lower bound on the correlation length
for B = oco. In what follows, we will sketch an argument leading to the emergence of
3/4-exponent in the lower bound of Theorem 1.6.

For convenience of exposition, we will pass to the continuum. To each vertex
v € Z? we can associate the axis-aligned unit square R, centered at v, and to each
subset A C Z? the set A = | J, 4 Rv. Notice that the perimeter of A (which we denote
by 1(d2)) is equal to the boundary size |0A4|. Next, we let W be a standard white noise
on R? such that W(R,) = h, for each v € Z?. In particular, for any A C Z? we have
Y vea hv = W(2). We will sketch a procedure to construct a polygon P C [— N, N]?
(for N > eCfMS) such that each side of P has length at least 1 (we will refer to this
as a polygon animal in what follows) and eW(P) > [(dP). The idea is to recursively
expand P by possibly joining to it a triangle 7" such that the standard deviation of
eW(T) is of the same order as [(d(P U T)) — [(dP). We remark that we choose to
add triangles instead of rectangles for the reason that adding a triangle with the same
area results in a substantially smaller increase in the perimeter.

We begin with the polygon P; = [-N/2, N/2]?. Having constructed Py, we
construct Py as follows. For each side s of Pg, we consider the isosceles trian-
gle Ty with base given by the “middle” segment of s of length /(s)/2 and of height
€2/31(s)/8 that points out of Px. We add T to the polygon if W(Ts) > 0 (which
occurs with probability 1/2). If we do not add Ty, we split s into four sides of equal
length. We let Py be the polygon obtained by applying this procedure to each side
of Pj. See Figure 1 for an illustration of the process.

Next, we let ax = E[eW(Py) — [(dP)]. Our goal is to lower-bound ay .y — a.
For each side s of Py, we have A(Ty) = £2/31(s)2/32 (recall that A denotes the
Lebesgue measure on R?), and an elementary calculation shows that adding T to
Py increases the perimeter by A < ¢4/31(s)/16. If we ignore the potential overlap
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between the triangles corresponding to different iterations of the scheme, then we
would have E[eW(Ts) | W(Ts) > 0] > 2A;. Summing over all sides of Py, we get
that

1 1
Qs —a = 1 PE[10P)] = 2o 10Py).

Further, since at each step each side s is split into four sides of length at least /(s)/4,
we see that for k* = |log; ¢ N | each side of P+ has length at least 1 deterministically.
This implies that for N > 10° exp(10°s~4/3), we have (noting that a; = —I(3P;))

k*—1
1
ar+ =dap + E (ak+1 —ak) > E(k* — 1)84/31(8P1) — l(aPl) > l(aPl) =4N.
k=1

The construction above captures the main idea of the proof for the lower bound in
Theorem 1.6: while we ignored a number of technical details and we carried out the
analysis in the continuum, it is straightforward to complete a formal argument. We
will not do so since the proof of the upper bound on the correlation length contains a
complete argument which is strictly more involved than the proof of the lower bound
on the greedy lattice animal (formally, one can follow the proof in Section 3 with
T(A) =) ,cq8hv).

While the above construction suggests the emergence of the 4/3 exponent in
RFIM, it falls short of establishing either the upper or lower bound on the correlation
length in Theorem 1.1. In the next two subsections, we will point out the main obsta-
cles and describe at an overview level our approaches to address these challenges.

2.3. Upper bound on correlation length
Our goal is to prove that for every m € (0, 1) there exists C; = C(m) > 0 (indepen-
dent of B) such that for all & € (0,1) and N > exp(C e~*/3),

MB,Agy,e =T (8)

Figure 1. From left to right: P; with potential triangles to be added; P; with triangles added (i.e.,
P5); P, with potential triangles to be added.
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(We have used 4N instead of N in the above for later notational convenience.) While
the construction in Section 2.2 hints at the emergence of the 4/3 exponent, the fol-
lowing is a main obstacle in making this a rigorous proof for the upper bound on the
correlation length even in the special case when 8 = oo: the existence of A € Ay n
such that £ ), . 4 vy > |04] is not sufficient for 0, (Asn.eh) =1 (e.g., if eh, =20
for some v ~ 0 and eh, = —5, then A = {v, 0} satisfies the desired property but
0, (A4n,eh) = —1; this is because when |eh,| > 4 the ground state at v agrees with
the sign of /,). To overcome this challenge, we will define a suitable I"-function for
general §, and in the special case of f = oo the function (very roughly speaking) can
certify o, (A4n, eh) = 1 (the rigorous meaning of this is via an argument by contra-
diction). For Q C Z? and an external field f : Z? > R, we define Hi(o, Q, f) and
pcﬂi,ﬂ,f as in (1) and (2) except replacing A y, ¢h by 2, f. Define the free energy

FHQ. )= FEB.Q.f)=—glog Y e PEe2n ()

oe{—1,1}%

For A C @, our I'-function is defined to be the difference of the free energies on 2\ A
with respect to the positive and negative boundary conditions, as follows:

[(A,Q,f)=AF(Q\ A, f)
where AF(B, f)=F* (B, f)— F~(B, f). (10)

Before proceeding, we make a few remarks about why we choose the I'-function as
the difference of free energies on 2 \ A instead of A. In our analysis, we will let the
reference domain be 2 = A,y and construct a sequence (Ay),>1 Wwith increasing
(expected) value of I". To this end, we need the increment I'(4 U B) — I'(A) to have
nice monotonicity properties as a function of ¢h so that we can keep track of the
probabilistic behavior of the increment when employing a recursive construction as
in Section 2.2. The choice of 2 \ A4 gives the desired direction of monotonicity; see
Lemma 3.1.

