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Abstract

We show that for each �M ∈ [1, 25), there is a unique

metric associated with Liouville quantum gravity (LQG)

with matter central charge �M. An earlier series of

works by Ding–Dubédat–Dunlap–Falconet, Gwynne–

Miller, and others showed that such a metric exists and

is unique in the subcritical case �M ∈ (−∞, 1), which

corresponds to coupling constant � ∈ (0, 2). The critical

case �M = 1 corresponds to � = 2 and the supercriti-

cal case �M ∈ (1, 25) corresponds to � ∈ ℂ with |�| = 2.

Our metric is constructed as the limit of an approxima-

tion procedure called Liouville first passage percolation,

which was previously shown to be tight for �M ∈ [1, 25)

by Ding and Gwynne (2020). In this paper, we show

that the subsequential limit is uniquely characterized

by a natural list of axioms. This extends the charac-

terization of the LQG metric proven by Gwynne and

Miller (2019) for �M ∈ (−∞, 1) to the full parameter

range �M ∈ (−∞, 25). Our argument is substantially dif-

ferent from the proof of the characterization of the LQG

metric for �M ∈ (−∞, 1). In particular, the core part of

the argument is simpler and does not use confluence

of geodesics.
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1 INTRODUCTION

1.1 Overview

Liouville quantum gravity (LQG) is a one-parameter family of random fractal surfaces which
originated in the physics literature in the 1980s [7, 16, 37] as a class of canonical models of ran-
dom geometry in two dimensions. One possible choice of parameter is the matter central charge
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218 DING and GWYNNE

F IGURE 1 Comparison of the different phases of LQG This paper proves that the LQG metric is unique in

the critical and supercritical phases. The bi-Hölder continuity with respect to to the Euclidean metric in the

subcritical phase is proven in [17]. The statement that the critical LQG metric induces the Euclidean topology, but

is not Hölder continuous, is proven in [13].

�M ∈ (−∞, 25). Heuristically speaking, for an open domain � ⊂ C, an LQG surface with matter
central charge �M is a sample from ‘the uniform measure on Riemannian metric tensors g on �,
weighted by (det Δ

g
)−�M∕2’, where Δ

g
denotes the Laplace–Beltrami operator. This definition is

far from rigorous, for example, because the space of Riemannian metric tensors on � is infinite-
dimensional, so there is not an obvious notion of a uniformmeasure on this space. However, there
are various ways of defining LQG surface rigorously, as we discuss just below.

Definition 1.1. We refer to LQG with �M ∈ (−∞, 1), �M = 1, and �M ∈ (1, 25) as the subcritical,
critical, and supercritical phases, respectively.

See Figure 1 for a summary of the three phases. One way to define LQG rigorously in the sub-
critical and critical phases is via the David–Distler–Kawai (DDK) ansatz. The DDK ansatz states
that for �M ∈ (−∞, 1], the Riemannian metric tensor associated with an LQG surface takes the
form

g = ��ℎ (��2 + ��2), where � ∈ (0, 2] satisfies �M = 25 − 6

(
2

�
+

�

2

)2

. (1.1)

Here, ��2 + ��2 denotes the Euclidean metric tensor on� and ℎ is a variant of the Gaussian free
field (GFF) on �, the most natural random generalized function on �. We refer to [5, 41, 43] for
more background on the GFF.
The Riemannian metric tensor in (1.1) is still not well-defined since the GFF is not a function,

so ��ℎ does not make literal sense. Nevertheless, it is possible to rigorously define various objects
associated with (1.1) using regularization procedures. To do this, one considers a family of con-
tinuous functions {ℎ�}�>0 which approximate ℎ, then takes an appropriate limit of objects defined
using ℎ� in place of ℎ. Objects which have been constructed in this manner include the LQG area
and length measures [18, 31, 39], Liouville Brownian motion [4, 19], the correlation functions for
the random ‘fields’ ��ℎ for � ∈ R [32], and the distance function (metric) associated with (1.1), at
least for �M < 1 [8, 27].
LQG in the subcritical and critical phases is expected, and in some cases proven, to describe

the scaling limit of various types of random planar maps. For example, in keeping with the above
heuristic definition, LQG with �M ∈ (−∞, 1] should describe the scaling limit of random planar
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maps sampled with probability proportional to (det Δ)−�M∕2, where Δ is the discrete Laplacian.
We refer to [5, 20, 23] for expository articles on subcritical and critical LQG.
The supercritical phase �M ∈ (1, 25) is much more mysterious than the subcritical and criti-

cal phases, even from the physics perspective. In this case, the DDK ansatz does not apply. In
fact, the parameter � from (1.1) is complex with |�| = 2, so attempting to directly analytically con-
tinue formulae from the subcritical case to the supercritical case often gives nonsensical complex
answers. It is expected that supercritical LQG still corresponds in some sense to a random geome-
try related to the GFF. However, until very recently there have been few mathematically rigorous
results for supercritical LQG. See [22] for an extensive discussion of the physics literature and
various conjectures concerning LQG with �M ∈ (1, 25).
The purpose of this paper is to show that in the critical and supercritical phases, that is, when

�M ∈ [1, 25), there is a canonical metric (distance function) associated with LQG. This was pre-
viously established in the subcritical phase �M ∈ (−∞, 1) in the series of papers [8, 17, 24, 25, 27].
Our results resolve [27, Problems 7.17 and 7.18], which ask for a metric associated with LQG for
�M ∈ [1, 25).
This paper builds on [11], which proved the tightness of an approximation procedure for the

metric when �M ∈ [1, 25) (using [15] and some estimates from [8] which also work for the criti-
cal/supercritical cases), and [36], which proved various properties of the subsequential limits. The
analogs of these works in the subcritical case are [8] and [17], respectively. We will also use one
preliminary lemma which was proven in [12] (Lemma 2.12), but we will not need the main result
of [12], that is, the confluence of geodesics property.
Our results are analogous to those of [27], which proved uniqueness of the subcritical LQG

metric. Wewill prove that the subsequential limitingmetrics in the critical and supercritical cases
are uniquely characterized by a natural list of axioms. However, our proof is very different from
the argument of [27], for two main reasons.

∙ A key input in [27] is confluence of geodesics, which says that two LQG geodesics with the same
starting point and different target points typically coincide for a non-trivial initial interval of
time [24]. We replace the core part of the argument in [27], which corresponds to [27, section
4], by a simpler argument which does not use confluence of geodesics (Section 4). Instead, our
argument is based on counting the number of events of a certain type which occur. Confluence
of geodesicswas proven for the critical and supercritical LQGmetrics in [12], but it is not needed
in this paper.

∙ There are many additional difficulties in our proof, especially in Section 5, arising from the fact
that the metrics we work with are not continuous with respect to the Euclidean metric, or even
finite-valued.

The first point reduces the complexity of this paper as compared to [27], whereas the second point
increases it. The net effect is that our argument is overall longer than [27], but conceptually sim-
pler and requires less external input. We note that all of our arguments apply in the subcritical
phase as well as the critical and supercritical phases, so this paper also gives a new proof of the
results of [27].

1.2 Convergence of Liouville first passage percolation

For concreteness, throughout this paper we will restrict attention to the whole-plane case. We
let ℎ be the whole-plane GFF with the additive constant chosen so that its average over the unit
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220 DING and GWYNNE

circle is zero. Once the LQG metric for ℎ is constructed, it is straightforward to construct met-
rics associated with variants of the GFF on other domains via restriction and/or local absolute
continuity; see [27, Remark 1.5]. As in the subcritical case, the construction of our metric uses
an approximation procedure called Liouville first passage percolation (LFPP). To define LFPP, we
first introduce a family of continuous functions which approximate ℎ. For ! > 0 and � ∈ C, let

"!(�) =
1

2#!
exp(− |�|

2

2!
) be the heat kernel. For � > 0, we define a mollified version of the GFF by

ℎ∗
� (�) ∶= (ℎ ∗ "�2∕2)(�) = ∫

C

ℎ(&)"�2∕2(� − &) �&, ∀� ∈ C, (1.2)

where the integral is interpreted in the sense of distributional pairing. We use "�2∕2 instead of "�

so that the variance of ℎ∗
� (�) is log �

−1 + *�(1).
We now consider a parameter - > 0, which will shortly be chosen to depend on the matter

central charge �M (see (1.6)). LFPP with parameter - is the family of random metrics {��
ℎ
}�>0

defined by

��
ℎ
(�, &) ∶= inf

/∶�→& ∫
1

0
�-ℎ

∗
� (/(4))|/′(4)|�4, ∀�, & ∈ C, (1.3)

where the infimum is over all piecewise continuously differentiable paths / ∶ [0, 1] → C from
� to &. To extract a non-trivial limit of the metrics ��

ℎ
, we need to re-normalize. We (somewhat

arbitrarily) define our normalizing factor by

8� ∶= median of inf

{

∫
1

0
�-ℎ

∗
� (/(4))|/′(4)|�4 ∶ / is a left–right crossing of [0, 1]2

}
, (1.4)

where a left–right crossing of [0, 1]2 is a piecewise continuously differentiable path / ∶ [0, 1] →

[0, 1]2 joining the left and right boundaries of [0, 1]2. We do not know the value of 8� explicitly.
The best currently available estimates are given in [14, Theorem 1.11].
More generally, the definition (1.3) of LFPP also makes sense when ℎ is a whole-plane GFF

plus a bounded continuous function, that is, a random distribution of the form ℎ̃ + 9, where ℎ̃ is a
whole-plane GFF and 9 is a (possibly random and ℎ̃-dependent) bounded continuous function.
In terms of LFPP, the main result of this paper gives the convergence of the metrics 8−1

� ��
ℎ
for

each - > 0. For values of - corresponding to the supercritical case �M ∈ (1, 25), the limitingmetric
is not continuouswith respect to the Euclideanmetric. Hence,we cannot expect convergencewith
respect to the uniform topology. Instead, as in [11], we will workwith the topology of the following
definition.

Definition 1.2. Let : ⊂ C. A function 9 ∶ : × : → R ∪ {−∞,+∞} is lower semicontinuous if
whenever (�?, &?) ∈ : × : with (�?, &?) → (�, &), we have 9(�, &) ⩽ lim inf?→∞ 9(�?, &?). The
topology on lower semicontinuous functions is the topology whereby a sequence of such functions
{9?}?∈N converges to another such function 9 if and only if

(i) whenever (�?, &?) ∈ : × :with (�?, &?) → (�, &), we have9(�, &) ⩽ lim inf?→∞ 9?(�?, &?);
(ii) for each (�, &) ∈ : × :, there exists a sequence (�?, &?) → (�, &) such that 9?(�?, &?) →

9(�, &).
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It follows from [3, Lemma 1.5] that the topology of Definition 1.2 is meterizable (see [11, section
1.2]). Furthermore, [3, Theorem 1(a)] shows that the metric inducing this topology can be taken
to be separable.

Theorem 1.3. Let ℎ be a whole-plane GFF, or more generally a whole-plane GFF plus a bounded

continuous function. For each - > 0, the re-scaled LFPP metrics 8−1
� ��

ℎ
converge in probability with

respect to the topology on lower semicontinuous functions on C × C (Definition 1.2). The limit �ℎ is

a random metric on C, except that it is allowed to take on infinite values.

To make the connection between Theorem 1.3 and the LQG metric, we need to discuss the
LFPP distance exponent A. It was shown in [11, Proposition 1.1] that for each - > 0, there exists
A = A(-) > 0 such that

8� = �1−-A+B�(1), as � → 0. (1.5)

The existence of A is proven via a subadditivity argument, so the exact relationship between A

and - is not known. However, it is known that A ∈ (0,∞) for all - > 0 and A is a continuous,
non-increasing function of - [11, 15]. See also [1, 28] for bounds for A in terms of -.
As we will discuss in more detail below, LFPP with parameter - is related to LQG with matter

central charge

�M = �M(-) = 25 − 6A(-)2. (1.6)

The function - ↦ A(-) is continuous andA(-) → ∞ as - → 0 andA(-) → 0 as - → ∞ [11, Propo-
sition 1.1]. So, the formula (1.6) shows that there is a value of - corresponding to each �M ∈

(−∞, 25). Furthermore, - ↦ A(-) is strictly decreasing on (0,0.7), so the function - ↦ �M(-) is
injective on this interval. We expect that it is in fact injective on all of (0,∞), which would mean
that there is a one-to-one correspondence between - and �M.

†

The relation between - and �M in (1.6) is not explicit since the dependence of A on - is not
known explicitly. The only exact relation between �M and - which we know is that �M = 0 cor-

responds to - = 1∕
√

6. This is equivalent to the fact that the Hausdorff dimension of LQG with
� =

√
8∕3 is 4. See [10] for details.

From (1.6), we see that A(-) = 2 corresponds to the critical value �M = 1, which motivates us
to define

-crit ∶= inf {- > 0 ∶ A(-) = 2}. (1.7)

It follows from [11, Proposition 1.1] that -crit is the unique value of - for which A(-) = 2 and from
[28, Theorem 2.3] that -crit ∈ [0.4135, 0.4189]. We have A > 2 for - < -crit and A ∈ (0, 2) for - >

-crit.

†One way to prove the injectivity of - ↦ �M(-) would be to show that if - and �M are related as in (1.6), then - is the

distance exponent for the dyadic subdivision model in [22] with parameter �M: indeed, this would give an inverse to the

function - ↦ �M(-). We expect that this can be proven using similar arguments to the ones used to related LFPP and

Liouville graph distance in [10], see also the discussion of LFPP in [22, section 2.3].

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



222 DING and GWYNNE

Definition 1.4. We refer to LFPP with - < -crit, - = -crit, and - > -crit as the subcritical, critical,
and supercritical phases, respectively.

By (1.6), the three phases of LFPP correspond exactly to the three phases of LQG in
Definition 1.1.
Theorem 1.3 has already been proven in the subcritical phase - < -crit (but this paper simpli-

fies part of the proof). Indeed, it was shown by Ding, Dubédat, Dunlap, and Falconet [8] that
in this case the re-scaled LFPP metrics 8−1

� ��
ℎ
are tight with respect to the topology of uniform

convergence on compact subsets of C × C, which is a stronger topology than the one in Defini-
tion 1.2. Subsequently, it was shown by Gwynne and Miller [27], building on [17, 24, 25], that the
subsequential limit is unique. This was done by establishing an axiomatic characterization of the
limiting metric.
The limiting metric in the subcritical phase induces the same topology on C as the Euclidean

metric, but has very different geometric properties. This metric can be thought of as the Rieman-
nian distance function associated with the Riemannian metric tensor (1.1), where �M ∈ (−∞, 1)

and - are related as in (1.6). The relation between �M and - can equivalently be expressed as
� = -�(-), where � ∈ (0, 2) is as in (1.1) and �(-) > 2 is the Hausdorff dimension of the limiting
metric [10, 29]. See [9] for a survey of results about the subcritical LQGmetric (and some previous
results in the critical and supercritical cases).
In the critical and supercritical cases, Theorem 1.3 is new.We previously showed in [11] that for

all - > 0, the metrics {8−1
� ��

ℎ
}�>0 are tight with respect to the topology on lower semicontinuous

functions. The contribution of the present paper is to show that the subsequential limit is unique.
We will do this by proving that the limiting metric is uniquely characterized by a list of axioms
analogous to the one in [27] (see Theorems 1.8 and 1.13).
In the critical case - = -crit, the limiting metric �ℎ induces the same topology as the Euclidean

metric [13], and can be thought of as the Riemannian distance function associated with critical
(� = 2) LQG. We refer to [38] for a survey of results concerning the critical LQGmeasure.
In the supercritical case - > -crit, the limiting metric in Theorem 1.3 does not induce the

Euclidean topology on C. Rather, almost surely there exists an uncountable, Euclidean-dense
set of singular points � ∈ C such that

�ℎ(�, &) = ∞, ∀& ∈ C ⧵ {�}. (1.8)

However, for each fixed � ∈ C, almost surely � is not a singular point, so the set of singular points
has zero Lebesgue measure. Moreover, any two non-singular points lie at finite �ℎ-distance from
each other [11]. One can think of singular points as infinite ‘spikes’ which �ℎ-rectifiable paths
must avoid.
If we let {ℎ�}�>0 be the circle average process for the GFF [18, section 3.1], then the set of singular

points is (almost) the same as the set of points � ∈ C which have thickness greater than A, in the
sense that

lim sup
�→0

ℎ�(�)

log �−1
> A. (1.9)

See [36, Proposition 1.11] for a precise statement. It is shown in [30] that almost surely

lim sup
�→0

ℎ�(�)∕ log �−1 ∈ [−2, 2], ∀� ∈ C,
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which explains why -crit (which corresponds to A = 2) is the critical threshold for singular points
to exist.

Remark 1.5 (Conjectured random planar map connection). In the subcritical case, the LQGmetric
is conjectured to describe the scaling limit of various types of random planarmaps, equipped with
their graph distance, with respect to the Gromov–Hausdorff topology (see [27, section 1.3]). This
conjecture naturally extends to the critical case. In particular, the critical LQGmetric should be the
Gromov–Hausdorff scaling limit of random planar maps sampled with probability proportional
to the partition function of, for example, the discrete GFF, the O(2) loopmodel, the critical 4-state
Potts model, or the critical Fortuin–Kasteleyn model with parameter I = 4 [2, 23, 42]. A naive
guess in the supercritical case is that the LQG metric for �M ∈ (1, 25) should describe the scaling
limit of random planar maps sampled with probability proportional to (det Δ)−�M∕2, where Δ is
the discrete Laplacian. This guess appears to be false, however, since numerical simulations and
heuristics suggest that such planar maps converge in the scaling limit to trees (see [22, section
2.2] and the references therein). Rather, in order to get supercritical LQG in the limit, one should
consider planar maps sampled with probability proportional to (det Δ)−�M∕2 which are in some
sense ‘allowed to have infinitely many vertices’. We do not know how to make sense of such maps
rigorously. However, [22] defines a random planar map which should be in the same universality
class: it is the adjacency graph of a dyadic tiling ofC by squares which all have the same ‘�M-LQG
size’ with respect to an instance of the GFF. See [22] for further discussion.

1.3 Characterization of the LQGmetric

Since we already know that LFPP is tight for all - > 0 [11], in order to prove Theorem 1.3 we need
to show that the subsequential limit is unique. To accomplish this, we will prove that for each
- > 0, there is a unique (up tomultiplication by a deterministic positive constant)metric satisfying
certain axioms. That is, we will extend the characterization result of [27] to the supercritical case.
To state our axioms, we first need some preliminary definitions.

Definition 1.6. Let (:, �) be a metric space, with � allowed to take on infinite values.

∙ A curve (also known as a path) in (:, �) is a continuous function / ∶ [J, K] → : for some
interval [J, K].

∙ For a curve / ∶ [J, K] → :, the �-length of / is defined by

len(/; �) ∶= sup
N

#N∑

P=1

�(/(4P), /(4P−1)),

where the supremum is over all partitions N ∶ J = 40 < ⋯ < 4#N = K of [J, K]. Note that the �-
length of a curve may be infinite. In particular, the �-length of / is infinite if there are times
!, 4 ∈ [J, K] such that �(/(!), /(4)) = ∞.

∙ We say that (:, �) is a length space if for each �, � ∈ : and each � > 0, there exists a curve of
�-length at most �(�, �) + � from � to �. If �(�, �) < ∞, a curve from � to � of �-length exactly
�(�, �) is called a geodesic.
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∙ For Q ⊂ :, the internal metric of � on Q is defined by

�(�, �; Q) ∶= inf
/⊂Q

len(/; �), ∀�, � ∈ Q, (1.10)

where the infimum is over all curves / in Q from � to �. Note that �(⋅, ⋅; Q) is a metric on Q,
except that it is allowed to take infinite values.

∙ If: ⊂ C, we say that � is a lower semicontinuous metric if the function (�, �) → �(�, �) is lower
semicontinuous with respect to the Euclidean topology. We equip the set of lower semicon-
tinuous metrics on : with the topology on lower semicontinuous functions on : × :, as in
Definition 1.2, and the associated Borel R-algebra.

The axioms which characterize our metric are given in the following definition.

Definition 1.7 (LQG metric). Let ′ be the space of distributions (generalized functions) on C,
equipped with the usual weak topology. For - > 0, a (strong) LQG metric with parameter - is a
measurable function ℎ ↦ �ℎ from ′ to the space of lower semicontinuous metrics on C with
the following properties.† Let ℎ be a GFF plus a continuous function on C: that is, ℎ is a random
distribution on C which can be coupled with a random continuous function 9 in such a way that
ℎ − 9 has the law of the whole-plane GFF. Then the associated metric �ℎ satisfies the following
axioms.

I. Length space. Almost surely, (C, �ℎ) is a length space.
II. Locality. Let� ⊂ C be a deterministic open set. The �ℎ-internal metric �ℎ(⋅, ⋅; �) is almost

surely given by a measurable function of ℎ|� .
III. Weyl scaling. For a continuous function 9 ∶ C → R, define

(�-9 ⋅ �ℎ)(�, &) ∶= inf
/∶�→& ∫

len(/;�ℎ)

0
�-9(/(4)) �4, ∀�, & ∈ C, (1.11)

where the infimum is over all �ℎ-rectifiable paths from � to & in C parameterized by �ℎ-
length (we use the convention that inf ∅ = ∞). Then almost surely �-9 ⋅ �ℎ = �ℎ+9 for every
continuous function 9 ∶ C → R.

IV. Scale and translation covariance. Let A be as in (1.5). For each fixed deterministic � > 0

and � ∈ C, almost surely

�ℎ(�� + �, �� + �) = �ℎ(�⋅+�)+A log �(�, �), ∀�, � ∈ C. (1.12)

V. Finiteness. Let � ⊂ C be a deterministic, open, connected set and let T1, T2 ⊂ � be
disjoint, deterministic, compact, connected sets which are not singletons. Almost surely,
�ℎ(T1, T2; �) < ∞.

Definition 1.7 is nearly identical to the analogous definition in the subcritical case [27, section
1.2], except we only require the metric to be lower semicontinuous, rather than requiring it to

†We do not care how � is defined on any subset of′ which has probability zero for the distribution of any whole-plane

GFF plus a continuous function.
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induce the Euclidean topology. Because we allow �ℎ to take infinite values, we need to include
a finiteness condition (Axiom V) to rule out metrics which assign infinite distance to too many
pairs of points. For example, if we defined�ℎ for every distribution ℎ by�ℎ(�, &) = 0 if � = & and
�ℎ(�, &) = ∞ if � ≠ &, then ℎ ↦ �ℎ would satisfy all of the conditions of Definition 1.7 except
for Axiom V.
Axioms I, II, and III are natural from the heuristic that the LQG metric should be given by

‘integrating �-ℎ along paths, then taking an infimum over paths’. We remark that if ℎ is a GFF
plus a continuous function and�ℎ is a weak LQGmetric, then almost surely the Euclideanmetric
is continuous with respect to �ℎ [36, Proposition 1.10] (but �ℎ is not continuous with respect to
the Euclidean metric if - > -crit). Consequently, almost surely every path of finite �ℎ-length is
Euclidean continuous.
Axiom IV is the metric analog of the LQG coordinate change formula from [18, section 2],

but restricted to translation and scaling. Following [18], we can think of the pairs (C, �ℎ) and
(C, ℎ(� ⋅ +�) + A log �) as representing two different parameterizations of the same LQG surface.
Axiom IV implies that the metric is an intrinsic function of the LQG surface, that is, it is invariant
under changing coordinates to a different parameterization. We do not assume that the metric is
covariant with respect to rotations in Definition 1.7: this turns out to be a consequence of the other
axioms (see Proposition 1.9).
The following theorem extends [27, Theorem 1.2] to the critical and supercritical phases.

Theorem 1.8. For each - > 0, there is an LQG metric � with parameter - such that the limiting

metric of Theorem 1.3 is almost surely equal to �ℎ whenever ℎ is a whole-plane GFF plus a bounded

continuous function. Furthermore, this LQG metric is unique in the following sense. If � and �̃ are

two LQG metrics with parameter -, then there is a deterministic constant U > 0 such that almost

surely �̃ℎ = U�ℎ whenever ℎ is a whole-plane GFF plus a continuous function.

Theorem 1.8 tells us that for every �M ∈ (−∞, 25), there is an essentially unique† metric asso-
ciated with LQGwith matter central charge �M (recall the non-explicit relation between - and �M
from (1.6)). The deterministic positive constant U from Theorem 1.8 can be fixed in various ways.
For example, we can require that the median of the �ℎ-distance between the left and right sides
of the unit square is 1 in the case when ℎ is a whole-plane GFF normalized so that its average over
the unit circle is 0. Due to (1.4), the limit of LFPP has this normalization.
Theorem 1.8 implies that the LQG metric is covariant with respect to rotation, not just scaling

and translation. See [27, Remark 1.6] for a heuristic discussion of why we do not need to assume
rotational invariance in Definition 1.7.

Proposition 1.9. Let - > 0 and let � be an LQG metric with parameter -. Let ℎ be a whole-plane

GFF plus a continuous function and let V ∈ C with |V| = 1. Almost surely,

�ℎ(�, �) = �ℎ(V⋅)(V
−1�, V−1�), ∀�, � ∈ C. (1.13)

† Strictly speaking, we only show that there is a unique LQG metric with parameter - for each - ∈ (0,∞). To deduce

that the metric with central charge �M is unique we would need to know that - ↦ �M(-) is injective. We expect that this

injectivity is not hard to prove, but a proof of has so far only been written down for - ∈ (0, 0.7). See the discussion just

after (1.6).
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Proof. Define �(V)
ℎ

(�, �) ∶= �ℎ(V⋅)(V
−1�, V−1�). It is easily verified that �(V) satisfies the condi-

tions of Definition 1.7, so Theorem 1.8 implies that there is a deterministic constant U > 0 such
that almost surely �(V)

ℎ
= U�ℎ whenever ℎ is a whole-plane GFF plus a continuous function. To

check that U = 1, consider the case when ℎ is a whole-plane GFF ℎ normalized so that its aver-
age over the unit circle is 0. Then the law of ℎ is rotationally invariant, so P[�ℎ(0, XD) > Y] =

P[�(V)
ℎ

(0, XD) > Y] for every Y > 0. Therefore, U = 1. □

Proposition 1.9 implies that �ℎ is covariant with respect to complex affine maps. It is natural to
expect that �ℎ is also covariant with respect to general conformal maps, in the following sense.
Let �, �̃ ⊂ C be open and let Z ∶ � → �̃ be a conformal map. Then it should be the case that
almost surely

�ℎ(Z(�), Z(�); �̃) = �ℎ◦Z+A log |Z′|(�, �;�), ∀�, � ∈ �. (1.14)

In the subcritical case, the coordinate change relation (1.14) was proven in [26]. We expect that
the proof there can be adapted to treat the critical and supercritical cases as well.
Various properties of the LQG metric �ℎ for �M ∈ [1, 25) have already been established in

the literature. For example, for �M ∈ (1, 25) almost surely each �ℎ-metric ball  centered at a
non-singular point is not �ℎ-compact [29, Proposition 1.14], but the boundaries of the connected
components ofC ⧵  are �ℎ-compact and are Jordan curves [12, Theorem 1.4]. Furthermore, one
has a confluence property for LQG geodesics [12, Theorem 1.6] and a version of the Knizhnik–
Polyakov–Zamolodchikov (KPZ) formula, which relates Hausdorff dimensions with respect to�ℎ

and the Euclidean metric [36, Theorem 1.15]. Simulations of supercritical LQG metric balls and
geodesics can be found in [9, 11, 12].
There are many open problems related to the LQG metric for �M ∈ [1, 25). A list of open prob-

lems concerning LQG with �M ∈ (1, 25) can be found in [22, section 6]. Moreover, most of the
open problems for the LQGmetric with �M ∈ (−∞, 1) from [27, section 7] are also interesting for
�M ∈ [1, 25). Here, we mention one open problem which has not been discussed elsewhere.

Problem 1.10. Let�(-)
ℎ
denote the LQGmetricwith parameter -. Does�(-)

ℎ
, appropriately re-scaled,

converge in some topology as - → ∞ (equivalently, �M → 25)? Even if one does not have conver-

gence of the whole metric, can anything be said about the limits of �(-)
ℎ
-metric balls, geodesics,

and so on?

1.4 Weak LQGmetrics

In this subsection, we will introduce a notion of weak LQG metric for general - > 0 (Defini-
tion 1.12), which is similar to Definition 1.7 but with Axiom IV replaced by a weaker condition.
Our notion of a weak LQGmetric first appeared in [36]. We will then state a uniqueness theorem
for weak LQG metrics (Theorem 1.13) and explain why our other main theorems (Theorems 1.3
and 1.8) follow from this theorem. A similar notion of weak LQGmetrics was used in the proof of
uniqueness of the subcritical LQG metric [17, 27].
Tomotivate the definition of weak LQGmetrics, we first observe that every possible subsequen-

tial limit of the re-scaled LFPP metrics 8−1
� ��

ℎ
satisfies Axioms I, II, and III in Definition 1.7. This

is intuitively clear from the definition, and not too hard to check rigorously (see [36, section 2]). It

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 227

is also easy to see that every possible subsequential limit of LFPP satisfies Axiom V for � = 1 (that
is, it satisfies the coordinate change formula for translations). However, it is far from obvious that
the subsequential limits satisfy Axiom V when � ≠ 1. The reason is that re-scaling space changes
the value of � in (1.3): for �, � > 0, one has [17, Lemma 2.6]

��
ℎ
(��, �&) = ��

�∕�

ℎ(�⋅)
(�, &), ∀�, & ∈ C.

So, since we only have subsequential limits of 8−1
� ��

ℎ
, we cannot directly deduce that the

subsequential limit satisfies an exact spatial scaling property.
Because of the above issue, we do not know how to check Axiom IV for subsequential limits of

LFPPdirectly. Instead,wewill prove a stronger uniqueness statement than the one inTheorem 1.8,
under a weaker list of axiomswhich can be checked for subsequential limits of LFPP.Wewill then
deduce from this stronger uniqueness statement that the weaker list of axioms implies the axioms
in Definition 1.7 (Lemma 1.15).
An annular region is a bounded open set \ ⊂ C such that \ is homeomorphic to an open,

closed, or half-open Euclidean annulus. If \ is an annular region, then X\ has two connected
components, one of which disconnects the other from ∞. We call these components the outer
and inner boundaries of \, respectively.

Definition 1.11 (Distance across and around annuli). Let � be a length metric on C. For an
annular region \ ⊂ C, we define �(across \) to be the �-distance between the inner and outer
boundaries of \. We define �(around \) to be the infimum of the �-lengths of paths in \ which
disconnect the inner and outer boundaries of \.

Note that both �(across \) and �(around \) are determined by the internal metric of � on \.
Distances around and across Euclidean annuli play a similar role to ‘hard crossings’ and ‘easy
crossings’ of 2 × 1 rectangles in percolation theory. One can get a lower bound for the �-length of
a path in terms of the �-distances across the annuli that it crosses. On the other hand, one can
‘string together’ paths aroundEuclidean annuli to get upper bounds for�-distances. The following
is (almost) a re-statement of [36, Definition 1.6].

Definition 1.12 (Weak LQGmetric). Let′ be as in Definition 1.12. For - > 0, aweak LQGmetric
with parameter - is a measurable function ℎ ↦ �ℎ from′ to the space of lower semicontinuous
metrics on C which satisfies properties I (length metric), II (locality), and III (Weyl scaling) from
Definition 1.7 plus the following two additional properties.

IV′. Translation invariance. For each deterministic point � ∈ C, almost surely �ℎ(⋅+�) =

�ℎ(⋅ + �, ⋅ + �).
V′. Tightness across scales. Suppose that ℎ is a whole-plane GFF and let {ℎ�(�)}�>0,�∈C be its

circle average process. Let \ ⊂ C be a deterministic Euclidean annulus. In the notation of
Definition 1.11, the random variables

�−-A�−-ℎ�(0)�ℎ(across �\) and �−-A�−-ℎ�(0)�ℎ(around �\)

and the reciprocals of these random variables for � > 0 are tight.
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228 DING and GWYNNE

We think of Axiom V′as a substitute for Axiom IV of Definition 1.7. Indeed, Axiom V′does not
give an exact spatial scaling property, but it still allows us to get estimates for�ℎ which are uniform
across different Euclidean scales.
It was shown in [36, Theorem 1.7] that every subsequential limit of the re-scaled LFPP metrics

8−1
� ��

ℎ
is a weak LQG metric in the sense of Definition 1.12. Actually, [36] allows for a general

family of scaling constants {^�}�>0 in Axiom V′in place of �-A, but it was shown in [14, Theorem
1.9] that one can always take ^� = �-A. So, our definition is equivalent to the one in [36].
From the preceding paragraph and the tightness of 8−1

� ��
ℎ
[11], we know that there exists a weak

LQGmetric for each - > 0. Most of this paper is devoted to the proof of the uniqueness of theweak
LQG metric.

Theorem 1.13. For each - > 0, the weak LQG metric is unique in the following sense. If � and �̃

are two weak LQG metrics with parameter -, then there is a deterministic constant U > 0 such that

almost surely �ℎ = U�̃ℎ whenever ℎ is a whole-plane GFF plus a continuous function.

Let us now explain why Theorem 1.13 is sufficient to establish our main results, Theorems 1.3
and 1.8. We first observe that every strong LQG metric is a weak LQG metric.

Lemma 1.14. For each - > 0, each strong LQG metric (Definition 1.7) is a weak LQG metric

(Definition 1.12).

Proof. Let � be a strong LQG metric. It is immediate from Axiom V of Definition 1.7 with � = 1

that � satisfies translation invariance (Axiom IV′). We need to check Axiom V′. To this end, let
ℎ be a whole-plane GFF normalized so that ℎ1(0) = 0. Weyl scaling (Axiom III) together with
conformal covariance (Axiom IV) gives

�−-A�−-ℎ�(0)�ℎ(�⋅, �⋅) = �ℎ(�⋅)−ℎ�(0)
(⋅, ⋅)

�
= �ℎ(⋅, ⋅), (1.15)

where the equality in law is due to the scale invariance of the law of ℎ, modulo additive constant.
To get tightness across scales, it therefore suffices to show that for each fixed Euclidean annulus

\, almost surely �ℎ(across \) and �ℎ(around \) are finite and positive. Our finiteness condi-
tion Axiom V easily implies that these two quantities are almost surely finite. To see that they
are almost surely positive, it suffices to show that for any two deterministic, disjoint, Euclidean-
compact sets T1, T2 ⊂ C, almost surely �ℎ(T1, T2) > 0. Indeed, on the event {�ℎ(T1, T2) = 0}

we can find sequences of points �? ∈ T1 and &? ∈ T2 such that �ℎ(�?, &?) → 0. After possi-
bly passing to a subsequence, we can arrange that �? → � ∈ T1 and &? → & ∈ T2. By the lower
semicontinuity of �ℎ, we get �ℎ(�, &) = 0. Since � and & are distinct and �ℎ is a metric (not a
pseudometric) this implies that P[�ℎ(T1, T2) = 0] = 0. □

Theorem 1.13 implies that one also has the converse to Lemma 1.14.

Lemma 1.15. For each - > 0, every weak LQG metric is a strong LQG metric in the sense of

Definition 1.7.

Proof of Lemma 1.15 assuming Theorem 1.13. Let� be a weak LQGmetric. It is clear that � satisfies
Axioms I, II, III, and V of Definition 1.7. To show that � is a strong LQGmetric, we need to check
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Axiom IVofDefinition 1.7 in the casewhen � = 0 (note thatwe already have translation invariance
from Definition 1.12). To this end, for K > 0 let

�(K)
ℎ

(⋅, ⋅) ∶= �ℎ(K⋅)+A log K(⋅∕K, ⋅∕K). (1.16)

If ℎ is a whole-plane GFF with ℎ1(0) = 0 then by the scale invariance of the law of ℎ, modulo

additive constant, we have ℎ(K⋅) − ℎK(0)
�
= ℎ. Consequently, if ℎ is a whole-plane GFF plus a

continuous function, then ℎ(K⋅) + A log K is also a whole-plane GFF plus a continuous function.
Hence, �(K)

ℎ
is well-defined.

We need to show that almost surely �(K)
ℎ

= �ℎ. We will prove this using Theorem 1.13. We

first claim that �(K)
ℎ

is a weak LQG metric. It is easy to check that �(K) satisfies Axioms I, II,
III, and IV′in Definition 1.12. To check Axiom V′, we use Weyl scaling (Axiom III) to get that

�−-A�−-ℎ�(0)�(K)
ℎ

(�⋅, �⋅) = �−-(ℎ�(0)−ℎ�∕K(0))�-ℎK(0) × (�∕K)−-A�−-ℎ�∕K(0)�ℎ(K⋅)−ℎK(0)
((�∕K)⋅, (�∕K)⋅).

In the case when ℎ is a whole-plane GFF, the random variables ℎ�(0) − ℎ�∕K(0) and ℎK(0) are
each centered Gaussian with variance logmax{K, 1∕K} [18, section 3.1]. Tightness across scales

(Axiom V′) for � applied with ℎ(K⋅) − ℎK(0)
�
= ℎ in place of ℎ and �∕K in place of � therefore

implies tightness across scales for �(K).
Hence, we can apply Theorem 1.13 with �̃ = �(K) to get that for each K > 0, there is a deter-

ministic constant _K > 0 such that whenever ℎ is a whole-plane GFF plus a continuous function,
almost surely

�(K)
ℎ

= _K�ℎ.

It remains to show that _K = 1.

For K1, K2 > 0, we have �(K1K2) = (�(K1))(K2), which implies that almost surely �
(K1K2)

ℎ
=

_K2�
(K1)

ℎ
= _K1_K2�ℎ. Therefore,

_K1K2 = _K1_K2 . (1.17)

It is also easy to see that _K is a Lebesgue measurable function of K. Indeed, by Weyl scaling

(Axiom III) and since ℎ(K⋅) − ℎK(0)
�
= ℎ,

_K�
−-ℎK(0)�ℎ(K⋅, K⋅) = �−-ℎK(0)�(K)

ℎ
(K⋅, K⋅) = K-A�ℎ(K⋅)−ℎK(0)

(⋅, ⋅)
�
= K-A�ℎ(⋅, ⋅). (1.18)

The function K ↦ K−-A�−-ℎK(0) is continuous and �ℎ is lower semicontinuous. Hence, the met-
rics K−-A�−-ℎK(0)�ℎ(K⋅, K⋅) depend continuously on K with respect to the topology on lower
semicontinuous functions. Therefore, the law of _−1

K
�ℎ depends continuously on K with respect

to the topology on lower semicontinuous functions. It follows that _K is continuous, hence
Lebesgue measurable.
The relation (1.17) and themeasurability of K ↦ _K imply that _K = K� for some � ∈ R. By (1.18),

wehave K�−-A�−-ℎK(0)�ℎ(K⋅, K⋅)
�
= �ℎ(⋅, ⋅) for each K > 0. In particular, AxiomV′, holds for�with

-A − � in place of -A. Hence, � = 0. □
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230 DING and GWYNNE

Proof of Theorem 1.3, assuming Theorem 1.13. By [11, Theorem 1.2], if ℎ is a whole-plane GFF plus
a bounded continuous function, then for each - > 0, the re-scaled LFPP metrics 8−1

� ��
ℎ
are tight

with respect to the topology of Definition 1.2. In fact, by [36, Theorem 1.7], for any sequence of
positive � values tending to zero there is a weak LQG metric � and a subsequence �? → 0 such
that whenever ℎ is a whole-plane GFF plus a continuous functions, the metrics 8−1

�?
�

�?
ℎ
converge

in probability to �ℎ with respect to this topology. By Theorem 1.13, if � and �̃ are two weak LQG
metrics arising as subsequential limits in this way, then there is a deterministic U > 0 such that
almost surely �̃ℎ = U�ℎ whenever ℎ is a whole-plane GFF plus a continuous function.
If ℎ is a whole-plane GFF normalized so that ℎ1(0) = 0, then by the definition of 8� in (1.4), the

median 8−1
� ��

ℎ
-distance between the left and right sides of [0, 1]2 is 1. By passing this through to

the limit, we get that the constant U above must be equal to 1. Therefore, almost surely �ℎ = �̃ℎ

whenever ℎ is a whole-plane GFF plus a continuous function, so the subsequential limit of 8−1
� ��

ℎ
is unique. □

Proof of Theorem 1.8, assuming Theorem 1.13. The uniqueness of the strong LQG metric fol-
lows from Theorem 1.13 and Lemma 1.15. The existence follows from the existence of the limit
in Theorem 1.3, [36, Theorem 1.7] (which says that the limit is a weak LQG metric), and
Lemma 1.15. □

1.5 Outline

As explained in section 1.4, to establish our main results we only need to prove Theorem 1.13. To
this end, let ℎ be a whole-plane GFF and let �ℎ and �̃ℎ be two weak LQG metrics as in Defini-
tion 1.12. We need to show that there is a deterministic constant U > 0 such that almost surely
�̃ℎ = U�ℎ. In this subsection, we will give an outline of the proof of this statement. Throughout
this outline and the rest of the paper, we will frequently use without comment the following fact,
which is [36, Proposition 1.12].

Lemma 1.16 [36]. Almost surely, the metric �ℎ is complete and finite-valued on C ⧵

{singular points}. Moreover, every pair of points in C ⧵ {singular points} can be joined by a

�ℎ-geodesic (Definition 1.6).