With T" defined as in (10), our proof proceeds by demonstrating a contradiction
if we assume (8) fails. On the one hand, we have the following upper bound (cf. [5,
Proposition 5.2(iii)]).

LEMMA 2.1
IT'(A,Q2, /)] <2|0(2\ A)| forall (A,2, f) with A C Q.

The proof in the case of the Ising model is elementary. It follows from the fact
that |H " (0, B, f)— H (0, B, f)| <2|0B| and

AF(B.B, f) = —%log((exp(—ﬁ[HJr(o,B,f)—H_(U,B,f)])) ).

Kg.B.f
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On the other hand, assuming (8) fails, we will show that the variance of the incre-
ment I'(A U B, Ayn.eh) — T'(A, Ayn, eh) is comparable to that of ), _p eh, and
then we can hope to follow the argument in Section 2.2 to construct a set whose I'-
function value is larger than its boundary size. As mentioned, a crucial feature we
use in proving this is a monotonicity property for the increment of the I'-function, as
incorporated in Lemma 3.1.

With all these intuitions in place, the actual proof in Section 3 is written in a
way that both fills in the gaps left by the heuristics from Section 2.2 and addresses
the challenges from the random field Ising model. For the former, for instance, Fig-
ure 2 illustrates how we address the gap from correlations between different rounds
of recursive constructions by making the decision for the triangle 77 ; only based on
disorder in the smaller blue triangle Tl’fi. For the latter, Lemma 3.11 manifests the
power of Lemma 3.1 and says that the correlation through the Ising measure is in our
desirable direction and Lemma 3.12 says that the marginal effect from the disorder in
a triangle to our observable is similar to the white noise value of this triangle.

2.4. Lower bound on correlation length

In light of (7), the lower bound on the correlation length for f = oo can be proved
via an upper bound on the greedy lattice animal. This is an example of the classic
question of computing the (expected) supremum of a Gaussian process. This has been
well understood in general, culminating in Talagrand’s majorizing measure theorem
in [51], which improved previous results in [26] and [27]: as a highlight, an up-to-
constant estimate for the supremum of a general Gaussian process was provided in
terms of the (so-called) y,-functional associated with this process. Specifically for
the example of our lattice animal process, the upper bound was already hinted in
[41], as we explained earlier, whose proof together with proofs for various results on
matching problems were unified and streamlined in [52]. In particular, the following
result was essentially contained in [52].

PROPOSITION 2.2
Let By be the collection of simply connected lattice animals contained in A . There
exists a constant Cy1 > 0 such that for N > 1 we have

h
}P’(Brggiv % > Ci(log N)¥/* + u) <exp(—u?/2) Vu>0.

To conclude this section, we prove the lower bound in Theorem 1.1 and the upper
bound in Theorem 1.6 using Proposition 2.2.
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Proof of lower bound in Theorem 1.1 and upper bound in Theorem 1.6

The main step of the proof is relating the bound on simply connected lattice animals
to a bound on lattice animals. Let By be the collection of connected lattice animals
contained in A 5. We claim that

max —| 2ves ] = max —| 2ves ol
BeBy  |0B] B'e8y  |0B/|

an

For any lattice animal B, let B be the collection of vertices that is enclosed by B,
that is, disconnected by B from oco. Let By, ..., By be the connected components of
B \ B. Note that By,..., By are simply connected, since if v is separated from oo by
B;,thenv € é, and, in addition, since B is connected, it follows that v ¢ B. Since
0B is the disjoint union of 9B and 3B, ..., 0By, we have

| Spephol _ 1 <
98| §|BB|Z‘Zh”

i=1 veB;

_i 10B:| | e, ol
prll

dB| |0B;|

|Z’UGBZ' hU|

< max —————,
A T 9B

where the last inequality follows from the fact that the coefficients |0B;|/|0B| sum up
to 1. This completes the verification of (11). By Proposition 2.2 (and the fact that / is
symmetric), the maximum on the left-hand side of (11) is of order (log N)3/#, which
proves the upper bound in Theorem 1.6. This also shows that it is less than ¢! with
high probability as long as N < exp(*/3/C). By (7) (and a symmetric condition
for oF (A n, eh)), this implies that ajt (AN, eh) = £1 with high probability and thus
completes the proof of the lower bound in Theorem 1.1. O

3. Upper bound on correlation length

This section is devoted to the proof of the upper bound on the correlation length,
as incorporated in (8). Recall the definition of I"-function given in (10). Recall from
Lemma 2.1 that I'(4, Q, f) <2|d(Q \ A)| for all (4,2, f). With this at hand, we
use the bulk of this section to show that if (8) fails, then there exists a random subset
P* C A,n such that

E[T'(P*, Aan.eh) —2|0(Aan \ P¥)|] >0, (12)

which is a contradiction. As mentioned in Section 2.3, a key element of our analysis
is a monotonicity property of the I'-function which we incorporate in Lemma 3.1.
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In Section 3.2, we construct P* by enhancing the procedure in Section 2.2 in order
to address additional complications due to the complexity of the I'-function. In Sec-
tion 3.3 we carry out the probabilistic analysis and prove (12) under the assumption
that (8) fails.