1.5.1 Optimal bi-Lipschitz constants

By [14, Theorem 1.10], the metrics �ℎ and �̃ℎ are almost surely bi-Lipschitz equivalent, so in par-
ticular almost surely they have the same set of singular points. We define the optimal upper and
lower bi-Lipschitz constants

^∗ ∶= inf

{
�̃ℎ(�, �)

�ℎ(�, �)
∶ �, � ∈ C ⧵ {singular points}, � ≠ �

}
and

ℭ∗ ∶= sup

{
�̃ℎ(�, �)

�ℎ(�, �)
∶ �, � ∈ C ⧵ {singular points}, � ≠ �

}
. (1.19)

Lemma 1.17. Each of ^∗ and ℭ∗ is almost surely equal to a deterministic, positive, finite constant.
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Proof. By the bi-Lipschitz equivalence of �ℎ and �̃ℎ, almost surely ^∗ and ℭ∗ are posi-
tive and finite. We know from [36, Lemma 3.12] that almost surely for each � ∈ C, we have
limY→∞ �ℎ(�, XbY(�)) = ∞. With this fact in hand, the lemma follows from exactly the same
elementary tail triviality argument as in the subcritical case [27, Lemma 3.1]. □

We henceforth replace ^∗ and ℭ∗ by their almost sure values in Lemma 1.17, so that each of ^∗
and ℭ∗ is a deterministic constant depending only on the laws of �ℎ and �̃ℎ and almost surely

^∗�ℎ(�, �) ⩽ �̃ℎ(�, �) ⩽ ℭ∗�ℎ(�, �), ∀�, � ∈ C. (1.20)

1.5.2 Main idea of the proof

To prove Theorem 1.13, it suffices to show that ^∗ = ℭ∗. In the rest of this subsection, we will give
an outline of the proof of this fact. There are many subtleties in our proof which we will gloss over
in this outline in order to focus on the key ideas. So, the statements in the rest of this subsection
should not be taken as mathematically precise.
At a very broad level, the basic strategy of our proof is similar to the proof of the uniqueness

of the subcritical LQG metric in [27]. However, the details in Sections 3 and 5 are substantially
different from the analogous parts of [27], and the argument in Section 4 is completely different
from anything in [27].
We now give a very rough explanation of the main idea of our proof. Assume by way of con-

tradiction that ^∗ < ℭ∗. We will show that for any ^′ ∈ (^∗, ℭ∗), there are many ‘good’ pairs of
distinct non-singular points �, � ∈ C such that �̃ℎ(�, �) ⩽ ^′�ℎ(�, �) (Section 3). In fact, we will
show that the set of such points is large enough that every �ℎ-geodesic / has to get �̃ℎ-close to
each of � and � for many ‘good’ pairs of points �, � (Sections 4 and 5). For each of these good pairs
of points, we replace a segment of / by the concatenation of a �̃ℎ-geodesic from a point of / to �,
a �̃ℎ-geodesic from � to �, and a �̃ℎ-geodesic from � to a point of /. This gives a new path with
the same endpoints as /.
By our choice of good pairs of points �, �, the �̃ℎ-length of each of the replacement segments

is at most a constant slightly larger than ^′ times its �ℎ-length. Furthermore, by the definition of
ℭ∗ the �̃ℎ-length of each segment of / which was not replaced is at most ℭ∗ times its �ℎ-length.
Morally, we would like to say that this implies that there exists ^′′ ∈ (^′, ℭ∗) such that almost
surely

�̃ℎ(�, &) ⩽ ^′′�ℎ(�, &), ∀�, & ∈ C. (1.21)

The bound (1.21) contradicts the fact that ℭ∗ is the optimal upper bi-Lipschitz constant
(recall (1.19)). In actuality, what we will prove is a bit more subtle: assuming that ^∗ < ℭ∗, we
will establish for ‘many’ small values of � > 0 and each h > 0 an upper bound for

P
[
�̃ℎ(�, &) ⩽ (ℭ∗ − h)�ℎ(�, &), ∀�, & ∈ b�(0) satisfying certain conditions

]
. (1.22)

See Proposition 1.21 for a somewhat more precise statement. This upper bound will be incom-
patible with a lower bound for the same probability (Proposition 1.18), which will lead to our
desired contradiction.
In the rest of this subsection, we give a more detailed, section-by-section outline of the proof.
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232 DING and GWYNNE

1.5.3 Section 2: Preliminary estimates

We will fix some notation, then record several basic estimates for the LQG metric which are
straightforward consequences of results in the existing literature (mostly [36]).

1.5.4 Section 3: Quantitative estimates for optimal bi-Lipschitz constants

Letℭ′ ∈ (^∗, ℭ∗). By the definition (1.19) of ^∗ andℭ∗, it holds with positive probability that there
exists non-singular points �, � ∈ C such that �̃ℎ(�, �) ⩾ ℭ′�ℎ(�, �). The purpose of Section 3 is to
prove a quantitative version of this statement. The argument of Section 3 is similar to the argument
of [27, section 3], butmany of the details are different due to the fact that ourmetrics do not induce
the Euclidean topology.
The following is a simplified version of the main result of Section 3 (see Proposition 3.5 for a

precise statement).

Proposition 1.18. There exists " ∈ (0, 1), depending only on the laws of �ℎ and �̃ℎ, such that for

each ℭ′ ∈ (0,ℭ∗) and each sufficiently small � > 0 (depending on ℭ′ and the laws of �ℎ and �̃ℎ),

there are at least 3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N such that

P
[
∃ a ‘regular’ pair of points �, � ∈ b�(0) such that �̃ℎ(�, �) ⩾ ℭ′�ℎ(�, �)

]
⩾ ". (1.23)

The statement that � and � are ‘regular’ in (1.23) means that these points satisfy several regu-
larity conditions which are stated precisely in Definition 3.2. These conditions include an upper
bound on �ℎ(�, �) (so in particular � and � are non-singular) and a lower bound on |� − �| in
terms of �. We emphasize that the parameter " in Proposition 1.18 does not depend on ℭ′. This
will be crucial for our purposes, see the discussion just after Proposition 1.21.
Wewill prove Proposition 1.18 by contradiction. In particular, wewill assume that there are arbi-

trarily small values of � > 0 for which there are at least 1

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N

such that

P
[
�̃ℎ(�, �) < ℭ′�ℎ(�, �), ∀ ‘regular’ pairs of points �, � ∈ b�(0)

]
⩾ 1 − ". (1.24)

If " is small enough (depending only on the laws of �ℎ and �̃ℎ), then we can use the assump-
tion (1.24) together with the near-independence of the restrictions of the GFF to disjoint
concentric annuli (Lemma 2.1) and a union bound to get the following. For any bounded open
set � ⊂ C, it holds with high probability that � can be covered by balls b�(�) for � ∈ � and
� ∈ [�2, �] ∩ {8−q}q∈N such that the event in (1.24) occurs.
We will then work on the high-probability event that we have such a covering of �. Consider

points z,w ∈ � such that there exists a �ℎ-geodesic / from z to w which is contained in �. We
will replace several segments of / between pairs of ‘regular’ points �, � as in (1.24) by �̃ℎ-geodesics
from � to �. The �̃ℎ-length of each of these geodesics is at mostℭ

′�ℎ(�, �). Furthermore, by (1.19),
the �ℎ-length of each segment of / which we did not replace is at most ℭ∗ times its �ℎ-length.
We thus obtain a path from z to w with �̃ℎ-length at most ℭ

′′�ℎ(�, �), where ℭ
′′ ∈ (ℭ′, ℭ∗) is a

constant depending only on ℭ′ and the laws of �ℎ and �̃ℎ. With high probability, this works for
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any�ℎ-geodesic contained in�. So, by taking� to be arbitrarily large,we contradict the definition
of ℭ∗. This yields Proposition 1.18.
By the symmetry in our hypotheses for �ℎ and �̃ℎ, we also get the following analog of

Proposition 1.18 with the roles of �ℎ and �̃ℎ interchanged.

Proposition 1.19. There exists " ∈ (0, 1), depending only on the laws of �ℎ and �̃ℎ, such that for

each ^′ > ^∗ and each sufficiently small � > 0 (depending on ^′ and the laws of�ℎ and �̃ℎ), there are

at least 3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for which

P
[
∃ a ‘regular’ pair of points �, � ∈ b�(0) such that �̃ℎ(�, �) ⩽ ^′�ℎ(�, �)

]
⩾ ". (1.25)

1.5.5 Section 4: The core argument

The idea of the rest of the proof of Theorem 1.13 is to show that if ^∗ < ℭ∗, then Proposition 1.19
implies a contradiction to Proposition 1.18.
The core part of the proof is given in Section 4, where we will prove Theorem 1.13 conditional

on the existence of events and bump functions satisfying certain specified properties. The needed
events and bump functions will be constructed in Section 5. Section 4 plays a role analogous to
[27, sections 4 and 6], but the proof is completely different.
We will consider a set of admissible radii ⊂ (0, 1), which will eventually be taken to be equal

to �−10, where � is a constant and0 is the set of � ∈ {8−q}q∈N for which (1.25) holds. We also
fix a constant p ∈ (0, 1), which will eventually be chosen to be close to 1, in a manner depending
only on the laws of �ℎ and �̃ℎ, and we set

^′ ∶=
^∗ + ℭ∗

2
, so that ^′ ∈ (^∗, ℭ∗) if ^∗ < ℭ∗.

We will assume that for each � ∈  and each � ∈ C, we have defined an event ��,� and a
deterministic function ��,� satisfying the following properties.

∙ ��,� is determined by ℎ|b4�(�)⧵b�(�)
, viewed modulo additive constant, and P[��,�] ⩾ p.

∙ ��,� is smooth, non-negative, and supported on the annulus b3�(�) ⧵ b�(�).
∙ Assume that ��,� occurs and /′ is a �ℎ−��,�

-geodesic between two points of C ⧵ b4�(�) which

spends ‘enough’ time in the support of ��,�. Then there are times ! < 4 such that /′([!, 4]) ⊂

b4�(�) and

�̃ℎ−��,�
(/′(!), /′(4)) ⩽ ^′(4 − !). (1.26)

The precise list of properties that we need is stated in Subsection 4.1.
Roughly speaking, the support of ��,� will be a long narrow tube contained in a small neighbor-

hood of Xb2�(0). On the event ��,�, there will be many ‘good’ pairs of non-singular points �, � in
the support of ��,� such that �̃ℎ(�, �) ⩽ ^′

0
�ℎ(�, �) and the �̃ℎ-geodesic from � to � is contained

in the support of ��,�, where ^′
0
∈ (^∗, ^

′) is fixed. See Figure 2 for an illustration. We will show
that ��,� occurs with high probability for � ∈  using Proposition 1.19 (with ^′

0
instead of ^′) and

a long-range independence statement for the GFF (Lemma 2.3).
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234 DING and GWYNNE

F IGURE 2 Illustration of three ‘good’ balls (that is, ones for which ��,� occurs) and one ‘very good’ ball (that

is, one for which ��,�(ℎ + ��,�) occurs) which are hit by the �ℎ-geodesic /. Each of the ‘good’ balls contains several

pairs of non-singular points �, � in the support of ��,� (light blue) for which �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �). These points

and the �̃ℎ-geodesics joining them are shown in red. For the ‘very good’ ball (the labeled ball in the figure), / gets

�ℎ−��,�
-close to each of � and � for one of the aforementioned pairs of points �, �. To prove Proposition 1.20, we

will show that there are lots of ‘very good’ balls for which / spends a lot of time in the support of ��,� .

The function ��,� will be very large on most of its support. So, by Weyl scaling (Axiom III), a
�ℎ−��,�

-geodesic which enters the support of ��,� will tend to spend a long time in the support
of ��,�. This will force the �ℎ−��,�

-geodesic to get �ℎ−��,�
-close to each of � and � for one of the

aforementioned ‘good’ pairs of points�, �. The estimate (1.26)will follow from this and the triangle
inequality. Most of Section 4 is devoted to proving an estimate (Proposition 4.3) which roughly
speaking says the following.

Proposition 1.20. Assume that ^∗ < ℭ∗ andwe have defined events��,� and functions ��,� satisfying

the above properties. As h → 0, it holds uniformly over all z,w ∈ C that

P
[
�̃ℎ(z,w) > (ℭ∗ − h)�ℎ(z,w), regularity conditions

]
= *h(h

w), ∀w > 0. (1.27)

We think of a ball b4�(�) as ‘good’ if the event ��,� occurs and ‘very good’ if the event
��,�(ℎ + ��,�), which is defined in the same manner as ��,� but with ℎ + ��,� instead of ℎ, occurs.
By definition, if b4�(�) is‘good’ for ℎ, then b4�(�) is ‘very good’ for ℎ − ��,�.
Let/ be the�ℎ-geodesic fromz tow (which is almost surely unique, see Lemma2.7). Recall that

P[��,�] ⩾ p, which is close to 1, and ��,� is determined by ℎ|b4�(�)⧵b�(�)
, viewed modulo additive

constant. From this, it is easy to show using the near-independence of the restrictions of ℎ to
disjoint concentric annuli (Lemma 2.1) that / has to hit b�(�) for lots of ‘good’ balls b4�(�).
To prove Proposition 1.20, it suffices to show that with high probability, there are many ‘very

good’ balls b4�(�) such that the �ℎ-geodesic / from z to w spends ‘enough’ time in the support of
the bump function ��,�. Indeed, the condition (1.26) (with ℎ + ��,� instead of ℎ) will then give us
lots of pairs of points !, 4 such that �̃ℎ(/(!), /(4)) ⩽ ^′(4 − !), which in turnwill show that �̃ℎ(z,w)

is bounded away from ℭ∗�ℎ(z,w) (see Proposition 4.6).
In [27], it was shown that / hits many ‘very good’ balls by using confluence of geodesics (which

was proven in [24]) to get an approximate Markov property for /. In this paper, we will instead
show this using a simpler argument based on counting the number of events of a certain type
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which occur. More precisely, for � ∈  and a finite collection of points y such that the balls b4�(�)

for � ∈ y are disjoint, we will let zy,� be (roughly speaking) the event that the following is true.

∙ Each ball b4�(�) for � ∈ y is ‘good’.
∙ The �ℎ-geodesic / from z to w hits b�(�) for each � ∈ y.
∙ With �y,� ∶=

∑
�∈y ��,�, the �ℎ−�y,�

-geodesic from z to w spends ‘enough’ time in the support of
��,� for each � ∈ y.

We also let z′
y,�

be defined in the same manner as zy,� but with ℎ + �y,� in place of ℎ, that is, z
′
y,�

is the event that the following is true.

∙ Each b4�(�) for � ∈ y is ‘very good’.
∙ The �ℎ+�y,�

-geodesic from z to w hits b�(�) for each � ∈ y.
∙ The �ℎ-geodesic / from z to w spends ‘enough’ time in the support of ��,� for each � ∈ y.

Using a basic Radon–Nikodym derivative for the GFF, one can show that there is a constant
U > 0 depending only on the laws of �ℎ and �̃ℎ such that

U−qP[zy,�] ⩽ P[z′
y,�] ⩽ UqP[zy,�], whenever #y ⩽ q (1.28)

(see Lemma 4.4). We will eventually take q to be a large constant, independent of �, z,w, depend-
ing on the number w in (1.27). So, the relation (1.28) suggests that the number of sets y such that
#y ⩽ q and zy,� occurs should be comparable to the number of such sets for which z′

y,�
occurs.

Furthermore, one can show that if � is small enough, then for each � ∈ [�2, �], the number of
sets y with #y ⩽ q such that zy,� occurs grows like a positive power of �

−q (Proposition 4.5).
Indeed, as explained above, there are many sets y0 such that for each � ∈ y0, the ball b4�(�) is
good and the ball b�(�) is hit by /. We need to produce many sets y for which these properties
hold and also that �ℎ−�y,�

-geodesic spends enough time in the support of ��,� for each � ∈ y. To
do this, we start with a set y0 as above and iteratively remove the ‘bad’ points � ∈ y0 such that
the �ℎ−�y0,�

-geodesic from z to w does not spend very much time in the support of ��,�. By doing

so, we obtain a set y ⊂ y0 such that zy,� occurs and #y is not too much smaller than #y0. See
Subsection 4.3 for details.
By combining the preceding two paragraphs with an elementary calculation (see the end of

Subsection 4.2), we infer that with high probability there are lots of sets y with #y ⩽ q such that
z′
y,�

occurs. In particular, there must be lots of ‘very good’ balls b4�(�) for which / spends a lot of
time in the support of ��,�. As explained above, this gives Proposition 1.20.
Once Proposition 1.20 is established, one can take a union bound over many pairs of points

z,w ∈ b�(0) to get, roughly speaking, the following (see Lemma 4.20 for a precise statement).

Proposition 1.21. Assume that ^∗ < ℭ∗. For each sufficiently small � > 0 (depending only on the

laws of �ℎ and �̃ℎ), there are at least
3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for which

lim
h→0

P
[
∃ a ‘regular’ pair z,w ∈ b�(0) such that �̃ℎ(z,w) ⩾ (ℭ∗ − h)�ℎ(z,w)

]
= 0, (1.29)

uniformly over the choices of � and �.

Proposition 1.21 is incompatible with Proposition 1.18 since the parameter " in Proposition 1.18
does not depend on ℭ′. We thus obtain a contradiction to the assumption that ^∗ < ℭ∗, so we
conclude that ^∗ = ℭ∗ and hence Theorem 1.13 holds.
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236 DING and GWYNNE

1.5.6 Section 5: Constructing events and bump functions

In Section 5, we will construct the events ��,� and the bump functions ��,� described just before
Proposition 1.20. This part of the argument has some similarity to [27, section 5], which gives a
roughly similar construction in the subcritical case. But, the details are very different. The main
reason for this is as follows.
Recall that we want to force a �ℎ−��,�

-geodesic /′ to get �ℎ−��,�
-close to each of � and �, where

�, � are non-singular points in the support of ��,� such that �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �). We will do this

in two steps: first we force /′ to get Euclidean-close to each of � and �, then we force /′ to get
�ℎ−��,�

-close to each of � and �. In the subcritical phase, the metric �ℎ is Euclidean-continuous,
so the second step is straightforward. However, this is not the case in the supercritical phase, so a
substantial amount of work is needed to force /′ to get �ℎ−��,�

-close to each of � and �. Because
of this, we will define the events ��,� in a significantly different way as compared to [27]. We refer
to Subsection 5.1 for a more detailed outline.

2 PRELIMINARIES

In this subsection, we first establish some standard notational conventions (Subsection 2.1). We
then record several lemmas about a weak LQGmetric�ℎ which are either proven elsewhere (that
is, in [12, 36]) or are straightforward consequences of statements which are proven elsewhere. The
readermaywish to skim this section on a first read and refer back to the various lemmas as needed.

2.1 Notational conventions

We write N = {1, 2, 3, … } and N0 = N ∪ {0}.
For J < K, we define the discrete interval [J, K]Z ∶= [J, K] ∩ Z.
If 9 ∶ (0,∞) → R and g ∶ (0,∞) → (0,∞), we say that 9(�) = *�(g(�)) (respectively, 9(�) =

B�(g(�))) as � → 0 if 9(�)∕g(�) remains bounded (respectively, tends to zero) as � → 0. We similarly
define *(⋅) and B(⋅) errors as a parameter goes to infinity.
Let {|�}�>0 be a one-parameter family of events. We say that |

� occurs with

∙ polynomially high probability as � → 0 if there is a w > 0 (independent from � and possibly from
other parameters of interest) such that P[|�] ⩾ 1 − *�(�

w);
∙ superpolynomially high probability as � → 0 if P[|�] ⩾ 1 − *�(�

w) for every w > 0.

For � ∈ C and � > 0, we write b�(�) for the open Euclidean ball of radius � centered at �. More
generally, for : ⊂ C we write b�(:) =

⋃
�∈: b�(�). We also define the open annulus

A�1,�2
(�) ∶= b�2

(�) ⧵ b�1
(�), ∀0 < �� < �2 < ∞. (2.1)

Topological concepts such as ‘open’, ‘closed’, ‘boundary’, and so on, are always definedwith respect
to the Euclidean topology unless otherwise stated. For: ⊂ C, wewrite: for its Euclidean closure
and X: for its Euclidean boundary.
We will typically use the symbols � and r for Euclidean radii. Many of our estimates for weak
LQG metrics are required to be uniform over different values of � (or r). The reason why we
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need to include this condition is that we only have tightness across scales (Axiom V′) instead
of exact scale invariance (Axiom IV), so estimates are not automatically uniform across different
Euclidean scales.

2.2 Some remarks on internal metrics

Throughout the rest of this section, we let ℎ be a whole-plane GFF and �ℎ be a weak LQGmetric
as in Definition 1.12.
Let : ⊂ C (not necessarily open or closed) and recall from Definition 1.6 that �ℎ(⋅, ⋅; :) is the

�ℎ-internal metric on:, which is a metric on: except that it is allowed to take on infinite values.
It is easy to check (see, for example, [6, Proposition 2.3.12]) that the �ℎ(⋅, ⋅; :)-length of any �ℎ-
rectifiable path contained in : (and hence also every �ℎ(⋅, ⋅; :)-rectifiable path) is the same as its
�ℎ-length.
The notion of a �ℎ(⋅, ⋅; :)-geodesic between points of : is well-defined by Definition 1.6: it

is simply a path in : whose �ℎ-length is the same as the �ℎ(⋅, ⋅; :)-distance between its end-
points, provided this distance is finite. Such a geodesic may not exist for every pair of points in
:. However, such geodesics exist for some pairs of points: for example, if �, & ∈ : and there is a
�ℎ-geodesic / from � to & which is contained in :, then / is a �ℎ(⋅, ⋅; :)-geodesic.
Wewill most often consider internalmetrics on open sets (which appear in the locality assump-

tion Axiom II for �ℎ). But, we will sometimes also have occasion to consider internal metrics on
the closures of open sets. Recall that for an open set � ⊂ C, ℎ|� is the random distribution on �

obtained by restricting the distributional pairing 9 ↦ (ℎ, 9) to functions which are supported on
�. Following, for example, [40, section 3.3], for a closed set T ⊂ C, we define

R(ℎ|T) ∶=
⋂

�>0

R
(
ℎ|b�(T)

)
, (2.2)

where b�(T) is the Euclidean �-neighborhood of T.
We say that a random variable is almost surely determined by ℎ|T if it is almost surely equal

to a random variable which is measurable with respect to R(ℎ|T). Similarly, we say that a ran-
dom variable is almost surely determined by ℎ|T , viewed modulo additive constant, if it is almost
surely equal to a randomvariablewhich ismeasurablewith respect toR((ℎ + ~)|T) for any possibly
random ~ ∈ R.
The metric �ℎ(⋅, ⋅; T) is equal to the internal metric of �ℎ(⋅, ⋅; b�(T)) on T for any � > 0. So, by

locality (Axiom II) and (2.2), the metric �ℎ(⋅, ⋅; T) is measurable with respect to R(ℎ|T).

2.3 Independence for the GFF

The following lemma is a consequence of the fact that the restrictions of the GFF to disjoint con-
centric annuli, viewed modulo additive constant, are nearly independent. See [25, Lemma 3.1] for
a slightly more general statement.

Lemma 2.1 [25]. Fix 0 < !1 < !2 < 1. Let {�q}q∈N be a decreasing sequence of positive num-

bers such that �q+1∕�q ⩽ !1 for each q ∈ N and let {|�q
}q∈N be events such that |�q

∈
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238 DING and GWYNNE

R((ℎ − ℎ�q
(0))|A!1�q ,!2�q

(0)) for each q ∈ N. For T ∈ N, let �(T) be the number of q ∈ [1, T]Z for

which |�q
occurs.

(1) For each J > 0 and each K ∈ (0, 1), there exists " = "(J, K, !1, !2) ∈ (0, 1) and

~ = ~(J, K, !1, !2) > 0 (independent of the particular choice of {�q} and {|�q
}) such that if

P
[
|�q

]
⩾ ", ∀q ∈ N, (2.3)

then

P[�(T) < KT] ⩽ ~�−JT , ∀T ∈ N. (2.4)

(2) For each " ∈ (0, 1), there exists J = J(", !1, !2) > 0, K = K(", !1, !2) ∈ (0, 1), and

~ = ~(", !1, !2) > 0 (independent of the particular choice of {�q} and {|�q
}) such that if (2.3)

holds, then (2.4) holds.

Lemma 2.1 still applies if we require that|�q
∈ R((ℎ − ℎ�q

(0))|
A!1�q ,!2�q

(0)) (that is, we consider a

closed annulus rather than an open annulus). This is an immediate consequence of the definition
of the R-algebra generated by the restriction of ℎ to a closed set (2.2). We will use this fact without
comment several times in what follows.
For the proof of Lemma4.18, wewill need aminor variant of Lemma 2.1wherewe donot require

that the annuli are concentric.

Lemma 2.2. Fix 0 < !1 < !2 < 1 and !0 ∈ (0,min{!1, 1 − !2}). Let {�q}q∈N be a decreasing sequence

of positive real numbers and let {�q}q∈N be a sequence of points in C such that

�q+1∕�q ⩽ !1 − !0 and |�q| ⩽ !0�q, ∀q ∈ N. (2.5)

Let {|�q
(�q)}q∈N be events such that for each q ∈ N, the event |�q

(�q) is almost surely determined by

ℎ|
A!1�q ,!2�q

(�q)
, viewed modulo additive constant. For T ∈ N, let �(T) be the number of q ∈ [1, T]Z

for which |�q
(�q) occurs.

(1) For each J > 0 and each K ∈ (0, 1), there exists " = "(J, K, !0, !1, !2) ∈ (0, 1) and

~ = ~(J, K, !0, !1, !2) > 0 (independent of the particular choice of {�q}, {�q}, and {|�q
(�q)})

such that if

P
[
|�q

(�q)
]
⩾ ", ∀q ∈ N, (2.6)

then

P[�(T) < KT] ⩽ ~�−JT , ∀T ∈ N. (2.7)

(2) For each " ∈ (0, 1), there exists J = J(", !0, !1, !2) > 0, K = K(", !0, !1, !2) ∈ (0, 1), and ~ =

~(", !0, !1, !2) > 0 (independent of the particular choice of {�q}, {�q}, and {|�q
(�q)}) such that

if (2.6) holds, then (2.7) holds.
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Proof. Since |�q| ⩽ !0�q,

A!1�q ,!2�q
(�q) ⊂ A(!1−!0)�q ,(!2+!0)�q

(0).

Hence, |�q
(�q) is almost surely determined by ℎ|

A(!1−!0)�q ,(!2+!0)�q
(0), viewed modulo additive con-

stant. Since 0 < !1 − !0 < !2 + !0 < 1 and by (2.5), we can apply Lemma 2.1 with !1 − !0 in place
of !1 and !2 + !0 in place of !2 to obtain the lemma statement. □

We will also need an estimate which comes from the fact that the restrictions of the GFF to
small disjoint Euclidean balls are nearly independent. See [27, Lemma 2.7] for a proof.

Lemma 2.3 [27]. Let ℎ be a whole-plane GFF and fix ! > 0. Let ? ∈ N and let  be a collection of

# = ? points in C such that |� − &| ⩾ 2(1 + !) for each distinct �, & ∈ . For � ∈ , let |� be an

eventwhich is determined by (ℎ − ℎ1+!(�))|b1(�)
. For each", I ∈ (0, 1), there exists?∗ = ?∗(!, ", I) ∈

N such that if P[|�] ⩾ " for each � ∈ , then
P

[
⋃

�∈
|�

]
⩾ I, ∀? ⩾ ?∗.

2.4 Basic facts about weak LQGmetrics

In this subsection, we will record some facts about our weak LQG metric �ℎ which are mostly
proven elsewhere and which will be used frequently in what follows. Similar results are proven
in the subcritical case in [17, 33].

Remark 2.4. Many of the estimates in [12, 36] involve ‘scaling constants’ ^� for � > 0. It was shown
in [14, Theorem 1.9] that one can take ^� = �-A. We will use this fact without comment whenever
we cite results from [12, 36].

It was shown in [36, Lemma 3.1] that one has the following stronger version of Axiom V′.

Lemma 2.5 [36]. Let� ⊂ C be open and let T1, T2 ⊂ � be two disjoint, deterministic compact sets

(allowed to be singletons). The re-scaled internal distances �−1�−-ℎ�(0)�ℎ(�T1, �T2; ��) and their

reciprocals as � varies are tight (recall the notation from Definition 1.6).

The following proposition, which is [36, Proposition 1.8], is a more quantitative version of
Lemma 2.5 in the case when T1, T2 are connected and are not singletons.

Lemma 2.6 [36]. Let � ⊂ C be an open set (possibly all of C) and let T1, T2 ⊂ � be two dis-

joint, deterministic, connected, compact sets which are not singletons. For each � > 0, it holds with

superpolynomially high probability as Y → ∞, at a rate which is uniform in the choice of �, that

Y−1�-A�-ℎ�(0) ⩽ �ℎ(�T1, �T2; ��) ⩽ Y�-A�-ℎ�(0).

Suppose that\ ⊂ C is a deterministic bounded open set which has the topology of a Euclidean
annulus and whose inner and outer boundaries are not singletons. Recall the notation for
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�ℎ-distance across and around Euclidean annuli from Definition 1.11. It is easy to see from
Lemma 2.6 that with superpolynomially high probability as Y → ∞, uniformly in the choice of �,

Y−1�-A�-ℎ�(0) ⩽ �ℎ(around \) ⩽ Y�-A�-ℎ�(0),

and the same is true for �ℎ(across \).
Recall fromLemma 1.16 that almost surely any twonon-singular points �, & for�ℎ can be joined

by a�ℎ-geodesic, that is, a path of�ℎ-length�ℎ(�, &). In the subcritical case, it was shown in [33,
Theorem 1.2] that for a fixed choice of � and &, almost surely this geodesic is unique (see also [9,
Lemma 4.2] for a simplified proof). The same proof also works in the critical and supercritical
cases. We will need a slightly more general statement than the uniqueness of geodesics between
fixed points. For two sets T1, T2 ⊂ C, a �ℎ-geodesic from T1 to T2 is a path from a point of T1 to
a point of T2 such that

len(/; �ℎ) = �ℎ(T1, T2) ∶= inf
�∈T1,&∈T2

�ℎ(�, &). (2.8)

Lemma 2.7. Let T1, T2 ⊂ C be deterministic disjoint Euclidean-compact sets. Almost surely, there

is a unique �ℎ-geodesic from T1 to T2.

Proof. For existence, choose sequences of points �? ∈ T1 and �? ∈ T2 such that
lim?→∞ �ℎ(�?, �?) = �ℎ(T1, T2). Since T1 and T2 are Euclidean-compact, after possibly passing
to a subsequence we can find � ∈ T1 and � ∈ T2 such that |�? − �|→ 0 and |�? − �|→ 0. By the
lower semicontinuity of �ℎ,

�ℎ(�, �) ⩽ lim inf
?→∞

�ℎ(�?, �?) = �ℎ(T1, T2).

Hence, �ℎ(�, �) = �ℎ(T1, T2) and a �ℎ-geodesic from � to � (which exists by Lemma 1.16) is also
a �ℎ-geodesic from T1 to T2.
The uniqueness of the �ℎ-geodesic from T1 to T2 follows from the same argument as in the

case when T1 and T2 are singletons, see [33, section 3] or [9, Lemma 4.2]. □

2.5 Estimates for distances in disks and annuli

In this subsection, we will prove some basic estimates for �ℎ which are straightforward con-
sequences of the concentration bounds for LQG distances established in [36]. We begin with a
uniform comparison of distances around and across Euclidean annuli with different center points
and radii.

Lemma 2.8. Fix � > 0. Let � ⊂ C be a bounded open set and let K > J > 0 and � > ~ > 0. For

each r > 0, it holds with superpolynomially high probability as h0 → 0 (at a rate which depends on

�,�, J, K, ~, � and the law of �ℎ, but is uniform in r) that

�ℎ

(
around AJhr,Khr(�)

)
⩽ h−��ℎ

(
across A~hr,�hr(�)

)
, ∀� ∈ r�, ∀h ∈ (0, h0]. (2.9)

Proof. Basically, this follows from Lemma 2.6 and a union bound. A little care is needed to
discretize things so that we only have to take a union bound over polynomially many events.
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Fix J1, J2, K1, K2 > 0 and ~1, ~2, �1, �2 > 0 such that

J < J2 < J1 < K1 < K2 < K and ~ < ~2 < ~1 < �1 < �2 < �.

By Lemma 2.6, for each � ∈ C it holds with superpolynomially high probability as h → 0 (at a rate
depending only on �, J1, K1, ~1, �1, and the law of �ℎ) that

�ℎ

(
around AJ1hr,K1hr(�)

)
⩽ h-A−�∕2r-A�-ℎhr

(�) and

�ℎ

(
across A~1hr,�1hr(�)

)
⩾ h-A+�∕2r-A�-ℎhr

(�). (2.10)

Let ! > 0 be much smaller thanmin{J1 − J2, K2 − K1, ~1 − ~�, �2 − �1}. By a union bound, it holds
with superpolynomially high probability as h → 0 that the bound (2.10) holds for all � ∈ (!hrZ2) ∩

br(r�).
For each � ∈ r�, there exists �′ ∈ (!hrZ2) ∩ br(r�) such that

AJ1hr,K1hr(�
′) ⊂ AJ2hr,K2hr(�) and A~1hr,�1hr(�

′) ⊂ A~2hr,�2hr(�).

For this choice of �′,

�ℎ

(
around AJ2hr,K2hr(�)

)
⩽ �ℎ

(
around AJ1hr,K1hr(�

′)
)

and

�ℎ

(
across A~2hr,�2hr(�)

)
⩾ �ℎ

(
across A~1hr,�1hr(�

′)
)
.

By (2.10) with �′ in place of �, we infer that with superpolynomially high probability as h → 0,

�ℎ

(
around AJ2hr,K2hr(�)

)
⩽ h−��ℎ

(
across A~2hr,~2hr(�)

)
, ∀� ∈ r�. (2.11)

To upgrade to an estimate which holds for all h ∈ (0, h0] simultaneously, let

I ∈
(
1, (min{J2∕J, K∕K2, ~2∕~, �∕�2})

1∕100
)
.

By a union bound over integer powers of I, we infer that with superpolynomially high probability
as h0 → 0, the estimate (2.11) holds for all h ∈ (0, h0] ∩ {I−q ∶ q ∈ N}. By our choice of I, for each
h ∈ (0, h0], there exists q ∈ N such that I−q ∈ (0, h0] and for each � ∈ C,

AJ2I
−qr,K2I

−qr
(�) ⊂ AJhr,Khr(�) and A~2I

−qr,�2I
−qr

(�) ⊂ A~hr,�hr(�).

Hence (2.11) for h follows from (2.11) with I−q in place of h. □

Our next estimate gives amoment bound for the LQG distance from the center point of a closed
disk to a point on its boundary, along paths which are contained in the disk.

Lemma 2.9. For each " ∈ (0, 2A∕-), there exists U" > 0, depending only on " and the law of �ℎ,

such that

E
[(

�−-A�−-ℎ�(0)�ℎ

(
&, 0; b�(0)

))"]
⩽ U", ∀& ∈ Xb�(0). (2.12)
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242 DING and GWYNNE

Proof. Fix& ∈ Xb�(0). All of our estimates are required to be uniform in the choice of&. The idea
of the proof is to string together countably many �ℎ-rectifiable loops centered at points on the
segment [0, &], with geometric Euclidean sizes.
For � ∈ (0, �), define

&� ∶=
(
1 −

�

�

)
& and \� ∶= A�∕2,�(&�)

and note that \� ⊂ b�(0).
By Lemma 2.6, for each I > 0,

E
[(

�−-A�−-ℎ�(&�)�ℎ(around \�)
)I]

⪯ 1, ∀� > 0, (2.13)

with the implicit constant depending only on I and the law of�ℎ. By Hölder’s inequality, for each
" > 0 and each I > 1,

E
[(

�−-A�−-ℎ�(0)�ℎ(around \�)
)"]

⩽
(
�

�

)-A"
E

[(
�−-A�−-ℎ�(&�)�ℎ(around \�)

) I"
1−I

]1−1∕I

× E
[
�I"-(ℎ�(&�)−ℎ�(0))

]1∕I

⪯
(
�

�

)-A"
E
[
�I"-(ℎ�(&�)−ℎ�(0))

]1∕I
, (2.14)

where in the last line we used (2.13). The random variable ℎ�(&�) − ℎ�(0) is centered Gaussian
with variance at most log(�∕�) plus a universal constant. We therefore infer from (2.14) that for
each " > 0 and each I > 1,

E
[(

�−-A�−-ℎ�(0)�ℎ(around \�)
)"]

⪯
(
�

�

)-A"−I"2-2∕2
(2.15)

with the implicit constant depending only on ", I.
Let

&′
� ∶=

�

�
& and \′

� ∶= A�∕2,�(&
′
�),

which is contained in b�(0) for � ∈ (0, �∕2]. Via a similar argument to the one leading to (2.15), we
also have that for each " > 0 and each I > 1,

E
[(

�−-A�−-ℎ�(0)�ℎ

(
around \′

�

))"]
⪯
(
�

�

)-A"−I"2-2∕2
. (2.16)

For q ∈ N, let �q ∶= 2−q�. Suppose that #q is a path in\�q
which disconnects the inner and outer

boundaries and#′
q
is a path in\′

�q
which disconnects the inner and outer boundaries of\′

�q
. Then

the union of the paths #q and #′
q
for q ∈ N is connected and contained in b�(0) and its closure
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contains both 0 and &. From this, we see that the union of these paths and {0, &} contains a path
from 0 to & which is contained in b�(0). Hence,

�ℎ

(
&, 0; b�(0)

)
⩽

∞∑

q=0

�ℎ

(
around \�q

)
+

∞∑

q=0

�ℎ

(
around \′

�q

)
. (2.17)

Assume now that " ∈ (0,min{1, 2A∕-}). Since the function � ↦ �" is concave, hence sub-
additive, we can take "th moments of both sides of (2.17), then apply (2.15) and (2.16), to
get

E
[(

�−-A�−-ℎ�(0)�ℎ

(
&, 0; b�(0)

))"]

⩽

∞∑

q=0

E
[(

�−-A�−-ℎ�(0)�ℎ

(
around \�q

))"]

+

∞∑

q=0

E
[(

�−-A�−-ℎ�(0)�ℎ

(
around \′

�q

))"]

⪯

∞∑

q=0

( �q
�

)-A"−I"2-2∕2

⪯

∞∑

q=0

2−q(-A"−I"2-2∕2). (2.18)

Since " < 2A∕-, if I > 1 is sufficiently close to 1, we have -A" − I"2-2∕2 > 0. Hence, this last
sum is finite. This gives (2.12) for " < 1. For " ⩾ 1, we obtain (2.12) via the same argument, but
with the triangle inequality for the �" norm used in place of the subadditivity of " ↦ �". □

Using Lemma 2.9 and Markov’s inequality, we obtain the following estimate, which says that
with high probability ‘most’ points on a circle are not too LQG-far from the center point. Note
that (unlike for subcritical LQG) we cannot say that this is the case for all points on the circle, for
example, because there could be singular points on the circle.

Lemma 2.10. For each Y > 1,

E

[||||

{
& ∈ Xb�(0) ∶ �ℎ

(
&, 0; b�(0)

)
> Y�-A�-ℎ�(0)

}||||

]
⩽ Y−2A∕-+BY(1)�, (2.19)

where | ⋅ | denotes one-dimensional Lebesgue measure and the rate of convergence of the BY(1)

depends only on the law of �ℎ.

Proof. This follows from Lemma 2.9 and Markov’s inequality. □

We will also need a lemma to ensure that all of the �ℎ-geodesics between points in a specified
Euclidean-compact set are contained in a larger compact set.
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Lemma 2.11. There exists w > 0, depending only on the law of �ℎ, such that the following is true.

Let T ⊂ C be compact. For each r > 0, it holds with probability 1 − *Y(Y
−w) as Y → ∞ (at a rate

depending only onT and the law of�ℎ) that each�ℎ-geodesic between two points of rT is contained

in bYr(0).

Proof. Fix r > 0 and for ! > 0, let

|! ∶=
{
�ℎ

(
around A!r,2!r(0)

)
< �ℎ

(
across A2!r,3!r(0)

)}
.

Using tightness across scales (AxiomV′) and a basic absolute continuity argument (see, for exam-
ple, the proof of [21, Lemma 6.1]), we can find a " ∈ (0, 1), depending only on the law of �ℎ, such
that P[|!] ⩾ " for all !, r > 0.
Let � > 0 be chosen so that T ⊂ b�(0). By assertion 2 of Lemma 2.1 (applied to logarithmi-

cally many radii �q ∈ [�r, Yr∕3]), we can find w > 0 as in the lemma statement such that for with
probability 1 − *Y(Y

−w), there exists ! ∈ [�, Y∕3] such that |! occurs.
On the other hand, it is easily seen that if |! occurs, then no �ℎ-geodesic / between two points

of b!r(0) can exit b3!r(0). Indeed, otherwise we could replace a segment of / by a segment of a
path in A!r,2!r(0) which disconnects the inner and outer boundaries to get a path with the same
endpoints as / but strictly shorter �ℎ-length than /. □

2.6 Regularity of geodesics

The following lemma is (almost) a re-statement of [12, Corollary 3.7]. Roughly speaking, the
lemma states that every point in an LQG geodesic is surrounded by a loop of small Euclidean
diameter whose �ℎ-length is much shorter than the �ℎ-length of the geodesic. A similar lemma
also appears in [36, section 2.4].

Lemma 2.12. For each � ∈ (0, 1), there exists � > 0, depending only on � and the law of �ℎ, such

that for each Euclidean-bounded open set � ⊂ C and each r > 0, it holds with polynomially high

probability as �0 → 0, uniformly over the choice of r, that the following is true for each � ∈ (0, �0].

Suppose � ∈ r�, �, � ∈ C ⧵ b��r(�), and ! > 0 such that there is a �ℎ-geodesic / from � to � with

/(!) ∈ b�r(�). Then

�ℎ

(
around A�r,��r(�)

)
⩽ ��!. (2.20)

Proof. [12, Corollary 3.7] shows that with polynomially high probability as �0 → 0, the condition in
the lemma statement holds for � = �0. The statement for all � ∈ (0, �0] follows from the statement
for � = �0 (applied with � replaced by �′ slightly larger than �) together with a union bound over
dyadic values of �. □

As explained in [12, 36], Lemma 2.12 functions as a substitute for the fact that in the supercritical
case,�ℎ is not locally Hölder continuous with respect to the Euclideanmetric. It says that the�ℎ-
distance around a small Euclidean annulus centered at a point on a�ℎ-geodesic is small. A path of
near-minimal length around this annulus can be linked up with various other paths to get upper
bounds for �ℎ-distances in terms of Euclidean distances.
We will need the following generalization of Lemma 2.12, which follows from exactly the same

proof. The lemma statement differs fromLemma2.12 in thatwe consider a�ℎ−9(⋅, ⋅; r�)-geodesic,
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F IGURE 3 Illustration of the statement of Lemma 2.13 in the case where ! = inf {4 > 0 ∶ /9(4) ∈ �} (which

is the main case that we will use). The path /9 is a �ℎ−9(⋅, ⋅; r�)-geodesic and the set � is the support of 9. The

lemma gives us an upper bound for �ℎ(around A�r,��r
(�)).

for a possibly random non-negative bump function 9, instead of a �ℎ-geodesic (recall the discus-
sion of geodesics for internal metrics from Subsection 2.2). See Figure 3 for an illustration of the
lemma statement.

Lemma 2.13. For each � ∈ (0, 1), there exists � > 0 depending only on � and the law of �ℎ, such

that for each Euclidean-bounded open set � ⊂ C and each r > 0, it holds with polynomially high

probability as �0 → 0, uniformly over the choice of r, that the following is true for each � ∈ (0, �0].

Let � ⊂ r� and let 9 ∶ C → [0,∞) be a non-negative continuous function which is identically zero

outside of �. Let � ∈ r[� ⧵ b�� (X�)], �, � ∈ (r�) ⧵ (� ∪ b��r(�)), and ! > 0 such that there is a

�ℎ−9(⋅, ⋅; r�)-geodesic /9 from � to � with /9(!) ∈ b�r(�). Assume that

! ⩽ inf {4 > 0 ∶ /9(4) ∈ �}. (2.21)

Then

�ℎ

(
around A�r,��r(�)

)
⩽ ��!. (2.22)

The statement of Lemma 2.13 holds with polynomially high probability for all possible choices
of�, 9, �, �, �, !, /9 . In particular, these objects are allowed to be random and/or �-dependent. We
also emphasize that the time ! in (2.21) is allowed to be equal to inf {4 > 0 ∶ /9(4) ∈ �}, in which
case /9(!) ∈ X�. In fact, this is the main setting in which we will apply Lemma 2.13.

In the setting of Lemma 2.13, since 9 is non-negative, we have �ℎ−9(�, �; r�) ⩽ �ℎ(�, �; r�)

for all �, � ∈ r�. Furthermore, the condition (2.21) implies that the �ℎ−9-length of /9|[0,!] is the
same as its �ℎ-length. These two facts allow us to apply the proof of Lemma 2.12 (as given in [12,
section 3.2]) essentially verbatim to obtain Lemma 2.13.
Out next lemma tells us that an LQG geodesic cannot trace a deterministic curve. Just like in

Lemma 2.13, we will consider not just a �ℎ-geodesic but a �ℎ−9(⋅, ⋅; r�)-geodesic for a possible
random continuous function 9.

Lemma 2.14. For each � > 0, there exists � > 0, depending only on � and the law of �ℎ, such

that the following is true. Let � ⊂ C be a deterministic open set and let � ∶ [0, N] → � ⧵ b�1∕2(X�)
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246 DING and GWYNNE

be a deterministic parameterized curve. For each r > 0, it holds with probability 1 − *�(�
�) as � →

0 (the implicit constant depends only on � and the law of �ℎ) that the following is true. Let 9 ∶

C → [−�,�] be a continuous function and let /9 be a �ℎ−9(⋅, ⋅; r�)-geodesic between two points

of r[� ⧵ b�1∕2(�)]. Then

|{4 ∈ [0, N] ∶ /9 ∩ b�r(r�(4)) ≠ ∅}| ⩽ ��N, (2.23)

where | ⋅ | denotes one-dimensional Lebesgue measure.

We emphasize that, as in Lemma 2.13, the function 9 and the geodesic /9 in Lemma 2.14 are
allowed to be random and �-dependent (but � is fixed).

Proof of Lemma 2.14. The idea of the proof is that (by Lemma 2.1) for a ‘typical’ time 4 ∈ [0, N],
there is a loop in A�r,�1∕2r

(r�(4)) which disconnects the inner and outer boundaries and whose
�ℎ-length is much shorter than the�ℎ-distance from the loop to b�r(r�(4)). The existence of such
a loop prevents a �ℎ−9-geodesic from hitting b�r(r�(4)).
For q ∈ N, let

�q ∶= 4q�r.

For 4 ∈ [0, N], define the event

|q(4) ∶=
{
�ℎ

(
around A2�q ,3�q

(r�(4))
)

⩽
1

2
�−2-��ℎ

(
across A�q ,2�q

(r�(4))
)}

. (2.24)

By locality and Weyl scaling (Axioms II and V′), the event |q(4) is almost surely determined
by ℎ|A�q ,3�q

(r�(4)), viewed modulo additive constant. By adding a bump function to ℎ and using

absolute continuity together with tightness across scales (see, for example, the proof of [21,
Lemma 6.1]), we see that there exists " > 0 (depending only on � and the law of �ℎ) such that
P[|q(4)] ⩾ " for each q ∈ N and 4 ∈ [0, N]. Consequently, assertion 2 of Lemma 2.1 implies that
there exists � > 0 depending only on� and the law of �ℎ such that

P
[
∃q ∈ [1, log4 �

−1∕2 − 1]Z such that |q(4) occurs
]
⩾ 1 − *�(�

2�), (2.25)

with the implicit constant in the *�(⋅) depending only on� and the law of �ℎ.
Say that 4 ∈ [0, N] is good if |q(4) occurs for some q ∈ [1, log4 �

−1∕2 − 1]Z, and that 4 is bad
otherwise. By (2.25),

E[|{4 ∈ [0, N] ∶ 4 is bad}|] ⩽ *�(�
2�)N.

By Markov’s inequality, it holds with probability 1 − *�(�
�) that

|{4 ∈ [0, N] ∶ 4 is bad}| ⩽ ��N. (2.26)

To prove (2.23), it remains to show that if 4 is good and 9 is as in the lemma statement, then no
�ℎ−9(⋅, ⋅; r�)-geodesic between two points of r[� ⧵ b�1∕2(�)] can hit b�r(r�(4)). To see this, let

/9 be such a geodesic and choose q ∈ [1, log4 �
−1∕2 − 1]Z such that |q(4) occurs. By (2.24), there
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 247

is a path # in A2�q ,3�q
(r�(4)) which disconnects the inner and outer boundaries of this annulus

such that

len(#; �ℎ) < �−2-��ℎ

(
across A�q ,2�q

(r�(4))
)
.

By Weyl scaling (Axiom III) and since 9 takes values in [−�,�],

len
(
#;�ℎ−9

)
< �ℎ−9

(
across A�q ,2�q

(r�(4))
)
. (2.27)

Since �r ⩽ �q ⩽
1

2
�1∕2r and the endpoints of / are at Euclidean distance at least �1∕2r from r�, we

see that if /9 hits b�r(r�(4)) then the following is true. There are times 0 < � < R < len(/; �ℎ−9)

such that /(�), /(R) ∈ # and / crosses between the inner and outer boundaries of A�q ,2�q
(r�(4))

between times � and R. Since � ⊂ � ⧵ b�1∕2(X�), we have # ⊂ r�. By (2.27), we can obtain a
path in r� with the same endpoints as /9 which is �ℎ−9-shorter than /9 by replacing /9|[�,R]
by a segment of the path #. This contradicts the fact that /9 is a �ℎ−9(⋅, ⋅; r�)-geodesic, so we
conclude that /9 cannot hit b�r(r�(4)), as required. □

3 QUANTIFYING THE OPTIMALITY OF THE OPTIMAL
BI-LIPSCHITZ CONSTANTS

3.1 Events for the optimal bi-Lipschitz constants

Let ℎ be a whole-plane GFF and let �ℎ and �̃ℎ be two weak LQG metrics. We define the optimal
upper and lower bi-Lipschitz constants ^∗ and ℭ∗ as in Subsection 1.5.1, so that ^∗ and ℭ∗ are
deterministic and almost surely (1.20) holds. Recall from Subsection 1.5 that we aim to prove by
contradiction that ^∗ = ℭ∗. For this purpose,wewill need several estimateswhich have non-trivial
content only if ^∗ < ℭ∗.
From the optimality of ^∗ and ℭ∗, we know that for every ℭ′ < ℭ∗,

P
[
∃ non-singular �, � ∈ C such that �̃ℎ(�, �) ⩾ ℭ′�ℎ(�, �)

]
> 0. (3.1)

A similar statement holds for every ^′ > ^∗. The goal of this section is to prove various quantitative
versions of (3.1), which include regularity conditions on � and � and which are required to hold
uniformly over different Euclidean scales.
Our results will be stated in terms of two events, which are defined in Definitions 3.1 and 3.2.

In this subsection, we will prove some basic facts about these events and state the main estimates
we need for them (Propositions 3.3 and 3.10). Then, in Subsection 3.2, we will prove our main
estimates.

Definition 3.1. For � > 0, � > 0, and ℭ′ > 0, we let ��(�, ℭ
′) be the event that there exist �, & ∈

b�(0) such that

�̃ℎ

(
b��(�), b��(&)

)
⩾ ℭ′�ℎ(�, &).

The event ��(�, ℭ
′) is a slightly stronger version of the event in (3.1). Our other event has a

more complicated definition, and includes several regularity conditions on � and �. See Figure 4
for an illustration.
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248 DING and GWYNNE

F IGURE 4 Illustration of the event��(�, ℭ
′) of Definition 3.2. The last condition (iv) says that for each

h > 0, there exist purple paths as in the figure whose �ℎ-lengths are at most h
��ℎ(�, �). The figure is not shown

to scale — in actuality we will take � to be close to 1, so the light blue annulus will be quite narrow.

Definition 3.2. For � > 0, � ∈ (3∕4, 1), and ℭ′ > 0, we let��(�, ℭ
′) be the event that there exist

non-singular points � ∈ Xb��(0) and � ∈ Xb�(0) such that

�̃ℎ(�, �) ⩾ ℭ′�ℎ(�, �) (3.2)

and a �ℎ-geodesic / from � to � such that the following is true.

(i) / ⊂ A��,�(0).
(ii) The Euclidean diameter of / is at most �∕100.
(iii) �ℎ(�, �) ⩽ (1 − �)−1�-A�-ℎ�(0).
(iv) Let � > 0 be as in Lemma 2.13 with � = 1∕2. For each h ∈ (0, (1 − �)2],

max
{
�ℎ(�, Xbh�(�)), �ℎ

(
around Ah�,h1∕2�(�)

)}
⩽ h��ℎ(�, �) (3.3)

and the same is true with the roles of � and � interchanged.

The main result of this section, which will be proven in Subsection 3.2, tells us that (for appro-
priate values of �,ℭ′′, �, ℭ′) if P[�r(�, ℭ

′′)] ⩾ �, then there are lots of ‘scales’ � < r for which
P[��(�, ℭ

′)] is bounded below by a constant which does not depend on � or ℭ′.

Proposition 3.3. There exist � ∈ (3∕4, 1) and " ∈ (0, 1), depending only on the laws of�ℎ and �̃ℎ,

such that for each ℭ′ ∈ (0,ℭ∗), there exists ℭ
′′ = ℭ′′(ℭ′) ∈ (ℭ′, ℭ∗) such that for each � ∈ (0, 1),

there exists �0 = �0(�, ℭ
′) > 0 with the following property. If r > 0 and P[�r(�, ℭ

′′)] ⩾ �, then the

following is true for each � ∈ (0, �0].

(A) There are at least 3

4
log8 �

−1 values of � ∈ [�2r, �r] ∩ {8−qr ∶ q ∈ N} for which

P[��(�, ℭ
′)] ⩾ ".

We emphasize that in Proposition 3.3, the parameters � and " do not depend inℭ′. This will be
crucial for our argument in Subsection 4.5.
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In the remainder of this subsection,wewill prove somebasic lemmas about the events ofDefini-
tions 3.1 and 3.2, some of which are consequences of Proposition 3.3. In order for Proposition 3.3 to
have non-trivial content, one needs a lower bound for P[�r(�, ℭ

′)]. It is straightforward to check
that one has such a lower bound if r = 1 and � is small enough.

Lemma 3.4. For eachℭ′ < ℭ∗, there exists � > 0, depending onℭ′ and the laws of�ℎ and �̃ℎ, such

that P[�1(�, ℭ
′)] > 0.

Proof. We will prove the contrapositive. Let ℭ′ > 0 and assume that

P
[
�1(�, ℭ

′)
]
= 0, ∀� > 0. (3.4)

We will show that ℭ′ ⩾ ℭ∗. The assumption (3.4) implies that almost surely

�̃ℎ

(
b�(�), b�(&)

)
< ℭ′�ℎ(�, &), ∀�, & ∈ b1(0), ∀� > 0. (3.5)

By lower semicontinuity, for each �, & ∈ b1(0),

�̃ℎ(�, &) ⩽ lim inf
�→0

�̃ℎ

(
b�(�), b�(&)

)
,

so (3.5) implies that almost surely

�̃ℎ(�, &) ⩽ ℭ′�ℎ(�, &), ∀�, & ∈ b1(0). (3.6)

By the translation invariance property of�ℎ (Axiom IV′) and the translation invariance of the law
of ℎ, viewed modulo additive constant, (3.6) implies that almost surely

�̃ℎ(�, &) ⩽ ℭ′�ℎ(�, &), ∀�, & ∈ C such that |� − &| ⩽ 1. (3.7)

For a general pair of non-singular points �, & ∈ C, we can apply (3.7) to finitely pairs of points
along a �ℎ-geodesic from � to & to get that almost surely �̃ℎ(�, &) ⩽ ℭ′�ℎ(�, &) for all �, & ∈ C.
By the minimality of ℭ∗, this shows that ℭ

′ ⩾ ℭ∗, as required. □

By combining Proposition 3.3 and Lemma 3.4, we get the following.

Proposition 3.5. There exist � ∈ (3∕4, 1) and " ∈ (0, 1), depending only on the laws of�ℎ and �̃ℎ,

such that for each ℭ′ ∈ (0,ℭ∗) and each sufficiently small � > 0 (depending on ℭ′ and the laws of

�ℎ and �̃ℎ), there are at least
3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for whichP[��(�, ℭ
′)] ⩾ ".

Proof. Let � ∈ (3∕4, 1) and " ∈ (0, 1) (depending only on the laws of �ℎ and �̃ℎ) and ℭ′′ ∈

(ℭ′, ℭ∗) (depending only onℭ′ and the laws of�ℎ and �̃ℎ) be as in Proposition 3.3. By Lemma 3.4
(applied with ℭ′′ instead of ℭ′), there exists � > 0, depending only on ℭ′ and the laws of �ℎ

and �̃ℎ, such that P[�1(�, ℭ
′′)] ⩾ �. By Proposition 3.3 applied with r = 1, we now obtain the

proposition statement. □

We will also need an analog of Proposition 3.5 with the events ��(�, ℭ
′) in place of the events

��(�, ℭ
′), which strengthens Lemma 3.4.
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250 DING and GWYNNE

Proposition 3.6. For eachℭ′ ∈ (0,ℭ∗), there exists � > 0, depending onℭ′ and the laws of�ℎ and

�̃ℎ, such that for each small enough � > 0 (depending on ℭ′ and the laws of �ℎ and �̃ℎ), there are

at least 3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for which P[��(�, ℭ
′)] ⩾ �.

We will deduce Proposition 3.6 from Proposition 3.5 and the following elementary relation
between the events��(⋅, ⋅) and ��(⋅, ⋅).

Lemma 3.7. If � ∈ (3∕4, 1) and � ∈ (0, 1), there exists � > 0, depending only on �, �, and the laws

of �ℎ and �̃ℎ, such that the following is true. For each � > 0 and each ℭ′ > 0, if ��(�, ℭ
′) occurs,

then ��(�, ℭ
′ − �) occurs.

Proof. Assume that ��(�, ℭ
′) occurs and let � and � be as in Definition 3.2 of ��(�, ℭ

′). By
Definition 3.1 of ��(�, ℭ

′ − �), it suffices to find � > 0 as in the lemma statement such that

�̃ℎ

(
b��(�), b��(�)

)
⩾ (ℭ′ − �)�ℎ(�, �). (3.8)

To this end, let h > 0 and suppose that /h is a path from bh�(�) to bh�(�); /
h
� and /h

� are paths
from � and � to Xbh1∕2�(�) and Xbh1∕2�(�), respectively; and #h

� and #h
� are paths in Ah�,h1∕2�(�)

and Ah�,h1∕2�(�), respectively, which disconnect the inner and outer boundaries. Then the union
/h ∪ /h

� ∪ /h
� ∪ #h

� ∪ #h
� contains a path from � to �. From this observation followed by (3.3) of

Definition 3.2 and the definition (1.19) of ℭ∗, we get that if h ∈ (0, (1 − �)4] then

�̃ℎ(�, �) ⩽ �̃ℎ(bh�(�), bh�(�)) +
∑

&∈{�,�}

�̃ℎ

(
&, Xbh1∕2�(&)

)

+
∑

&∈{�,�}

�̃ℎ

(
around Ah�,h1∕2�(&)

)

⩽ �̃ℎ(bh�(�), bh�(�)) + ℭ∗

∑

&∈{�,�}

�ℎ

(
&, Xbh1∕2�(&)

)

+ ℭ∗

∑

&∈{�,�}

�ℎ

(
around Ah�,h1∕2�(&)

)

⩽ �̃ℎ(bh�(�), bh�(�)) + 2ℭ∗

(
h�∕2 + h�

)
�ℎ(�, �). (3.9)

By (3.2) and (3.9), we obtain

�̃ℎ(bh�(�), bh�(�)) ⩾
[
ℭ′ − 2ℭ∗

(
h�∕2 + h�

)]
�ℎ(�, �). (3.10)

We now obtain (3.8) by choosing h ∈ (0, (1 − �)4] to be sufficiently small, depending on � andℭ∗,
and setting � = h. □

Proof of Proposition 3.6. Let � ∈ (3∕4, 1) and " ∈ (0, 1) (depending only on the laws of �ℎ and
�̃ℎ) be as in Proposition 3.5. Also let ℭ

′′ ∶= (ℭ′ + ℭ∗)∕2 ∈ (ℭ′, ℭ∗). By Proposition 3.5 (applied
with ℭ′′ instead of ℭ′), for each small enough � > 0, there are at least 3

4
log8 �

−1 values of � ∈

[�2, �] ∩ {8−q}q∈N for which P[��(�, ℭ
′′)] ⩾ ". By Lemma 3.7, applied withℭ′′ in place ofℭ′ and

� = ℭ′′ − ℭ′, we see that there exists � > 0, depending only onℭ′ and the laws of�ℎ and �̃ℎ, such
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that if��(�, ℭ
′′) occurs, then ��(�, ℭ

′) occurs. Combining the preceding two sentences gives the
proposition statement with " ∧ � in place of �. □

Since our assumptions on the metrics�ℎ and �̃ℎ are the same, all of the results above also hold
with the roles of �ℎ and �̃ℎ interchanged. For ease of reference, we will record some of these
results here.

Definition 3.8. For � > 0, � > 0, and ^′ > 0, we let �̃�(�, ^
′) be the event that the event��(�, 1∕^

′)

of Definition 3.1 occurs with the roles of �ℎ and �̃ℎ interchanged. That is, �̃�(�, ^
′) is the event

that there exists �, & ∈ b�(0) such that

�̃ℎ(�, &) ⩽ ^′�ℎ

(
b��(�), b��(&)

)
.

Definition 3.9. For � > 0, � ∈ (3∕4, 1), and ^′ > 0, we let �̃�(�, ^
′) be the event that the event

��(�, 1∕^
′) of Definition 3.2 occurs with the roles of �ℎ and �̃ℎ interchanged. That is, �̃�(�, ^

′) is
the event that there exist non-singular points � ∈ Xb��(0) and � ∈ Xb�(0) such that

�̃ℎ(�, �) ⩽ ^′�ℎ(�, �) (3.11)

and a �̃ℎ-geodesic /̃ from � to � such that the following is true.

(i) /̃ ⊂ A��,�(0).
(ii) The Euclidean diameter of /̃ is at most �∕100.
(iii) �̃ℎ(�, �) ⩽ (1 − �)−1�-A�-ℎ�(0).
(iv) Let � > 0 be as in Lemma 2.13 with � = 1∕2. For each h ∈ (0, (1 − �)2],

max
{
�̃ℎ(�, Xbh�(�)), �̃ℎ

(
around Ah�,h1∕2�(�)

)}
⩽ h��̃ℎ(�, �) (3.12)

and the same is true with the roles of � and � interchanged.

We have the following analog of Proposition 3.3.

Proposition 3.10. There exist � ∈ (3∕4, 1) and " ∈ (0, 1), depending only on the laws of �ℎ and

�̃ℎ, such that for each ^′ > ^∗, there exists ^
′′ = ^′′(^′) ∈ (^∗, ^

′) such that for each �̃ ∈ (0, 1), there

exists �0 = �0(�̃, ^
′) > 0with the following property. If r > 0 andP[�̃r(�̃, ^

′′)] ⩾ �̃, then the following

is true for each � ∈ (0, �0].

(A’) There are at least 3

4
log8 �

−1 values of � ∈ [�2r, �r] ∩ {8−qr ∶ q ∈ N} for which

P[�̃�(�, ^
′)]⩾".

We will also need the following analog of Proposition 3.6.

Proposition 3.11. For each ^′ > ^∗, there exists �̃ > 0, depending on ^′ and the laws of �ℎ and �̃ℎ,

such that for each small enough � > 0 (depending on ^′ and the laws of�ℎ and �̃ℎ), there are at least
3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for which P[�̃�(�̃, ^
′)] ⩾ �̃.
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252 DING and GWYNNE

3.2 Proof of Proposition 3.3

To prove Proposition 3.3, we will prove the contrapositive, as stated in the following proposition.

Proposition 3.12. There exists � ∈ (3∕4, 1) and " ∈ (0, 1), depending only on the laws of �ℎ and

�̃ℎ, such that for each ℭ′ ∈ (0,ℭ∗), there exists ℭ
′′ = ℭ′′(ℭ′) ∈ (ℭ′, ℭ∗) such that for each � ∈

(0, 1), there exists �0 = �0(�, ℭ
′) > 0 with the following property. If r > 0 and there exists � ∈ (0, �0]

satisfying the condition (B) just below, then P[�r(�, ℭ
′′)] < �.

(B) There are at least 1

4
log8 �

−1 values of � ∈ [�2r, �r] ∩ {8−qr ∶ q ∈ N} for which

P[��(�, ℭ
′)] <".

Note that the second-to-last last sentence of Proposition 3.12 (that is, the one just before con-
dition (B)) is the contrapositive of the second-to-last sentence of Proposition 3.3 (that is, the one
just before condition (A)). The proof of Proposition 3.12 is similar to the argument in [27, section
3.2], but the definitions of the events involved are necessarily different due to the existence of
singular points.
The basic idea of the proof is as follows. If we assume that (B) holds for a small enough

(universal) choice of " ∈ (0, 1), then we can use Lemma 2.1 (independence across concen-
tric annuli) and a union bound to cover space by Euclidean balls of the form b�∕2(�) for
� ∈ [�2r, �r] with the following property. For each � ∈ Xb��(�) and each � ∈ Xb�(�) which are
joined by a geodesic / satisfying the numbered conditions in Definition 3.2, we have �̃ℎ(�, �)

⩽ ℭ′�ℎ(�, �).
By considering the times when a �ℎ-geodesic between two fixed points z,w ∈ C crosses the

annulus A��,�(�) for such a � and �, we will be able to show that �̃ℎ(b�(z), b�(w)) ⩽ ℭ′′�ℎ(z,w)

for a suitable constant ℭ′′ ∈ (ℭ′, ℭ∗). Applying this to an appropriate �-dependent collection of
pairs of points (z,w) will show that P[�r(�, ℭ

′′)] < �. The reason why we need to make � close
to 1 is to ensure that the events we consider depend on ℎ in a sufficiently ‘local’ manner (see the
proof of Lemma 3.13).
Let us now define the events to which we will apply Lemma 2.1. See Figure 5 for an illustration

of the definition. We will discuss the purpose of each condition in the event just below.
For � ∈ C, � > 0, and parameters h0 ∈ (0, 1∕100), � ∈ (1 − h0, 1), and \ > 1, let |�(�) =

|�(�; h0, �, \,ℭ′) be the event that the following is true.

(1) (Regularity along geodesics) For each �ℎ(⋅, ⋅;A�∕2,2�(�))-geodesic / between two points of
XA�∕2,2�(�), each h ∈ (0, h0], and each � ∈ A3�∕4,3�∕2(�) such that / ∩ bh�(�) ≠ ∅,

�ℎ

(
around Ah�,h1∕2�(�)

)
⩽ h��ℎ

(
across Ah�,h1∕2�(�)

)
, (3.13)

where (as in Definition 3.2) � is as in Lemma 2.13 with � = 1∕2.
(2) (Distance around A3�∕2,2�(�)) We have

�ℎ

(
around A3�∕2,2�(�)

)

⩽ min

{
(1 − �)−1�-A�-ℎ�(�),

^∗
2ℭ∗

h0
−��ℎ

(
A3�∕4,3�∕2(�), XA�∕2,2�(�)

)}
. (3.14)
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F IGURE 5 Illustration of the definition of |�(�). We have shown the annuli involved in the definition and

an example of a �ℎ(⋅, ⋅;A�∕2,2�(�))-geodesic / between two points of XA�∕2,2�(�), which appears in several of the

conditions. Condition 1 allows us to compare distances around and across small annuli surrounding points of

A3�∕4,3�∕2(�) which are hit by /. Condition 2 provides an upper bound for the �ℎ-distance around the outer

annulus A3�∕2,2�(�). Condition 3 gives an upper bound for the Euclidean diameters of segments of / which are

contained in the pink annulus A��,�(�), such as the red segment in the figure. Condition 4 gives an upper bound

for the �ℎ-distance around A��,�(�). Finally, condition 5 will allow us to show that the �̃ℎ-length of a red segment

like /|[!,4] is at most ℭ′(4 − !).

(3) (Euclidean length of geodesic segments in A��,�(�)) For each �ℎ(⋅, ⋅;A�∕2,2�(�)-geodesic /

between two points of XA�∕2,2�(�) and any two times 4 > ! > 0 such that /([!, 4]) ⊂ A��,�(�),
we have

|/(4) − /(!)| ⩽ h0�. (3.15)

(4) (Distance around A��,�(�)) We have

�ℎ

(
around A��,�(�)

)
⩽ \�ℎ

(
across A��,�(�)

)
. (3.16)

(5) (Converse of��(�, ℭ
′)) Let � ∈ Xb��(�) and � ∈ Xb�(�) such that |� − �| ⩽ h0� and

�ℎ

(
around A

h0�,h0
1∕2�

(�)
)

⩽
^∗
2ℭ∗

�ℎ

(
A3�∕4,3�∕2(�), XA�∕2,2�(�)

)
. (3.17)
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254 DING and GWYNNE

Assume that there is a �ℎ-geodesic /′ from � to � such that the numbered conditions in
Definition 3.2 of��(�, ℭ

′) occur but with � in place of 0, that is,
(i) /′ ⊂ A��,�(�);
(ii) the Euclidean diameter of /′ is at most �∕100;
(iii) �ℎ(�, �) ⩽ (1 − �)−1�-A�-ℎ�(�);
(iv) for each h ∈ (0, (1 − �)2],

max
{
�ℎ(�, Xbh�(�)), �ℎ

(
around Ah�,h1∕2�(�)

)}
⩽ h��ℎ(�, �) (3.18)

and the same is true with the roles of � and � interchanged.
Then �̃ℎ(�, �) ⩽ ℭ′�ℎ(�, �).

The most important condition in the definition of |�(�) is condition 5. By Definition 3.2 and
the translation invariance of the law of ℎ, modulo additive constant, ifP[��(�, ℭ

′)] is small, then
the probability of condition 5 is large. The extra condition (3.17) on � and � is included in order
to prevent �ℎ-geodesics or �̃ℎ-geodesics between � and � from exiting A�∕2,2�(�). This is needed
to ensure that |�(�) is determined by ℎ|A�∕2,2�(�)

, which in turn is needed to apply Lemma 2.1. See
Lemma 3.13.
We will eventually consider a �ℎ-geodesic / which enters b�∕2(�) and apply condition 5 to the

�ℎ-geodesic /
′ = /|[!,4] from � = /(!) to � = /(4), where ! and 4 are suitably chosen times such

that /(!) ∈ Xb��(�) and /(4) ∈ Xb�(�). The first three conditions in the definition of |�(�) will
allow us to do so (see Lemma 3.16). In particular, condition 1 will allow us to check (3.18) for
� = /(!) and � = /(4). Condition 2 will be used in conjunction with condition 1 to check (3.17).
Condition 3 will be used to upper-bound the Euclidean diameter of /|[!,4].
Condition 4 will be used to show that the intervals [!, 4] as above for varying choices of � and �

such that |�(�) occurs and / enters b�∕2(�) cover a uniformly positive fraction of the time interval
on which / is defined. See Lemma 3.18.
Let us now explain why we can apply Lemma 2.1 to the events |�(�). For the statement, recall

the definition of the restriction of the GFF to a closed set from (2.2).

Lemma 3.13. The event |�(�) is almost surely determined by ℎ|
A�∕2,2�(�)

, viewed modulo

additive constant.

Proof. It is immediate fromWeyl scaling (Axiom III) that adding a constant to ℎ does not affect the
occurrence of |�(�). Therefore, |�(�) is almost surely determined by ℎ viewed modulo additive
constant. We need to show that |�(�) is almost surely determined by ℎ|A�∕2,�(�)

.

Each of conditions 1, 2, 3, and 4 in the definition of |�(�) depends only on �ℎ(⋅, ⋅;A�∕2,�(�)).
By locality (Axiom II; see also Subsection 2.2), we get that each of these four conditions is almost
surely determined by ℎ|

A�∕2,2�(�)
.

We still need to treat condition 5. To this end, we claim that if � ∈ Xb��(�) and � ∈ Xb�(�)

such that |� − �| ⩽ h0� and (3.17) holds (as in condition 5), then every �ℎ-geodesic and every �̃ℎ-
geodesic from � to � is contained inA�∕2,2�(�). The claim implies that the set of�ℎ(⋅, ⋅;A�∕2,2�(�))-
geodesics from � to � is the same as the set of �ℎ-geodesics from � to �, and similarly with �̃ℎ

in place of �ℎ. This, in turn, implies that condition 5 is equivalent to the analogous condition
where we require that /′ is a �ℎ(⋅, ⋅;A�∕2,2�(�))-geodesic instead of a �ℎ-geodesic and we replace
�ℎ(�, �) and �̃ℎ(�, �) by �ℎ(�, �;A�∕2,2�(�)) and �̃ℎ(�, �;A�∕2,2�(�)), respectively. It then follows
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from locality (Axiom II) that |�(�) is almost surely determined by ℎ|
A�∕2,2�(�)

, viewed modulo

additive constant.
It remains to prove the claim in the preceding paragraph. Let � and � be as above and let / be

path from � to � which exits A�∕2,2�(�). We need to show that / is neither a �ℎ-geodesic nor a
�̃ℎ-geodesic. By (3.17), there is a path # ⊂ A

h0�,h0
1∕2�

(�) such that

len(#; �ℎ) <
^∗
ℭ∗

�ℎ

(
A3�∕4,3�∕2(�), XA�∕2,2�(�)

)
. (3.19)

By the bi-Lipschitz equivalence of �ℎ and �̃ℎ, this implies that also

len
(
#; �̃ℎ

)
< �̃ℎ

(
A3�∕4,3�∕2(�), XA�∕2,2�(�)

)
. (3.20)

Since �, � ∈ bh0�
(�), the path / must hit # before the first time it crosses from A3�∕4,3�∕2(�) to

XA�∕2,2�(�) and after the last time that it does so. Therefore, (3.19) implies that we can replace a
segment of / with a segment of # to get a path with the same endpoints and shorter �ℎ-length.
Hence, / is not a �ℎ-geodesic. Similarly, (3.20) implies that / is not a �̃ℎ-geodesic. □

We now check that |�(�) occurs with high probability if the parameters are chosen
appropriately.

Lemma 3.14. For each " ∈ (0, 1), there exist parameters h0 ∈ (0, 1∕100), � ∈ (1 − h0, 1), and\ >

1, depending only on " and the laws of �ℎ and �̃ℎ, such that the following is true. Let ℭ
′ ∈ (0,ℭ∗)

and r > 0 and assume that (B) holds for our given choice of� and". Then there are at least 1

4
log8 �

−1

values of � ∈ [�2r, �r] ∩ {8−q}q∈N such that P[|�(�)] ⩾ 1 − 2" for each � ∈ C.

Proof. By the translation invariance of the law of ℎ, viewed modulo additive constant, and
Axiom IV′, it suffices to prove the lemma in the case when � = 0.
By Lemma 2.13 (applied with 9 ≡ 0), we can find h0 ∈ (0, 1∕100) depending only on " and the

laws of�ℎ and �̃ℎ such that for each � > 0, the probability of condition 1 in the definition of |�(0)

is at least 1 − "∕4. By tightness across scales (Axiom V′), after possibly shrinking h0, we can find
� ∈ (1 − h0, 1) depending only on the laws of �ℎ and �̃ℎ such that the probability of condition 2
is also at least 1 − "∕4.
By Lemma 2.14 (applied with 9 ≡ 0 and � the unit-speed parameterization of Xb1(0)), after

possibly shrinking �, in a manner depending on h0, we can arrange that for each � > 0, it holds
with probability at least 1 − "∕4 that the following is true. For each �ℎ(⋅, ⋅;A�∕2,2�(0))-geodesic /
from a point of Xb�∕2(0) to a point of Xb�(0), the one-dimensional Lebesgue measure of the set

{
� ∈ Xb�(0) ∶ / ∩ b100(1−�)�(�) ≠ ∅

}
(3.21)

is at most h0�. If 4 > ! > 0 such that /([!, 4]) ⊂ A��,�(0), then the one-dimensional Lebesguemea-
sure of the set (3.21) is at least the Euclidean diameter of /([!, 4]). This shows that condition 3 in
the definition of |�(0) occurs with probability at least 1 − "∕4.
By tightness across scales (Axiom V′), we can find \ > 1 (depending on �) such that for each

� > 0, condition 4 in the definition of |�(0) occurs with probability at least 1 − "∕4. By (B) and
the Definition 3.2 of��(�, ℭ

′), there are at least 1

4
log8 �

−1 values of � ∈ [�2r, �r] ∩ {8−q}q∈N such
that condition 5 in the definition of |�(0) occurs with probability at least 1 − ". We note that
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the requirement (3.17) does not show up in (B), but including the requirement (3.17) makes the
condition weaker, so makes the probability of the condition larger.
Taking a union bound over the five conditions in the definition of |�(0) now concludes the

proof. □

With Lemmas 3.13 and 3.14 in hand, we can now apply Lemma 2.1 to obtain the following.

Lemma 3.15. There exist parameters "∗ ∈ (0, 1), h0 ∈ (0, 1∕100), � ∈ (1 − h0, 1), and \ > 1,

depending only on the laws of �ℎ and �̃ℎ, such that the following is true. Letℭ
′ ∈ (0,ℭ∗) and r > 0

and assume that (B) holds for our given choice of � and with " = "∗. For each fixed bounded open

set � ⊂ C, it holds with probability tending to 1 as � → 0 (at a rate depending only on �) that for

each � ∈ r�, there exists � ∈ [�2r, �r] and & ∈ b�∕2(�) such that |�(&) occurs.

Proof. By Lemma 2.1, there exists a universal constant "∗ ∈ (0, 1) such that the following is true.
Let r > 0, let � ∈ (0, 1), let T ⩾

1

4
log8 �

−1, and let �1, … , �T ∈ [�2r, �r] ∩ {8−q}q∈N be distinct. If
� ∈ C and z�q

(�) for q = 1,… , T is an event which is almost surely determined by ℎ|
A��∕2,2��

(�),

viewed modulo additive constant, and has probability at least 1 − 2"∗, then

P
[
∃q ∈ [1, T]Z such that z�q

occurs
]
⩾ 1 − *�(�

100),

with the implicit constant in the *�(⋅) universal.
We now choose h0, �, \ as in Lemma 3.14 with " = "∗. For ℭ

′ ∈ (0,ℭ∗) and r > 0, we apply
the above statement to the radii � ∈ [�2r, �r] ∩ {8−q}q∈N from Lemma 3.14, which are chosen so
that P[|�(&)] ⩾ 1 − 2"∗ for all& ∈ C. By Lemma 3.14, if (B) holds with " = "∗, then there are at
least 1

4
log8 �

−1 such radii. Hence, if (B) holds, then

P
[
∃� ∈ [�2r, �r] such that |�(&) occurs

]
⩾ 1 − *�(�

100), ∀� ∈ C, (3.22)

with the implicit constant in the *�(⋅) universal.
The lemma statement now follows by applying (3.22) to each of the *�(�

−2) points & ∈

br(r�) ∩ ( �r

100
Z2), then taking a union bound. □

Henceforth, fix "∗, h0, �, and \ as in Lemma 3.15. Also fix

ℭ′′ ∈
(
ℭ′ +

\

\ + 1
(ℭ∗ − ℭ′), ℭ∗

)
, (3.23)

and note that we can choose ℭ′′ in a manner depending only on ℭ′ and the laws of �ℎ and �̃ℎ

(since \ depends only on the laws of �ℎ and �̃ℎ).
We will show that for each � > 0, there exists �0 = �0(�, ℭ

′) > 0 such that if r > 0, � ∈ (0, �0],
and (B) holds for the above values of r, �, "∗, �, then with probability greater than 1 − �,

�̃ℎ

(
b�r(z), b�r(w)

)
⩽ ℭ′′�ℎ(z,w) ∀z,w ∈ br(0). (3.24)

By Definition 3.1, the bound (3.24) implies that P[�r(�, ℭ
′′)~] > 1 − �, which is what we aim to

show in Proposition 3.12.
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F IGURE 6 Illustration of the definition of the times !� and 4� and the balls b��
(&�)

By Lemma 2.11, there is some large bounded open set� ⊂ C (depending only on � and the law
of �ℎ) such that for each r > 0, it holds with probability at least 1 − �∕2 that each �ℎ-geodesic
between two points of br(0) is contained in r�. For � > 0, let z�

r
be the event that this is the

case and for each � ∈ r�, there exists � ∈ [�2r, �r] and & ∈ b�∕2(�) such that |�(&) occurs. By
Lemma 3.15, if (B) holds then

P[z�
r
] ⩾ 1 − �∕2 − B�(1), (3.25)

where the rate of convergence of the B�(1) depends only on�, hence only on � and the law of �ℎ.
We henceforth assume that z�

r
occurs. We will show that if � is small enough, then (3.24) holds.

Let z,w ∈ br(0) and let / ∶ [0, �ℎ(z,w)] → C be a �ℎ-geodesic from z to w. We assume that

� ⩽
1

4
� and |z − w| ⩾ �r. (3.26)

The reason why we can make these assumptions is that �0 is allowed to depend on � and (3.24)
holds vacuously if |z − w| ⩽ �r. We will inductively define a sequence of times

0 = 40 < !1 < 41 < !2 < 42 < ⋯ < !� < 4� ⩽ �ℎ(z,w).

See Figure 6 for an illustration.
Let 40 = 0. Inductively, assume that � ∈ N and 4�−1 has been defined. By the definition ofz

�
r
, we

have /(4�−1) ∈ r� and there exists �� ∈ [�2r, �r] and&� ∈ b��∕2
(/(4�−1)) such that|��

(&�) occurs.
Fix (in some arbitrary manner) a particular choice of �� and &� with these properties.
Let 4� be the first time 4 ⩾ 4�−1 for which /(4) ∉ b��

(&�), or let 4� = �ℎ(z,w) if no such time

exists. If 4� < �ℎ(z,w), we also let !� be the last time before 4� at which / hits Xb���
(&�), so that

!� ∈ [4�−1, 4�] and /([!� , 4�]) ⊂ A��� ,��
(&�).