3.1. Monotonicity property of the I -function

LEMMA 3.1

For disjoint subsets A, B C 2, we have that (I'(A U B,Q, f) —T'(A,Q, f)) is
increasing in {f, : v € B}, decreasing in {f, : v ¢ AU B}, and does not depend
on{f,:veA}

Proof
Recall the definition of AF in (10). Write
1
_ + -\ _
A(Gv)ﬂ,ﬁ,f - 5((0—1) )M;th - (O-v )MB,Q../”)'
We compute partial derivatives and get that
anAF(A/) :_2A(0v>ﬂ,A’,flveA’ (13)

for any A’ C Z? (where the minus sign inherits from that in the definition of free
energy). Write

G(A,B,Q, f)=T(AUB,Q, f)~T(A,Q, f)
= AF(Q\(AUB), f) = AF(Q\ 4, f). (14)

Using (13) and the monotonicity of the Ising model (cf. [3, Section 2.2]) we get that
forve Q\ (AU B),

3£,G(A,B,Q, f)=2(Alov)g,a\a,r — Alow)g.2\auB),f) <0;
forv € B,
37,G(A,B.Q, f) =2A(0v)g,a\4,7 =0

and forv € 4, 97, G(A, B, 2, f) = 0. This completes the proof of the lemma. O

It is also worth noting that it follows from the expressions obtained for the partial
derivatives of G that

|0/,G(A4,B.Q, f)| <2 forall A, BC QandveQ. (15)
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T3
T;
e N {/;Q /
7‘133
57‘1,3 !
Tia (l Py D T2 \ﬂ_/
N = Y,
TN T 4ri3
Tia

i=1" i=1"

Figure 2. (Color online) Py with (Tl,,-)4 The blue triangles are (Tl* i)4

3.2. Randomized geometric constructions
In this subsection we give the details of the construction of the random set P* (fol-
lowing Section 2.2) and prove a few geometric lemmas.

3.2.1. Construction of P*

In order to construct P*, we will recursively construct a sequence of polygons
(Py)n>1 contained in [-2N,2N]? and a corresponding sequence of subsets (Py,),>1
given by P, = P, N Z%. Let m € (0,1), and let § = 10~2(em)/? (where 1072 is
chosen as a small but otherwise arbitrary constant). As an initialization for our
procedure, we set Py = [-N, N]? and let (Sy,;){_, be the sides of Py, numbered
in counterclockwise order with S; ; being the bottom side. We next describe our
recursive construction.

For n > 1, assume that P, has been constructed and that P, has 4" sides
(S,,,,-);‘il numbered in counterclockwise order. For each i, let r, ; = I(S,,;)/4 and
partition S, ; into four segments of length r,, ;. Let T, ; be the isosceles triangle with
base given by the two middle segments of S, ; and height §r, ; such that T, ; points
out from P, (note that 7, ; is measurable with respect to P,; see Remark 3.2(ii)).
Let T, ; = T,,; N Z>. Further, let T,"; C Ty, be the triangle consisting of all points
in T, ; which have distance at least 287, ; /3 from the base, and let T i= Tn*,i N Z2.
See Figure 2 for an illustration. We will decide whether to add the triangle 7, ; to
the polygon based on the current polygon and the field in Tn*’i only (instead of the
field in T}, ;); this ensures that our construction explores disjoint regions in different
iterations (see Lemma 3.7).

In order to construct P,1, we will decide whether to add the triangle 7, ; for
1 <i < 4" depending on whether the expected increase to the value of the I"-function
is larger than the resulting increase in the boundary size of the polygon. To formal-
ize this idea, we will recursively define a sequence of polygons (Pn,i)?io and their
corresponding lattice subsets P, ; = P, ; N 72. For the base case, we let Pno= Py
For 1 <i <4", let ¥,,; be the o-algebra generated by P, ;—; and {h, : v € T:,i}
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(by definition, T}, ; is measurable with respect to P, as mentioned earlier, and thus
from our recursive construction below T}, ; is also measurable with respect to P, ; 1,
as elaborated in Remark 3.10). Note that %3 ; is not increasing. In particular, %, ;
contains information about {/, : v € U;;ll T;i,} only via P, ;. Define

Yni =E[T(Pnic1 UThi, Aon.eh) =T (Pui—1. Aoy, eh) | Fni] (16)

as the aforementioned expected increment of I' (see Remark 3.2(iv)). Then we define

Pn,i—l ) Tn,iv if Vni = 10827n,is
Pn,i =

Pn,i—lv if Yni < 10527',,’,‘.

Welet P,y = Py 4n and let (S,,H,i)?flrl be the sides of P,1, numbered in counter-
clockwise order so that S, 1,7 C S, UT,;forl <i <4"and4(i—1)+1<j <4i.
That is, for each i the sides of P, that “come from” S, ; are (Sn+1,‘,-);‘."=4(i_1)+1.
This concludes the construction of Py .

Finally, we let n* = [log,,(N)], P* = Py, and P* = P,«. This choice of n*
ensures that §r, ; is large for all n < n*, which will allow us to approximate |T} .| by
the area of 7)';.

Before proceeding, we make a few expository remarks on our construction.

Remark 3.2

(i) We have assumed that for each n > 1, the triangles (T,,,i)?l;l are disjoint and
ThiN P, CS,,; foralli. This is justified by Lemma 3.3. We also note that if y, ; <
1082r,,,i (i.e., Tp,; is not included in P, 41), then S, ; is split into four sides of Py
with internal angle 7w between them. These two assumptions ensure that P, is a
polygon with 4" *1 sides.

(ii) It will be useful in our proof that the numbering of the sides of P, is deter-
ministic so that the sequence (Tn,i)fil is measurable with respect to P,,. The specific
choice given in the construction is made for convenience.

(iii) Our choice of § is based on similar considerations to those given in Sec-
tion 2.2. The condition y,; > 108%r, ; is based on the following calculation. Since
1(O(Ppi—1 U Tni)) — 1Py i—1) < 8%ry, if adding T, ; to P, ;_; increases I’ by
1082r,_;, then the difference between I" and 8/(dP) will increase (the constant 8 will
be explained in Section 3.3.2).

(iv) Note that y, ; depends on {/, : v € U(k’j)<(n,i)TZ,].} only through P, ;4
due to our particular choice of ¥, ; (here (k, j) < (n,i)ifk <n,ork =nand j <i).
The reason we choose 5, ; this way is that we can show the expected value of the
derivative of the increment with respect to i, forv e T i 1s bounded from below by
mg A,y,e» Which is at least m by our assumption that (8) fails. Therefore, the lower
bound on the variance obtained this way is comparable to the upper bound on the
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variance obtained from general Gaussian concentration inequality, and this is a useful
property in our analysis later. If instead y,, ; was defined by conditioning on the field
in Tk*, j for (k, j) < (n,i), then the field in previously rejected triangles would affect
¥n,i but potentially only very weakly. This would mean that our lower bound on the
variance of y, ; would be much smaller than the upper bound from Gaussian concen-
tration inequality since now the upper bound would be from the field in a much larger
region.

3.2.2. Geometric lemmas
In this subsection we prove a few lemmas which ensure that the polygons (P,)2
have desirable geometric properties.

LEMMA 3.3
Foralln > 1, the triangles (Tn,i)in=1 are disjointand T, ; N P, C Sy, ; for 1 <i <4".

LEMMA 3.4
T, C [—2N,2N]2for alln>1and 1 <i <4",

We first state and prove a lemma which easily implies Lemmas 3.3 and 3.4.
We begin with some notation. Let d = {(n,i) :n > 1,1 <i < 4"}, and let § be the
directed forest with vertex set J and edge set

{((n.i),(n+1,))):4G - 1)+ 1< j <4i}.

That is, there is an edge from (n,7) to (n + 1, j) if Sp41,7 C Sp,i U Ty,;. In this case,
we say that S, 41,5 is a child of S, ; (or S, ; is the parent of S,11,;). We let §, ; be
the subtree of § rooted at (n,7). That is, the subgraph of ¢ on the vertices (k, j) € d
for which there exists a directed path from (n,7) to (k, j). If (k, j) € §,,; we call
(k, j) adescendant of (n,i).

LEMMA 3.5
Let (n,i) € d and T, ; be the isosceles triangle with base Sy ; and height 281, ; that
contains T, ;. Then for every (k, j) € §, ;, we have Ty j C Ty.;.

See Figure 3 for an illustration of (’Tl,i);;l.

Proof

It suffices to show that if (n + 1, j) is a child of (n,i), then 7, ; contains 75, ;. For
concreteness, we take i = 1 and therefore 1 < j < 4. It is immediate that 7, 4,; C
Tua for j €{1,4} and that 7,1 ; C 7,1 for j € {2,3} if 7,1 is not contained in



CORRELATION LENGTH OF THE 2-DIMENSIONAL RANDOM FIELD ISING MODEL 1797

Ppy. Assuming T, ; C Pp41, we can use the fact that T}, ; is similar to 7;; (and
in fact their sides are parallel) to show that the distance between 97,1 \ Sy,1 and
0731\ Sp.1is given by dy, 1 = Lr,,,l. See Figure 4 for an illustration. Further,

V1482
the height of 75,412 and 7;,11,3 is given by L12+82r,,,1. Since § < 1, this height is
strictly smaller than d, ; and therefore 75412 and 7,43 are contained in 7 ; as

claimed. O

Proof of Lemma 3.3
Let 6 = arctan(d), and note that 6 is the internal angle (with respect to 75 ;) between
Sn.i and the other sides of 75 ;. The same holds for 7}, ;. Since § < 1, we have 6 <
/4.

It suffices to show that for every (n,i),(n,j) € d wehave 7, ; N T, ; = Spi N
Sy, ;. We prove this by induction. It clearly holds for P; = [-N, N]?>. By Lemma 3.5,
if it holds for Py, then T41,; N Tn41,; = Sp+1,i N Sp+1,; when (n 4 1,i) and (n +
1, j) are not siblings (i.e., they do not have the same parent). When (n + 1,i) and (n +
1, j) are siblings, it is immediate that 7,1 ; N T,41,; = @ unless S,41,; and Sy41,;
are adjacent (i.e., |[i — j| = 1). Assuming S,41,; and S, 11,; are adjacent, we note that
the external (with respect to P,1) angle between them is at least 7 — 8. Recall that
the internal (with respect to 7,41 ;) angle between S, 41,; and the other sides of 7,41 ;

3

is 6, and the same holds for j. Since 30 < ZF < 7, we see that T 41, N Tpt1,j; =

Sn+1,i N Spy1,j (see Figure 5 for an illustration of this argument). O

Proof of Lemma 3.4
Since § < 1/2, we have 77 ; C [-2N, 2N]? for j =1,2,3,4, so the conclusion fol-
lows from Lemma 3.5. O

Figure 3. (Color online) P, with Uilil T3, in blue and U?=1 T\ Uilil T3,i inred.
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Figure 5. (Color online) The fact that § < /3 ensures that 75 1 and 73 > intersect only at their
common vertex.