Finally, define

� ∶= max
{
� ∈ N ∶ |z − /(4�−1)| < 2�r

}
and

� ∶= min
{
� ∈ N ∶ |w − /(4�+1)| < 2�r

}
. (3.27)
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258 DING and GWYNNE

The reason for the definitions of � and � is that z,w ∉ b��
(&�) for � ∈ [�, �]Z (since �� ⩽ �r

and/(4�) ∈ b��
(&�)).Whenever |w − /(4�−1)| ⩾ �r, we have 4� < �ℎ(z,w) and |/(4�−1) − /(4�)| ⩽

2�r. Therefore,

/(4�) ∈ b4�r(z) and /(4�) ∈ b4�r(w). (3.28)

The most important estimate that we need for the times !� and 4� is the following lemma.

Lemma 3.16. For each � ∈ [�, �]Z,

�̃ℎ

(
/(!�), /(4�)

)
⩽ ℭ′(4� − !�) and �̃ℎ

(
/(4�−1), /(!�)

)
⩽ ℭ∗(!� − 4�−1). (3.29)

The second inequality in (3.29) is immediate from the definition (1.19) of ℭ∗. We will prove the
first inequality in (3.29) by applying condition 5 in the definition of |��

(&�) with � = /(!�) and

� = /(4�). The following lemma will be used in conjunction with condition 1 in the definition of
|��

(&�) to check the requirement (3.17) from condition 5.

Lemma 3.17. For each � ∈ [�, �]Z, we have

4� − !� ⩽ (1 − �)−1�
-A
�

�
-ℎ�� (&�) (3.30)

and

�ℎ

(
across A

h0�� ,h0
1∕2��

(/(4�))
)

⩽
^∗
2ℭ∗

h−��ℎ

(
A3��∕4,3��∕2

(�), XA��∕2,2��
(�)
)
. (3.31)

Proof. See Figure 7 for an illustration. Let !′
�
be the first time that / enters b3��∕2

(&�) and let 4
′
�

be the last time that / exits b3��∕2
(&�). Then !′

�
< !� < 4� < 4′

�
. The definitions (3.27) of � and �

show that the endpoints z,w of / are not in b2��
(&�), so / must cross between the inner and

outer boundaries of the annulus A3��∕2,2��
(&�) before time !′

�
and after time 4′

�
. By considering

the segment of / between two consecutive times when it hits a path around A3��∕2,2��
(&�) of

near-minimal length and using the fact that / is a �ℎ-geodesic, we see that

4′� − !′� ⩽ �ℎ

(
around XA3��∕2,2��

(�)
)
. (3.32)

By (3.32), followed by condition 2 in the definition of |��
(&�), we obtain

4� − !� ⩽ 4′� − !′� ⩽ �ℎ

(
around XA3��∕2,2��

(�)
)

⩽ (1 − �)−1�
-A
�

�
-ℎ�� (&�),

which is (3.30).
The path / must cross between the inner and outer boundaries of the annulus

A
h0�� ,h0

1∕2��
(/(4�)) between times 4′

�
and !′

�
. By (3.32) followed by condition 2 in the definition

of |��
(&�),
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F IGURE 7 Illustration of the proof of Lemma 3.17. We upper-bound 4� − !� and �ℎ(across Ah0�� ,h0
1∕2��

(/(4�)))

in terms of 4′
�
− !′

�
, upper-bound 4′

�
− !′

�
in terms of the �ℎ-length of the orange loop, and upper-bound the

�ℎ-length of the orange loop using condition 2 in the definition of |��
(&�). Note that the picture is not to scale.

For example, in actuality the inner radius of Ah0�� ,h0
1∕2��

(/(4�)) is much smaller than its outer radius.

�ℎ

(
across A

h0�� ,h0
1∕2��

(/(4�))
)

⩽ 4′� − !′�

⩽ �ℎ

(
around XA3��∕2,2��

(�)
)

⩽
^∗
2ℭ∗

h−��ℎ

(
A3��∕4,3��∕2

(�), XA��∕2,2��
(�)
)
.

This gives (3.31). □

Proof of Lemma 3.16. The second inequality in (3.29) is immediate from the definition (1.19) ofℭ∗.
To get the first inequality, we want to apply condition 5 in the definition of |��

(&�) to the points

� = /(!�) ∈ Xb���
(&�) and � = /(4�) ∈ Xb��

(&�). To do this, we need to check the hypotheses of

condition 5 in the definition of |��
(&�).

To this end, let R� be the last time before !� at which / enters A��∕2,2��
(&�) and let �� be the

first time after 4� at which / exits A��∕2,2��
(&�). Then /|[R� ,��] is a �ℎ(⋅, ⋅;A��∕2,2��

(&�))-geodesic

between two points of XA��∕2,2��
(&�) and R� < !� < 4� < �� . By the definitions of !� and 4� , we have
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/|[!� ,4�] ⊂ A��� ,��
(&�). (3.33)

By (3.33) and condition 3 in the definition of |��
(&�),

(
Euclidean diameter of /([!�, 4�])

)
⩽ h0�� ⩽

��

100
. (3.34)

By condition 1 in the definition of |��
(&�),

�ℎ

(
around Ah�� ,h

1∕2��
(/(4�))

)
⩽ h��ℎ

(
across Ah�� ,h

1∕2��
(/(4�))

)
,

∀h ∈ (0, h0]; (3.35)

and the same is true with /(!�) in place of /(4�). By definition, |/(4�) − /(!�)| ⩾ (1 − �)�� so for
each h ∈ (0, (1 − �)2], the path /|[!� ,4�] crosses between the inner and outer boundaries of the

annuli Ah�� ,h
1∕2��

(/(!�)) and Ah�� ,h
1∕2��

(/(4�)). Since 1 − � < h0, (3.35) implies that

�ℎ

(
around Ah�� ,h

1∕2��
(/(4�))

)
⩽ h�(4� − !�) = h��ℎ(/(!�), /(4�)),

∀h ∈ (0, (1 − �)2]; (3.36)

and the same is true with /(!�) in place of /(4�) on the left side.
By (3.36), for each � > 0 and each h ∈ (0, (1 − �)2] we can find a path #h in Ah�� ,h

1∕2��
(/(4�))

which disconnects the inner and outer boundaries and has �ℎ-length at most (h
� + �)(4� − !�). If

we let Jh (respectively, Kh) be the first (respectively, last) time that / hits #h, then Jh ⩽ 4� ⩽ Kh and
since / is a �ℎ-geodesic we must have Kh − Jh ⩽ len(#h; �ℎ). Furthermore, the segment /|[4� ,Kh]
hits Xbhr(/(4�)), so for each h ∈ (0, (1 − �)2],

�ℎ

(
/(4�), Xbhr(/(4�))

)
⩽ Kh − 4� ⩽ Kh − Jh ⩽ len(#h; �ℎ) ⩽ (h� + �)(4� − !�). (3.37)

Sending � → 0 and recalling that / is a �ℎ-geodesic gives

�ℎ

(
/(4�), Xbhr(/(4�))

)
⩽ h��ℎ

(
/(!�), /(4�)

)
, ∀h ∈ (0, (1 − �)2]. (3.38)

We similarly obtain (3.38) with the roles of /(!�) and /(4�) interchanged.
Finally, by Lemma 3.17 and (3.35) (with h = h0),

�ℎ

(
around A

h0�� ,h0
1∕2��

(/(4�))
)

⩽
^∗
2ℭ∗

�ℎ

(
A3��∕4,3��∕2

(�), XA��∕2,2��
(�)
)
. (3.39)

We are now ready to explain why we can apply condition 5 with � = /(!�) and � = /(4�). The
hypothesis (5i) follows from (3.33). The condition (3.17) and the hypothesis (5ii) for the Euclidean
diameter of /|[!� ,4�] follow from (3.34). The needed upper bound (5iii) for �ℎ(/(!�), /(4�)) follows
from (3.30) The hypothesis (5iv) follows from (3.36) and (3.38). The hypothesis (3.18) follows
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from (3.39). Hence, we can apply condition 5 in the definition of |��
(&�) to /|[!� ,4�] to get

�̃ℎ(/(!�), /(4�)) ⩽ ℭ′(4� − !�), as required. □

The last lemma we need for the proof of Proposition 3.12 tells us that the time intervals [!� , 4�]
occupy a positive fraction of the total �ℎ-length of the path /.

Lemma 3.18. For each � ∈ [�, �]Z,

!� − 4�−1 ⩽
\

\ + 1
(4� − 4�−1). (3.40)

Proof. By the definition of �� and the definitions of � and � in (3.27), for � ∈ [�, �]Z we have
�� ⩽ �r and |/(4�) − z| ∧ |/(4�) − w| ⩾ 2�r. Since /(4�−1) ∈ b��∕2

(&�) and /(!�) ∈ Xb���
(&�), we

infer that the �ℎ-geodesic / must cross between the inner and outer boundaries of the annulus
A��� ,��

(&�) at least once before time 4�−1 and at least once after time !� . By condition 4 in the def-

inition of |��
(&�), there is a path in A��� ,��

(&�) disconnecting the inner and outer boundaries of

this annulus with �ℎ-length arbitrarily close to \�ℎ(Xb���
(&�), Xb��

(&�)). The geodesic / must
hit this path at least once before time 4�−1 and at least once after time !� . Since / is a �ℎ-geodesic
and /(!�) ∈ Xb���

(&�), /(4�) ∈ Xb��
(&�), it follows that

!� − 4�−1 ⩽ \�ℎ

(
Xb���

(&�), Xb��
(&�)

)
⩽ \(4� − !�).

Adding \(!� − 4�−1) to both sides of this inequality, then dividing by \ + 1, gives (3.40). □

Proof of Proposition 3.12. Our above estimates show that if the event z�
r
of (3.25) occurs, then we

have the following string of inequalities:

�̃ℎ(b4�r(z), b4�r(w))

⩽

�∑

�=�+1

[
�̃ℎ

(
/(4�−1), /(!�)

)
+ �̃ℎ

(
/(!�), /(4�)

)]
(by (3.28))

⩽

�∑

�=�+1

[
ℭ∗(!� − 4�−1) + ℭ′(4� − !�)

]
(by Lemma 3.16)

=

�∑

�=�+1

[
ℭ′(4� − 4�−1) + (ℭ∗ − ℭ′)(!� − 4�−1)

]

⩽
(
ℭ′ +

\

\ + 1
(ℭ∗ − ℭ′)

) �∑

�=�+1

(4� − 4�−1) (by Lemma 3.18)

⩽
(
ℭ′ +

\

\ + 1
(ℭ∗ − ℭ′)

)
�ℎ(z,w) (since / is a �ℎ-geodesic)

⩽ ℭ′′�ℎ(z,w) (by 3.23)). (3.41)
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262 DING and GWYNNE

F IGURE 8 Illustration of the objects defined in Subsection 4.1. The bump function ��,� is supported on 
�,�

and identically equal to� on ��,� . The figure shows a �ℎ−��,�
-geodesic /′ (blue) and a (b4�(�), 
�,�)-excursion

(�′, �, R, R′) for /′. On the event ��,� , there are many ‘good’ pairs of points �, � ∈ ��,� such that

�̃ℎ(�, �) ⩽ ^′�ℎ(�, �) and there is a �̃ℎ-geodesic from � to � which is contained in ��,� (several such geodesics are

shown in red). We obtain hypothesis C for ��,� by forcing /
′ to get close to � and � for one such ‘good’ pair of

points.

By (3.25), we have P[z�
r
] ⩾ 1 − �∕2 − B�(1), with the rate of convergence of the B�(1) uniform in

the choice of r. Hence, we can choose �0 = �0(�, ℭ
′) > 0 small enough so that 4�0 ⩽ � andP[z�

r
] >

1 − � for each � ∈ (0, �0]. By (3.41) and Definition 3.1 of �r(�, ℭ
′′), we see that for � ∈ (0, �0], the

condition (B) implies that P[�r(�, ℭ
′′)] < �, as required. □

4 THE CORE ARGUMENT

4.1 Properties of events and bump functions

In this section, we will assume the existence of events and smooth bump functions which sat-
isfy certain conditions. We will then use these objects to prove Theorem 1.13. The objects will be
constructed in Section 5 and are illustrated in Figure 8.
To state the conditions which our events and bump functions need to satisfy, we define the

optimal upper and lower bi-Lipschitz constants ℭ∗ and ^∗ as in Section 3 and we set

^′ ∶=
^∗ + ℭ∗

2
, (4.1)

which belongs to (^∗, ℭ∗) if ^∗ < ℭ∗.
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We will consider a set of admissible radii ⊂ (0, 1) which is required to satisfy

�′∕� ⩾ 8, ∀�, �′ ∈  such that �′ > �. (4.2)

The reason for restricting attention to a set of radii as in (4.2) is that in Section 5, we will need to
use Proposition 3.10 in order to construct our events.
We also fix a number p ∈ (0, 1), which we will choose later in a manner depending only on �ℎ

and �̃ℎ (the parameter p is chosen in Lemma 4.18).
Finally, we fix numbers�, �, �, �, �, �, � > 0, which we require to satisfy the relations

� > � and � − 4�−-�� >
2�

�
�. (4.3)

We henceforth refer to these numbers as the parameters. Most constants in our proofs will be
allowed to depend on the parameters. The parameters will be chosen in Section 5, in a manner
depending only on p and the laws of �ℎ and �̃ℎ (see also Proposition 4.2).
Throughout this section, we will assume that for each � ∈  and each � ∈ C, we have defined

the following objects.

∙ An event ��,� = ��,�(ℎ) such that ��,� is almost surely determined by ℎ|A�,4�(�)
, viewed modulo

additive constant (recall (2.2)), P[��,�] ⩾ p, and ��,� satisfies the three hypotheses listed just
below.

∙ Deterministic open sets ��,�, 
�,� ⊂ A�,3�(�), each of which has the topology of an open
Euclidean annulus and disconnects the inner and outer boundaries of A�,3�(�), such that

��,� ⊂ 
�,� and 
�,� ⊂ A�,3�(�).
∙ A deterministic smooth function ��,� ∶ C → [0,�] such that ��,� ≡ � on ��,� and ��,� ≡ 0 on

C ⧵ 
�,�.

To state the needed hypotheses for the event ��,�, we make the following definition.

Definition 4.1. Let / ∶ [0, N] → C be a path and let*,� ⊂ C be open sets with� ⊂ *. A (*, �)-

excursion of / is a 4-tuple of times (�′, �, R, R′) such that

/(�′), /(R′) ∈ X*, /((�′, R′)) ⊂ *,

� is the first time after �′ that / enters �, and R is the last time before R′ at which / exits �.

An (*, �) excursion is illustrated in Figure 8. We assume that on the event ��,�, the following
is true.

(A) We have

�ℎ(
�,�, XA�,3�(�)) ⩾ ��-A�-ℎ�(�),

�ℎ(around A3�,4�(�)) ⩽ ��-A�-ℎ�(�), and

�ℎ(around ��,�) ⩽ ��-A�-ℎ�(�).
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264 DING and GWYNNE

(B) The Radon–Nikodym derivative of the law of ℎ + ��,� with respect to the law of ℎ, with both
distributions viewed modulo additive constant, is bounded above by � and below by 1∕�.

(C) Let /′ ∶ [0, N] → C be a�ℎ−��,�
-geodesic between two points which are not in b4�(�), param-

eterized by its �ℎ−��,�
-length. Assume that (in the terminology of Definition 4.1), there is a

(b4�(�), 
�,�)-excursion (�′, �, R, R′) for /′ such that

�ℎ

(
/′(�), /′(R); b4�(�)

)
⩾ ��-A�-ℎ�(�). (4.4)

Then there are times � ⩽ ! < 4 ⩽ R such that

4 − ! ⩾ ��-A�-ℎ�(�) and �̃ℎ−��,�

(
/′(!), /′(4); b4�(�)

)
⩽ ^′(4 − !). (4.5)

Constructing objects which satisfy the above conditions (especially hypothesis C) will require
a lot of work. The proof of the following proposition will occupy all of Section 5.

Proposition 4.2. Assume that ^∗ < ℭ∗. For eachp ∈ (0, 1), there exist ^′′ ∈ (^∗, ^
′) and a set of radii

 as in (4.2), depending only on p and the laws of �ℎ and �̃ℎ, with the following properties.

∙ There is a choice of parameters depending only onp and the laws of�ℎ and �̃ℎ, such that for each

� ∈  and each � ∈ C, there exist an event ��,�, open sets ��,�, 
�,�, and a function ��,� satisfying

the above hypotheses.
∙ For each �̃ > 0, there exists �0 > 0, depending only on p, �̃, and the laws of �ℎ and �̃ℎ, such

that the following holds for each � ∈ (0, �0]. If r > 0 and that the event of Definition 3.8 satisfies

P[�̃r(�̃, ^
′′)] ⩾ �̃, then the cardinality of ∩ [�2r, �r] is at least 5

8
log8 �

−1.

The proof of Proposition 4.2 in Section 5will be via an intricate explicit construction. To give the
reader some intuition, we will now explain roughly what is involved in this construction, without
any quantitative estimates. The readermaywant to look at Figure 8while reading the explanation.
The set ��,� where ��,� attains its maximal possible value will be a long narrow ‘tube’ which

disconnects the inner and outer boundaries of A�,3�(�) and is contained in a small Euclidean
neighborhood of Xb2�(�). The set 
�,� where ��,� is supported will be a slightly larger tube con-
taining ��,�. The event ��,� corresponds, roughly speaking, to the event that there are many ‘good’
pairs of non-singular points �, � ∈ ��,� with the following properties (plus a long list of regularity
conditions).

∙ �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �), where ^

′
0
∈ (^∗, ^

′) is fixed.
∙ |� − �| is bounded below by a constant times �.
∙ There is a �̃ℎ-geodesic from � to � which is contained in ��,�.

Hypotheses A and B for ��,� will be immediate consequences of the regularity conditions in the
definition of ��,�. Hypothesis C will be obtained as follows. Suppose that /′ is a �ℎ−��,�

-geodesic
as in hypothesis C. Since the bump function ��,� is very large on ��,�, we infer that if �, � ∈ 
�,�,
then the �ℎ−��,�

-length of any path between � and � which spends a lot of time outside of ��,� is
much greater than the �ℎ−��,�

-length of a path between � and � which spends most of its time in

��,�. By applying this with � = /′(�) and � = /′(R), we find that /′|[�,R] has to spend most of its
time in ��,�.
This will allow us to find a ‘good’ pair of points �, � ∈ ��,� as above such that /

′|[�,R] gets very
�ℎ−��,�

-close to each of � and �. Since the �̃ℎ-geodesic between � and � is contained in��,� and ��,�
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attains its maximal possible value on ��,�, subtracting ��,� from ℎ reduces �̃ℎ(�, �) by at least as
much as �ℎ(�, �). Consequently, one has �̃ℎ−��,�

(�, �) ⩽ ^′
0
�ℎ−��,�

(�, �). We will then obtain (4.5)

by choosing ! and 4 such that /′(!) and /′(4) are close to � and �, respectively, and applying the
triangle inequality.
To produce lots of ‘good’ pairs of points �, � ∈ ��,�, we will apply Proposition 3.10 together

with a local independence argument based on Lemma 2.3 (to upgrade from a single pair of points
with positive probability to many pairs of points with high probability). This application of Propo-
sition 3.10 is the reason why we need to assume that P[�̃r(�̃, ^

′′)] ⩾ �̃ in the second part of
Proposition 4.2; and why we need to restrict to a set of admissible radii , instead of defining
our events for every � > 0.

4.2 Estimate for ratios of �� and �̃� distances

We now state the main estimate which we will prove using the events ��,�. In particular, we will
show that the probability of a certain ‘bad’ event, which we now define, is small. For r > 0, � > 0,
and disjoint compact sets T1, T2 ⊂ b2r(0), let �

r
= �

r
(T1, T2) be the event that the following is

true.

(1) �̃ℎ(T1, T2) ⩾ ℭ∗�ℎ(T1, T2) −
1

2
�2-(A+3)r-A�-ℎr

(0).

(2) For each � ∈ b3r(0) and each � ∈ [�2r, �r] ∩, we have
�-A�-ℎ�(�) ∈

[
�2-(A+3)r-A�-ℎr

(0), �-(A−3)r-A�-ℎr
(0)
]
.

(3) For each � ∈ b3r(0), there exists � ∈  ∩ [�2r, �r] and & ∈ ( �

100
Z2) ∩ b�∕25(�) such that �&,�

occurs.

The most important condition in the definition of �
r
is condition 1. We want to show that if ^∗ <

ℭ∗, then this condition is extremely unlikely. The motivation for this is that it will eventually be
used in Subsection 4.5 to derive a contradiction to Proposition 3.5. Indeed, Proposition 3.5 gives
a lower bound for the probability that there exist points �, � ∈ br(0) satisfying certain conditions
such that �̃ℎ(�, �) is ‘close’ to ℭ∗�ℎ(�, �). We will show that this lower bound is incompatible
with our upper bound for the probability of condition 1 in the definition of �

r
.

Conditions 2 and 3 in the definition of �
r
are global regularity conditions. We will show in

Lemma 4.18 that Proposition 4.2 implies that these two conditions occur with high probability.
This, in turn, means that an upper bound for P[�

r
] implies an upper bound for the probability of

condition 1. The next three subsections are devoted to the proof of the following proposition.

Proposition 4.3. Assume that ^∗ < ℭ∗ and we have constructed a set of admissible radii  as

in (4.2) and events ��,�, sets��,� and 
�,�, and bump functions ��,� for � ∈ C and � ∈ which satisfy

the conditions of Subsection 4.1. Let � ∈ (0, 1) and r > 0. Also letT1, T2 ⊂ b2r(0) be disjoint compact

sets such that dist(T1, T2) ⩾ �r and dist(T1, Xbr(0)) ⩾ �r, where dist denotes Euclidean distance.†

† The reasonwhywe require that dist(T1, Xbr
(0)) ⩾ �r in Proposition 4.3 is as follows.Our events involve the circle average

ℎ
r
(0). We only want to add to or subtract from ℎ functions of the form ��,� whose supports are disjoint from Xb

r
(0), so

that adding or subtracting ��,� does not change ℎ
r
(0). The condition that dist(T1, Xbr

(0)) ⩾ �r ensures that there is a

segment of the�ℎ-geodesic fromT1 toT2 of Euclidean length at least �rwhich is disjoint from Xb
r
(0). We will eventually
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266 DING and GWYNNE

Then

P
[�

r
(T1, T2)

]
= *�(�

w), ∀w > 0 (4.6)

with the implicit constant in the*�(⋅) depending only on w, �, and the parameters (not on r, T1, T2).

It is crucial for our purposes that the implicit constant in the *�(⋅) in (4.6) does not depend on
r, T1, T2. This is because we will eventually takeT1 andT2 to be Euclidean balls whose radii are a
power of � times r (see Lemma 4.19). Proposition 4.2 is not needed for the proof of Proposition 4.3.
Rather, all we need is the statement that ��,�, ��,�, 
�,�, and ��,� exist and satisfy the required prop-
erties for each � ∈  (we do not care how large is). Proposition 4.2 is just needed to check that
the auxiliary condition 3 in the definition �

r
occurs with high probability.

We will now explain how to prove Proposition 4.3 conditional on two propositions (Propo-
sitions 4.5 and 4.6) whose proofs will occupy most of this section. The proof will be based on
counting the number of events of a certain type which occur. Let us now define these events.
Assume that ^∗ < ℭ∗. Also fix r > 0 and disjoint compact sets T1, T2 ⊂ b2r(0). For � ∈ 

(which we will eventually take to be much smaller than r), let � = r

� (T1, T2) be the set of
non-empty subsets y ⊂ �

100
Z2 such that‡

b4�(�) ∩ b4�(�
′) = ∅ and b4�(�) ∩ (T1 ∪ T2 ∪ Xbr(0)) = ∅,

∀ distinct �, �′ ∈ y. (4.7)

For a set y ∈ �, we define

�y,� =
∑

�∈y

��,�.

By Lemma 2.7, almost surely there is a unique �ℎ-geodesic from T1 to T2. Since the laws of
ℎ and ℎ − �y,� are mutually absolutely continuous [34, Proposition 3.4], for each � ∈  and each
y ∈ �, almost surely there is a unique �ℎ−�y,�

-geodesic from T1 to T2. Hence, the following

definition makes sense. For y ∈ � and I > 0 we define z
I,r
y,�

= z
I,r
y,�

(ℎ; T1, T2) to be the event
that the following is true.

(1) �̃ℎ(T1, T2) ⩾ ℭ∗�ℎ(T1, T2) − Ir-A�-ℎr
(0).

(2) The event ��,�(ℎ) occurs for each � ∈ y.
(3) We have

�-A�-ℎ�(�) ∈
[
Ir-A�-ℎr

(0), 2Ir-A�-ℎr
(0)
]
, ∀� ∈ y.

(4) For each � ∈ y, the �ℎ-geodesic from T1 to T2 hits b�(�).

choose to subtract functions ��,� whose supports are close to such a segment, see the proof of Proposition 4.5 at the end of

Subsection 4.3.

‡ The reason why we require that b4�(�) ∩ Xb
r
(0) = ∅ in (4.7) is to ensure that adding or subtracting the function ��,� for

� ∈ y (which is supported on b4�(�)) does not change the circle average ℎr
(0) (cf. Footnote ). This fact is used in the proof

of Lemma 4.15.
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F IGURE 9 Illustration of the definition of zI,r
y,�
. Here, we have shown T1 as a non-singleton set and T2 as a

point, but T1 and T2 can be any disjoint compact sets. The set y consists of the four center points of the annuli in

the figure. For each of these points, we have shown the set 
�,� (that is, the support of ��,�) in light blue and the

annulus A�,4�(�) in gray. On z
I,r
y,�
, the �ℎ-geodesic from T1 to T2 (blue) hits each of the balls b�(�) for � ∈ y.

Moreover, the �ℎ−�y,�
-geodesic from T1 to T2 (red) has a ‘large’ (b4�(�), 
�,�)-excursion for each � ∈ y.

(5) For each � ∈ y, the �ℎ−�y,�
-geodesic /y from T1 to T2 has a (b4�(�), 
�,�)-excursion

(�′�, ��, R�, R
′
�) such that

�ℎ(/y(��), /y(R�); b4�(�)) ⩾ ��-A�-ℎ�(�).

See Figure 9 for an illustration of the definition. Condition 1 for zI,r
y,�

is closely related to the main
condition 1 in the definition of �

r
. The purpose of conditions 2 and 4 is to allow us to apply our

hypotheses for ��,� to study �ℎ-distances on the event z
I,r
y,�
. Condition 3 provides up-to-constants

comparisons of the ‘LQG sizes’ of different balls b�(�) for � ∈ y. Finally, condition 5 will enable
us to apply hypothesis C for ��,� to each � ∈ y.
Proposition 4.3 will turn out to be a straightforward consequence of three estimates for the

eventszI,r
�,� , whichwenow state.Our first estimate follows froma standard formula for theRadon–

Nikodym derivative between the laws of ℎ and ℎ + �y,�.

Lemma 4.4. For � ∈ , y ∈ �, and I > 0, let z
I,r
y,�

(ℎ + �y,�) be the event z
I,r
y,�

(ℎ) defined with

ℎ + �y,� in place of ℎ. For each y ⊂ �,

�−#yP
[
z
I,r
y,�

(ℎ)
]
⩽ P

[
z
I,r
y,�

(ℎ + �y,�)
]
⩽ �#yP

[
z
I,r
y,�

(ℎ)
]
. (4.8)

Proof. By Weyl scaling (Axiom III) and the fact that ��,�(ℎ) is almost surely determined by ℎ,
viewed modulo additive constant, we get that the event zI,r

y,�
(ℎ) is almost surely determined by

ℎ, viewed modulo additive constant. By a standard calculation for the GFF (see, for example, the
proof of [34, Proposition 3.4]), the Radon–Nikodym derivative of the law of ℎ + �y,� with respect
to the law of ℎ, with both distributions viewed modulo additive constant, is equal to

exp
(
(ℎ, �y,�)∇ −

1

2
(�y,�, �y,�)∇

)
,
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268 DING and GWYNNE

where (9, g)∇ = ∫
C
∇9(�) ⋅∇g(�) �2� denotes the Dirichlet inner product. Recall that each ��,�

for � ∈ y is supported on the annulus A�,4�(�). Since y ∈ �, the definition (4.7) shows that the
balls b4�(�) for � ∈ y are disjoint. Hence, the random variables (ℎ, �y,�)∇ are independent, so the
above Radon–Nikodym derivative factors as the product

∏

�∈y

exp
(
(ℎ, ��,�)∇ −

1

2
(��,�, ��,�)∇

)
. (4.9)

By condition 2 in the definition of zI,r
y,�

(ℎ), on this event ��,�(ℎ) occurs for each � ∈ y. Conse-

quently, hypothesis B for ��,�(ℎ) shows that on z
I,r
�,� (ℎ), each of the factors in the product (4.9) is

bounded above by � and below by �−1. This implies (4.8). □

Our next estimate tells us that on �
r
, there are many choices of y for which z

I,r
y,�

(ℎ) occurs.

Proposition 4.5. There exists ~1 > 0, depending only on the parameters and �, such that for each

q ∈ N, there exists �∗ > 0, depending only on q, the parameters, and �, such that the following is

true for each r > 0 and each � ∈ (0, �∗]. Assume that dist(T1, T2) ⩾ �r and dist(T1, Xbr(0)) ⩾ �r. If

�
r
(T1, T2) occurs, then there exists a random � ∈ [�2r, �r] and a random I ∈ [ 1

2
�2-(A+3), �-(A−3)] ∩

{2−�}�∈N such that

#
{
y ∈ � ∶ #y ⩽ q and z

I,r
y,�

(ℎ) occurs
}

⩾ �−~1q. (4.10)

Proposition 4.5 will be proven in Subsection 4.3. Our final estimate gives an unconditional
upper bound for the number of y for which z

I,r
y,�

(ℎ + �y,�) occurs.

Proposition 4.6. There is a constant U2 > 0, depending only on the parameters, such that the

following is true. For each � ∈ , each I > 0, and each q ∈ N, almost surely

#
{
y ∈ � ∶ #y ⩽ q and z

I,r
y,�

(ℎ + �y,�) occurs
}

⩽ Uq
2 . (4.11)

We will give the proof of Proposition 4.6 in Subsection 4.4. The proofs of Propositions 4.5
and 4.6 are both via elementary deterministic arguments based on the hypotheses for ��,� and
the definition of �I,r

y,�
. See the beginnings of Subsections 4.3 and 4.4 for overviews of the proofs.

Let us now explain how to deduce Proposition 4.3 from the above three estimates.

Proof of Proposition 4.3. Throughout the proof, all implicit constants are required to depend
only on - and the parameters. Fix r > 0 and disjoint compact sets T1, T2 ⊂ b2r(0) such that
dist(T1, T2) ⩾ �r and dist(T1, Xbr(0)) ⩾ �r. For � > 0, let

 � ∶=  ∩ [�2r, �r] and ¡� ∶=
[
1

2
�2-(A+3), �-(A−3)

]
∩ {2−�}�∈N.

The cardinality of  � × ¡� is at most a --dependent constant times (log �−1)2. By interchanging
the order of summation and expectation, then applying Proposition 4.6 and Lemma 4.4, we get
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that for each q ∈ N,

(log �−1)2 ⪰
∑

�∈ �

∑

I∈¡�

∑

y∈�
#y⩽q

E

[
1z

I,r
y,�

(ℎ+�y,�)

#{y′ ∈ � ∶ #y′ ⩽ q, z
I,r

y′,�
(ℎ + �y′,�) occurs}

]

⪰ U−q
2

∑

�∈£�

∑

I∈¤�

∑

y∈�
#y⩽q

P
[
z
I,r
y,�

(ℎ + �y,�)
]

(Proposition 4.6)

⪰ U−q
2 �−q

∑

�∈£�

∑

I∈¤�

∑

y∈�
#y⩽q

P
[
z
I,r
y,�

(ℎ)
]

(Lemma 4.4)

= U−q
2 �−qE

[
∑

�∈£�

∑

I∈¤�

#
{
y ∈ � ∶ #y ⩽ q, z

I,r
y,�

(ℎ) occurs
}]

. (4.12)

By Proposition 4.5, for each small enough � > 0 (how small depends on q) on the event �
r
(T1, T2)

the double sum inside the expectation in the last line of (4.12) is at least �−~1q. Hence, for each
small enough � > 0 (depending on q),

(log �−1)2 ⪰ U−q
2 �−q�−~1qP

[�
r
(T1, T2)

]
. (4.13)

Re-arranging this inequality and choosing q to be slightly larger than w∕~1 yields (4.6). □

4.3 Proof of Proposition 4.5

Fix r > 0 and compact sets T1, T2 ⊂ br(0) such that dist(T1, T2) ⩾ �r and dist(T1, Xbr(0)) ⩾ �r.
It is straightforward to show from the definition of �

r
that if �

r
occurs, then there are many 3-

tuples (y, �, I) with � ∈  ∩ [�r, �2r], I ∈ [�2-(A+3)∕2, �-(A−3)] ∩ {2−�}�∈N, and y ∈ � for which
all of the conditions in the definition of zI,r

y,�
occur except possibly condition 5, that is, the event

of the following definition occurs.

Definition 4.7. For � ∈ , y ∈ �, and I > 0, we define z
I,r

y,�(ℎ) = z
I,r

y,�(ℎ; T1, T2) to be the event

that all of the conditions in the definition of zI,r
y,�

(ℎ) occur except possibly condition 5, that is,

z
I,r

y,�(ℎ) is the event that the following is true.

(1) �̃ℎ(T1, T2) ⩾ ℭ∗�ℎ(T1, T2) − Ir-A�-ℎr
(0).

(2) The event ��,� occurs for each � ∈ y.
(3) We have

�-A�-ℎ�(�) ∈
[
Ir-A�-ℎr

(0), 2Ir-A�-ℎr
(0)
]
, ∀� ∈ y.

(4) For each � ∈ y, the �ℎ-geodesic from T1 to T2 hits b�(�).
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270 DING and GWYNNE

Recall that condition 5 asserts that for each � ∈ y, the �ℎ−�y,�
-geodesic /y from T1 to T2 has a

(b4�(�), 
�,�)-excursion (�′�, ��, R�, R
′
�) such that �ℎ(/y(��), /y(R�); b4�(�)) ⩾ ��-A�-ℎ�(�). The dif-

ficultywith checking condition 5 is that the�ℎ−�y,�
-geodesic fromT1 toT2 could potentially spend

a very small amount of time in 
�,� for some of the points � ∈ y, or possibly even avoid some of

the sets 
�,� altogether. To deal with this, we will show that if y ∈ � and z
I,r

y,� occurs, then there

is a subset y′ ⊂ y such that #y′ is at least a constant times #y and z
I,r

y′,�
occurs (Lemma 4.13).

The idea for constructing y′ is as follows. In Lemma 4.8 we show that�ℎ−�y,�
(T1, T2) is smaller

than �ℎ(T1, T2) minus a constant times Ir-A�-ℎr
(0)#y. Intuitively, subtracting �y,� substantially

reduces the distance from T1 to T2. Since �y,� is supported on
⋃

�∈y 
�,�, this implies that the
�ℎ−�y,�

-geodesic /y from T1 to T2 has to spend at least a constant times Ir-A�-ℎr
(0)#y units of

time in
⋃

�∈y 
�,� (otherwise, its length would have to be larger than �ℎ−�y,�
(T1, T2)). We then

iteratively remove the ‘bad’ points � ∈ y for which there does not exist a (b4�(�), 
�,�)-excursion
(�′�, ��, R�, R

′
�) for /y such that

�ℎ(/y(��), /y(R�)) ⩾ ��-A�-ℎ�(�).

For each of the above ‘bad’ points � ∈ y, the intersection of /y with 
�,� is in some sense small.
Since the function ��,� is supported on ��,�, removing the ‘bad’ points from y does not increase
�ℎ−�y,�

(T1, T2) by very much. Consequently, at each stage of the iterative procedure it will still be
the case that �ℎ−�y,�

(T1, T2) is substantially smaller than �ℎ(T1, T2). As above, this implies that
/y spends a substantial amount of time in

⋃
�∈y 
�,�. We show in Lemma 4.12 that the amount of

time that /y spends in each 
�,� is at most a constant times Ir-A�-ℎr
(0). This allows us to show

that the iterative procedure has to terminate before we have removed too many points from y.
To begin the proof, we establish an upper bound for �ℎ−�y,�

(T1, T2) in terms of �ℎ(T1, T2) on

the event z
I,r

y,�(ℎ). The reason why this bound holds is that the �ℎ-geodesic from T1 to T2 has to
cross the regions ��,� for � ∈ y. Since �y,� is very large on ��,� and by hypothesis A for ��,�, the
�ℎ−�y,�

-distances around the regions ��,� for � ∈ y is small. This allows us to find #y ‘shortcuts’
along the �ℎ-geodesic with small �ℎ−�y,�

-length.

Lemma 4.8. There is a constant U3 > 2��∕�, depending only on the parameters, such that the

following is true. Let � ∈ , y ⊂ �, and I > 0 and assume that z
I,r

y,�(ℎ) occurs. Then

�ℎ−�y,�
(T1, T2) ⩽ �ℎ(T1, T2) − U3Ir-A�-ℎr

(0)#y. (4.14)

Proof. See Figure 10 for an illustration. By condition 2 in the definition ofz
I,r

y,�(ℎ), the event ��,�(ℎ)

occurs for each � ∈ y. So, by hypothesis A for ��,� and condition 3 in the definition of z
I,r

y,�(ℎ), we
can find for each � ∈ y a path #� in ��,� which disconnects the inner and outer boundaries of ��,�

such that

len(#�; �ℎ) ⩽ 2�ℎ

(
around ��,�

)
⩽ 4�Ir-A�-ℎr

(0). (4.15)

By condition 4 in the definition of z
I,r

y,�(ℎ), the �ℎ-geodesic / from T1 to T2 hits b�(�) for each
� ∈ y. Furthermore, b4�(�) ∩ (T1 ∪ T2) = ∅ for each � ∈ y (recall (4.7)) and #� disconnects the
inner and outer boundaries of A�,4�(�) for each � ∈ y. It follows that for each � ∈ y, we can find
times !� < 4� such that /(!�), /(4�) ∈ #�, the path /|[!� ,4�] hits b�(�), and /((!�, 4�)) lies in the open
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F IGURE 10 Illustration of the proof of Lemma 4.8. Since ��,� is very large on ��,� , the �ℎ−�y,�
-length of the

purple path #� is very short. By replacing the segment /|[!� ,4�] by a segment of #� for each � ∈ y, we obtain a new

path from T1 to T2 whose �ℎ−�y,�
-length is substantially smaller than �ℎ(T1, T2).

region which is disconnected from ∞ by #�. Since the balls b4�(�) for � ∈ y are disjoint (again
by (4.7)), the time intervals [!�, 4�] for � ∈ y are disjoint.
The path / must cross from 
�,� to Xb�(�) between times !� and 4�, so by hypothesis A for ��,�

and condition 3 in the definition of z
I,r

y,�(ℎ),

4� − !� ⩾ �ℎ

(

�,�, Xb�(�)

)
⩾ �Ir-A�-ℎr

(0). (4.16)

Let /′ be the path obtained from / by excising each segment /|[!� ,4�] and replacing it by a segment
of #� with the same endpoints. Since �y,� is non-negative, Weyl scaling (Axiom III) shows that

len

(
/′ ⧵

⋃

�∈y

#�; �ℎ−�y,�

)
⩽ len

(
/′ ⧵

⋃

�∈y

#�; �ℎ

)

= len(/; �ℎ) −
∑

�∈y

(4� − !�)

⩽ �ℎ(T1, T2) − �Ir-A�-ℎr
(0)#y (by 4.16)). (4.17)

Furthermore, since �y,� is identically equal to� on each of the sets ��,� for � ∈ y (which contains
#�) we get from (4.15) that

len
(
#�; �ℎ−�y,�

)
⩽ 4�−-��Ir-A�-ℎr

(0). (4.18)

Combining (4.17) and (4.18) shows that

�ℎ−�y,�
(T1, T2) ⩽ len

(
/′; �ℎ−�y,�

)
⩽ �ℎ(T1, T2) −

(
� − 4�−-��

)
Ir-A�-ℎr

(0)#y.

This gives (4.14) with U3 = � − 4�−-��. We note that U3 > 2��∕� due to (4.3). □
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272 DING and GWYNNE

F IGURE 11 Illustration of the proof of Lemma 4.9. The set y consists of the four center points of the annuli

in the figure. For each � ∈ y, we have indicated each of the points /y(�
′), /y(�), /y(R), /y(R

′) for the

(b4�(�), 
�,�)-excursions (�
′, �, R, R′) ∈ �,�(/y) with a black dot. The proof proceeds by replacing each of the

segments /y|[�,R] by a �ℎ-geodesic with the same endpoints (shown in blue).