We prove a few more lemmas that will be useful for probabilistic analysis in
Section 3.3.

LEMMA 3.6
Let P be a polygon with q sides and P = P N Z2. Then |0P| < v/21(3P) + 2q.

Proof

Note that |0P| is bounded above by the number of edges that intersect dP (if dP
contains a vertex in Z2, then we count this as two intersections). In addition, the
number of edges intersecting any line segment is upper-bounded by 2 plus the ¢,
distance between its endpoints, which is in turn bounded by 2 plus /2 times the
Euclidean length of the segment. This yields the desired bound. U

LEMMA 3.7
Let (n,i), (k,j) € d be such that (n,i) # (k, j). Then Tn*’i n Tk*j =0.

Proof

We assume without loss of generality that n < k. Let j’ be the unique integer such
that (k, j) is a descendant of (n, j) (if k = n, then j = j’). By Lemma 3.5 we have
T,); CTn,; and T]:j C Tn,j. We showed in the proof of Lemma 3.3 that if j’ # i,
then 7, ; N Ty, ;7 = Su,i N Sy, 7, which implies Tn*,i N Tk*,j = since Tn*:i NSpi=
@. Therefore, we assume j’' =i (i.e., Sk ; is a descendant of S, ;). Note that this
implies that k > n. To conclude the proof, we consider separately the case that T}, ; is
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Figure 6. (Color online) If Z1 1 = 0, then T*1 is disjoint from (7> l)z—l'

contained in P, and the case that it is not. For concreteness, we leti = 1. If T}, ; is
not contained in P, 1, then Tn*,i is disjoint from 7541 4 for a € {1,2,3, 4} since the
base of 75,414 is a subset of Sy, 1, the height of 75,41 4 15 §1p i /2, and Tn*’i consists of
points with distance at least 28r, 1/3 from S, 1 (see Figure 6 for an illustration). By
Lemma 3.5 T* C Tn+1,qa for some a €{1,2,3,4} so it follows 7,*; is disjoint from
Tk IE df Ty is a subset of P,41,thensois T* By Lemma 3.3, T* is disjoint from
P;. which contains P, (because k >n + 1) soT n’l and T,: ; are dls]omt O

For the next lemmas, we consider 4 to be ordered by lexicographical ordering
(e, (n',i") < (n,i)ifn’ <n,orn’ =nandi’ <i).For (n,i) € d, let

Zni=1,, ,~105r, ;- (17)

LEMMA 3.8
Let (k,j),(n,i)ed. If (k,j) < (n,i)and Zj ; =0, then T,:j NP, =0.

Proof

If Zk,; = 0, then by Lemma 3.5 we have P, ; N T ; C U:j 4G-1+1 Tk+1,a- Since
T* is contained in Ty ;, it suffices to show that if (k + 1, a) is a child of (k, j) and
Zk ,j = 0 then T ﬂ Tk+1,a =9, which was shown in the proof of Lemma 3.7 (see
Figure 6 for an 1llustrat10n) O

LEMMA 3.9

For (n,i) € d the collection {Zy; : (k,j) < (n,i)} is measurable with respect to
Py ;.

Remark 3.10

Given {Zy ; : (k,j) < (n,i)}, we can recover the construction up until the (,7)th
step, so we can recover {P ; : (k,j) < (n,i)} and, in particular, we can recover
{P1,..., Py}.Since T ; is measurable with respect to Py, it follows from Lemma 3.9
that the collection {7 ; : (k, j) < (n,i)} is measurable with respect to Py ;.
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Proof of Lemma 3.9
First, we prove that Zy ; = 17, ;cp, ;- By definition, if Zy ; = 1,then Ty j C Py j C
P, ;. By Lemma 3.8, if Z; ; = 0, then T} ; is not contained in Py, ;.

Therefore, it suffices to show that Ty ; is measurable with respect to P, ;. We
prove this by induction on (k, j). It clearly holds for k = 1 because (77, j)‘}=l are
deterministic. If k > 2 and Ty, is measurable with respect to P, ; for all (s,a) <
(k, j), then it follows that {Z;, : (s,a) < (k, j)} is measurable with respect to Py, ;
and, in particular, P is measurable with respect to P, ;. Since T ; is measurable
with respect to Py, this concludes the proof. O

3.3. Probabilistic analysis of the geometric construction

In this subsection, we provide the probabilistic analysis of our randomized geometric
construction. A key ingredient is a resampling inequality, leveraging the monotonicity
of the increments of the I"-function established in Lemma 3.1.

3.3.1. A resampling inequality
For (n,i) € 4, we let

Bui = U Ti)
(ko)) ed (k) <(n.i)

be the set of vertices in Z? where the external field is explored for the construction of
Py,,;. By Lemma 3.7, Tz’i N Byi—1=9.

LEMMA 3.11

For (n,i) € d, let g be a random field such that g, = hy, for v ¢ B, ;—1 and {g, 1 v €
By, i—1} is a collection of independent mean-zero Gaussian variables with variance 1
that is independent of h. Recall that ¥, ; is the o-algebra generated by Py ;1 and
{hy:veT, ;). Let

Vni =E[T(Pnic1 UTui, Aan.68) — T(Pui—1. Aon.6g) | Fui].

Then yp; > Vn,; almost surely.

In words, the lemma states that if we resample the field on B, ;—; after construct-
ing Py ;—1, then the expected increment to I" from adding T, ; to P, ;—; decreases.