We next establish an inequality in the opposite direction from the one in Lemma 4.8, that is, an
upper bound for�ℎ(T1, T2) in terms of�ℎ−�y,�

(T1, T2). This latter estimate holds unconditionally
(that is, we do not need to truncate on any event).

Lemma 4.9. Let � ∈  and y ∈ � . Let /y be the �ℎ−�y,�
-geodesic from T1 to T2. For � ∈ y, let

�,�(/y) be the set of (b4�(�), 
�,�)-excursions of /y (Definition 4.1). Then

�ℎ(T1, T2) ⩽ �ℎ−�y,�
(T1, T2) +

∑

�∈y

∑

(�′,�,R,R′)∈�,�(/y)

�ℎ(/y(�), /y(R)). (4.19)

Proof. See Figure 11 for an illustration. By the definition (4.7) of�, we haveb4�(�) ∩ (T1 ∪ T2) = ∅

for each � ∈ y. From this and Definition 4.1, we see that for each � ∈ y, the set /−1
y

(
�,�) is
contained in the union of the excursion intervals [�, R] for (�′, �, R, R′) ∈

⋃
�∈y �,�(/y). Further-

more, since the balls b4�(�) for � ∈ y are disjoint, it follows that the excursion intervals [�, R]

for (�′, �, R, R′) ∈
⋃

�∈y �,�(/y) are disjoint. Since /y is continuous, there are only finitely many
such intervals.
Let /′

y
be the path from T1 to T2 obtained from /y by replacing each of the segments /y|[R,�]

for (�′, �, R, R′) ∈
⋃

�∈y �,�(/y) by a �ℎ-geodesic from /y(�) to /y(R). The function �y,� is sup-
ported on

⋃
�∈y 
�,� and the path /y does not hit

⋃
�∈y 
�,� except during the above excursion

intervals [R, �]. Hence, the �ℎ-length of each of the segments of /y which are not replaced when
we construct /′

y
is the same as its �ℎ−�y,�

-length. From this, we see that the �ℎ-length of /
′
y
is at

most len(/y ; �ℎ−�y,�
) plus the sum of the�ℎ-lengths of the replacement segments. In other words,

len(/′
y
; �ℎ) is at most the right side of (4.19). □

If we assume that
⋂

�∈y ��,� occurs, then we can replace the second sum on the right side
of (4.19) by a maximum.

Lemma 4.10. Let � ∈  and y ∈ � . Assume that
⋂

�∈y ��,� occurs and let /y be the �ℎ−�y,�
-

geodesic from T1 to T2. For � ∈ y, let �,�(/y) be as in Lemma 4.9. Then

�ℎ(T1, T2) ⩽ �ℎ−�y,�
(T1, T2) +

�

�

∑

�∈y

max
(�′,�,R,R′)∈�,�(/y)

�ℎ(/y(�), /y(R)). (4.20)
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For the proof of Lemma 4.10, we will need an upper bound for the amount of time that /y

can spend in 
y,�. This upper bound is a straightforward consequence of the upper bound for
�ℎ(around A3�,4�(�)) from hypothesis A for ��,�.

Lemma 4.11. Let � ∈ , let y ⊂ �, and assume that
⋂

�∈y ��,� occurs. Let /y be the �ℎ−�y,�
-

geodesic from T1 to T2. For � ∈ y such that /y ∩ ��,� ≠ ∅, let ¥� (respectively, N�) be the first time

that /y enters 
�,� (respectively, the last time that /y exits 
�,�). Then

N� − ¥� ⩽ ��-A�-ℎ�(�). (4.21)

Proof. By hypothesis A for ��,�, for each � > 0 there is a path #� in A3�,4�(�) which disconnects
the inner and outer boundaries of A3�,4�(�) such that

len(#�; �ℎ) ⩽ (� + �)�-A�-ℎ�(�). (4.22)

Since �y,� is non-negative, the �ℎ−�y,�
-length of #� is at most its �ℎ-length.

Sinceb4�(�) ∩ (T1 ∪ T2) = ∅ (recall (4.7)), the path/y must hit#� before time ¥� and again after
time N�. Since /y is a �ℎ−�y,�

-geodesic, the �ℎ−�y,�
-length of the segment of /y between any two

times when it hits #� is at most the �ℎ−�y,�
-length of #� (otherwise, concatenating two segments

of /y with a segment of #� would produce a path with the same endpoints as /y which is �ℎ−�y,�
-

shorter than /y). Therefore, (4.22) gives

N� − ¥� ⩽ len
(
#�; �ℎ−�y,�

)
⩽ len(#�; �ℎ) ⩽ (� + �)�-A�-ℎ�(�). (4.23)

Sending � → 0 now concludes the proof. □

Proof of Lemma 4.10. In light of Lemma 4.9, it suffices to show that for each � ∈ y, the number
of (b4�(�), 
�,�)-excursions satisfies

#�,�(/y) ⩽
�

�
. (4.24)

To obtain (4.24), we first note that for each (�′, �, R, R′) ∈ �,�(/y), the path /y crosses between
Xb3�(�) and 
�,� during each of the time intervals [�

′, �] and [R, R′]. Since �y,� vanishes in b3�(�) ⧵


�,� and by hypothesis A for ��,�,

min{� − �′, R′ − R} ⩾ �ℎ−�y,�
(Xb3�(�), 
�,�) ⩾ �ℎ(Xb3�(�), 
�,�) ⩾ ��-A�-ℎ�(�). (4.25)

Let ¥� and N� be the first time that /y enters ��,� and the last time that /y exits ��,�, as in
Lemma 4.11. If (�′

0
, �0, R0, R

′
0
) ∈ �,�(/y) and (�′

1
, �1, R1, R

′
1
) ∈ �,�(/y) are the first and last excur-

sions in chronological order, then ¥� = �0 and N� = R1. Hence, for each excursion (�′, �, R, R′) ∈

�,�(/y)which is not the first (respectively, last) excursion in chronological order, the time interval
[�′, �] (respectively, [R, R′]) is contained in [¥�, N�]. Furthermore, these time intervals for different
excursions are disjoint. By summing the estimate (4.25) over all elements of �,�(/y), we get that
if #�,�(/y) ⩾ 2, then

N� − ¥� ⩾ ��-A�-ℎ�(�)#�,�(/y). (4.26)
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274 DING and GWYNNE

Combining (4.26) and (4.21) gives (4.24) in the case when #�,�(/y) ⩾ 2. If #�,�(/y) ⩽ 1,
then (4.24) holds vacuously since �∕� ⩾ 1. □

For the proof of Proposition 4.5, we will need a slightly different upper bound for the amount
of time that the �ℎ−�y,�

-geodesic can spend in 
�,� as compared to the one in Lemma 4.11.

Lemma 4.12. There is a constantU4 > 0, depending only on the parameters, such that the following

is true. Let � ∈ , y ⊂ �, and I > 0 and assume that z
I,r

y,�(ℎ) occurs. Let /y be the �ℎ−�y,�
-geodesic

from T1 to T2. For each � ∈ y,

max

{
sup

�,�∈/y∩
�,�

�ℎ(�, �), len
(
/y ∩ 
�,�; �ℎ

)
}

⩽ U4Ir-A�-ℎr
(0). (4.27)

Proof. By condition 2 in the definition of z
I,r

y,�(ℎ), the event
⋂

�∈y ��,� occurs. The bound (4.27)
holds vacuously if /y ∩ 
�,� = ∅, so assume that /y ∩ 
�,� ≠ ∅. For � ∈ y, let ¥� (respectively, N�)

be the first time that /y enters 
�,� (respectively, the last time that /y exits 
�,�), as in Lemma 4.11.

By Lemma 4.11 followed by condition 3 in the definition of zy,�(ℎ),

N� − ¥� ⩽ ��-A�-ℎ�(�) ⩽ 2�Ir-A�-ℎr
(0)

Furthermore, /−1
y

(
y,�) ⊂ [¥�, N�], so

max

{
sup

�,�∈/y∩
�,�

�ℎ−�y,�
(�, �), len

(
/y ∩ 
�,�; �ℎ−�y,�

)}
⩽ N� − ¥�

⩽ 2�Ir-A�-ℎr
(0).

Since �y,� ⩽ �, the bound (4.14) combined with Weyl scaling (Axiom III) gives (4.27) with U4 =

2�-��. □

The following lemma is the main input in the proof of Proposition 4.5. It allows us to produce
configurations y for which z

I,r
y,�

(ℎ), instead of just z
I,r

y,�(ℎ), occurs.

Lemma 4.13. There is a constant ~5 > 0, depending only on the parameters, such that the following

is true. Let � ∈ , y ∈ �, and I > 0 and assume that z
I,r

y,�(ℎ) occurs. There exists y
′ ⊂ y such that

z
I,r

y′,�
(ℎ) occurs and #y′ ⩾ ~5#y.

Proof. Step 1: Iteratively removing ‘bad’ points. It is immediate from Definition 4.7 that if z
I,r

y,�(ℎ)

occurs and y′ ⊂ y is non-empty, then y′ ∈ � and z
I,r

y′,�(ℎ) occurs. So, we need to produce a set

y′ ⊂ y such that #y′ is at least a constant times #y and condition 5 in the definition of zI,r

y′,�
(ℎ)

occurs. Since �ℎ(�, �; b4�(�)) ⩾ �ℎ(�, �) for all �, � ∈ C, it suffices to find y′ ⊂ y such that if /y′

is the �ℎ−�y′,�
-geodesic from T1 to T2 and �,�(/y′) denotes the set of (b4�(�), 
�,�)-excursions for

/y′ , then

max
(�′,�,R,R′)∈�,�(/y′ )

�ℎ(/y′(�), /y′(R)) ⩾ ��-A�-ℎ�(�). (4.28)
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We will construct y′ by iteratively removing the ‘bad’ points � ∈ y′ such that the condition
of (4.28) does not hold. To this end, let y0 ∶= y. Inductively, suppose that ¦ ∈ N0 and y¦ ⊂ y

has been defined. Let /y¦
be the�ℎ−�y¦,�

-geodesic fromT1 toT2 and let y¦+1 be the set of � ∈ y¦

such that

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ

(
/y¦

(�), /y¦
(R)
)

⩾ ��-A�-ℎ�(�). (4.29)

Ify¦+1 = y¦, then (4.28) holdswithy′ = y¦, so the eventz
I,r
y¦ ,�

(ℎ) occurs. So, to prove the lemma

it suffices to show that the above procedure stabilizes before#y¦ gets too much smaller than#y.
More precisely, we will show that there exists ~5 > 0 as in the lemma statement such that

#y¦ ⩾ ~5#y, ∀¦ ∈ N. (4.30)

Since y¦+1 ⊂ y¦ for each ¦ ∈ N0 and y0 is finite, it follows that there must be some ¦ ∈ N

such that y¦ = y¦+1. We know that z
I,r
y¦ ,�

(ℎ) occurs for any such ¦, so (4.30) implies the

lemma statement.
It remains to prove (4.30). The idea of the proof is as follows. At each step of our iterative proce-

dure, we only remove points � ∈ y¦ for which /y¦
∩ 
�,� is small, in a certain sense. Using this,

we can show that�ℎ−�y¦+1,�
(T1, T2) is not too much bigger than�ℎ−�y¦,�

(T1, T2) (see (4.32)). Iter-

ating this leads to an upper bound for �ℎ−�y¦,�
(T1, T2) in terms of �ℎ−�y,�

(T1, T2) (see (4.33)). We

then use the fact that �ℎ−�y,�
(T1, T2) has to be substantially smaller than�ℎ(T1, T2) (Lemma 4.8)

together with our upper bound for the amount of time that /y¦
spends in each of the 
�,�’s

(Lemma 4.12) to obtain (4.30).
Step 2: Comparison of�ℎ−�y¦,�

(T1, T2) and�ℎ(T1, T2). Let us now proceed with the details. Let

¦ ∈ N0. By the definition (4.29) of y¦+1 and condition 3 in the definition of z
I,r

y,�(ℎ),

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ

(
/y¦

(�), /y¦
(R)
)

⩽ 2�Ir-A�-ℎr
(0), ∀� ∈ y¦ ⧵ y¦+1. (4.31)

We have y¦ ⧵ y¦+1 ∈ � and ℎ − �y¦ ,� = ℎ − �y¦+1,�
− �y¦⧵y¦+1,�

. Since we are assuming that

z
I,r

y,�(ℎ) occurs and y¦ ⧵ y¦+1 ⊂ y, condition 2 of Definition 4.7 implies that
⋂

�∈y¦⧵y¦+1
��,�

occurs. Since ��,� depends only on ℎ|
A�,4�(�)

and the support of �y¦+1,�
is disjoint from A�,4�(�)

for � ∈ y¦ ⧵ y¦+1, we get that
⋂

�∈y¦⧵y¦+1
��,� also occurs with ℎ − �y¦+1,�

in place of ℎ. We may
therefore apply Lemma 4.10 with ℎ − �y¦+1,�

in place of ℎ and y¦ ⧵ y¦+1 in place of y to get that

�ℎ−�y¦+1,�
(T1, T2)

⩽ �ℎ−�y¦,�
(T1, T2)

+
�

�

∑

�∈y¦⧵y¦+1

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ−�y¦+1,�

(
/y¦

(�), /y¦
(R)
)

(by Lemma 4.10)

⩽ �ℎ−�y¦,�
(T1, T2)
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+
�

�

∑

�∈y¦⧵y¦+1

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ

(
/y¦

(�), /y¦
(R)
)

(since �y¦+1,�
⩾ 0)

⩽ �ℎ−�y¦,�
(T1, T2) +

2��

�
Ir-A�-ℎr

(0)(#y¦ − #y¦+1) (by (4.31)). (4.32)

Iterating the inequality (4.32)¦ times, then applying Lemma 4.8 to y = y0 ∈ � gives

�ℎ−�y¦,�
(T1, T2) ⩽ �ℎ−�y,�

(T1, T2) +
2��

�
Ir-A�-ℎr

(0)(#y − #y¦)

⩽ �ℎ(T1, T2) −
(
U3 −

2��

�

)
Ir-A�-ℎr

(0)#y

−
2��

�
Ir-A�-ℎr

(0)#y¦

⩽ �ℎ(T1, T2) −
(
U3 −

2��

�

)
Ir-A�-ℎr

(0)#y. (4.33)

Note that in the last line, we simply dropped a negative term.
Step 3: Conclusion. By Lemma 4.10 (with y¦ in place of y), followed by (4.33),

�

�

∑

�∈y¦

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ

(
/y¦

(�), /y¦
(R)
)

⩾ �ℎ(T1, T2) − �ℎ−�y¦,�
(T1, T2)

⩾
(
U3 −

2��

�

)
Ir-A�-ℎr

(0)#y. (4.34)

As explained above, sincey¦ ⊂ ywe know thatz
I,r

y¦ ,�(�) occurs. Hence, we can apply Lemma 4.12
(with y¦ in place of y), then sum over all � ∈ y¦, to get

∑

�∈y¦

max
(�′,�,R,R′)∈�,�(/y¦

)
�ℎ

(
/y¦

(�), /y¦
(R)
)

⩽ U4Ir-A�-ℎr
(0)#y¦, ∀� ∈ y¦. (4.35)

Combining (4.34) and (4.35) yields

#y¦ ⩾ ~5#y with ~5 =
�

�U4

(
U3 −

2��

�

)
. (4.36)

That is, (4.30) holds with this choice of ~5. Note that ~5 > 0 since U3 > 2��∕� (Lemma 4.8). □

Proof of Proposition 4.5. Fix r > 0 and compact sets T1, T2 ∈ b2r(0) with dist(T1, T2) ⩾ �r.
Assume that �

r
= �

r
(T1, T2) occurs and let / be the �ℎ-geodesic from T1 to T2. We first produce

an � ∈  ∩ [�2r, �r], a I > 0, and a large collection of sets y ∈ � for which z
I,r

y,�(ℎ) occurs.
To this end, let N be the first exit time of / from b3r(0), or N = �ℎ(T1, T2) if / ⊂ b3r(0) (the

reason why we consider N is that conditions 2 and 3 in the definition of �
r
are only required to

hold on b3r(0)). By condition 3 in the definition of �
r
, for each point & ∈ /([0, N]) there exists

� ∈  ∩ [�2r, �r] and � ∈ ( �

100
Z2) ∩ b3r(0) such that ��,� occurs and & ∈ b�∕25(�).
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Since dist(T1, T2) ⩾ �r and dist(T1, Xb3r(0)) ⩾ r, it follows that /([0, N]) is a connected set of
Euclidean diameter at least �r. Furthermore, since dist(T1, Xbr(0)) ⩾ �r, theremust be a segment
of /|[0,N] of Euclidean diameter at least �r which is disjoint from Xbr(0).
Hence, we can find a constant � > 0, depending only on �, with the following property. There

are at least ⌊�∕�⌋ pairs (�1, �1), … , (�⌊�∕�⌋, �⌊�∕�⌋), each consisting of a radius �� ∈  ∩ [�2r, �r] and
a point �� ∈ ( �

100
Z2) ∩ b3r(0), such that the following is true.

(i) The balls b4��
(��) for � = 1,… , ⌊�∕�⌋ are disjoint and none of these balls intersectsT1 ∪ T2 ∪

Xbr(0).
(ii) ��� ,��

occurs for each � = 1,… , ⌊�∕�⌋.
(iii) The path / hits b��∕25

(��) for each � = 1,… , ⌊�∕�⌋.

By condition 2 in the definition of �
r
, for each � ∈ [1, ⌊�∕�⌋]Z there exists I ∈

[�2-(A+3)∕2, �-(A−3)] ∩ {2−�}�∈N such that �-A
�

�
-ℎ�� (��) ∈ [Ir-A�-ℎr

(0), 2Ir-A�-ℎr
(0)]. The cardinality

of the set
( ∩ [�2r, �r]

)
×
([

1

2
�2-(A+3), �-(A−3)

]
∩ {2−�}�∈N

)

is at most a constant (depending only on -) times (log �−1)2. So, there must be some � ∈  ∩

[�2r, �r] and I ∈ [�2-(A+3)∕2, �-(A−3)] ∩ {2−�}�∈N such that

# ⪰
1

�(log �−1)2
, where

 ∶=
{
� ∈ [1, ⌊��−1⌋]Z ∶ �� = �, �

-A
�

�
-ℎ�� (��) ∈

[
Ir-A�-ℎr

(0), 2Ir-A�-ℎr
(0)
]}

(4.37)

with the implicit constant depending only on � (hence only on �). Henceforth, fix such an � and
I and let  be as in (4.37). Also define

 ∶=
{
�� ∶ � ∈  }, so that # ⪰

1

�(log �−1)2
. (4.38)

If y ⊂  , then property (iii) above implies that y ∈ �, where � is defined as in (4.7). Fur-
thermore, since I ⩾ �2-(A+3)∕2, condition 1 in the definition of �

r
implies that �̃ℎ(dist(T1, T2)) ⩾

ℭ∗�ℎ(dist(T1, T2)) − Ir-A�-ℎr
(0). From this together with properties (ii) and (iii) above and our

choice of  in (4.37), we see that the event z
I,r

y,�(ℎ) of Definition 4.7 occurs.

By Lemma 4.13, for each y ⊂  there exists y′ ⊂ y such that zI,r

y′,�
(ℎ) occurs and #y′ ⩾ ~5#y.

Fix (in some arbitrary manner) a choice of y′ for each y, so that y ↦ y′ is a function from subsets
of  to subsets of  for which z

I,r

y′,�
(ℎ) occurs.Wewill now lower-bound the cardinality of the set

{
y′ ∶ #y = q

}
. (4.39)

To this end, consider a set ỹ ⊂  for which z
I,r

ỹ,�
(ℎ) occurs and #ỹ ∈ [~5q, q] (that is, ỹ is a

possible choice of the set y′ when #y = q). Since y′ ⊂ y for each y ⊂  , the number of y ⊂ 
such that #y = q and y′ = ỹ is at most the number of possibilities for the set y ⧵ ỹ (subject to
#y = q and y′ = ỹ), which is at most

(
#

q − #ỹ

)
⩽

(
#

⌊(1 − ~5)q⌋

)
.
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278 DING and GWYNNE

On the other hand, for each q ∈ N, the number of sets y ⊂  such that #y = q is
(#

q

)
.

The cardinality of the set (4.39) is least the number of y ⊂  with #y = q, divided by the max-
imal cardinality of the pre-image of a set ỹ under y ↦ y′. Hence, by combining the two counting
formulae from the previous paragraph, we get that the cardinality of the set in (4.39), and hence
the number of sets ỹ ⊂  for which z

I,r

ỹ,�
(ℎ) occurs and #ỹ ∈ [~5q, q], is at least

(
#
q

)(
#

⌊(1 − ~5)q⌋

)−1

⪰ (#)~5q ⪰ �−~5q(log �−1)−2~5q

with the implicit constant depending only on the parameters and q (in the last inequality we
used (4.38)). This gives (4.10) for ~1 slightly smaller than ~5. □

4.4 Proof of Proposition 4.6

The proof of Proposition 4.6 is based on counting the number of points � ∈ �

100
Z2 which could

possibly be an element of some y ∈ � for which z
I,r
y,�

(ℎ + �y,�) occurs. To this end, we make the
following definition.

Definition 4.14. For � ∈  and I > 0, we say that � ∈ �

100
Z2 is �, I-good if the following

conditions are satisfied.

(i) The event ��,�(ℎ + ��,�) occurs.
(ii) �-A�-ℎ�(�) ∈ [Ir-A�-ℎr

(0), 2Ir-A�-ℎr
(0)].

(iii) Let / be the �ℎ-geodesic from T1 to T2. There is a (b4�(�), 
�,�)-excursion (�′�, ��, R�, R
′
�) for

/ such that

�ℎ+��,�
(/(��), /(R�); b4�(�)) ⩾ ��-A�-ℎ�(�). (4.40)

Lemma 4.15. Let � ∈  and I > 0. If y ∈ � and z
I,r
y,�

(ℎ + �y,�) occurs, then every � ∈ y is �, I-

good.

Proof. Let � ∈ y and assume thatzI,r
y,�

(ℎ + �y,�) occurs. By condition 2 in the definition ofz
I,r
y,�

(ℎ +

�y,�), the event��,�(ℎ + �y,�) occurs. Since��,�(ℎ + ��,�) depends only on (ℎ + ��,�)|A�,4�(�)
and �y,� −

��,� ≡ 0 outside of b4�(�), it follows that ��,�(ℎ + �y,�) = ��,�(ℎ + ��,�). This gives condition (i) in
Definition 4.14.
Condition (ii) in Definition 4.14 follows from condition 3 in the definition of zI,r

y,�
(ℎ + �y,�) and

the fact that the support of �y,� is disjoint from Xbr(0) and from Xb�(�) for each � ∈ y (recall (4.7)).
By condition 5 in the definition of zI,r

y,�
(ℎ + �y,�), we get that � satisfies condition (iii) of Defini-

tion 4.14 but with�ℎ+�y,�
instead of�ℎ+��,�

in (4.40). Since the support of �y,� − ��,� is disjoint from
b4�(�), the internal distances of �ℎ+�y,�

and �ℎ+��,�
on b4�(�) are identical. Hence, condition (iii)

holds. □

In light of Lemma 4.15, we seek to upper-bound the number of �, I-good points � ∈ �

100
Z2.

When doing so, we can assume without loss of generality that zI,r
y0,�

(ℎ + �y0,�
) occurs for some
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y0 ∈ � with #y0 ⩽ q (otherwise, the proposition statement is vacuous). The main input in the
proof of Proposition 4.6 is the following lemma.

Lemma 4.16. There is a constantU6 > 0, depending only on the parameters and the laws of�ℎ and

�̃ℎ, such that the following is true. Let � ∈  and let y0, y1 ∈ � . Assume that the event z
I,r
y0,�

(ℎ +

�y0,�
) occurs, each � ∈ y1 is �, I-good, and each ball b4�(�) for � ∈ y1 is disjoint from

⋃
�′∈y0

b4�(�
′)

(equivalently, y0 ∪ y1 ∈ �). Then

#y1 ⩽ U6#y0.

Wenow explain the idea of the proof of Lemma 4.16. By condition 1 in the definition ofzI,r
y0,�

(ℎ +

�y0,�
), on this event,

�̃ℎ+�y0,�
(T1, T2) ⩾ ℭ∗�ℎ+�y0,�

(T1, T2) − Ir-A�-ℎr
(0). (4.41)

We will show that if#y1 is too much larger than#y0, then (4.41) cannot hold. The reason for this
is as follows. Let / be the �ℎ-geodesic from T1 to T2. By condition (iii) in Definition 4.14, each
� ∈ y1 satisfies the condition of hypothesis C for the event ��,�(ℎ + ��,�). Hypothesis C therefore
gives us a pair of times !�, 4� ∈ /−1(b4�(�)) such that 4� − !� ⩾ �Ir-A�-ℎr

(0) and

�̃ℎ(/(!�), /(4�); b4�(�)) ⩽ ^′(4� − !�) = ^′�ℎ(/(!�), /(4�)). (4.42)

Since �y0,�
vanishes on b4�(�) for each � ∈ y1 and �y0,�

is non-negative, the relation (4.42) implies
that also

�̃ℎ+�y0,�
(/(!�), /(4�); b4�(�)) ⩽ ^′�ℎ+�y0,�

(/(!�), /(4�)).

In other words, we have at least #y1 ‘shortcuts’ along / where the �̃ℎ+�y0,�
-distance is at most ^′

times the �ℎ+�y0,�
-distance. By following / and taking these shortcuts, we obtain a path from T1

to T2 whose �̃ℎ+�y0,�
-length is at most ℭ∗ times the �ℎ+�y0,�

-length of /minus a positive constant

times Ir-A�-ℎr
(0)#y1 (see (4.49)).We then use Lemma4.17 to upper-bound the�ℎ+�y0,�

-length of/

in terms of#y0. This leads to an upper bound for �̃ℎ+�y0,�
(T1, T2)which is inconsistent with (4.41)

unless #y1 is bounded above by a constant times #y0.
We need the following lemma for the proof of Lemma 4.16.

Lemma 4.17. Let U4 > 0 be as in Lemma 4.12. Let � ∈ , y ∈ �, and I > 0 and assume that

z
I,r
y,�

(ℎ + �y,�) occurs. Then the �ℎ-geodesic / from T1 to T2 satisfies

len
(
/;�ℎ+�y,�

)
⩽ �ℎ(T1, T2) + U4Ir-A�-ℎr

(0)#y. (4.43)

Proof. The function �y,� is supported on
⋃

�∈y 
�,�. By Weyl scaling (Axiom III),

len

(
/ ⧵

⋃

�∈y


�,�; �ℎ+�y,�

)
= len

(
/ ⧵

⋃

�∈y


�,�; �ℎ

)
⩽ �ℎ(T1, T2). (4.44)
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280 DING and GWYNNE

By Lemma 4.12, applied with ℎ + �y,� in place of ℎ,

len
(
/ ∩ 
�,�; �ℎ+�y,�

)
⩽ U4Ir-A�-ℎr

(0), ∀� ∈ y. (4.45)

Combining (4.44) and (4.45) yields (4.43). □

Proof of Lemma 4.16. Let / be the �ℎ-geodesic from T1 to T2. By conditions (i) and (iii) in Defi-
nition 4.14 together with hypothesis C for the event ��,�(ℎ + ��,�), for each � ∈ y1, there are times
0 < !� < 4� < �ℎ(T1, T2) such that /([!�, 4�]) ⊂ b4�(�),

4� − !� ⩾ ��-A�-ℎ�(�) ⩾ �Ir-A�-ℎr
(0), and �̃ℎ(/(!�), /(4�); b4�(�)) ⩽ ^′(4� − !�). (4.46)

Note that to get �-A�-ℎ�(�) ⩾ Ir-A�-ℎr
(0), we used condition (ii) fromDefinition 4.14 and to get that

/([!�, 4�]) ⊂ b4�(�), we used Definition 4.1.
If � ∈ y1, then by hypothesisb4�(�) is disjoint from

⋃
�′∈y0

b4�(�
′). Hence,b4�(�) and /([!�, 4�])

are disjoint from the support of �y0,�
. We can therefore deduce from (4.46) and Weyl scaling

(Axiom III) that for each � ∈ y1,

len
(
/|[!� ,4�]; �ℎ+�y0,�

)
= 4� − !� ⩾ �Ir-A�-ℎr

(0) and

�̃ℎ+�y0,�
(/(!�), /(4�); b4�(�)) ⩽ ^′(4� − !�) ⩽ ^′�ℎ+�y0,�

(/(!�), /(4�)). (4.47)

Let � = #y1 and let �1, … , �� be the elements of y1, ordered so that

!�1 < 4�1 < !�2 < 4�2 < ⋯ < !�� < 4�� .

Such an ordering is possible since /([!�, 4�]) ⊂ b4�(�), so these path increments are disjoint.
For notational simplicity, we also define 4�0 = 0 and !��+1

= �ℎ(T1, T2), so that /(4�0) ∈ T1 and
/(4��+1

) ∈ T2.

By the bi-Lipschitz equivalence of �ℎ and �̃ℎ (1.20) and Weyl scaling,

�̃ℎ+�y0,�
(/(4�? ), /(!�?+1

)) ⩽ ℭ∗�ℎ+�y0,�
(/(4�? ), /(!�?+1

)), ∀? ∈ [0,�]Z. (4.48)

We now have the following estimate:

�̃ℎ+�y0,�
(T1, T2)

⩽

�∑

?=1

�̃ℎ+�y0,�
(/(!�? ), /(4�? )) +

�∑

?=0

�̃ℎ+�y0,�
(/(4�? ), /(!�?+1

))

(triangle inequality)

⩽ ^′
�∑

?=1

�ℎ+�y0,�
(/(!�? ), /(4�? )) + ℭ∗

�∑

?=0

�ℎ+�y0,�
(/(4�? ), /(!�?+1

))

(by (4.47) and (4.48))
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= ℭ∗

[
�∑

?=1

�ℎ+�y0,�
(/(!�? ), /(4�? )) +

�∑

?=0

�ℎ+�y0,�
(/(4�? ), /(!�?+1

))

]

− (ℭ∗ − ^′)

�∑

?=1

�ℎ+�y0,�
(/(!�? ), /(4�? ))

⩽ ℭ∗ len
(
/;�ℎ+�y0,�

)
− (ℭ∗ − ^′)�Ir-A�-ℎr

(0)#y1 (by (4.47))

⩽ ℭ∗�ℎ(T1, T2) + ℭ∗U4Ir-A�-ℎr
(0)#y0 − (ℭ∗ − ^′)�Ir-A�-ℎr

(0)#y1

(by Lemma 4.17)

⩽ ℭ∗�ℎ+�y0,�
(T1, T2) + ℭ∗U4Ir-A�-ℎr

(0)#y0 − (ℭ∗ − ^′)�Ir-A�-ℎr
(0)#y1

(since �y0,�
⩾ 0). (4.49)

By combining (4.41) and (4.49), we obtain

(ℭ∗ − ^′)�I#y1 − ℭ∗U4Ir-A�-ℎr
(0)#y0 ⩽ Ir-A�-ℎr

(0) ⩽ Ir-A�-ℎr
(0)#y0

which implies #y1 ⩽ U6#y where U6 ∶=
1 + ℭ∗U4

(ℭ∗ − ^′)�
.

□

Proof of Proposition 4.6. We can assume that there exists some y0 ∈ � with #y0 ⩽ q such that
z
I,r
y0,�

(ℎ + �y0,�
) occurs (otherwise, (4.11) holds vacuously). Let y1 ∈ � be a set such that each

� ∈ y1 is �, I-good (Definition 4.14) and each b4�(�) for � ∈ y1 is disjoint from
⋃

�′∈y0
b4�(�

′). We
assume that #y1 is maximal among all subsets of � with this property. By Lemma 4.16, we have
#y1 ⩽ U6q.
Now let y ∈ � such that z

I,r
y,�

(ℎ + �y,�) occurs. We claim that for each � ∈ y, the ball b4�(�)

intersects b4�(�
′) for some �′ ∈ y0 ∪ y1. Indeed, by Lemma 4.15, each � ∈ y is �, I-good. So, if

there is a � ∈ y such that b4�(�) is disjoint from b4�(�
′) for each �′ ∈ y0 ∪ y1, then y1 ∪ {�}

satisfies the conditions in the definition of y1. This contradicts the maximality of #y1.
Each � ∈ y belongs to �

100
Z2. Hence, for each �′ ∈ y0 ∪ y1, the number of � ∈ y for which

b4�(�) ∩ b4�(�
′) ≠ ∅ is atmost some universal constantY. By the preceding paragraph, anyy ∈ �

such that zI,r
y,�

(ℎ + �y,�) occurs can be obtained by the following procedure. For each �′ ∈ y0 ∪ y1,

we either choose a point � ∈ �

100
Z2 such that b4�(�) ∩ b4�(�

′) ≠ ∅; or we choose no point (so we
have at most Y + 1 choices for each �′ ∈ y0 ∪ y1). Then, we take y to be the set of points that we
have chosen. Therefore,

#
{
y ∈ � ∶ #y ⩽ q and z

I,r
y,�

(ℎ + �y,�) occurs
}

⩽ (Y + 1)#y0+#y1

⩽ (Y + 1)(U6+1)q. (4.50)

This gives (4.11) with U2 = (Y + 1)U6+1. □
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282 DING and GWYNNE

4.5 Proof of uniqueness assuming Proposition 4.2

In this subsection,wewill prove Theorem 1.13,which asserts the uniqueness ofweakLQGmetrics,
assuming Proposition 4.2. As explained in Subsection 1.5.1, it suffices to show that the optimal bi-
Lipschitz constants satisfy ^∗ = ℭ∗. To accomplish this, we will assume by way of contradiction
that ^∗ < ℭ∗. We also assume the conclusion of Proposition 4.2 (whose proof has been postponed).
Throughout this subsection, we fix p ∈ (0, 1) (which will be chosen in Lemma 4.18) and we let
^′′ ∈ (^∗, ℭ∗) and ⊂ (0, 1) be as in Proposition 4.2 for this choice of p. We also assume that the
parameters of Subsection 4.1 have been chosen as in Proposition 4.2 for our given choice of p.
We first check that the auxiliary conditions in the definition of the event �

r
(T1, T2) of Subsec-

tion 4.2 occur with high probability when � is small, which together with Proposition 4.3 leads to
an upper bound for the probability of the main condition

�̃ℎ(T1, T2) ⩾ ℭ∗�ℎ(T1, T2) −
1

2
�2-(A+3)r-A�-ℎr

(0).

We note that the auxiliary conditions do not depend on T1 and T2.

Lemma 4.18. There is a universal choice of the parameter p ∈ (0, 1) such that the following is true.

Let �̃ > 0 and let r > 0 such that P[�̃r(�̃, ^
′′)] ⩾ �̃. It holds with probability tending to 1 as � → 0

(at a rate depending only on �̃ and the laws of �ℎ and �̃ℎ, not on r) that conditions 2 and 3 in the

definition of �
r
occur, that is,

(2) for each � ∈ b3r(0) and each � ∈ [�2r, �r] ∩, we have
�-A�-ℎ�(�) ∈

[
�2-(A+3)r-A�-ℎr

(0), �-(A−3)r-A�-ℎr
(0)
]
;

(3) for each � ∈ b3r(0), there exist � ∈  ∩ [�2r, �r] and & ∈ ( �

100
Z2) ∩ b�∕25(�) such that �&,�

occurs.

Proof. By a standard estimate for the circle average process of the GFF (see, for example, [35,
Proposition 2.4]), it holds with polynomially high probability as � → 0 that |ℎ�(�)| ⩽ 3 log �−1 for
all � ∈ b3(0). By the scale invariance of the law of ℎ, modulo additive constant, we get that with
polynomially high probability as � → 0 (at a universal rate) we have |ℎ�(�) − ℎr(0)| ⩽ 3 log(r∕�)

for all � ∈ b3r(0). By a union bound over logarithmically many values of � ∈  ∩ [�2r, �r], we get
that with probability tending to 1 as � → 0,

|ℎ�(�) − ℎr(0)| ⩽ 3 log(r∕�) ∈ [3 log �−2, 3 log �−1],

∀� ∈  ∩ [�2r, �r], ∀� ∈ b3r(0). (4.51)

The bound (4.51) immediately implies condition 2 in the lemma statement.
We now turn our attention to condition 3. By the properties of the events ��,�, we know that

��,� is almost surely determined by ℎ|
A�,4�(�)

, viewed modulo additive constant, and P[��,�] ⩾ p

for each � ∈ C and � ∈ . Furthermore, by Proposition 4.2 our hypothesis that P[�̃r(�̃, ^
′′)] ⩾ �̃

implies that for each small enough � > 0 (how small depends only on �̃ and the laws of �ℎ and
�̃ℎ),
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#
( ∩ [�2r, �r]

)
⩾

5

8
log8 �

−1.

We may therefore apply Lemma 2.2 with the radii �q ∈  ∩ [�2r, �r], the points �q ∈
�q
100

Z2

chosen so that |� − �q| ⩽ �q∕50, and the events |�q
(�q) = ��q ,�q

. From Lemma 2.2, we obtain that
if p is chosen to be sufficiently close to 1, in a universal manner, then for each � ∈ C, it holds
with probability at least 1 − *�(�

5) (at a rate depending only on the laws of �ℎ and �̃ℎ) that there
exist � ∈  ∩ [�2r, �r] and & ∈ ( �

100
Z2) ∩ b�∕50(�) such that �&,� occurs.

By a union bound, it holds with probability tending to 1 as � → 0 (at a rate depending only

on �̃ and the laws of �ℎ and �̃ℎ) that for each � ∈ ( �
2r

100
Z2) ∩ b3r(0), there exist � ∈  ∩ [�2r, �r]

and & ∈ ( �

100
Z2) ∩ b�∕50(�) such that �&,� occurs. Henceforth, assume that this is the case. For

a general choice of � ∈ b3r(0), we choose �
′ ∈ ( �

2r

100
Z2) ∩ b3r(0) such that |� − �′| ⩽ �2r∕50, then

we choose � ∈  ∩ [�2r, �r] and & ∈ ( �

100
Z2) ∩ b�∕50(�

′) such that �&,� occurs. Then |& − �′| ⩽
(�2r + �)∕50 ⩽ �∕25. Hence, condition 3 in the lemma statement holds with probability tending
to 1 as � → 0. □

We henceforth assume that the parameter p is chosen as in Lemma 4.18. By combining
Proposition 4.3 with Lemma 4.18, we obtain the following.

Lemma 4.19. Let �̃ > 0 and let r > 0 such thatP[�̃r(�̃, ^
′′)] ⩾ �̃. Also let � > 0 and � > 0. It holds

with probability tending to 1 as h → 0 (at a rate depending only on �, �̃, � and the laws of �ℎ and

�̃ℎ) that

�̃ℎ(bh�r(�), bh�r(&)) ⩽ ℭ∗�ℎ(bh�r(�), bh�r(&)) − hr-A�-ℎr
(0),

∀�, & ∈

(
h�r

100
Z2

)
∩ br(0) such that |� − &| ⩾ �r

and dist(�, Xbr(0)) ⩾ �r. (4.52)

Proof. Fix �′ > 0 to be chosen later, in a manner depending only on � and -. By Proposition 4.3
(applied with � = �∕2) and a union bound, it holds with superpolynomially high probability as

� → 0 that the event �
r
(b��′r

(�), b��′r
(&)) does not occur for any pair of points �, & ∈ ( �

�′r

100
Z2) ∩

br(0)with |� − &| ⩾ �r and dist(�, Xbr(0)) ⩾ �r. By combining this with Lemma 4.18 and recall-
ing the definition of �

r
(in particular, condition 1), we get that with probability tending to 1 as

� → 0,

�̃ℎ

(
b��′r

(�), b��′r
(&)
)
⩽ ℭ∗�ℎ

(
b��′r

(�), b��′r
(&)
)
− �2-(A+3)r-A�-ℎr

(0),

∀�, & ∈

(
��

′
r

100
Z2

)
∩ br(0) such that |� − &| ⩾ �r

and dist(�, Xbr(0)) ⩾ �r. (4.53)

We now conclude the proof by applying the above estimate with � = �(h) > 0 chosen so that
�2-(A+3) = h and with �′ = �∕(2-(A + 3)). □
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284 DING and GWYNNE

Recall the definition of the event�r(�, ℭ
′) from Definition 3.2, which says that there is a point

� ∈ Xb�r(0) and a point � ∈ Xbr(0) satisfying certain conditions such that �̃ℎ(�, �) ⩽ ℭ′�ℎ(�, �).
From Lemma 4.19 and a geometric argument, we obtain the following, which will eventually be
used to get a contradiction to Proposition 3.5.

Lemma 4.20. Let �̃ > 0 and let r > 0 such that P[�̃r(�̃, ^
′′)] ⩾ �̃. For each � ∈ (3∕4, 1), we have

lim
h→0

P[�r(�, ℭ∗ − h)] = 0

at a rate depending only on �, �̃, and the laws of �ℎ and �̃ℎ.