Proof of Lemma 3.11

Let Cpi—1 = Bp,i—1 N Pyi—1and Dy i1 = By i—1 \ Pni—1. By Lemma 3.9, B, ;4
is measurable with respect to Py, ;1. It follows that C,, ;—; and D, ; _; are measurable
with respect to P, ;1. By Lemma 3.8,
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Cn,i—l = U Tlt,j’
(k,j)ed,(k,j)<@,i),Zy j=1
Dy i1 = U T

(k,j)ed,(k,j)<(@n,i),Zy ;=0

Let O be a polygon such that P(P,,;—1 = Q) > 0. We let B, ;—1(Q) be the value
of By, ;—1 on the event {P, ;—; = Q}, and similarly for Cy, ;—;(Q) and D, ;—1(Q).
Note that the event { P, ;—1 = Q} is measurable with respect to /|, ,_, (o) (here |4
denotes the restriction of 4 to A).

We claim that the event { Py, ;—1 = Q} is decreasing with respect to &|p,, ;_,(0)
and increasing with respect to h|C,,,,-_. (0)- That is, if f is a realization of the field
such that P, ;—1(f) = Q and f’ is a realization of the field such that f, > f, for
all v e Cyp;—1(Q) and f, < f, for all v € D, ;_1(Q), then P,;—1(f) = Q. To
see this, we prove inductively that Py ;(f) = Pk ;(f’) for each (k,j) < (n,i).
It clearly holds for (k,j) = (1,0) since Pio = [N, N]? deterministically. If
(k.j) < (n.i) and P jo1(f) = Pejor(f). then yie i (f) < vie () if Zij (f) =
1 and yi ; (f) = vk, (f') if Zg j(f) = 0 (this is because yi,; is a function of
(ijj_l,h|-|-]>:’j) and is increasing in h|-|-]>:’j for fixed P j_;). This implies that
Zi,i(f)=Zk ;j(f'),and, as aresult, Py ;(f) = Px,;j(f’), completing the proof by
induction.

By the Fortuin—Kasteleyn—Ginibre (FKG) inequality for product measures
(see [29]), we get that conditional on {P,;—1 = Q} we have the following:
(hlc, ;—1(@)>—"hlD, (@) stochastically dominates (glc, ,;_,(0),—8&|D, ;_1(0))
(note the minus sign for the field on Dy ;—1(Q)). By construction, h| s,y \B, ;_;(Q) =
&l AN \By.i—1(0) On {Pni—1 = Q}. Therefore, conditional on { Py ;-1 = Q} and on
h|T: .(0) (thus also conditional on g|T: .(0) since h|T;§ [(0) = g|T: .(0))- the field
(hlp, ;1 (@UT, 1(@)s ~t Ao \Py i—1(@)UT, 1(0))) Stochastically dominates the field

(8lPp.i1(Q)UTy 1 (0) —&l Aaw\(Prie1 (Q)UT, s(2))- Let Ag 1 RA2V — R be the func-
tion given by

Ao(f) =T(Pui—1(Q)UTni(Q).Aon. ) = T(Pni=1(Q), Aan. f).

By Lemma 3.1, Ag is increasing in f|p,,;  (0)uT, (0) and decreasing in
S 1aon\Py i1 (0)UT, ;(0))- It follows that given {P, ;-1 = Q} and h|r ., we have
that A g (eh) stochastically dominates Ag(eg). Since '

Ynilp, ;=0 =E[Ag(eh) | Fuillp,, =0
and

Vnilp, ;=0 =E[Ag(eg) | Fuillp,,;_ =0
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this proves the lemma. O

3.3.2. Quantitative probabilistic analysis
We first show that each triangle 7}, ; has a decent probability to be included in P*.
Recall that § = 1072 (me)?/3.

LEMMA 3.12

For m € (0, 1), there exist constants Cy,cy > 0 (depending on m) such that the fol-
lowing holds. Suppose that (8) fails for some N > €267 Then forall 1 <n <
log;6(N) and 1 <i < 4",

IED(Vn,i = 1082"n,i) > Ca.

Proof
In light of Lemma 3.11, in order to prove the lemma it suffices to show that for all
(n,i) € 4 with n <log;c(N) we have

P(Jni > 108%r,,) > ca. (18)

As in the proof of Lemma 3.11, we will work conditionally on P, ;_;. We let g be as
in Lemma 3.11. Note that g is a collection of independent standard Gaussian random
variables. Recall the definition of G given in (14). We have

Vni =E[G(Pp,i—1.Tni, Aan.8)| Pni-1. g|T;§J.]- (19)

Since G(A4, B,2, f) is an odd function of f|g\4 for all fixed (4, B,2), we see
that G(Pp,i—1,Tn,i, A2n,€g) is an odd function of g|a,y\p,,_, When P, ;_; is
fixed. Since g is independent of P, ;_; (because P, ;_; is measurable with respect to
h|B, ;_,) and g has a symmetric distribution, this implies that , ; is an odd function
of ngZ ; when P, ;—; is fixed. In particular, we have

E[Vn,i | Pni—1]=0. (20)