Proof. Let � > 0 to be chosen later, in a manner depending only on the laws of �ℎ and �̃ℎ. By
Lemma 4.19 applied with � = (1 − �)∕2, it holds with probability tending to 1 as h → 0 that

�̃ℎ(bh�r(�), bh�r(&)) ⩽ ℭ∗�ℎ(bh�r(�), bh�r(&)) − hr-A�-ℎr
(0),

∀�, & ∈

(
h�r

100
Z2

)
∩ br(0) such that |� − &| ⩾ 1 − �

2
r

and dist(�, Xbr(0)) ⩾
1 − �

2
r. (4.54)

Henceforth, assume that that (4.54) holds.
Recalling Definition 3.2, we consider points � ∈ Xb�r(0) and � ∈ Xbr(0) such that

∙ �ℎ(�, �) ⩽ (1 − �)−1r-A�-ℎr
(0); and

∙ for each h ∈ (0, (1 − �)2], we have

max
{
�ℎ(�, Xbhr(�)), �ℎ

(
around Ahr,h1∕2r

(�)
)}

⩽ h��ℎ(�, �) (4.55)

and the same is true with the roles of � and � interchanged.

We will show that if � is chosen to be large enough (depending only on the laws of �ℎ and �̃ℎ),
then for each small enough h > 0 (depending only on �, �̃, and the laws of �ℎ and �̃ℎ), we have

�̃ℎ(�, �) ⩽
(
ℭ∗ −

1 − �

4
h
)
�ℎ(�, �), ∀�, � satisfying the above conditions. (4.56)

By Definition 3.2, the relation (4.56) implies that�r(�, ℭ∗ − 1−�

4
h) does not occur. Since h can be

made arbitrarily small, this implies the lemma statement.
See Figure 12 for an illustration of the proof of (4.56). Let � ∈ ( h

�r

100
Z2) ∩ bh�r(�) and & ∈

( h
�r

100
Z2) ∩ bh�r(�). If h is small enough, then |� − &| ⩾ (1 − �)r∕2 and dist(�, Xbr(0)) ⩾ (1 −

�)r∕2. By (4.54), there is a path /h from bh�r(�) to bh�r(&) such that

len
(
/h; �̃ℎ

)
⩽ ℭ∗�ℎ(bh�r(�), bh�r(&)) −

h

2
r-A�-ℎr

(0)

⩽ ℭ∗�ℎ(�, �) −
h

2
r-A�-ℎr

(0) (since � ∈ bh�r(�) and � ∈ bh�r(&))
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F IGURE 1 2 Illustration of the five paths used to get an upper bound for �̃ℎ(�, �) in the proof of

Lemma 4.20. The �̃ℎ-length of /
h is bounded above using (4.54) and the �̃ℎ-lengths of the other four paths are

bounded above using (4.55).

⩽
(
ℭ∗ −

1 − �

2
h
)
�ℎ(�, �) (since �ℎ(�, �) ⩽ (1 − �)−1r-A�-ℎr

(0)). (4.57)

By (4.55) (applied with
√

2h� in place of h), if h is small enough (depending on �) then there
are paths /h

� and /h
� from � and � to Xb√

2h�r
(�) and Xb√

2h�r
(�), respectively, such that

max
{
len(/h

�; �ℎ), len(/
h
� ; �ℎ)

}
⩽ 2�∕2h��∕2�ℎ(�, �). (4.58)

Furthermore, by (4.55) applied with 2h� in place of h, there are paths #h
� and #h

� inA
2h�r,

√
2h�r

(�)

and A
2h�r,

√
2h�r

(�), respectively, which disconnect the inner and outer boundaries and satisfy

max
{
len(#h

�; �ℎ), len(#
h
� ; �ℎ)

}
⩽ 2�h���ℎ(�, �). (4.59)

Sincemax{|� − �|, |& − �|} ⩽ h�r, the union /h ∪ /h
� ∪ /h

� ∪ #h
� ∪ #h

� contains a path from � to
�. Therefore, combining (4.57), (4.58), and (4.59), then using the bi-Lipschitz equivalence of �ℎ

and �̃ℎ (1.20) gives

�̃ℎ(�, �) ⩽
(
ℭ∗ −

1 − �

2
h
)
�ℎ(�, �) +

∑

�∈{�,�}

(
len(/h

�; �̃ℎ) + len(#h
�; �̃ℎ)

)

⩽
(
ℭ∗ −

1 − �

2
h + 2�∕2+1ℭ∗h

��∕2 + 2�+1ℭ∗h
��
)
�ℎ(�, �).

If � > 2∕� and h is small enough, then this implies (4.56). □

Proof of Theorem 1.13. By Proposition 3.5, there exist � ∈ (3∕4, 1) and " ∈ (0, 1), depending only
on the laws of �ℎ and �̃ℎ, such that for each h > 0 and each small enough � > 0 (depending only
on h and the laws of �ℎ and �̃ℎ), there are at least

3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N such
that

P[��(�, ℭ∗ − h)] ⩾ ". (4.60)
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286 DING and GWYNNE

Let ^′′ be as in Proposition 4.2, so that ^′′ depends only on the laws of �ℎ and �̃ℎ. By Propo-
sition 3.11 (applied with ^′′ in place of ^′), there exist �̃ > 0 and �0 > 0 (depending only on
the laws of �ℎ and �̃ℎ) such that for each � ∈ (0, �0], there are at least

3

4
log8 �

−1 values of

� ∈ [�2, �] ∩ {8−q}q∈N for which P[�̃�(�̃, ^
′′)] ⩾ �̃. By combining this with Lemma 4.20, we get

that if � and " are as in (4.60), then there exists h > 0, depending only on �, ", and the laws of �ℎ

and �̃ℎ, such that for each � ∈ (0, �0], there are at least
3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N

for which

P[��(�, ℭ∗ − h)] ⩽
"

2
. (4.61)

The total number of radii � ∈ [�2, �] ∩ {8−q}q∈N is at most log8 �
−1, so there cannot be at least

3

4
log8 �

−1 values of � ∈ [�2, �] ∩ {8−q}q∈N for which (4.60) holds and at least 3

4
log8 �

−1 values of

� ∈ [�2, �] ∩ {8−q}q∈N for which (4.61) holds. We thus have a contradiction, so we conclude that
^∗ = ℭ∗. □

5 CONSTRUCTING EVENTS AND BUMP FUNCTIONS

5.1 Setup and outline

The goal of this section is to prove Proposition 4.2. Extending (4.1), we define

^′ ∶=
^∗ + ℭ∗

2
and ^′0 ∶=

^∗ + ^′

2
, (5.1)

so that if ^∗ < ℭ∗, then ^∗ < ^′
0
< ^′ < ℭ∗.

Throughout this section, we fix p ∈ (0, 1) as in Proposition 4.2. Note that p is allowed to be
arbitrarily close to 1. We seek to construct a set of radii ⊂ (0, 1) and, for each � ∈ C and � ∈ ,
open sets ��,� ⊂ 
�,� ⊂ A�,4�(�), a smooth bump function ��,� supported on 
�,�, and an event ��,�

with P[��,�] ⩾ p which satisfy the conditions in Subsection 4.1.
For simplicity, for most of this section we will take � = 0 and remove � from the notation, so we

will call our objects ��, 
�, ��, ��. At the very end of the proof, we will define objects for a general
choice of � by translating space.
Let � ∈ (3∕4, 1) and "0 = " ∈ (0, 1) be as in Proposition 3.10, so that � and "0 depend only on

the laws of �ℎ and �̃ℎ. We define our initial set of ‘good’ radii

0 ∶=
{
� ∈ {8−q}q∈N ∶ P[�̃�(�, ^

′
0)] ⩾ "0

}
. (5.2)

By Proposition 3.10, there exists ^′′ > 0, depending only on the laws of�ℎ and �̃ℎ, such that if r > 0

and �̃ > 0 such thatP[�̃r(�̃, ^
′′)] ⩾ �̃, then for each small enough � > 0 (how small is independent

of r),

#
(0 ∩ [�2r, �r]

)
⩾

3

4
log8 �

−1.

We will eventually establish Proposition 4.2 with the set of admissible radii given by = �−10,
where � ∈ (0, 1) is a constant depending only on p and the laws of �ℎ and �̃ℎ.
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F IGURE 13 Illustration of the objects involved in Lemma 5.2

Recall the basic idea of the construction as explained just after Proposition 4.2. We will take
�� to be a narrow ‘tube’ with the topology of a Euclidean annulus which is contained in a small
neighborhood of Xb2�(0), and 
� to be a small Euclidean neighborhood of ��. We will then take ��

to be the event that there aremany ‘good’ pairs of points �, � ∈ �� such that �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �),

plus a long list of regularity conditions. The idea for checking hypothesis C for �� is that by Weyl
scaling (Axiom III), the �ℎ−��

-lengths of paths contained in �� tend to be much shorter than the
�ℎ−��

-lengths of paths outside of 
�. We will use this fact to force a �ℎ−��
-geodesic /� to get �ℎ−��

-
close to each of � and � for one of our good pairs of points �, �. We will then apply the triangle
inequality to find times !, 4 such that �̃ℎ−��

(/�(!), /�(4)) ⩽ ^′(4 − !). Note that the application of

the triangle inequality here is the reason why we need to require that �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �) for

^′
0
< ^′.
The broad ideas of this section are similar to those of [27, section 5], which performs a similar

construction in the subcritical case. However, the details are quite different from [27, section 5],
for three reasons. First, the conditions which we need our event to satisfy are slightly different
from the ones needed in [27] since our argument in Section 4 is completely different from the
argument of [27, section 4]. Second, we make some minor simplifications to various steps of the
construction as compared to [27]. Third, and most importantly, we want to treat the supercritical
case so there are a number of additional difficulties arising from the fact that the metric does not
induce the Euclidean topology. These difficulties necessitate additional conditions on the events
and additional arguments as compared to the subcritical case. Especially, many of the conditions
in the definition of �� and all of arguments of Subsection 5.10 can be avoided in the subcritical
case. We will now give a more detailed outline of our construction.
In Subsection 5.2, we will consider an event for a single ‘good’ pair of points �, � and show

that for � ∈ 0, the probability of this event is bounded below by a constant § depending only on
the laws of �ℎ and �̃ℎ. See Lemma 5.2 for a precise statement and Figure 13 for an illustration of
the event.
The event we consider is closely related to the event �̃�(�, ^

′
0
) of Definition 3.9. We require

that there is a point � ∈ Xb��(0) and a point � ∈ Xb�(0) such that �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �) and a �̃ℎ-

geodesic /̃ from � to � which is contained in a specified deterministic half-annulus ¨� ⊂ A��,�(0).
We also impose two additional constraints on � and � which will be important later.

(i) We require that � is contained in a certain small deterministic ball b©�
(��) centered at a

point �� ⊂ Xb��(0) and � is contained in a small deterministic ball b©�
(��) centered at a point
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288 DING and GWYNNE

�� ∈ Xb�(0), where ©� is deterministic number which is comparable to a small constant times
�. The reason for this condition is that we will eventually define our set �� so that it has
a ‘bottleneck’ at several translated and scaled copies of the balls b©�

(��) and b©�
(��) (that

is, removing these balls disconnects ��; see Figure 15), and we need �� to be determin-
istic. We will show that this condition happens with positive probability by considering
finitely many possible choices for the balls b©�

(��) and b©�
(��) and using a pigeonhole

argument.
(ii) We require that the internal distance �ℎ(�, �; b©�

(��)) is small for ‘most’ points � ∈ Xb©�
(��),

and we impose a similar condition for �. The purpose of this condition is to upper-bound the
�ℎ−��

-distance from a �ℎ−��
-geodesic to �, once we have forced it to get Euclidean-close to �.

The condition will be shown to occur with high probability using Lemma 2.10.

In Subsection 5.3, we will define ��,� for � ∈ C and � ∈ 0 to be the event of Subsection 5.2, but
translated so that we are working with annuli centered at � rather than 0. We will then show that
��,� is locally determined by ℎ (Lemma 5.7).
In Subsection 5.4, we will introduce several parameters to be chosen later, including the param-

eter � ∈ (0, 1) mentioned above. We will then define the open sets �� and 
� and the bump
function �� for � ∈ �−10 in terms of these parameters. More precisely,

∙ the set �� will be the union of a large finite number of disjoint sets of the form ¨�� ∪ b©��
(���) ∪

b©��
(���) + � for � ∈ Xb2�(0) (that is, the sets appearing in the definition of ��,��), together with

long narrow ‘tubes’ linking these sets together into an annular region. See Figure 15 for an
illustration;

∙ the set 
� will be a small Euclidean neighborhood of ��;
∙ the function �� will attain its maximal value at each point of �� and will be supported on 
�.

The reason for our definition of �� is as follows. Since � ∈ �−10, for each of the sets ¨�� ∪

b©��
(���) ∪ b©��

(���) + � in the definition of ��, there is a positive chance that the event ��,�� of
Subsection 5.3 occurs. Hence, by the long-range independence properties of theGFF (Lemma 2.3),
it is very likely that ��,�� occurs for many of the points �. This gives us the desired large collection
of ‘good’ pairs of points �, � ∈ ��. See Lemma 5.13.
In Subsection 5.5, we will define the event ��. The event �� includes the condition that ��,��

occurs for many of the points � ∈ Xb2�(0) involved in the definition of �� (condition 4), plus a
large number of additional high-probability regularity conditions. Then, in Subsection 5.6, we
will show that we can choose the parameters of Subsection 5.4 in such a way that �� occurs with
probability at least p (Proposition 5.9). We will also show that �� satisfies hypotheses A and B of
Subsection 4.1 (Proposition 5.17). In Subsection 5.7, we will explain how to conclude the proof of
Proposition 4.2 assuming that our objects also satisfy hypothesis C of Subsection 4.1.
The rest of the section is then devoted to checking that our objects satisfy hypothesis C of Sub-

section 4.1 (Proposition 5.18). Recalling the statement of hypothesis C, we will assume that ��

occurs and consider a�ℎ−��
-geodesic /� between two points ofC ⧵ b4�(0). Wewill further assume

that /� has a (b4�(0), 
�)-excursion (�′, �, R, R′) such that �ℎ(/�(�), /�(R); b4�(0)) is bounded
below by an appropriate constant times �-A�-ℎ�(0) (recall Definition 4.1). We aim to find times
! < 4 for /� such that 4 − ! is not too small and �̃ℎ−��,�

(/�(!), /�(4); b4�(0)) ⩽ ^′(4 − !).
In Subsection 5.8, we will show that the Euclidean distance between the points /�(�), /�(R) ∈

X
� is bounded below by a constant times � (Lemma 5.20) and that /�|[�,R] is contained in a small
Euclidean neighborhood of 
� (Lemma 5.22). These statements are proven using the regularity
conditions in the definition of��. In particular, the lower bound for |/�(�) − /�(R)| comes from the
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regularity of �ℎ-distances along a geodesic (Lemma 2.13). The statement that /�|[�,R] is contained
in a small Euclidean neighborhood of 
� is proven as follows. Since �� is very large on��, we know
that�ℎ−��

-distances inside �� are very small, which leads to a very small upper bound for R − � =

�ℎ−��
(/�(�), /�(R)) (Lemma 5.21). Since �� is supported on 
�, the �ℎ−��

-length of any segment
of /� which is disjoint from 
� is the same as its �ℎ-length, which will be larger than our upper
bound for R − � unless the Euclidean diameter of the segment is very small.
In Subsection 5.9, we will use the results of Subsection 5.8 and the definition of �� to show

that the following is true. There is a point � ∈ Xb2�(0) as in the definition of �� such that ��,��
occurs and /� gets Euclidean-close to each of the ‘good’ points � and � in the definition of ��,��
(Lemma 5.23). The reason why this is true is that, by the results of Subsection 5.8, /�([�, R]) is
contained in a small neighborhood of �� and has Euclidean diameter of order �, and the defini-
tion of �� implies that removing small neighborhoods of the points � and � disconnects �� (see
Figure 15).
Showing that /� gets Euclidean-close to � and � is not enough for our purposes since �ℎ−��

is not Euclidean-continuous, so it is possible for two points to be Euclidean-close but not �ℎ−��
-

close. Therefore, further arguments are needed to show that /� gets�ℎ−��
-close to each of � and �.

We remark that this is one of the main reasons why the argument in this section is more difficult
than the analogous argument in the subcritical case [27, section 5].
In Subsection 5.10, we will show that there are times ! and 4 for /� such that�ℎ−��

(/�(4), �) and
�ℎ−��

(/�(!), �) are eachmuch smaller than�ℎ−��
(�, �) (Lemma 5.26). The key toolwhich allows us

to do this is the condition in the definition of ��,�� which says that �ℎ(�, �; b©��
(���) + �) is small

for ‘most’ points of Xb©��
(���) + � (recall point (ii) in the summary of Subsection 5.2). However,

this condition is not sufficient for our purposes since it is possible that the ‘Euclidean size’ of
/� ∩ (b©��

(���) + �) is small, and hence /� manages not to hit a geodesic from � to � for any of the

‘good’ points � ∈ Xb©��
(���) + � such that �ℎ(�, �; b©��

(���) + �) is small. To avoid this difficulty,
we will need to carry out a careful analysis of, roughly speaking, the ‘excursions’ that /� makes in
and out of the ball b©��

(���) + �.
In Subsection 5.11, we will conclude the proof that �� satisfies hypothesis C using the result of

Subsection 5.10 and the triangle inequality.

5.2 Existence of a shortcut with positive probability

Throughout the rest of this section, we let

ª ∈
(
0, 10−100 min

{
^∗, 1∕ℭ∗, (^∗∕ℭ∗)

2
})

(5.3)

be a small constant to be chosen later, in a manner depending only on the laws of �ℎ and �̃ℎ (not
onp).Wewill frequently use ª in the definitions of events and other objects whenwe need a small
constant whose particular value is unimportant.
In this subsection, we will prove that for each � ∈ 0, it holds with positive probability

(uniformly in � ∈ 0) that there is a ‘good’ pair of non-singular points �, � ∈ b�(0) such that
�̃ℎ(�, �) ⩽ ^′

0
�ℎ(�, �) and certain regularity conditions hold. In later subsections, we will use

the long-range independence of the GFF to say that with high probability, there are many
such pairs of points contained in our open set ��. To state our result, we need the following
definition.
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290 DING and GWYNNE

Definition 5.1. Let � ∈ C and K > J > 0. A horizontal or vertical half-annulus� ⊂ AJ,K(�) is the
intersection of AJ,K(�) with one of the four half-planes

{& ∈ C ∶ Re& > Re �}, {& ∈ C ∶ Re& < Re �},

{& ∈ C ∶ Im& > Im�}, or {& ∈ C ∶ Im& < Im�}.

Lemma 5.2. Let � and 0 be as in (5.2). There exists ­ ∈ (0, ª(1 − �)2], ® > 3, and § ∈ (0, 1)

(depending only on ª and the laws of �ℎ and �̃ℎ) such that for each � ∈ 0, there exists a deter-

ministic horizontal or vertical half-annulus ¨� ⊂ A��,�(0), a deterministic radius ©� ∈ [­�, ­1∕2�] ∩

{4−q�}q∈N, and deterministic points

�� ∈ X¨� ∩
{
���Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}
and

�� ∈ X¨� ∩
{
��Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}
(5.4)

such that with probability at least §, the following is true. There exist non-singular points � ∈

Xb��(0) ∩ b©�∕2
(��) and � ∈ Xb�(0) ∩ b©�∕2

(��) with the following properties.

(1) �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �).

(2) There is a �̃ℎ-geodesic /̃ from � to � which is contained in ¨�.

(3) The one-dimensional Lebesgue measure of the set

{
� ∈ Xb©�

(��) ∶ �ℎ

(
�, �; b©�

(��)
)
> ª�̃ℎ(�, �)

}

is at most (ª∕2)©� . Moreover, the same is true with � and �� in place of � and ��.

(4) There exists 4 ∈ [3�, ®�] such that

�ℎ

(
around A4,24(0)

)
⩽ ª�ℎ

(
across A24,34(0)

)
.

See Figure 13 for an illustration of the statement of Lemma 5.2.Most of this subsection is devoted
to the proof of Lemma 5.2. Before discussing the proof, we will first discuss the motivation for the
various conditions in the lemma statement.
In Subsection 5.4, we will consider a small but fixed constant � ∈ (0, 1). To build the set �� =

�0,� appearing in Section 4, we will use long narrow tubes to ‘link up’ several sets of the form
¨�� ∪ b©��

(���) ∪ b©��
(���) + �, for varying choices of � ∈ Xb2�(0). We need �� to be deterministic,

which is whywe need tomake a deterministic choice of the half-annulus¨�, the radius ©�, and the
points �� and �� in Lemma 5.2. Furthermore, we want there to be only finitely many possibilities
for the set �−1��, which allows us to get certain estimates for �� trivially by taking a maximum
over the possibilities. This is why we require that ¨� is a vertical or horizontal half-annulus and
why we require that the points �� and �� belong to the finite sets in (5.4).
Our set �� will have ‘bottlenecks’ at the balls b©��

(���) + � and b©��
(���) + �, so that any path

which travels more than a constant-order Euclidean distance inside the set �� will have to enter
many of these balls. The requirement that � ∈ b©��∕2

(���) and � ∈ b©��∕2
(���) is needed to force

a path which spends a lot of time in �� to get close to � and �. The requirement that /̃ ⊂ ¨�

in condition 2 is needed to ensure that subtracting from ℎ a large bump function which attains
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its maximal value at each point of �� decreases �̃ℎ(�, �) by at least as much as �ℎ(�, �), so the
condition �̃ℎ(�, �) ⩽ ^′

0
�ℎ(�, �) is preserved.

Condition 3 in Lemma 5.2 is needed to upper-bound the LQG distance from a path to each of
� and �, once we know that it gets Euclidean-close to � and � (this is done in Subsection 5.10).
The reason why our distance bound is in terms of �̃ℎ(�, �) is that we eventually want to show that
the �̃ℎ−��

-distance from a �ℎ−��
-geodesic to each of � and � is at most a small constant times

�̃ℎ−��
(�, �). We will then use condition 1 in Lemma 5.2 and the triangle inequality to deduce

hypothesis C. Note that condition 3 includes a bound on �ℎ-distances, but this immediately
implies a bound for �̃ℎ-distances due to the bi-Lipschitz equivalence of �ℎ and �̃ℎ (1.20).
The only purpose of condition 4 is to ensure that the event in the lemma statement depends

locally on ℎ (see Lemma 5.7). This local dependence is not automatically true since a �ℎ-geodesic
from � to � could get very Euclidean-far away from � and �.
We now turn our attention to the proof of Lemma 5.2. To this end, let us first record what we

get from the Definition 3.9 of �̃�(�, ^
′
0
) and the Definition (5.2) of0.

Lemma 5.3. For each � ∈ 0, there is a deterministic horizontal or vertical half-annulus ¨� ⊂

A��,�(0) such that with probability at least "0∕4, there exist non-singular points � ∈ Xb��(0) and

� ∈ Xb�(0) with the following properties.

(1) �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �).

(2) There is a �̃ℎ-geodesic /̃ from � to � which is contained in ¨�.

(3) With � = �(1∕2) as in Lemma 2.13, for each h ∈ (0, (1 − �)2],

max
{
�̃ℎ(�, Xbh�(�)), �̃ℎ(�, Xbh�(�))

}
⩽ h��̃ℎ(�, �).

Proof. By Definition 3.9 of �̃�(�, ^
′
0
) and the definition (5.2) of 0, for each � ∈ 0 it holds with

probability at least "0 that there exist � ∈ Xb��(0) and � ∈ Xb�(0) such that conditions 1 and 3 in
the lemma statement hold and there is a �̃ℎ-geodesic /̃ from � to � which is contained inA��,�(0)

and has Euclidean diameter at most �∕100. Since /̃ ⊂ A��,�(0) and /̃ has Euclidean diameter at
most �∕100, trivial geometric considerations show that /̃must be contained in the closure of one
of the four horizontal or vertical half-annuli of A��,�(0). Hence, we can choose one such half-
annulus ¨� in a deterministic manner such that with probability at least "0∕4, conditions 1 and 3
in the lemma statement hold and /̃ ⊂ ¨�, that is, condition 2 holds. □

Lemma 5.3 gives us a pair of points �, � satisfying conditions 1 and 2 in Lemma 5.2. We still
need to check conditions 3 and 4. Condition 3 will require the most work. To get this condition,
wewant to apply Lemma 2.10.However, the points� and � are random, sowe cannot just apply the
lemma directly. Instead, wewill apply Lemma 2.10 in conjunctionwith Lemma 2.1 (independence
across concentric annuli) and a union bound to cover space by balls where an event occurs which
is closely related to the one in Lemma 2.10. Then, we will use a geometric argument based on
condition 3 of Lemma 5.3 to transfer from an estimate for balls containing � and � to an estimate
for � and � themselves.
Let us now define the event to which we will apply Lemma 2.1. For � ∈ C, ! > 0, and Y > 0, let

�!(�; Y) be the event that the following is true.
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(1) The one-dimensional Lebesgue measure of the set of � ∈ Xb!(�) for which

�̃ℎ

(
�, Xb!∕2(�);A!∕2,!(�)

)
> Y!-A�-ℎ!(�)

is at most (ª∕2)!.
(2) �̃ℎ(around A!∕2,!(�)) ⩽ Y!-A�-ℎ!(�).

(3) �̃ℎ(across A!∕2,!(�)) ⩾ (1∕Y)!-A�-ℎ!(�).

Since the event �!(�; Y) involves only internal distances in A!∕2,!(�), the locality property
(Axiom II; see also Subsection 2.2) implies that �!(�; Y) is almost surely determined by ℎ|A!∕2,!(�)

.

Furthermore, by Weyl scaling (Axioms III), the occurrence of �!(�; Y) is unaffected by adding a
constant to ℎ. Therefore,

�!(�; Y) ∈ R
(
(ℎ − ℎ2!(�))|A!∕2,!(�)

)
. (5.5)

We can also arrange that the probability of �!(�; Y) is close to 1 by making Y large.

Lemma 5.4. For each " ∈ (0, 1), there exists Y > 0, depending only on ", ª and the law of �̃ℎ, such

that for each � ∈ C and each ! > 0, we have P[�!(�; Y)] ⩾ ".

Proof. By Lemma 2.10 (and the fact that a path from � ∈ Xb!(�) to �must hit Xb!∕2(�)), if Y is cho-
sen to be sufficiently large, depending only on " and the law of �̃ℎ, then the first condition in the
definition of �!(�; Y) has probability at least 1 − "∕3. By tightness across scales (Axiom V′), after
possibly increasing Y we can arrange that the other two conditions in the definition of �!(�; Y)

also have probability at least ". □

Let us now apply Lemma 2.1 to get the following.

Lemma 5.5. There exists Y > 0, depending only on ª and the law of �̃ℎ, such that for each � > 0, it

holds with polynomially high probability as � → 0 (at a rate depending only on ª and the law of �̃ℎ)

such that the following is true. For each point

� ∈
{
���Pª�q ∶ q ∈ [1, 2#ª−1�−1]Z

}
∪
{
��Pª�q ∶ q ∈ [1, 2#ª−1�−1]Z

}
, (5.6)

we have

#
{
q ∈

[
1

2
log4 �

−1, log4 �
−1
]

Z

∶ �4−q�(�; Y) occurs
}

⩾
3

8
log4 �

−1. (5.7)

Proof. By (5.5) and Lemma 5.4 (applied with " sufficiently close to 1), we can apply Lemma 2.1
(independence across concentric annuli) to get the following. There exists Y > 0 as in the lemma
statement such that for each � ∈ C and each � > 0,

P
[
#
{
q ∈

[
1

2
log4 �

−1, log4 �
−1
]

Z

∶ �4−q�(�; Y) occurs
}

⩾
3

8
log4 �

−1
]
⩾ 1 − *�(�

2).

The lemma follows from this and a union bound over the *�(�
−1) points in the set (5.6). □

The following lemma is the main step in the proof of Lemma 5.2.
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Lemma 5.6. There exist ­ ∈ (0, ª(1 − �)2] and § ∈ (0, 1) (depending only on ª and the laws

of �ℎ and �̃ℎ) such that for each � ∈ 0, there exist a deterministic vertical or horizontal half-

annulus ¨� ⊂ A��,�(0), a deterministic radius ©� ∈ [­�, ­1∕2�] ∩ {4−q�}q∈N, and deterministic points

��, �� ∈ X¨� as in (5.4) such that with probability at least 2§, the following is true. There exist non-

singular points � ∈ Xb��(0) ∩ b©�
(��) and � ∈ Xb�(0) ∩ b©�

(��) such that conditions 1, 2, and 3 from

Lemma 5.2 hold.

Proof. Step 1: Setup. Let � and "0 be as in the definition of0 from (5.2). Let the half-annulus ¨�

for � ∈ 0 be as in Lemma 5.3 and let Y > 0 be as in Lemma 5.5. Also let ­ > 0 be small enough so
that the event of Lemma 5.5 with ­ in place of � occurs with probability at least 1 − "0∕8. We can
arrange that ­ is small enough so that

­ ⩽ ª(1 − �)2 and (2Y2 + 1)(2­)� ⩽ ª2, (5.8)

where � is as in Lemma 5.3. Then with probability at least "0∕8, the event of Lemma 5.3 and the
event of Lemma 5.5 with � = ­ both occur. Henceforth, assume that these two events occur.
Let /̃ be the �̃ℎ-geodesic from� to �which is contained in¨�, as in Lemma5.3. By the conditions

in Lemma 5.3, the conditions 1 and 2 in the statement of Lemma 5.2 hold for this choice of �, �,
and /̃. It remains to deal with condition 3.
Step 2: Reducing to a statement for a random radius and pair of points.We can choose random

points

�1 ∈ X¨� ∩
{
���Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}
and

�2 ∈ X¨� ∩
{
��Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}

such that

|� − �1| ⩽ ­�∕50 and |� − �2| ⩽ ­�∕50. (5.9)

The event of Lemma 5.5 (with � = ­) implies that for each P ∈ {1, 2}, there are at least 3

8
log4 ­

−1

values of q ∈ [ 1
2
log4 ­

−1, log4 ­
−1]

Z
such that �4−q�(�P; Y) occurs. Since the number of choices

for q is at most 1

2
log4 ­

−1, there must be some (random) q∗ ∈ [ 1
2
log4 ­

−1, log4 ­
−1]

Z
such that

�4−q∗ �(�1; Y) ∩ �4−q∗ �(�2; Y) occurs.We pick one such value of q∗ in ameasurablemanner and set

! ∶= 4−q∗�, so that ! ∈ [­�, ­1∕2�] ∩ {4−q�}q∈N. (5.10)

We claim that condition 3 in Lemma 5.2 holds with ! in place of ©� and �1, �2 in place of ��, ��.
Once the claim has been proven, we have that with probability at least "0∕8, the conditions in the
lemma statement hold with the random variables !, �1, �2 in place of the deterministic parameters
©�, ��, ��. The number of possible choices for ! is at most

1

2
log4 ­

−1 and the number of possible

choices for each of �1, �2 is at most a constant (depending only on ª and the laws of �ℎ and �̃ℎ)
times ­−1. Therefore, our claim implies that there is some constant § > 0 (which depends only on
"0 and ­, hence only on the laws of�ℎ and �̃ℎ) and a deterministic choice of parameters ©�, ��, and
�� such that with probability at least 2§, the conditions of the lemma statement hold for ©�, ��, and
��.
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294 DING and GWYNNE

Step 3: Estimates for distances inb!(�1) andb!(�2). It remains to prove the claim in the preceding
paragraph. By our choices of �1, �2 (5.9) and ! (5.10),

� ∈ b!∕2(�1) ⊂ b!(�1) ⊂ b2­1∕2�(�) and � ∈ b!∕2(�2) ⊂ b!(�2) ⊂ b2­1∕2�(�). (5.11)

From this, condition 3 fromLemma 5.3 (with h = 2­1∕2), and the definition of�!(�P; Y), we obtain

(2­1∕2)��̃ℎ(�, �) ⩾ max
{
�̃ℎ

(
�, Xb2­1∕2�(�)

)
, �̃ℎ

(
�, Xb2­1∕2�(�)

)}
(by Lemma 5.3)

⩾ max
{
�̃ℎ(�, Xb!(�1)), �̃ℎ(�, Xb!(�2))

}
(by (5.11))

⩾ max
P∈{1,2}

�̃ℎ

(
across A!∕2,!(�P)

)

(since � ∈ b!∕2(�1) and � ∈ b!∕2(�2))

⩾
1

Y
max
P∈{1,2}

!-A�-ℎ!(�P) (by condition 3 for �!(�P; Y)). (5.12)

We now apply (5.12) to upper-bound the quantities !-A�-ℎ!(�P) appearing in conditions 1 and 2 in
the definition of �!(�P; Y). Upon doing so, we obtain the following observations for P = 1, 2.

(i) The one-dimensional Lebesgue measure of the set of � ∈ Xb!(�P) for which

�̃ℎ

(
�, Xb!∕2(�P); b!(�P)

)
> Y2(2­1∕2)��̃ℎ(�, �)

is at most (ª∕2)!.
(ii) We have

�̃ℎ

(
around A!∕2,!(�P)

)
⩽ Y2(2­1∕2)��̃ℎ(�, �). (5.13)

Step 4: Checking condition 3. If � ∈ Xb!(�1), then the union of any path from � to Xb!∕2(�1),
any path in A!∕2,!(�1) which disconnects the inner and outer boundaries of A!∕2,!(�P), and any
path from � to Xb!(�1) must contain a path from � to � (see Figure 14). By (5.13) and the second
inequality in (5.12), we therefore have

�̃ℎ

(
�, �; b!(�1)

)
⩽ �̃ℎ

(
�, Xb!∕2(�1); b!(�1)

)
+ �̃ℎ

(
around A!∕2,!(�1)

)
+ �̃ℎ(�, Xb!(�1))

⩽ �̃ℎ

(
�, Xb!∕2(�1); b!(�1)

)
+
(
Y2 + 1

)
(2­1∕2)��̃ℎ(�, �). (5.14)

By combining (5.14) with observation (i) above, we get that for all � ∈ Xb!(�1) except on a set
of one-dimensional Lebesgue measure at most (ª∕2)!,

�̃ℎ

(
�, �; b!(�1)

)
⩽ (2Y2 + 1)(2­)��̃ℎ(�, �). (5.15)

By (5.15) and our choice of ­ in (5.8), we get that for all � ∈ Xb!(�1) except on a set of
one-dimensional Lebesgue measure at most (ª∕2)!,

�̃ℎ

(
�, �; b!(�1)

)
⩽ ª2�̃ℎ(�, �). (5.16)
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F IGURE 14 Illustration of the proof of condition 3 in Lemma 5.2 with (!, �1) in place of (©� , ��). The

concatenation of the purple, orange, and green paths in the figure contains a path from � to �. The �̃ℎ-length of

the purple path can be bounded above in terms of �̃ℎ(�, �) by condition 3 from Lemma 5.3. The �̃ℎ-length of the

orange path can be bounded above in terms of �̃ℎ(�, �) using (5.13), which in turn is proven using conditions 2

and 3 in the definition of �!(�1; Y). For most points � ∈ Xb!(�1), the �̃ℎ-length of the green path can be bounded

above in terms of �̃ℎ(�, �) by condition 1 in the definition of �!(�1; Y).

Since ª < ^∗, the estimate (5.16) together with the bi-Lipschitz equivalence of �ℎ and �̃ℎ implies
that

�ℎ

(
�, �; b!(�1)

)
⩽ ª�̃ℎ(�, �). (5.17)

This gives condition 3 in Lemma 5.2 with �1 in place of �� and ! in place of ©�. The analogous
bound with �2 in place of �� and ! in place of ©� is proven similarly. □

Proof of Lemma 5.2. Let § be as in Lemma 5.6. In light of Lemma 5.6, it suffices to find ® > 3 such
that with probability at least 1 − §, condition 4 in the lemma statement holds, that is, there exists
4 ∈ [3�, ®�] such that

�ℎ

(
around A4,24(0)

)
⩽ ª�ℎ

(
across A24,34(0)

)
. (5.18)

One can easily check using a ‘subtracting a bump function’ argument andWeyl scaling (Axiom III)
that there exists I ∈ (0, 1) (depending only on ª and the law of �ℎ) such that for each fixed 4 > 0,
the probability of the event in (5.18) is at least I. See [21, Lemma 6.1] for similar argument. We can
then apply assertion 2 of Lemma 2.1 to a collection of logarithmically many evenly spaced radii
4q ∈ [3�, ®�] to find that the probability that there does not exist 4 ∈ [3�, ®�] such that (5.18) holds
decays like a negative power of ® as ® → ∞, at a rate which depends only on the laws of �ℎ and
�̃ℎ. We can therefore choose ® large enough so that this probability is at most §, as required. □

5.3 Building block event

Wewill use Lemma 5.2 to define an event whichwill be the ‘building block’ for the event �� = �0,�.
Let the parameters ®, § > 0, the half-annulus¨� ⊂ A��,�(0), the radius ©� ∈ [­�, ­1∕2�] ∩ {4−q�}q∈N,
and the points

�� ∈ X¨� ∩
{
���Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}
and

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



296 DING and GWYNNE

�� ∈ X¨� ∩
{
��Pª­q ∶ q ∈ [1, 2#ª−1­−1]Z

}

be as in Lemma 5.2.
For � ∈ C, let

¨�,� ∶= ¨� + � ⊂ A��,�(�),

��,� ∶= �� + � ∈ X¨�,� ∩ Xb��(�), and

��,� ∶= �� + � ∈ X¨�,� ∩ Xb�(�).

We also let ��,� be the event of Lemma 5.2 with the translated field ℎ(⋅ − �) in place of ℎ. That
is, ��,� is the event that there exist non-singular points � ∈ Xb��(�) ∩ b©�∕2

(��,�) and � ∈ Xb�(�) ∩

b©�∕2
(��,�) with the following properties.

(1) �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �).

(2) There is a �̃ℎ-geodesic /̃ from � to � which is contained in ¨�,�.
(3) The one-dimensional Lebesgue measure of the set

{
� ∈ Xb©�

(��,�) ∶ �ℎ

(
�, �; b©�

(��,�)
)
> ª�̃ℎ(�, �)

}

is at most (ª∕2)©� and the same is true with � and ��,� in place of � and ��,�.
(4) There exists 4 ∈ [3�, ®�] such that

�ℎ

(
around A4,24(�)

)
⩽ ª�ℎ

(
across A24,34(�)

)
.

By Lemma 5.2, the translation invariance of the law of ℎ, viewedmodulo additive constant, and
the translation invariance of �ℎ and �̃ℎ (Axiom IV′), we have

P[��,�] ⩾ §, ∀� ∈ C, ∀� ∈ 0. (5.19)

The other property of ��,� which we need is that it depends locally on ℎ.

Lemma 5.7. The event ��,� is almost surely determined by the restriction of ℎ to b3®�(�), viewed

modulo additive constant.

Proof. It is clear from Weyl scaling (Axiom III) that adding a constant to ℎ does not affect the
occurrence of ��,�, so ��,� is almost surely determined by ℎ, viewed modulo additive constant. It
therefore suffices to show that ��,� is almost surely determined by ℎ|b3®�(�)

.
To this end, we first observe that by locality (Axiom II), the condition 4 in the definition of ��,�

is almost surely determined by ℎ|b3®�(�)
. We claim that if this condition holds, then

�ℎ(�, �) = �ℎ(�, �; b3®�(�)), ∀�, � ∈ b3�(�); (5.20)

and the same is true with �̃ℎ in place of �ℎ.
Indeed, it is clear that (5.20) holds if � = � or if either � or � is a singular point. Hence, we can

assume that � ≠ � and that � and � are not singular points. To prove (5.20), it suffices to show
that each �ℎ-geodesic from � to � is contained in b3®�(�). To see this, let / be a path from � to
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� which exits b3®�(�). Let 4 ∈ [3�, ®�] be as in condition 4 in the definition of ��,�. We can find a
path # ⊂ A4,24(�) which disconnects the inner and outer boundaries of A4,24(�) such that

len(#; �ℎ) < �ℎ

(
across A24,34(�)

)
.

Since �, � ∈ b3�(�) and / exists b34(�), the path / must hit #, then cross between the inner
and outer boundaries of A24,34(�), then subsequently hit # again. This means that there are
two points of / ∩ # such that �ℎ-length of the segment of / between the two points is at
least �ℎ(across A24,34(�)). The �ℎ-distance between these two points is at most the �ℎ-length
of #, which by our choice of # is strictly less than �ℎ(across A24,34(�)). Hence, / cannot be a
�ℎ-geodesic. We therefore obtain (5.20) for �ℎ.
To prove (5.20) with �̃ℎ in place of �ℎ, we observe that if 4 is as in condition 4 in the definition

of ��,�, then

�̃ℎ

(
around A4,24(�)

)
⩽ ℭ∗�ℎ

(
around A4,24(�)

)
⩽ ªℭ∗�ℎ

(
across A24,34(�)

)

⩽ ª(ℭ∗∕^∗)�̃ℎ

(
across A24,34(�)

)
.