Next, we give a lower bound on the variance of y, ;. By (19) and the formulas derived
in the proof of Lemma 3.1 for the partial derivatives of the increment of I', we obtain
that, forv e T*

n,i’
E[agv)jn,i | Pn,i—l] = 28]E[A(OU)A2N\P,L,',1,8g | Pn,i—l]-

Recall the definition of mg 4 ,, - in (3). For & C 7?2, define mg,q.¢ similarly by replac-
ing Ay with Q. By monotonicity of the Ising model (cf. [3, Section 2.2]), we have

that mg g . is decreasing in 2, and therefore, for v € T, ;,
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E[0g,Vn,i | Pni—1]= 26mg Ayn—v,e = 26MB A, p,e = 2€m,

where the last inequality follows from our assumption that (8) fails. It then follows
from [15, Proposition 3.5] that

E[72; | Pai—1] = Var[Jn,i | Pai—1] > (2em)?[T} . Q1)

In addition, by (15) we see that 7, ; is a Lipschitz function of g|t= with Lipschitz

constant 2¢ , / |T;l",i| (with respect to the £, norm) for each fixed P, ;—;. Therefore,

by (20) and by the Gaussian concentration inequality (see [10], [50]; see also [I,
Theorem 2.1], [53, Theorem 3.25]) we get that

Elf; | Pui-1] = 10%* T2, (22)
A simple computation gives that, for any ¢ > 0,

E[);r%,i | Pui—1] <17+ E(ﬁ,ilﬁizﬂ | Ppi-1)

<2+ \JBGE | Paio1) PG 2 12| Paic).

Setting ¢ = em, /|T; ;| and combining with (22) and (21), we obtain that

i 1 _
P(Jn,i > em |T:;,,~||Pn,,-_l)=§IP(y,$,iz(sm)leZ,ilan,i_l)zlo m*, (23)

where the first equality follows from the fact that, conditioned on P, ;_;, the law
of P, is symmetric around 0. It is obvious that the number of lattice points in any
isosceles triangle in R? with base length and height larger than 100 is at least half of
the area of the triangle. Since N > e and 1 <n <log,¢(N), we have that the
base length and the height of 7.}, (which are 2'% and %, respectively) are both
larger than 100 as long as C; is a large enough constant. Therefore,

Ty i1 =27 (T, = 1871612 ;.
Combined with (23) and § = 1072 (em)2/3, it completes the proof of (18). O

We are now ready to conclude the proof on the upper bound for the correlation
length.

Proof of (8)

We will prove (12), provided that (8) fails for N > €17 for a large enough con-
stant C;, and thus obtain a contradiction with Lemma 2.1. This in turn proves (8), as
required.
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Since for each n > 1, P, has 4" sides and n* <log,(N), we see that P* has at
most N '/2 sides. By construction, /(JP*) > [(3P;) = 8N . Therefore, by Lemma 3.6
we have

|0P*| < V2I(0P*) + 2N /2 <21(3P*).
In addition, |0(Aax \ P*)| = |0P*| + 16 N . Therefore, it suffices to show that
E[T(P*, Aoy, ch) — 81(3P*)] > 0. (24)

For n > 1, let X, = I'(P,, Aon, eh) — 81(0Py). For (n,i) € 4, let X, ; = I'(Py,,
Aoy, eh)—8l(0P, ;) and Yy ; = Xy i — Xy i—1. We assume from now on thatn < n*.
We have

L(0(Pri—1 UTni)) —1(0Pni—1) =2V 1+ 821 — 2rni < 8%rni.

Recalling definition of Z,, ; as in (17), we get that:
. if Z,;, =0,then P,; = P, ;—; and thus ¥, ; = 0;
. if Z,; =1, then

Yoi= (T(Pnic1 UThi. Aon.eh) —T(Py i1, Aoy . ch))
- 8(1 (B(Pn,i—l u Tn,i)) - l(aPn,i—l))y

where the difference in the perimeter is bounded by §2r ;.
Altogether, we have that

Yni = Zni[T(Ppic1 UTni. Aoy, eh) —=T(Ppi—1, Aon.eh) — 88%ry ]
Recalling the definition of y,; as in (16), we obtain
E[Zni(T(Pni—1 UTni, Aoy, &+ h) —T(Pyi—1, Aan.e-h))]
=E[E(Zn,i(T(Pnic1 UTpi, Aon.e-h) =T (Ppi_1. Aon.e-h) | Fpi))]
=E[Zn,i¥n.il = E[108%ry i Zy i),
where we used the fact that Z,, ; is measurable with respect to 5, ;. Therefore,
E[Yni] = 28°E[rn,i Zn.i]-

It follows from the construction of P, that for every (n,i) € 4 we have [(Sy,;) >
[(dPy)4™". Therefore, r,; > [(0P1)4™"~!. Plugging this into the previous display
gives

E[Yy.i] > 28247 (PP (yni > 108%rn.1).
Finally, we will set C; > C; so we can apply Lemma 3.12 and get

E[Yp.i] > 2¢28%47" 7 (9Py).
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Summing over i gives
IE[Xn-i-l - Xn] > 2_16’252[(8P1).

Since I is an odd function of &, we have E[X{] = —I[(dP;). Therefore

n*—1
E[Xp+] =E[X1]+ D E[Xnp1 — Xa] = (c282(n* — 1)/2— 1)I(3Py).

n=1

Plugging in n* = [log,(N)] and § = 1072(em)?/3, we see that E[X,,«] > 0 (which is
arewrite of (24)) for N > eclf‘m, provided that Cy > C; is a large enough constant
(depending on m). O

4. Upper bound on greedy lattice animal
This section is devoted to the proof of Proposition 2.2, which is essentially [52, Theo-
rem 4.4.2]. We make the connection between [52, Theorem 4.4.2] and Proposition 2.2
slightly more explicit, and we claim no credit for material in this section.