We have ª(ℭ∗∕^∗) < 1, so we can now prove (5.20) with �̃ℎ in place of �ℎ via exactly the same
argument given above.
Due to (5.20), the definition of ��,� is unaffected if we require that /̃ is a �̃ℎ(⋅, ⋅; b3®�(�))-geodesic

instead of a �̃ℎ-geodesic and we replace �ℎ-distances and �̃ℎ-distances by �ℎ(⋅, ⋅; b3®�(�))-
distances and �̃ℎ(⋅, ⋅; b3®�(�))-distances throughout. It then follows from locality (Axiom II) that
��,� is almost surely determined by ℎ|b3®�(�)

, as required. □

5.4 Definitions of ¯°, ±°, and ²°

The definitions of ��, ��, 
�, and �� will depend on parameters

1 > �1 >
1

�2
> �3 > �4 > �5 > �6 >

1

�7
>

1

�8
> �9 >

1

�10
, (5.21)

whichwill be chosen in Subsection 5.5 in amanner depending only onp, ª, and the laws of�ℎ and
�̃ℎ. The parameters are listed in (5.21) in the order in which they will be chosen. Each parameter
will be allowed to depend on the earlier parameters as well as the number ª from (5.3) (which is
allowed to depend only on the laws of �ℎ and �̃ℎ, not on p). Each parameter will also be allowed
to depend on the numbers �, ­, ®, § appearing in Lemma 5.2 (which have already been fixed, in a
manner depending only on ª and the laws of �ℎ and �̃ℎ).
Also let � ∈ (0, 1) be a small parameter which will also be chosen in Subsection 5.5 in amanner

depending only on ª and the laws of �ℎ and �̃ℎ. We will have

�4 > � > �5, (5.22)

and � will be allowed to depend on ª, �1, �2, �3, �4 and the numbers appearing in Lemma 5.2.
In the rest of this subsection, we will give the definition of the open sets �� and 
� and the

bump function �� in terms of � and the parameters from (5.21). See Figure 15 for an illustration.
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F IGURE 15 The figure shows the sets ¨�,�� , b©��
(��,��), b©��

(��,��), and ��,�� for � ∈ ³� . We define �� to be

the union of ¨�,�� , b©��
(��,��), b©��

(��,��) and bª­��(��,��) for � ∈ ³� . We define 
� ∶= b�9�
(��). The bump function

�� is supported on 
� and attains its maximal value �8 at every point of �� .

For � ∈ �−10, let

�� ∶=

⌈
ª

®�

⌉
, (5.23)

where ® is as in Lemma 5.2. We define the set of ‘test points’

³� = ³�(�) ∶=
{
2� exp

(
2#Pq∕��

)
∶ q ∈

[
1, ��

]
Z

}
⊂ Xb2�(0). (5.24)

The event �� will include the condition that the event ��,�� of Subsection 5.3 occurs for ‘many’ of
the points � ∈ ³�.
Recall the half-annuli ¨�,�� and the balls b©��

(��,��) and b©��
(��,��) from the definition of

��,��. We emphasize that by Lemma 5.2, the number of possible choices for the half-annulus
(��)−1[¨�,�� − �] and the balls (��)−1[b©��

(��,��) − �] and (��)−1[b©��
(��,��) − �] is at most a

constant depending only on ª and the laws of �ℎ and �̃ℎ.
Wewill now construct a ‘tube’ which links up the sets¨�,�� ∪ b©��

(��,��) ∪ b©��
(��,��) for � ∈ ³�.

For q ∈ [1, ��]Z, let �q ∶= 2� exp(2#Pq∕��) be the qth element of ³�. We also set ���+1 ∶= �1. We

choose for each q ∈ [1, ��]Z a smooth simple path ��q ,��
from the point of b©��

(��q ,��) which is

furthest from ¨�q ,��
to the point of b©��

(��q+1,��
) which is furthest from ¨�q+1,��

. We can arrange
that these paths have the following properties.

(i) Each ��q ,��
is contained in the 10��-neighborhood of Xb2�(0).

(ii) The Euclidean distance from ��q ,��
to each of the half-annuli ¨�q ,��

and ¨�q+1,��
is at least

©��∕2.
(iii) The Euclidean distance from ��q ,��

to each of the following sets is at least (1 − �)��∕4:
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∙ the sets ¨&,�� for & ∈ ³� ⧵ {�q, �q+1};
∙ the sets �&,�� for & ∈ ³� ⧵ {�q};
∙ the sets b©��

(�&,��) for & ∈ ³� ⧵ {�q};
∙ the sets b©��

(�&,��) for & ∈ ³� ⧵ {�q+1}.

(iv) The number of possibilities for the path (��)−1(��q ,��
− �q) is at most a constant depending

only on �, ª, and the laws of �ℎ and �̃ℎ.

With ­ as in Lemma 5.2, we define

�� = ��(�) ∶=
⋃

�∈³�(�)

[
¨�,�� ∪ b©��

(��,��) ∪ b©��
(��,��) ∪ bª­��(��,��)

]
(5.25)

and


� = 
�(��, �9) ∶= b�9�
(��). (5.26)

We emphasize that 
� is determined by �� and �9 and (once �9 is fixed) the number of possible
choices for the set �−1�� is at most a finite constant depending only on �, ª, and the laws of �ℎ

and �̃ℎ. We cannot take �
−1�� to be independent from � since the radius ©�� and the half-annulus

¨�� from Lemma 5.2 are allowed to depend on ��. This is a consequence of the fact that we only
have tightness across scales, not exact scale invariance. However, a constant upper bound for the
number of possibilities for �−1�� will be enough for our purposes.
Let

�� ∶ C → [0, �8] (5.27)

be a smooth bump function which is identically equal to �8 on �� and which is supported on 
�.
We can choose �� in such a way that ��(�⋅) depends only on �−1��, which means that the number
of possible choices for ��(�⋅) is at most a finite constant depending only on ­, �, ª, and the laws of
�ℎ and �̃ℎ.

5.5 Definition of ´°

We will now define the event �� = �0,� appearing in Subsection 4.1. Recall the parameters
from (5.21) and (5.22). For � ∈ �−10, let �� be the event that the following is true. We will discuss
the purpose of each condition just after the definition.

(1) (Bound for distance across)We have

min
{
�ℎ

(
across A�,1.5�(0)

)
, �ℎ

(
across A2.5�,3�(0)

)}
⩾ �1�

-A�-ℎ�(0).

(2) (Bound for distance around)We have

�ℎ

(
around A3�,4�(0)

)
⩽ �2�

-A�-ℎ�(0).

(3) (Regularity along geodesics) The event of Lemma 2.13 occurs with � = A1,4(0), � = 1∕2,
and �0 = �3. That is, for each � ∈ (0, �3], the following is true. Let � ⊂ A�,4�(0) and let
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9 ∶ C → [0,∞) be a non-negative continuous function which is identically zero outside of
�. Let � ∈ A�+�1∕2,4�−�1∕2(0), �, � ∈ A�,4�(0) ⧵ (� ∪ b�1∕2�(�)), and ! > 0 such that there is a

�ℎ−9(⋅, ⋅;A�,4�(0))-geodesic /9 from � to � with /9(!) ∈ b��(�). Assume that ! ⩽ inf {4 > 0 ∶

/9(4) ∈ �}. Then with � = �(1∕2) > 0 as in Lemma 2.13,

�ℎ

(
around A��,�1∕2�(�)

)
⩽ ��!. (5.28)

(4) (Existence of shortcuts) Let ³� be the set of test points as in (5.24). For each connected circular
arc µ ⊂ Xb2�(0)with Euclidean length at least �4�∕2, there exists � ∈ µ ∩ ³� such that the event
��,�� of Subsection 5.3 occurs.

(5) (Comparison of distances in small annuli) For each � ∈ A1.5�,3�(0) and each h ∈ (0, �5],

�ℎ

(
around Ah�∕4,h�∕2(�)

)
⩽ h−1∕4�ℎ

(
across A2h�,3h�(�)

)
. (5.29)

(6) (Reverse Hölder continuity) For each �, & ∈ A1.5�,3�(0) with |� − &| ⩽ ª−1�5�,

�ℎ

(
�, &;A�,4�(0)

)
⩾

(
|� − &|

�

)-(A+3)

�-A�-ℎ�(0).

(7) (Internal distance in ��) We have

�ℎ(around ��) ⩽ �7�
-A�-ℎ�(0). (5.30)

More strongly, there is a pathΠ ⊂ �� which disconnects the inner and outer boundaries of ��

and has �ℎ-length at most �7�
-A�-ℎ�(0) such that each point of the outer boundary† of �� lies

at Euclidean distance at most �6� from Π.
(8) (Intersections of geodesics with a small neighborhood of the boundary) Let 9 ∶ C → [0, �8]

be a continuous function and let /9 be a �ℎ−9(⋅, ⋅;A�,4�(0))-geodesic between two points
of Xb4�(0). The one-dimensional Lebesgue measure of the set of � ∈ X�� such that /9 ∩

b2�9�
(�) ≠ ∅ is at most ª­��. Moreover, the same is true with X�� replaced by each of the

circles Xb©��
(��,��) and Xb©��

(��,��) for � ∈ ³�.
(9) (Radon–Nikodym derivative bound) The Dirichlet inner product of ℎ with �� satisfies

|(ℎ, ��)∇| ⩽ �10. (5.31)

We will eventually show that �� satisfies the hypotheses for �0,� listed in Subsection 4.1. Before
beginning the proof of this fact, we discuss the various conditions in the definition of ��.
Conditions 1 and 2 occur with high probability due to tightness across scales (Axiom V′). These

conditions are needed to ensure that hypothesis A from Subsection 4.1 is satisfied. Condition 2 is
also useful for upper-bounding the amount of time that a�ℎ-geodesic or a�ℎ−��

-geodesic between
points outside of b4�(0) can spend in 
�. Indeed, if # is a path in A3�,4�(0) which disconnects
the inner and outer boundaries of near-minimal �ℎ-length (equivalently, near-minimal �ℎ−��

-
length since 
� ∩ A3�,4�(0) = ∅), then any such geodesic must hit # both before and after hitting

† The set �� has the topology of a Euclidean annulus, so its boundary has two connected components, one of which

disconnects the other from∞. The outer boundary is the outer of these two components.
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�. The length of the geodesic segment between these hitting times is at most the length of #. See
Lemma 5.12 for an application of this argument.
Condition 3 holds with high probability due to Lemma 2.13. This condition will eventually be

applied with � = 
� and 9 = ��. We allow a general choice of � and 9 in the condition statement
since we will choose the parameter �3 in condition 3 before we choose the parameters �, �8, �9
involved in the definitions of 
� and ��. The condition will be used in two places: to lower-bound
the Euclidean distance between two points on a �ℎ−��

-geodesic in terms of their �ℎ-distance
(Lemma 5.11); and to link up a point on a �ℎ−��

-geodesic which is close to X�� with a path in
�� (Lemma 5.21).
Condition 4 is in some sense the most important condition in the definition of ��. Due to the

definition of ��,�� from Subsection 5.3, this condition provides a large collection of ‘good’ pairs of
points �, � ∈ �� such that �̃ℎ(�, �) ⩽ ^′

0
�ℎ(�, �). The fact that we consider the event ��,�� in this

condition is the reason why we need to require that � ∈ �−10. We will need to make � small
in order to make the set of test points � ∈ ³� of (5.24) large, so that we can apply a long-range
independence result for the GFF (Lemma 2.3) to say that condition 4 occurs with high probability.
See Lemma 5.13.
Condition 5 has high probability due to Lemma 2.8, and will be used in Subsection 5.10. More

precisely, we will consider a segment of a �ℎ−��
-geodesic which is contained in a small Euclidean

neighborhood of the ball b©��
(��,��) in the definition of ��,��. We will use the paths around annuli

provided by condition 5 to ‘link up’ this geodesic segment to a short path from � to the boundary
of this ball, as provided by condition 3 in the definition of ��,�� (see Lemma 5.34).
Condition 6 has high probability due to the local reverseHölder continuity of�ℎ with respect to

the Euclidean metric [36, Proposition 3.8]. This condition will be used in several places, for exam-
ple, to force a�ℎ−��

-geodesic between two points of X
� to stay in a small Euclidean neighborhood
of
� (Lemma 5.22). See also the summary of Subsection 5.8 in Subsection 5.1. The requirement that
|� − &| ⩽ ª−1�5� is needed to make the condition occur with high probability (cf. [36, Proposition
3.8]).
Condition 7 has high probability due to a straightforward argument based on tightness across

scales and the fact that there are only finitely many possibilities for �−1�� (see Lemma 5.15). This
conditionwill be used to check the condition on�ℎ(around ��) in hypothesis A for ��. The reason
why we need to require that each point of the outer boundary of �� is close to the path Π is as
follows. In the proof of Lemma 5.21, wewill consider a�ℎ−��

-geodesic /� and times � < R at which
it hits X
�.Wewill upper-bound R − � = �ℎ−��

(/�(�), /�(R)) by concatenating a segment ofΠwith
segments of small loops surrounding /�(�) and /�(R) which are provided by condition 3. The
condition on Π is needed to ensure that these small loops actually intersect Π.
Recall that �� ∶ C → [0, �8]. Condition 8 has high probability due to Lemma 2.14. We will even-

tually apply this condition with 9 = �� in order to say that a �ℎ−��
-geodesic cannot spend much

time in the region 
� ⧵ �� where �� takes values strictly between 0 and �8 (see Lemmas 5.28
and 5.32). The reason why we allow a general choice of 9 in the condition statement is that

� = b�9�

(��), and hence also ��, depends on the parameter �9, which needs to be made small
enough to make the probability of condition 8 close to 1.
The purpose of condition 9 is to check the Radon–Nikodym derivative hypothesis B from Sub-

section 4.1, see Proposition 5.17. This condition occurs with high probability due to the scale
invariance of the law of ℎ, modulo additive constant, and the fact that there are only finitely many
possibilities for ��(�⋅) (Lemma 5.16).
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5.6 Properties of ´°

We first check that �� satisfies an appropriate measurability condition.

Lemma5.8. The event�� is almost surely determined byℎ|A�,4�(0)
, viewedmodulo additive constant.

Proof. By Weyl scaling (Axiom III) that the occurrence of �� is unaffected by adding a constant
to ℎ, so �� is almost surely determined by ℎ viewed modulo additive constant. It is immediate
from locality (Axiom II; see also Subsection 2.2) that each condition in the definition of �� except
possibly condition 4 is almost surely determined by ℎ|

A�,4�(0)
. Lemma 5.7 implies that condition 4

is almost surely determined by ℎ|
A�,4�(0)

as well. □

Most of the rest of this subsection is devoted to proving the following.

Proposition 5.9. For each p ∈ (0, 1), we can choose the parameters in (5.21) and (5.22) in such a

way that

P[��] ⩾ p, ∀� ∈ �−10. (5.32)

To prove Proposition 5.9, we will treat the conditions in the definition of �� in order. For each
condition, we will choose the parameters involved in the condition, in a manner depending only
on p, ª, and the laws of �ℎ and �̃ℎ, in such a way that the condition occurs with high probability.
For some of the conditions, we will impose extra constraints on the parameters beyond just the
numerical ordering in (5.21) and (5.22). These constraints will be stated and referenced as needed
in the later part of the proof.

Lemma 5.10. There exists �1 > 1∕�2 > �3 > 0 depending only on p, ª, and the laws of �ℎ and �̃ℎ

such that for each � > 0, the probability of each of conditions 1, 2, and 3 in the definition of �� is at

least 1 − (1 − p)∕10.

Proof. By tightness across scales (Axiom V′), we can choose �1, �2 > 0 such that the probabilities
of conditions 1 and 2 are each at least 1 − (1 − p)∕10. By Lemma 2.13, we can choose �3 > 0 such
that the probability of condition 3 is at least 1 − (1 − p)∕10. □

We henceforth fix �1, �2, �3 as in Lemma 5.10. Our next task is to make an appropriate choice
of the parameter �4 appearing in condition 4.

Lemma 5.11. Let � > 0 and assume that conditions 1, 2, and 3 in the definition of �� occur. Let

� ⊂ A�,3�(0) and let9 ∶ C → [0,∞) be a non-negative continuous functionwhich is identically zero

outside of �. Also let /9 be a �ℎ−9(⋅, ⋅;A�,4�(0))-geodesic between two points of Xb4�(0) and define

the times

� ∶= inf {4 > 0 ∶ /9(4) ∈ �} and R ∶= sup{4 > 0 ∶ /9(4) ∈ �}. (5.33)

There exists �4 > 0 depending only on p, ª, and the laws of �ℎ and �̃ℎ such that the following is

true. If
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�ℎ

(
/9(�), /9(R); b4�(0)

)
⩾

�1
2

4�2
�-A�-ℎ�(0), (5.34)

then

|/9(�) − /9(R)| ⩾ �4�. (5.35)

The motivation for our choice of �4 comes from hypothesis C for �� from Subsection 4.1. We
will eventually apply Lemma 5.11 with � = 
�, 9 = ��, and /9 equal to a (b4�(0), 
�)-excursion of
a �ℎ−��

-geodesic between two points of C ⧵ b4�(0) (recall Definition 4.1). The assumption (5.34)
is closely related to the condition (4.4) from hypothesis C. The lower bound for |/9(�) − /9(R)|
from (5.35) will eventually be combined with condition 4 in the definition of �� to ensure that
there is a � ∈ ³� such that ��,� occurs and our �ℎ−��

-geodesic gets Euclidean-close to each of the
points �, � appearing in the definition of ��,� (see Subsection 5.9).
For the proof of Lemma 5.11, we need the following lemma.

Lemma 5.12. Assume we are in the setting of Lemma 5.11 and let �, 9, /9 , �, and R be as in that

lemma. For each � ∈ (0, �3], one has

max
{
�ℎ

(
around A��,�1∕2�(/9(�))

)
, �ℎ

(
around A��,�1∕2�(/9(R))

)}

⩽ 2�2�
��-A�-ℎ�(0). (5.36)

Proof. Let �0 (respectively, R0) be the last time before � (respectively, the first time after R) at which
/9 hits Xb3�(0). By condition 2 in the definition of ��, there is a pathΠ ⊂ A3�,4�(0)with�ℎ-length

at most 2�2�
-A�-ℎ�(0) which disconnects the inner and outer boundaries of A3�,4�(0). Since 9 is

supported on A�,3�(0), the �ℎ−9-length of Π is the same as its �ℎ-length. The path /9 must hit Π

before time �0 and after time R0. Since /9 is a �ℎ−9(⋅, ⋅;A�,4�(0))-geodesic, we infer that

R0 − �0 ⩽ len
(
Π;�ℎ−9

)
⩽ 2�2�

-A�-ℎ�(0). (5.37)

Indeed, otherwise we could replace a segment of /9 by a segment of Π to get a path in A�,4�(0)

with the same endpoints as /9 but shorter �ℎ−9-length.

By condition 3 in the definition of �� applied to the �ℎ−9(⋅, ⋅;A�,4�(0))-geodesic /9|[�0,R0] and
with � = /9(�) and ! = � − �0, for each � ∈ (0, �3],

�ℎ

(
around A��,�1∕2�(/9(�))

)
⩽ ��(� − �0) ⩽ ��(R0 − �0) ⩽ 2���2�

-A�-ℎ�(0), (5.38)

where the last inequality is by (5.37). The analogous bound with R in place of � follows from the
same argument applied with /9 replaced by its time reversal. □

Proof of Lemma 5.11. See Figure 16 for an illustration. By Lemma 5.12, for each � ∈ (0, �3] there is
a path #� ⊂ A��,�1∕2�(/9(�)) such that

len(#�; �ℎ) ⩽ 4���2�
-A�-ℎ�(0). (5.39)
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304 DING and GWYNNE

F IGURE 16 Illustration of the proof of Lemma 5.11. If |/9(�) − /9(R)| < �4�, then the union of the orange

loop #�4
and the segments /9|[��4 ,�] and /9|[R,R�4

] contains a path from /9(�) to /9(R) of �ℎ−9-length less than
�1

2

4�2

�-A�-ℎ�(0). This yields the contrapositive of the lemma statement.

Let �4 ∈ (0, �3] be chosen so that

4�4
��2 <

�1
2

16�2
. (5.40)

By (5.39) and since 9 is non-negative,

len
(
#�4

; �ℎ−9

)
⩽ len

(
#�4

; �ℎ

)
<

�1
2

16�2
�-A�-ℎ�(0). (5.41)

We will prove the contrapositive of the lemma statement with this choice of �4, that is, we will

show that if |/9(�) − /9(R)| < �4�, then �ℎ(/9(�), /9(R); b4�(0)) <
�1

2

4�2
�-A�-ℎ�(0).

If |/9(�) − /9(R)| < �4�, then /9(R) ∈ b�4�
(/9(�)). Since the endpoints of /9 lie in Xb4�(0),

which is disjoint from b�4
1∕2�(/9(�)), it follows that /9 hits #�4

before time � and after time R.
Let ��4 (respectively, R�4

) be the last time before time � (respectively, the first time after time R) at

which /9 hits #�4
. Since /9 is a �ℎ−9(⋅, ⋅;A�,4�(0))-geodesic,

R�4
− ��4 ⩽ len

(
#�4

; �ℎ−9

)
<

�1
2

16�2
�-A�-ℎ�(0).

By the definitions (5.33) of � and R, the path segments /9|[��4 ,�] and /9|[R,R�4 ] are disjoint
from the support of 9. So, the �ℎ−9-lengths of these segments are the same as their �ℎ-lengths.
Consequently,

len
(
/9|[��4 ,�]; �ℎ

)
+ len

(
/9|[R,R�4 ]; �ℎ

)
⩽ len

(
/9|[��4 ,R�4 ]; �ℎ−9

)

= R�4
− ��4 <

�1
2

16�2
�-A�-ℎ�(0). (5.42)

The union of /9([��4 , �]), /9([R, R�4
]), and #�4

contains a path from /9(�) to /9(R). Since � ⊂

b3�(0), this path is contained in b4�(0). We therefore infer from (5.41) and (5.42) that
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�ℎ

(
/9(�), /9(R); b4�(0)

)
⩽

3�1
2

16�2
�-A�-ℎ�(0) <

�1
2

4�2
�-A�-ℎ�(0)

as required. □

Henceforth, fix �4 as in Lemma 5.11. We will now choose � so that condition 4 in the definition
of �� occurs with high probability.

Lemma 5.13. There exists � ∈ (0, ª�4), depending only on p, ª, and the laws of �ℎ and �̃ℎ, such

that

���2 ⩽ ª�1 (5.43)

and the following is true. For each � ∈ �−10, it holds with probability at least 1 − (1 − p)∕10 that

condition 4 in the definition of �� occurs.

Proof. By the definition of �� in (5.23) and the definition of ³�(�) in (5.24), there is a constant
~ > 0 depending only on ®, �4, and ª (hence only on p, ª, and the laws of�ℎ and �̃ℎ) such that for
each � ∈ (0, ª∕®) and each � ∈ �−10, the set ³� = ³�(�) satisfies the following properties.

(i) We have |� − &| ⩾ 50®�� for each distinct �, & ∈ ³�(�) (note that ª is much smaller than
1∕50, see (5.3)).

(ii) Each connected circular arc � ⊂ Xb2�(0)with Euclidean length at least �4�∕4 contains at least
⌊~�−1⌋ points of ³�(�).

Furthermore, there is a constant U > 0 depending only on �4 and a deterministic collection 
of arcs � ⊂ Xb2�(0) such that # ⩽ U, each � ∈  has Euclidean length �4�∕4, and each arc µ ⊂

Xb2�(0) with Euclidean length at least �4�∕2 contains some � ∈  .
By (5.19), for each � ∈ �−10 and each � ∈ ³�(�), we have P[��,��] ⩾ §. By Lemma 5.7, each

��,�� is almost surely determined by ℎ|b3��(�)
, viewedmodulo additive constant. Therefore, we can

apply Lemma 2.3 with ℎ replaced by the re-scaled field ℎ(�⋅), which agrees in law with ℎmodulo
additive constant, and  = �−1(� ∩ ³�) to get the following. If � is chosen to be sufficiently small
(depending on § and U, hence only on p, ª, and the laws of �ℎ and �̃ℎ), then

P

[
⋃

�∈³�∩�

��,��

]
⩾ 1 −

1 − p

10U
, ∀� ∈  .

By a union bound over all � ∈  , we get that with probability at least 1 − (1 − p)∕10, each � ∈ 
contains a point � ∈ ³�(�) such that ��,�� occurs. By the defining property of  , this concludes
the proof. □

We next deal with conditions 5 and 6 in the definition of ��, which amounts to citing some
already-proven lemmas.

Lemma 5.14. There exists �5 ∈ (0, ª(1 − �)­�] (where ­ is as in Lemma 5.2), depending only onp, ª,

and the laws of �ℎ and �̃ℎ, such that for each � > 0, the probability of each of conditions 5 and 6 in

the definition of �� is at least 1 − (1 − p)∕10.
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306 DING and GWYNNE

Proof. The existence of �5 ∈ (0, ª­�] such that condition 5 in the definition of �� each occur with
probability at least 1 − (1 − p)∕10 follows from Lemma 2.8. By the local reverse Hölder continuity
of�ℎ with respect to the Euclideanmetric [36, Proposition 3.8], after possibly shrinking �5 we can
arrange that condition 6 also occurs with probability at least 1 − (1 − p)∕10. □

Wehenceforth fix �5 as in Lemma 5.14.We also let �6 ∈ (0,min{ª�3, �5}) be chosen (in amanner
depending only on pª, and the laws of �ℎ and �̃ℎ) so that

(2�6)
��2 ⩽ ª�5

-(A+3). (5.44)

The particular choice of �6 from (5.44) will be important in the proof of Lemma 5.21.

Lemma 5.15. There exists �7 > 1∕�6, depending only on p, ª, and the laws of�ℎ and �̃ℎ, such that

for each � ∈ �−10, the probability of condition 7 in the definition of �� is at least 1 − (1 − p)∕10.

Proof. The set �� has the topology of a Euclidean annulus and its boundary consists of two piece-
wise smooth Jordan loops. Write Xout�� for the outer boundary of ��, that is, the outer of the two
loops. If � ∈ �−10 is fixed, then as � → 0 the Euclidean Hausdorff distance between the follow-
ing two sets tends to zero: Xout�� and Xb��(X

out��) ∩ �� (that is, the intersection with �� of the
boundary of the Euclidean �-neighborhood of Xout��).
Since we have already chosen � in a manner depending only on p, ª, and the laws of �ℎ and

�̃ℎ, the number of possible choices for �
−1�� is at most a constant depending only onp, ª, and the

laws of�ℎ and �̃ℎ. By combining thiswith the preceding paragraph,we find that there exists � > 0,
depending only on p, ª, and the laws of �ℎ and �̃ℎ, such that for each � ∈ �−10, the Euclidean
Hausdorff distance between Xout�� and Xb��(X

out��) ∩ �� is at most �6�.
By tightness across scales (in the form of Lemma 2.5) and the fact that there are only finitely

many possibilities for �−1��, there exists�7 > 0 such that for each � ∈ �−10, it holds with proba-
bility at least 1 − (1 − p)∕10 that the following is true. There is a pathΠ ⊂ b��(X

out��) ∩ �� which
disconnects Xout�� from Xb��(X

out��) ∩ �� and has �ℎ-length at most �7�
-A�-ℎ�(0).

The pathΠ disconnects the inner and outer boundaries of��, so the existence ofΠ immediately
implies (5.30). Furthermore, by our choice of �, each point � ∈ Xout�� lies at Euclidean distance at
most �6� from a point of Xb��(X

out��) ∩ ��. SinceΠ disconnects Xout�� from Xb��(X
out��) ∩ ��, the

line segment from � to this point of Xb��(X
out��) ∩ �� intersects Π. Consequently, the Euclidean

distance from � to Π is at most �6�. □

We henceforth fix �7 as in Lemma 5.15 and define

�8 ∶=
1

-
max

{
log

�7

ª�5
-(A+3)

, log
�7

ª�1

}
. (5.45)

Recall from (5.27) that �8 is the maximal value attained by ��. We now treat the remaining two
conditions in the definition of ��.

Lemma 5.16. There exists �9 ∈ (0, ª∕�8) and �10 > 1∕�9, depending only on p, ª, and the laws

of �ℎ and �̃ℎ, such that for each � ∈ �−10, the probability of each of conditions 8 and 9 in the

definition of �� is at least 1 − (1 − p)∕10.
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Proof. Since we have already chosen � in a manner depending only on p, ª, and the laws of �ℎ

and �̃ℎ, the number of possible choices for �
−1�� is at most a constant depending only on p, ª,

and the laws of �ℎ and �̃ℎ. The set �� has the topology of a Euclidean annulus and its boundary
consists of two piecewise smooth Jordan loops. By the preceding sentence, the Euclidean length
of each of the two boundary loops of�� is at most a constant (depending only onp, ª, and the laws
of �ℎ and �̃ℎ) times �. We can therefore apply Lemma 2.14 with � = �8 and the curve � given
by each of the two boundary loops of ��, parameterized by its Euclidean length. This shows that
there exists �9 ∈ (0, ª∕�8) depending only on p, ª, and the laws of �ℎ and �̃ℎ such that the event
of condition 8 in the definition of �� for the set X�� occurs with probability at least 1 − (1 − p)∕20.
By a union bound over at most a universal constant times (ª­�)−1 points � ∈ ³�, after possibly

decreasing �9 we can also arrange that with probability at least 1 − (1 − p)∕20, the event of con-
dition 8 occurs for each of the circles Xb©��

(��,��) and Xb©��
(��,��) for � ∈ ³�. Combining this with

the preceding paragraph shows that condition 8 has probability at least 1 − (1 − p)∕10.
The number of possible choices for the function ��(�⋅) is at most a constant depending only on

p, ª, and the laws of �ℎ and �̃ℎ. By the conformal invariance of the Dirichlet inner product and
the scale invariance of the law of ℎ, viewed modulo additive constant,

(ℎ, ��)∇ = (ℎ(�⋅), ��(�⋅))∇
�
= (ℎ, ��(�⋅))∇.

Therefore, we can find �10 > 1∕�9 depending only on p, ª, and the laws of �ℎ and �̃ℎ such that
the probability of condition 9 is at least 1 − (1 − p)∕10. □

Proof of Proposition 5.9. Combine Lemmas 5.10, 5.13, 5.14, 5.15, and 5.16. □

We can also easily check the first two of the three hypotheses for �� from Subsection 4.1.

Proposition 5.17. Let � ∈ �−10. On the event ��, hypotheses A and B in Subsection 4.1 hold for

�0,� = �� with

� = �1, � = �2, � = �7, (5.46)

and an appropriate choice of � > 0 depending only on the parameters from (5.21) and (5.22) (hence

only on p, ª, and the laws of �ℎ and �̃ℎ). That is, on ��, the following is true.

(A) We have

�ℎ(
�, XA�,3�(0)) ⩾ �1�
-A�-ℎ�(0),

�ℎ(around A3�,4�(0)) ⩽ �2�
-A�-ℎ�(0), and

�ℎ(around ��) ⩽ �7�
-A�-ℎ�(0).

(B) There is a constant � > 0, depending only on the parameters from (5.21) and (5.22), such that

the Radon–Nikodym derivative of the law of ℎ + �� with respect to the law of ℎ, with both

distributions viewed modulo additive constant, is bounded above by � and below by �−1.

Proof. We have 
� ⊂ A1.5�,2.5�(0), so hypothesis A follows immediately from conditions 1, 2, and 7
in the definition of ��. By a standard calculation for the GFF (see, for example, the proof of [34,
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Proposition 3.4]), the Radon–Nikodym derivative of the law of ℎ + �� with respect to the law of ℎ,
with both distributions viewed modulo additive constant, is equal to

exp
(
(ℎ, ��)∇ −

1

2
(��, ��)∇

)
,

where (⋅, ⋅)∇ is the Dirichlet inner product. Since the number of possibilities for ��(�⋅) is at most a
constant depending only onp, ª, and the laws of�ℎ and �̃ℎ, we infer that (��, ��)∇ is bounded above
by a constant U depending only on p, ª, and the laws of �ℎ and �̃ℎ (cf. the proof of Lemma 5.16).
By combining this with condition 9 in the definition of ��, we get that on ��, we have the Radon–
Nikodym derivative bounds

exp
(
−�10 −

1

2
U
)

⩽ exp
(
(ℎ, ��)∇ −

1

2
(��, ��)∇

)
⩽ exp(�10).

This gives hypothesis B with � = exp(�10 + U∕2). □

Most of the rest of this section is devoted to checking hypothesis C of Subsection 4.1 for the
events ��.

Proposition 5.18. Fix ^′ > ^′
0
. If ª is chosen to be small enough (in a manner depending only on

the laws of �ℎ and �̃ℎ) and the parameters from (5.21) and (5.22) are chosen appropriately, subject

to the constraints stated in the discussion around (5.21) and (5.22), then hypothesis C holds for the

events �� with

� ∶=
�1

2

4�2
and � ∶= �5

-(A+3)�−-�8 . (5.47)

That is, let � ∈ �−10 andassume that�� occurs. Let/� be a�ℎ−��
-geodesic between twopoints ofC ⧵

b4�(0), parameterized by its �ℎ−��
-length. Assume that there is a (b4�(0), 
�)-excursion (�′, �, R, R′)

for /� (Definition 4.1) such that

�ℎ(/�(�), /�(R); b4�(0)) ⩾ ��-A�-ℎ�(0). (5.48)

There exist times � ⩽ ! < 4 ⩽ R such that

4 − ! ⩾ ��-A�-ℎ�(0) and �̃ℎ−��

(
/�(!), /�(4);A�,4�(0)

)
⩽ ^′(4 − !). (5.49)

The proof of Proposition 5.18 will occupy Subsections 5.8 through 5.11.

5.7 Proof of Proposition 4.2 assuming Proposition 5.18

In this subsection, we will assume Proposition 5.18 and deduce Proposition 4.2. As explained in
Section 4, this gives us a proof of our main results modulo Proposition 5.18.
Assume that the parameters from (5.21) and (5.22) are chosen so that the conclusions of Propo-

sitions 5.9 and 5.18 are satisfied. Let0 be as in (5.2) and let ∶= �−10. Since0 ⊂ {8−q}q∈N,
we have �′∕� ⩾ 8 whenever �, �′ ∈  with �′ > �, so (4.2) holds.
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The event �� is defined for each � ∈ . By Lemma 5.8, the event �� is almost surely determined
by ℎ|

A�,4�(0)
, viewed modulo additive constant. By Proposition 5.9, P[��] ⩾ p for each � ∈ . By

the definitions in Subsection 5.4, the sets �� and 
� and the functions �� satisfy the requirements
for�0,�, 
0,�, and �0,� from Subsection 4.1, with themaximal value of �� given by� = �8. By Propo-
sitions 5.17 and 5.18, the event �� satisfies hypotheses A, B, and C from Subsection 4.1 for � = 0,
with the parameters �, �, �, �, �, � depending on the parameters from (5.21) and (5.22).
To check the needed parameter relation (4.3), we observe that Proposition 5.17 gives � = �1,

� = �2, and � = �7. By (5.21), we immediately get � ⩾ �. Furthermore, by (5.47),

2�

�
� =

2�2

�1
×

�1
2

4�2
=

�1
2
. (5.50)

Moreover, by (5.45),

� − 4�−-�� = �1 − 4�−-�8�7 ⩾ �1 − 4ª�1 >
�1
2
. (5.51)

Combining (5.50) and (5.51) gives the second inequality in (4.3).
For � ∈  and � ∈ C, we define ��,� to be the event �� of Subsection 5.5 with the translated field

ℎ(⋅ − �) − ℎ1(−�)
�
= ℎ in place of ℎ. We also define ��,� ∶= �� + �, 
�,� ∶= 
� + �, and ��,�(⋅) ∶=

��(⋅ − �). By the translation invariance property of weak LQG metrics (Axiom IV′), the objects
��,�, ��,�, 
�,�, and ��,� satisfy the hypotheses of Subsection 4.1.
It remains to prove the asserted lower bound for #( ∩ [�2r, �r]) under the assumption that

P[�̃r(�̃, ^
′′)] ⩾ �̃. By Proposition 3.10 (applied with ^′

0
instead of ^′), the definition (5.2), of 0,

and our choice of � and "0 immediately preceding (5.2), there exists ^
′′ ∈ (^∗, ℭ∗) depending only

on ^′
0
and the laws of �ℎ and �̃ℎ such that the following is true. For each �̃ > 0 there exists �1 > 0,

depending only on p, �̃, and the laws of �ℎ and �̃ℎ, such that for each � ∈ (0, �1] and each r > 0

such that P[�̃r(�̃, ^
′′)] ⩾ �̃, the cardinality of0 ∩ [�2r, �r] is at least 3

4
log8 �

−1. This implies that
if � ∈ (0, �1],

#
( ∩ [�2r, �r]

)
= #

(0 ∩ [��2r, ��r]
)

(since = �−10)

⩾ #
(0 ∩ [(��)2r, ��r]

)
− #

(0 ∩ [(��)2r, ��2r]
)

⩾ #
(0 ∩ [(��)2r, ��r]

)
− log8 �

−1 (since0 ⊂ {8−q}q∈N)

⩾
3

4
log8 �

−1 − log8 �
−1 (since �� ⩽ �1)

⩾
5

8
log8 �

−1 (for small enough � > 0, depending on �).

Thus, Proposition 4.2 has been proven. □

5.8 Initial estimates for a geodesic excursion

To prove our main results, it remains to prove Proposition 5.18. In the rest of this section, we
will assume that we are in the setting of Proposition 5.18, that is, we assume that �� occurs, /�
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310 DING and GWYNNE

is a �ℎ−��
-geodesic between two points of C ⧵ b4�(0), and (�′, �, R, R′) is a (b4�(0), 
�)-excursion

satisfying (5.48). It follows from Definition 4.1 that

/�(�
′), /�(R

′) ∈ Xb4�(0), /�(�), /�(R) ∈ X
�, /�((�
′, R′)) ⊂ b4�(0),

and /�((�
′, �)) ∪ /�((R, R

′)) ⊂ b4�(0) ⧵ 
�. (5.52)

We will prove (5.49) via a purely deterministic argument. We first check the following lemma,
which will enable us to apply conditions 3 and 8 in the definition of �� to /�|[�′,R′].

Lemma 5.19. The path /�|[�′,R′] is contained in A�,4�(0) and is a �ℎ−��
(⋅, ⋅;A�,4�(0))-geodesic

between two points of Xb4�(0).

Proof. We have /�|(�′,R′) ⊂ b4�(0) and /�(�
′), /�(R

′) ∈ Xb4�(0) by (5.52). We claim that /� does

not enter b�(0). Assume the claim for the moment. Then /�|(�′,R′) ⊂ A�,4�(0). Since /� is a �ℎ−��
-

geodesic, the�ℎ−��
-length of /�|[�′,R′] is the same as the�ℎ−��

-distance between its endpoints. We

conclude that /�|(�′,R′) is a path in A�,4�(0) whose �ℎ−��
-length is the same as the �ℎ−��

-distance

between its endpoints, which is at most the �ℎ−��
(⋅, ⋅;A�,4�(0))-distance between its endpoints.

Hence, /�|[�′,R′] is a �ℎ−��
(⋅, ⋅;A�,4�(0))-geodesic.

It remains to show that /� does not enter b�(0). Assume by way of contradiction that /� ∩

b�(0) ≠ ∅. By condition 7 (internal distance in ��) in the definition of ��, there is a path Π in
�� which disconnects the inner and outer boundaries of �� such that

len(Π;�ℎ) ⩽ 2�7�
-A�-ℎ�(0).

Let �0 (respectively, R0) be the first (respectively, last) time that /� hits Π.
Since /� is a �ℎ−��

-geodesic and �� ≡ �8 on ��,

R0 − �0 = �ℎ−��
(/�(�0), /�(R0)) ⩽ len

(
Π;�ℎ−��

)
⩽ 2�−-�8�7�

-A�-ℎ�(0). (5.53)

On the other hand, since �� ⊂ A1.5�,2.5�(0) and we are assuming that /� hits b�(0), it follows that
/� must cross between the inner and outer boundaries of the annulus A�,1.5�(0) between time �0
and time R0. Since �� ≡ 0 on A�,1.5�(0) and by condition 1 (lower bound for distance across) in the
definition of ��,

R0 − �0 = len
(
/�|[�0,R0]; �ℎ−��

)
⩾ �ℎ

(
across A�,1.5�(0)

)
⩾ �1�

-A�-ℎ�(0). (5.54)

By our choice of �8 in (5.45), the right side of (5.53) is smaller than the right side of (5.54), which
supplies the desired contradiction. □

From Lemma 5.11, we now obtain the following.

Lemma 5.20. We have

|/�(R) − /�(�)| ⩾ �4�.
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F IGURE 17 Illustration of the proof of Lemma 5.21. We obtain a path from a point of /�([�
′, �]) to a point of

/�([R, R
′]) whose �ℎ−��

-length is at most the right side of (5.55) by concatenating segments of #� , Π, and #R . This

implies an upper bound for R − � since /� is a �ℎ−� -geodesic.

Proof. Due to Lemma 5.19 and (5.48), this follows from Lemma 5.11 applied with � = 
�, 9 = ��,
and /9 equal to the �ℎ−��

-geodesic /�|[�′,R′]. □

By (5.52), we have /−1
� (
�) ⊂ [�, R]. We will now establish an upper bound for the length of this

time interval.