For a Gaussian process X indexed on a set T, define the canonical metric dx :
T xT — [0,00) for (T, X) by

dx(s,1) = E[(X(s) — X(1))*]""*. (25)

Next, we review the y, g-functionals which measure the size of a metric space in a
way that can be used to control the maximum of a Gaussian process. We begin with
an auxiliary definition.

Definition 4.1
Given a set T, an admissible sequence on 7 is an increasing sequence of partitions
(TT,)n=0 of T such that |TTo| = 1 and |I1,| < 22" forn > 1.

For a partition IT, of a set T and an element ¢ € T', we will denote by 7, (¢) the
element of IT,, that contains #. Now we are ready to define the y, g functionals.

Definition 4.2
Given a set T, a metric d on T, and numbers «, 8 > 0, let

/B
Yag(T.d) = (il'rllf sup[Z(zn/adiam(nn(t),d))ﬂ]l )

n)teT 120

where the infimum is taken over all admissible sequences and diam(m, (¢),d) is the
d-diameter for m, (¢). In addition, define y,(7,d) = y2,1(T,d).
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With this definition in place, we can state Talagrand’s majorizing measure the-
orem (see [51] and [52, Theorem 2.2.22]) which gives a tight bound on the expec-
tation of the supremum of a Gaussian process in terms of the y,-functional. Write
[ Xl7 = sup;er X:.

THEOREM 4.3
There exists a universal constant K such that the following holds. If T is a set and X
is a centered Gaussian process indexed on T, then we have

E[IXl7] < Ky2(T.dx).

Next, we state the Borell-Tsirelson—-Ibragimov—Sudakov (Borell-TIS) inequal-
ity. For a set T and a Gaussian process (X;);e indexed on T, let of( = sup,er Var(X;).
The Borell-TIS inequality says that the tails of the maximum of X behave roughly
like those of a Gaussian random variable with variance oi, (see [10], [50], or [1,
Theorem 2.1] for a proof):

2
(|| X7 —E[|X7]l]| > z) < 2exp(—220—2> for all z > 0. (26)

X

Note that we do not need to assume X is centered for (26). Note also that for any
lattice animal A we have Var(}_,c 4 hy) = |A| < [04|?, so if T is a set of lattice
animals and X; is the sum of the Gaussian variables in the lattice animal ¢ normalized
by its boundary size, we have 0)2( <1

Having introduced these tools, we turn to the proof of Proposition 2.2. It is more
convenient to work with the unnormalized lattice animal processes, so we will parti-
tion the lattice animals by the lengths of their boundaries. The following lemma is the
key to the proof of Proposition 2.2.

LEMMA 4.4

For a vertex v € Z* and an integer k > 2, let A, x be the collection of simply con-
nected lattice animals A such that |0A| < 2k v € A, and there exists u ~ v such that
u isnotin A. For A € Uy g, let Y4 =), c 4 hy. Then there exists a constant C > 0
such that

P( max Yq>Ck*2* +u2¥) < 272 forallu > 0.
€2y k

In Lemma 4.4, we restricted to A containing v on its boundary so that we have
|Ax.0| < 22! (as explained in the proof of Lemma 4.4 below). Lemma 4.4 can be
deduced as a consequence of the following two lemmas in [52].
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LEMMA 4.5 ([52, Lemma 4.4.6])
Letn > 1 and T be a set such that |T| <22". Let d be a metric on T. Then (v/d is
also a metric and)

ya(T. N d) < n3/4y1,2(T,d)1/2.

LEMMA 4.6 ([52, Proposition 4.4.5])
There exists a constant C > 0 such that

V12@yx,dE) < C2%,

Note that [52, Proposition 4.4.5] was stated in a slightly different context, but the
metric space it applies to is easily seen to be isomorphic to 2, x with distance d}
since dZ (A, A’) = E[(Y4 — Ya)?] is simply the cardinality of the symmetric differ-
ence of A and A’.

Proof of Lemma 4.4

In order to apply Lemma 4.5, we need a bound on the cardinality of 2l ,. By con-
sidering a simply connected lattice animal A as the lattice points enclosed by a loop
consisting of |dA| edges of the dual lattice (1/2,1/2) + Z2, it is easy to see that
|Ag,o] < 22! (this is because one can construct a loop by starting an edge near v
and adding new edges sequentially where each new edge has at most four choices).
At this point, it is immediate from Lemmas 4.5 and 4.6 that y, (g, dy) < Ck3/42F.
Thus by Theorem 4.3, we have that E[max gesi, , Y4] < C k3/42k  Therefore, we can
obtain Lemma 4.4 by (26) and the fact that Var(Y4) < 22* forall A € Ay k- O

Proof of Proposition 2.2

The proof is the same as the proof of [52, Theorem 4.4.2] using [52, Proposition
4.4.3]. Note that the total length of all edges in Ay is 2- (2N + 1) - 2N, and let
k* =min{k : 2K >2. (2N 4 1) -2N}. We have k* < C log N, and for any A € Ay
there exists 2 < k < k* such that 2k~ 1 < [0A4]| < 2k Therefore, using Lemma 4.4 and
a union bound over v and k£ we have for some constant C > 0,

Y
IP( max 4

> C(log N 3/4 )<C 10gN—x2/2.
fnax fap = Clog N+ x) < Ce

Letting x = C’(log N)3/* + u for a large enough constant C’ concludes the proof.
O
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