Lemma 5.21. We have

R − � ⩽
1

2
�5

-(A+3)�-A�-ℎ�(0). (5.55)

Proof. See Figure 17 for an illustration. Let �6 ∈ (0, ª�3] be as in (5.44). By Lemma 5.19, we can
apply Lemma 5.12 (with � = 2�6) to the �ℎ(⋅, ⋅;A�,4�(0))-geodesic /�|[�′,R′] to get that there are
paths #� ⊂ A2�6�,(2�6)

1∕2�(/�(�)) and #R ⊂ A2�6�,(2�6)
1∕2�(/�(R)) which disconnect the inner and

outer boundaries of their respective annuli such that

max{len(#�; �ℎ), len(#R; �ℎ)} ⩽ (2�6)
��2�

-A�-ℎ�(0) ⩽ ª�5
-(A+3)�-A�-ℎ�(0), (5.56)

where the last inequality is by (5.44). Let �0 be the last time before � that /� hits #� and let R0 be
the first time after R that /� hits #R. Then �0 ∈ [�′, �] and R0 ∈ [R, R′].
By condition 7 (internal distance in ��) in the definition of ��, there is a path Π ⊂ �� which

disconnects the inner and outer boundaries of ��, has �ℎ-length at most �7�
-A�-ℎ�(0), and such

that each point of the outer boundary of �� lies at Euclidean distance at most �6� from Π. We
have /�(�) ∈ X
� = Xb�9�

(��) and /([�′, �]) is contained in the unbounded connected component
of C ⧵ ��. Hence, /�(�) lies at Euclidean distance at most �9� from the outer boundary of ��.
Therefore, the Euclidean distance from /�(�) to Π is at most (�9 + �6)� ⩽ 2�6�, where we use that
�9 ⩽ �6 by definition.
Since #� ⊂ A2�6�,(2�6)

1∕2�(/�(�)) and #� disconnects the inner and outer boundaries of
A2�6�,(2�6)

1∕2�(/�(�)), it follows from the preceding paragraph that #� intersectsΠ. Similarly, #R

intersects Π. Hence, the union of the loops Π, #�, and #R contains a path from /�(�0) to /�(R0).
Therefore,

R − � ⩽ R0 − �0 = �ℎ−��
(/�(�0), /�(R0))

⩽ len
(
#�; �ℎ−��

)
+ len

(
#R; �ℎ−��

)
+ len

(
Π;�ℎ−��

)
(5.57)
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312 DING and GWYNNE

Let us now bound the right side of (5.57). Since �� is non-negative, the �ℎ−��
-length of each of

#� and #R is at most the right side of (5.56). Since �� ≡ �8 on ��,

len
(
Π;�ℎ−��

)
= �−-�8 len(Π;�ℎ) ⩽ �−-�8�7�

-A�-ℎ�(0) ⩽ ª�5
-(A+3)�-A�-ℎ�(0), (5.58)

where the last inequality uses the definition (5.45) of�8. Plugging these estimates into (5.57) gives

R − � ⩽ 3ª�5
-(A+3)�-A�-ℎ�(0), (5.59)

which is stronger than (5.55). □

Combining Lemma 5.21 with condition 6 (reverse Hölder continuity) in the definition of ��

allows us to show that any segment of /�|[�,R] which is disjoint from 
� must have small Euclidean
diameter.

Lemma 5.22. Each segment of /�|[�,R] which is disjoint from 
� has Euclidean diameter at most

�5�. In particular,

/�([�, R]) ⊂ b�5�
(
�).

Proof. Suppose byway of contradiction that there is a segment/�|[4,!] for times � ⩽ 4 < ! ⩽ Rwhich

is disjoint from 
� and has Euclidean diameter larger than �5�. By (5.52), /�([�, R]) intersects 
�.
Hence, by possibly replacing /�|[4,!] by a segment of /� which travels from X
� to Xb�5�

(
�), we can
assumewithout loss of generality that/�([4, !]) is contained inb�5�

(
�), which in turn is contained
inA1.5�,3�(0) by the definition of 
� (Subsection 5.4). By the reverse Hölder continuity condition 6
in the definition of ��, the�ℎ-length of /�|[4,!] is at least �5-(A+3)�-A�-ℎ�(0). Since �� is supported on


�, the �ℎ−��
-length of /�|[4,!] is equal to its �ℎ-length, so is also at least �5

-(A+3)�-A�-ℎ�(0). Since
/�|[�,R] is a �ℎ−��

-geodesic, we therefore have

R − � ⩾ ! − 4 ⩾ �5
-(A+3)�-A�-ℎ�(0). (5.60)

This contradicts Lemma 5.21. □

5.9 Forcing a geodesic to enter balls centered at ·¸,¹° and º¸,¹°

Recall the balls b©��
(��,��) and b©��

(��,��) appearing in the definition of the ‘building block’ event

��,�� from Subsection 5.3. On ��,��, there are points � ∈ b©��
(��,��) and � ∈ b©��

(��,��) which sat-

isfy �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �), plus several other conditions. To prove Proposition 5.18, we want to

force /� to get �ℎ−��
-close to each of � and � for one of these pairs of points �, �, then apply the

triangle inequality. To do this, the first step is to force /� to get close to the balls b©��
(��,��) and

� ∈ b©��
(��,��) for some � ∈ ³� such that ��,�� occurs.Wewill carry out this step in this subsection.

Our goal is to prove the following lemma.

Lemma 5.23. Let ³� ⊂ Xb2�(0) be as in (5.24). There exists � ∈ ³� such that ��,�� occurs and the

following is true. Let ©��, ��,��, and ��,�� be the radius and points as in the definition of ��,��. There
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F IGURE 18 Illustration of the statement of Lemma 5.23. Left: The set 
� (light blue) and the path segment

/�|[�,R]. For simplicity, we have not drawn the details of 
� except in the �9�-neighborhood of the set

¨�,�� ∪ b©��
(��,��) ∪ b©��

(��,��). The set �� is not shown. Right: The left panel zoomed in on the purple box. We

have shown a subset of �� (light blue) and a subset of 
� ⧵ �� (lighter blue). By (5.62), the path segment /�|[J,K] is
required to stay region outlined in orange.

exist times � ⩽ J < K ⩽ R which satisfy the following conditions:

/�(J), /�(K) ∈ Xb©��+�9�
(��,��), |/�(K) − /�(J)| ⩾ ©��∕8, and (5.61)

/�([J, K]) ⊂ b©��+(�9+�5)�
(��,��) ⧵

(

� ⧵ b©��+�9�

(��,��)
)
. (5.62)

Moreover, the same is true with ��,�� in place of ��,�� .

See Figure 18 for an illustration of the statement of Lemma 5.23. Before discussing the proof,
we make some comments on the statement. The ball b©��+�9�

(��,��) appearing in Lemma 5.23 is
significant because, by the definition of 
�� in (5.26), this is the largest Euclidean ball centered at
��,�� which is contained in
��. The significance of the ballb©��+(�9+�5)�

(��,��) appearing in (5.62) is
that by Lemma 5.22, the path/�|[�,R] cannot exit the �5�-neighborhood of
�.Wenote that ©�� ⩾ ­��

(Lemma 5.2), which is much larger than �5� (Lemma 5.14), which in turn is much larger than �9�

(recall the discussion surrounding (5.21)). So, the balls in (5.61) and (5.62) are only slightly larger
than b©��

(��,��).
Lemma 5.23 will be a consequence of Lemmas 5.20 and 5.22 (which give a lower bound for

|/�(�) − /�(R)| and an upper bound for the Euclidean diameter of any segment of /� which is dis-
joint from 
�), condition 4 in the definition of �� (which gives lots of points � ∈ ³� for which ��,��
occurs), and some basic geometric arguments based on the definition of �� from Subsection 5.4.
We encourage the reader to look at Figure 19 while reading the proof. Let us start by explain-

ing why we can apply condition 4 in the definition of ��. We have /�(�), /�(R) ∈ X
� by (5.52)
and |/�(R) − /�(�)| ⩾ �4� by Lemma 5.20. Moreover, by the definition of 
� in Subsection 5.4,
the Euclidean distance from each point of 
� to Xb2�(0) is at most 100��, which by our choice
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F IGURE 19 Left: The connected components �� , �R , *, *′ of 
� ⧵ [»(�) ∪ »(�) ∪ »(�′) ∪ »(�′)] and the

point /�(�0) where /� first enters �
R . For simplicity we have drawn �� and �R as ‘blobs’ rather than showing the

details of how 
� is defined in Subsection 5.4 (cf. Figure 15). Right: A zoomed-in view in the purple box from the

left figure. Here K0 is the first time that /� hits *, J0 is the last time before K0 at which /� exits �
� , J is the first

time after J0 at which /� hits X»(�), and K is the last time before K0 at which /� exits »(�). In the figure, we have

J ≠ J0 and K = K0, but any combination of J = J0 or J ≠ J0 and/or K = K0 or K ≠ K0 is possible.

of � in Lemma 5.13 is at most 100ª�4� ⩽ �4�∕100. Therefore, the set Xb2�(0) ⧵ [b100��(/�(�)) ∪

b100��(/�(R))] consists of two disjoint connected arcs of Xb2�(0) which each have Euclidean
length at least �4�∕2. Let � (respectively, �′) be the one of these two arcs which goes in the
counterclockwise (respectively, clockwise) direction from b100��(/�(�)) to b100��(/�(R)).
By condition 4 in the definition of ��, there exist � ∈ � ∩ ³� and �′ ∈ �′ ∩ ³� such that ��,�� and

��′,�� both occur. To lighten notation, we write

� ∶= ��,��, � ∶= ��,��, �′ ∶= ��′,��, �′ ∶= ��′,��

and

»(&) ∶= b©��+�9�
(&), ∀& ∈ {�, �, �′, �′}. (5.63)

The set 
� ⧵ [»(�) ∪ »(�) ∪ »(�′) ∪ »(�′)] consists of exactly four connected components which
each lie at Euclidean distance at least ©��∕4 from each other. We call these connected components
��, �R, *, *′. We can choose the labeling so that with ¨�,�� and ¨�′,�� the half-annuli as in the
definitions of ��,�� and ��′,��,

/�(�) ∈ X��, /�(R) ∈ X�R, * ⊂ b�9�
(¨�,��) and *′ ⊂ b�9�

(¨�′,��). (5.64)

We note that the boundary of each of these connected components intersects exactly two of the
boundaries of the balls »(&) for & ∈ {�, �, �′, �′}. See Figure 19, left, for an illustration.
Let �0 be the first time that /�|[�,R] hits�

R
(this time is well-defined since we know that /�(R) ∈

X�R). By Lemma 5.22, each segment of /�|[�,R] which is disjoint from 
� has Euclidean diameter
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at most �5�, which is much smaller than ©��∕4. It follows that either /�(�0) ∈ b�5�
(»(�)) ∩ �

R
or

/�(�0) ∈ b�5�
(»(�′)) ∩ �

R
. For simplicity, we henceforth assume that

/�(�0) ∈ b�5�
(»(�)) ∩ �

R
; (5.65)

the other case can be treated in an identical manner.
Most of the rest of the proof will focus on what happens near »(�). See Figure 19, right, for an

illustration. We first define a time K0 such that /�(K0) will be Euclidean-close to the point /�(K)

from Lemma 5.23.

Lemma 5.24. Let K0 be the smallest 4 ⩾ � for which /�(K0) ∈ *. Then K0 < �0 and /�(K0) ∈ X* ∩

b�5�
(»(�)).

Proof. The path /�|[�,�0] travels from X�� to b�5�
(»(�)) ∩ �

R
and does not enter �R. The set 
� ⧵

(�R ∪ *) has two connected components which lie at Euclidean distance at least (1 − �)��∕2 ⩾

�5� (recall our choice of �5 from Lemma 5.14) from each other, one of which contains »(�) and
the other of which contains ��. By Lemma 5.22, /�|[�,�0] cannot travel Euclidean distance more
than �5� without hitting 
�. Hence, /�|[�,�0] must hit * before it hits �

R
. Therefore, K0 < �0 and

/�(K0) ∈ X*. Furthermore, since »(�) and �� are contained in different connected components
of 
� ⧵ (�R ∪ *) and by the definitions of K0 and �0, we have /�([�, K0]) ∩ (�R ∪ * ∪ »(�)) = ∅.
We need to show that /�(K0) ∈ b�5�

(»(�)). Indeed, since /�|[�,K0] cannot hit �
R ∪ * ∪ »(�) and

cannot travel Euclidean distance more than �5� outside of 
�, it must be the case that

/�(K0) ∈ b�5�

(
�� ∪ *′ ∪ »(�) ∪ »(�′) ∪ »(�′)

)
.

The sets ��, *′, »(�′), and »(�′) each lie at Euclidean distance larger than �5� from *, so since
/�(K0) ∈ X* we must have /�(K0) ∈ b�5�

(»(�)). □

Next, we define a time J0 such that /�(J0) will be Euclidean-close to the point /�(J) from
Lemma 5.23.

Lemma 5.25. Let J0 be the last time 4 before K0 for which /�(4) ∈ �
�
. Then

|/�(K0) − /�(J0)| ⩾ ©��∕4 and /�([J0, K0]) ⊂ b�5�
(»(�)) ⧵ (
� ⧵ »(�)). (5.66)

Proof. Since/�(K0) ∈ X* and the Euclidean distance from�� to* is at least ©��∕4, we immediately
obtain that |/�(K0) − /�(J0)| ⩾ ©��∕4. It remains to prove the inclusion in (5.66).
By definition, the set /�([J0, K0]) is disjoint from �� ∪ *. Furthermore, by Lemma 5.22, each

segment of /�|[J0,K0] which is not contained in 
� has Euclidean diameter at most �5�. Therefore,

/�([J0, K0]) ⊂ b�5�

(
�R ∪ *′ ∪ »(�) ∪ »(�) ∪ »(�′) ∪ »(�′)

)
. (5.67)

The set on the right side of (5.67) has two connected components, one of which is equal to
b�5�

(»(�)) and the other of which contains the other five sets in the union. Since /�(K0) ∈

b�5�
(»(�)) (Lemma 5.24), we get that /�([J0, K0]) ⊂ b�5�

(»(�)) and /�([J0, K0]) is disjoint from
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�R ∪ *′ ∪ »(�) ∪ »(�′) ∪ »(�′). Since we already know that /�([J0, K0]) is disjoint from �� ∪ *,
we obtain the inclusion in (5.66). □

Proof of Lemma 5.23. Let J be the first time 4 ⩾ J0 such that /�(4) ∈ »(�) and let K be the last time
4 ⩽ K0 such that /�(4) ∈ »(�). Note that wemight have J = J0 and/or K = K0 (see Figure 19, right).
By (5.66), /�|[J0,K0] cannot hit 
� ⧵ »(�). By this and Lemma 5.22, /�|[J0,K0] cannot travel Euclidean
distance more than �5� without entering »(�). Consequently, the times J and K are well-defined
and

max{|/�(J) − /�(J0)|, |/�(K) − /�(K0)|} ⩽ �5�. (5.68)

By (5.66) and (5.68) and the triangle inequality,

|/�(K) − /�(J)| ⩾ ©��∕4 − 2�5�, (5.69)

which is at least ©��∕8 since ©�� ⩾ ­�� ⩾ ª�5 (by our choice of ©�� in Lemma 5.2 and our choice of �5
in Lemma 5.14). By the definitions of J and K, we have /�(J), /�(K) ∈ X»(�). Since J, K ∈ [J0, K0]

and by Lemma 5.25, we also have the inclusion (5.62).
This gives the lemma statement for � = ��,��. The statement with � = ��,�� in place of � follows

by repeating Lemma 5.25 and the argument above with �0 used in place of K0. □

5.10 Forcing a geodesic to get close to ¼ and ½

We henceforth fix � ∈ ³� and times J, K ∈ [�, R] as in Lemma 5.23. We also let � and � be as in
the definition of ��,��, so that � ∈ b©��∕2

(��,��), � ∈ b©��∕2
(��,��), and �̃ℎ(�, �) ⩽ ^′

0
�ℎ(�, �). Recall

that we are trying to force the path /� to get �ℎ−��
-close to each of � and �.

Lemma 5.23 tells us that /� gets Euclidean-close to each of � and �, but this is not sufficient for
our purposes since in the supercritical case�ℎ is not continuouswith respect to theEuclideanmet-
ric. To ensure that /� gets�ℎ−��

-close to each of � and �, wewill need a careful argument involving
several of the conditions in the definitions of ��,�� and ��. The main result of this subsection is
the following lemma.

Lemma 5.26. There is a constantU > 0, depending only on -, such that the following is true. Almost

surely, there exists 4 ∈ [�, R] such that

/�(4) ∈ b©��+(3�5+�9)�
(��,��) and (5.70)

�ℎ−��

(
/�(4), �;A�,4�(0)

)
⩽ Uª�−-�8�̃ℎ(�, �). (5.71)

Moreover, the same is true with � and ��,�� in place of � and ��,��.

Wewill eventually choose ª to bemuch smaller than 1∕U, so that the right side of (5.71) is much
smaller than �−-�8�̃ℎ(�, �). We will only prove Lemma 5.26 for �; the statement with � in place
of � is proven in an identical manner.
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F IGURE 20 Illustration of several of the objects involved in Subsection 5.10. The arc ¾
 ⊂ X»
 is the union

of the red set :acc consisting of points which are accessible from ¾out in »out ⧵ (»
 ∪ /�([J
′, K′]) and the green set

¾
 ⧵ :acc. Note that a connected component of ¾

 ⧵ :acc can contain points of /�([J

′, K′]) in its interior (relative to

¾
).

5.10.1 Setup

Before proceeding with the proof of Lemma 5.26, we introduce some notation. See Figure 20 for
an illustration. We define the Euclidean balls

»� ∶= b©��
(��,��), »
 ∶= b©��+�9�

(��,��), and »out ∶= b©��+(3�5+�9)�
(��,��). (5.72)

The reason why we care about »� and »
 is that by the definitions of �� and 
�, the ball »
�

(respectively, »
) is the largest Euclidean ball centered at ��,�� which is contained in �� (respec-
tively, 
�). The reason why we care about »

out is that by Lemma 5.23, /�|[J,K] cannot exit the ball
b©��+(�5+�9)�

(��,��) ⊂ »out. We need »out to have a slightly larger radius than ©�� + (�5 + �9)� for
the purposes of Lemma 5.34.
We also define

J′ ∶= sup{4 ⩽ J ∶ /�(4) ∈ X»out} and K′ ∶= inf {4 ⩾ K ∶ /�(4) ∈ X»out}. (5.73)

Then J′ < J < K < K′. Furthermore, Lemma 5.23 implies that /�([J, K]) ⊂ »out, so the definitions

of J′ and K′ show that /�([J
′, K′]) ⊂ »out and /�((J

′, K′)) ⊂ »out.
Recall that the point � appearing in Lemma 5.26 is contained in »�. Lemma 5.26 holds

vacuously if � ∈ /�([J
′, K′]), so we can assume without loss of generality that

� ∉ /�([J
′, K′]). (5.74)

The set X»out ⧵ {/�(J
′), /�(K

′)} consists of two disjoint arcs. Since /�|[J′,K′] is a simple curve in

»out which intersects X»out only at its endpoints, it follows that exactly one of these two arcs is
disconnected from � by /�|[J′,K′]. We assume without loss of generality that the clockwise arc of
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F IGURE 2 1 Illustration of the proof of Lemma 5.27. The path /�|[J′ ,K′] must intersect � ∪ �′ ∪ �′′. By our

choices of � and �′′, it must in fact intersect �′.

X»out from /�(J
′) to /�(K

′) is disconnected from �. Let

¾out ∶=
{
open clockwise arc of X»out from /�(J

′) to /�(K
′)
}

¾
 ∶=
{
open clockwise arc of X»
 from /�(J) to /�(K)

}
. (5.75)

Note that /�([J
′, K′]) disconnects ¾out from � in »out, but does not necessarily disconnect ¾
 from

� in»out. By Lemma 5.23, we have |/�(K) − /�(J)| ⩾ ©��∕8, so the Euclidean length of ¾

 satisfies

|¾
| ⩾ ©��∕8. (5.76)

We say that � ∈ ¾
 is accessible from ¾out in »out ⧵ (»
 ∪ /�([J
′, K′])) if there is a path in »out ⧵

(»
 ∪ /�([J
′, K′])) from � to a point of ¾out. Let

:acc ∶=
{
� ∈ ¾
 ∶ � is accessible from ¾out in »out ⧵ (»
 ∪ /�([J

′, K′]))
}
. (5.77)

See Figure 20 for an illustration. One of the main reasons why we are interested in the set :acc is
the following elementary topological fact.

Lemma 5.27. If � ∈ :acc, then every path in »out from � to � hits /�([J
′, K′]).

Proof. See Figure 21 for an illustration. Recall that ¾out and X»out ⧵ ¾out are the open clockwise
and counterclockwise arcs of X»out from /�(J

′) to /�(K
′), respectively. By the assumption made

just before (5.76), /�|[J′,K′] disconnects ¾
out but not X»out ⧵ ¾out from � in »out.

By the definition (5.77) of:acc, there is a path � from � to a point of ¾out in»out which is disjoint

from»
 ∪ /�([J
′, K′]). Furthermore, since/�|[J′,K′] does not disconnect X»

out ⧵ ¾out from� in»out,

there is a path from � to a point of X»out ⧵ ¾out in »out which is disjoint from /�([J
′, K′]).

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 319

Nowconsider a path�′ in»out from� to�. The union� ∪ �′ ∪ �′′ contains a path in»out joining

the two arcs of X»out ⧵ {/�(J
′), /�(K

′)}. Since /�|[J′,K′] is a path in »out, topological considerations
show that /�|[J′,K′] must hit � ∪ �′ ∪ �′′. Since /�|[J′,K′] cannot hit � or �

′′ by definition, we get
that /�|[J′,K′] must hit �

′. □

For � ∈ ¾
, we define

�′ ∶=
©��

©�� + �9�
(� − ��,��) + ��,�� ∈ X»�, (5.78)

so that �′ is the unique point of X»� which lies on the line segment from the center point ��,�� to
�. We also let

:dist ∶=
{
� ∈ ¾
 ∶ �ℎ

(
�′, �; »�

)
⩽ ª�̃ℎ(�, �)

}
. (5.79)

By condition 3 in the definition of ��,��, the set {�′ ∈ X»� ∶ � ∉ :dist} has one-dimensional
Lebesgue measure at most (ª∕2)©��. By scaling, we therefore have

|:dist| ⩾ |¾
| − ª©��. (5.80)

5.10.2 Proof of Lemma 5.26 assuming that the accessible set is not too small

The following lemma tells us that the conclusion of Lemma 5.26 is satisfied provided :acc is not
too small relative to ©��.

Lemma 5.28. If the one-dimensional Lebesgue measure of :acc satisfies |:acc| > 3ª©�� , then there

is a time 4 ∈ [J′, K′] ⊂ [�, R] such that

�ℎ−��

(
/�(4), �; »

�
)

⩽ 2ª�−-�8�̃ℎ(�, �). (5.81)

We note that Lemma 5.28 implies that if |:acc| > 3ª©��, then the conclusion of Lemma 5.26

holds with U = 2. This is because /�([J
′, K′]) ⊂ »out and »� ⊂ A�,4�(0).

The idea of the proof of Lemma 5.28 is that if |:acc| > 3ª©��, then by (5.80) there must be a
point � ∈ :acc ∩ :dist. By Lemma 5.27, every path in »out from � to � must hit /�([J

′, K′]). We
then want to use the definition (5.79) of :dist to upper-bound the �ℎ−��

-distance from � to the
intersection point. There is aminor technicality arising from the fact that (5.79) only gives a bound
for the distance from � to �′ ∈ X»�, rather than from � to �. To deal with this technicality, we will
use condition 8 (intersections of geodesics with a small neighborhood of the boundary) in the
definition of �� to say that there are not very many points � ∈ ¾
 for which /� hits the segment
[�, �′].

Proof of Lemma 5.28. Define �′ ∈ X»� for � ∈ ¾
 as in (5.78). Let

Q ∶=
{
� ∈ :acc ∶ /�([J

′, K′]) ∩ [�, �′] ≠ ∅
}
. (5.82)

If � ∈ Q, then �′ lies at Euclidean distance at most �9� from /�([J
′, K′]). By condition 8 in the

definition of �� (in particular, we use the last sentence of the condition), the one-dimensional
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Lebesguemeasure of the set {�′ ∈ X»� ∶ � ∈ Q} is at most ª­�� ⩽ ª©��. By scaling, we get that the
one-dimensional Lebesgue measure of Q is at most 2ª©��.
Hence, if |:acc| > 3ª©��, then |:acc ⧵ Q| > ª©��. By (5.80), this implies that the one-dimensional

Lebesgue measure of :dist ∩ (:acc ⧵ Q) is positive, so there exists � ∈ :dist ∩ (:acc ⧵ Q).

Since � ∈ :dist, the definition (5.79) implies that there is a path � in »� from � to �′ such that

len(�; �ℎ) ⩽ 2ª�̃ℎ(�, �).

The union of � and [�, �′] gives a path in »
 from � to �. Since � ∈ :acc, Lemma 5.27 implies that
the path /�|[J′,K′] must hit � ∪ [�, �′]. Since � ∉ Q, the path /�|[J′,K′] does not hit [�, �

′].

Therefore, /�|[J′,K′] must hit �. Since � ⊂ »� is a path started from � of �ℎ-length at most
2ª�̃ℎ(�, �), we get that

�ℎ

(
/�(4), �; »

�
)

⩽ 2ª�̃ℎ(�, �), (5.83)

where 4 ∈ [J′, K′] is chosen so that /�(4) ∈ �.

Since �� attains its maximum value �8 at each point of �� ⊃ »�, we infer from Weyl scaling
(Axiom III) that

�ℎ−��
(/�(4), �; »

�) = �−-�8�ℎ

(
/�(4), �; »

�
)
.

Combining this with (5.83) gives (5.81). □

5.10.3 The set of arcs of ¾
 ⧵ :acc

In light of Lemma 5.28, for the rest of the proof of Lemma 5.26 we can assume that

|:acc| ⩽ 3ª©��. (5.84)

Intuitively, we do not expect (5.84) to be the typical situation since it implies that /�([J
′, K′]) dis-

connects ‘most’ points of ¾
 from ¾out (recall (5.77)). This, in turn, means that a large portion of
/�([J

′, K′]) is outside of 
�. This is unexpected since /� is a �ℎ−��
-geodesic and �� is non-negative

and supported on 
�, so /�|[J′,K′] should want to spendmost of its time in 
�. However, we are not
able to easily rule out (5.84). We note that Lemma 5.22 does not rule out (5.84) since it could be
that /�|[J′,K′] has many small excursions outside of 
�, each of Euclidean diameter at most �5�.
Hence, we need to prove Lemma 5.26 under the assumption (5.84). This will require a finer

analysis of the structure of the set :acc.
The set ¾
 ⧵ :acc is a countable union of disjoint open arcs of ¾


. Let  be the set of all such
arcs and for µ ∈ , write |µ| for its Euclidean length (equivalently, its one-dimensional Lebesgue
measure). The elements of  are the green arcs in Figure 20.
We now give an outline of the proof of Lemma 5.26 subject to the assumption (5.84). As a con-

sequence of (5.84), we get that ‘most’ points of ¾
 are contained in ¾
 ⧵ :acc, so
∑

µ∈ |µ| is close
to |¾
| (Lemma 5.29). From this and (5.80), we see that ‘most’ of the arcs µ ∈  intersect :dist

(Lemma 5.33). From condition 5 (comparison of distances in small annuli) in the definition of ��

(applied with h = |µ|∕�) and a geometric argument, we get the following. If µ ∈  and �µ is one
of the endpoints of µ, then there is a loop in A2|µ|,3|µ|(�µ) which disconnects the inner and outer
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boundaries and whose �ℎ-length (hence also its �ℎ−��
-length) is bounded above by (|µ|∕�)−1∕4

times (roughly speaking) the �ℎ-length of the segment of /� joining the endpoints of µ. By con-

catenating this loop with a path in »� from � to �′, for a point �′ ∈ µ ∩ :dist, we obtain an upper
bound for �ℎ−��

(�, /�([J
′, K′])) in terms of |µ| and the �ℎ-length of the segment of /� joining the

endpoints of µ (Lemma 5.34).Wewill then use a pigeonhole argument to say that there exists µ ∈ 
for which this last quantity is much smaller than �−-�8�̃ℎ(�, �).
Let us now give the details. We start with a lower bound for the sum of the Lebesgue measures

of the arcs in .
Lemma 5.29. The total one-dimensional Lebesgue measure of the arcs in  satisfies

∑

µ∈
|µ| = |¾
 ⧵ :acc| ⩾ |¾
| − 3ª©��. (5.85)

Proof. We first claim that each point of:acc ⧵ :acc belongs to/�([J
′, K′]) ∩ ¾
. Indeed, suppose� ∈

:acc and � ∉ /�([J
′, K′]). We need to show that � ∈ :acc. Since /�([J

′, K′]) is a Euclidean-closed
set, � lies at positive Euclidean distance from /�([J

′, K′]). Since � ∈ :acc, there exists � ∈ :acc

such that the arc of ¾
 between � and � is disjoint from /�([J
′, K′]). By the definition of:acc (5.77),

there is a path from a point of ¾out to � which is contained in »out ⧵ (»
 ∪ /�([J
′, K′])). The union

of this path and the arc of ¾
 between � and � gives a path from ¾out to � which is contained in

»out ⧵ (»
 ∪ /�([J
′, K′])).

By, for example, Lemma 2.14 (applied to the unit-speed parameterization of the circle X»
),
almost surely the set /�([J

′, K′]) ∩ ¾
 has zero one-dimensional Lebesgue measure. By this, the
previous paragraph, and our assumption (5.84),

∑

µ∈
|µ| = |¾
 ⧵ :acc| = |¾
 ⧵ :acc| ⩾ |¾
| − 3ª©��. □

We will also need the following elementary topological fact.

Lemma 5.30. For each µ ∈ , there is a segment of /�|[J,K] joining the two endpoints of µ which is
contained in »out ⧵ »
.

Proof. See Figure 22 for an illustration. Let Y ⊂ »out ⧵ »
 be the open region bounded by ¾out, ¾
,
and the segments /�([J

′, J]) and /�([K, K
′]). Then Y has the topology of the open unit disk and

µ ⊂ XY. By the definition (5.77) of :acc and since µ ⊂ ¾
 ⧵ :acc, there is no path in Y from µ to ¾out

which is disjoint from /�([J
′, K′]). Hence, /�([J

′, K′]) disconnects µ from ¾out in Y.
Since /�([J

′, J]) ∪ /�([K, K
′]) ⊂ XY and /�([J, K]) ∩ X»out = ∅, the set /�([J

′, K′]) ∩ Y consists
of countably many disjoint segments of /�|[J,K] with endpoints in ¾
. Since /� is continuous, these
segments accumulate only at points of ¾
. Since µ is connected and /�([J

′, K′]) disconnects µ from
¾out in Y, there are times ~, � ∈ [J, K] with ~ < � such that /�(~), /�(�) ∈ ¾
, /�((~, �)) ⊂ Y, and
/�([~, �]) disconnects µ from ¾out in Y.
Let µ̂ be the set of points of ¾
 which are disconnected from ¾out in Y by /�([~, �]) (not including

the endpoints of /�([~, �])). Equivalently, µ̂ is the segment of ¾

 between /�(~) and /�(�). Then µ̂

is a connected open arc of ¾
 which contains µ. Moreover, every path from µ̂ to ¾out in »out ⧵ »


either hits /�([~, �]) or exits Y (in which case it must intersect either /�([J
′, J]) or /�([K, K

′])).
Hence, no such path can be disjoint from /�([J

′, K′]). So, by the definition (5.77) of :acc, we have
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322 DING and GWYNNE

F IGURE 22 Illustration of the proof of Lemma 5.30. The region Y is shown in pink and the desired segment

/�|[~,�] of / is shown in purple.

µ̂ ⊂ ¾
 ⧵ :acc. Since µ̂ is an open arc of ¾

, also µ̂ ⊂ ¾
 ⧵ :acc. Since µ is a connected component of

¾
 ⧵ :acc, it follows that µ̂ = µ. □

5.10.4 Regularity of arcs in 
We will next record some bounds for the sizes of the individual arcs in , starting with an upper
bound.

Lemma 5.31. For each µ ∈ , we have |µ| ⩽ �5�.

Proof. By Lemma 5.30, for each µ ∈  there is a segment of /�|[J,K] joining the endpoints of µ
which is contained in »out ⧵ »
. By Lemma 5.23, /�|[J,K] does not hit 
� ⧵ »
, so this segment of
/�|[J,K] is disjoint from 
�. The Euclidean diameter of this segment is at least |µ|. By Lemma 5.22,
the Euclidean diameter of the segment is at most �5�, so we get |µ| ⩽ �5�, as required. □

We do not have a uniform lower bound for the sizes of the arcs in . But, using condition 8
(intersections of geodesics with a small neighborhood of the boundary) in the definition of ��, we
can say that the small arcs make a negligible contribution to the total one-dimensional Lebesgue
measure of .
Lemma 5.32. Define the set of small arcs

small ∶= {µ ∈  ∶ |µ| ⩽ �9�}. (5.86)

Then ∑

µ∈small

|µ| ⩽ 2ª©��. (5.87)
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Proof. By Lemma 5.30, for each µ ∈  the endpoints of µ are hit by /�|[J′,K′]. Hence, the Euclidean
distance from each point of µ to /�([J

′, K′]) is at most |µ|. In particular, if µ ∈ small, then the
Euclidean distance from each point of µ to /�([J

′, K′]) is at most �9�. This implies that the
Euclidean distance from /�([J

′, K′]) to each point of the arc µ′ ∶= {�′ ∶ � ∈ µ} ⊂ X»� is at most
2�9�, where here we use the notation (5.78).
The arcs µ′ for µ ∈ small are disjoint and we have |µ′| ⩾ |µ|∕2. Therefore, the one-dimensional

Lebesgue measure of the set of points �′ ∈ X»� which lie at Euclidean distance at most 2�9� from
/�([J

′, K′]) is at least

1

2

∑

µ∈small

|µ|.

By condition 8 in the definition of �� (in particular, we use the last sentence of the condition), the
one-dimensional Lebesguemeasure of the set of �′ ∈ X»� which lie at Euclidean distance at most
2�9� from /�([J

′, K′]) is at most ª­��, so

1

2

∑

µ∈small

|µ| ⩽ ª­�� ⩽ ª©��, (5.88)

where the last inequality comes from the definition of ©�� (recall Lemma 5.2). □

We will now consider a certain ‘good’ subset of , and show that the arcs in this subset cover
most of ¾
. Let

∗ ∶= {µ ∈  ∶ |µ| ⩾ �9� and µ ∩ :dist ≠ ∅}. (5.89)

Lemma 5.33. The total one-dimensional Lebesgue measure of the arcs in ∗ satisfies

∑

µ∈∗

|µ| ⩾ |¾
| − 6ª©��. (5.90)

Proof. Let small be as in (5.86). We can write ¾
 as the disjoint union of :acc, the arcs in small,
and the arcs in  with |µ| ⩾ �9�. By the definition (5.89) of ∗,

:dist ⊂ :acc ∪
⋃

µ∈small

µ ∪
⋃

µ∈∗

µ. (5.91)

We therefore have the following string of inequalities:

|¾
| − ª©�� ⩽ |:dist| (by (5.80))

⩽ |:acc| +
∑

µ∈small

|µ| +
∑

µ∈∗

|µ| (by (5.91))

⩽ 3ª©�� + 2ª©�� +
∑

µ∈∗

|µ| (by Lemmas 5.29 and 5.32). (5.92)

Re-arranging gives (5.90). □
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F IGURE 2 3 Illustration of the proof of Lemma 5.34. The orange loop # has �ℎ-length at most

2(|µ|∕�)−1∕4�ℎ(across A|µ|∕4,|µ|∕2(�µ)), and is provided by condition 5 (comparison of distance in small annuli) in

the definition of �� . The point � belongs to µ ∩ :dist. The purple path � goes from � (not pictured) to �′, has

�ℎ-length at most 2ª�̃ℎ(�, �), and is provided by the definition (5.79) of :dist. The bound (5.94) is obtained by

concatenating a segment of # with a segment of �, then bounding �ℎ(across A|µ|∕4,|µ|∕2(�µ)) in terms of 4µ − !µ .

5.10.5 Building a path from a point of /� to �

The following lemma is the main quantitative estimate needed for the proof of Lemma 5.26.

Lemma 5.34. Let µ ∈ ∗ and let �µ be the initial endpoint of µ. There are times J
′ < !µ < 4µ < K′

such that

/�([!µ , 4µ]) ⊂ b3|µ|(�µ), 4µ − !µ ⩾

(
|µ|
4�

)-(A+2)+1∕4

�-A�-ℎ�(0), and (5.93)

�ℎ−��

(
/�(4µ), �;A�,4�(0)

)
⩽ 2ª�−-�8�̃ℎ(�, �) + 2(|µ|∕�)−1∕4(4µ − !µ). (5.94)

Wewill eventually deduce Lemma 5.26 fromLemma 5.34 by showing that there exists an µ ∈ ∗

for which 2|µ|−1∕4(4µ − !µ) is much smaller than �−-�8�̃ℎ(�, �).

Proof of Lemma 5.34. See Figure 23 for an illustration. Throughout the proof we fix µ ∈ ∗.
Step 1: Definition of !µ and 4µ . By Lemma 5.31, we have |µ| ⩽ �5�. Hence, we can apply condition 5

(comparison of distances in small annuli) in the definition of �� with h = |µ|∕� to get that there is
a path # ⊂ A2|µ|,3|µ|(�µ) such that

len(#; �ℎ) ⩽ 2(|µ|∕�)−1∕4�ℎ

(
across A|µ|∕4,|µ|∕2(�µ)

)
. (5.95)

We have �µ ∈ X»
 and /�(K
′) ∈ X»out. The Euclidean distance from X»out to X»
 is 3�5� ⩾ 3|µ|.

Therefore, the path /� must hit both Xb|µ|∕4(�µ) and # between the (unique) time when it hits
�µ and the time K′. Let !µ (respectively, 4µ) be the first time that /� hits Xb|µ|∕4(�µ) (respectively,
#) after the time when it hits �µ . Then J′ < !µ < 4µ < K′ and (since /� cannot travel from �µ to
Xb3|µ|(�µ) without hitting #),

/�([!µ , 4µ]) ⊂ b3|µ|(�µ).
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We will check the other conditions in the lemma statement for this choice of 4µ and !µ .
Step 2: Upper-bound for �ℎ−��

(/�(4µ), �;A�,4�(0)) in terms of �ℎ(across A|µ|∕4,|µ|∕2(�µ)). By the
definition (5.89) of ∗, there exists � ∈ µ ∩ :dist. By the definition (5.79) of:dist, if we let �

′ ∈ X»�

be the point corresponding to � as in (5.78), then there is a path � from � to �′ in »� such that

len(�; �ℎ) ⩽ 2ª�̃ℎ(�, �).

Since � is contained in »�, which is contained in ��, and �� ≡ �8 on ��,

len
(
�; �ℎ−��

)
⩽ 2ª�−-�8�̃ℎ(�, �). (5.96)

The definition (5.89) of ∗ gives |µ| ⩾ �9�, so

|�′ − �µ| ⩽ |µ| + |� − �′| = |µ| + �9� ⩽ 2|µ|.

Since # ⊂ A2|µ|,3|µ|(�µ), it follows that # intersects � and (since 3|µ| ⩽ 3�5�) also # ⊂ »out. Since
/�(4µ) ∈ #, the path # ∪ � contains a path from � to /�(4µ). We have # ∪ � ⊂ »out ⊂ A�,4�(0).
By (5.95) (and the fact that �� is non-negative) and (5.96),

�ℎ−��

(
/�(4µ), �;A�,4�(0)

)

⩽ len
(
�; �ℎ−��

)
+ len

(
#;�ℎ−��

)

⩽ 2ª�−-�8�̃ℎ(�, �) + 2(|µ|∕�)−1∕4�ℎ

(
across A|µ|∕4,|µ|∕2(�µ)

)
. (5.97)

Step 3: Comparing 4µ − !µ . to �ℎ(across A|µ|∕4,|µ|∕2(�µ)). We claim that

4µ − !µ ⩾ �ℎ

(
across A|µ|∕4,|µ|∕2(�µ)

)
. (5.98)

Once (5.98) is established, the bound (5.97) immediately gives (5.94). Furthermore, the lower
bound for 4µ − !µ in (5.93) also follows from (5.98) and the reverse Hölder continuity condition 6
in the definition of �� (applied with � ∈ Xb|µ|∕4(�µ) and & ∈ Xb|µ|∕2(�µ)), which gives

�ℎ

(
across A|µ|∕4,|µ|∕2(�µ)

)
⩾

(
|µ|
4�

)-(A+2)+1∕4

�-A�-ℎ�(0).

Hence, it remains to prove (5.98). Let !′
µ
be the first time after !µ at which /� exits b|µ|∕2(�µ).

Then /�|[!µ ,!′µ] is a path between the inner and outer boundaries of A|µ|∕4,|µ|∕2(�µ). We claim that

/�([!µ , !
′
µ]) ∩ 
� = ∅. (5.99)

Since �� vanishes outside of 
�, (5.99) implies that

4µ − !µ ⩾ !′µ − !µ = len
(
/�|[!µ ,!′µ]; �ℎ−��

)
= len

(
/�|[!µ ,!′µ]; �ℎ

)

⩾ �ℎ

(
across A|µ|∕4,|µ|∕2(�µ)

)
, (5.100)

which is (5.98).
To prove (5.99), we first note that by Lemma 5.30, the path /� does not enter »


 between the
timewhen it hits �µ and the timewhen it hits the other endpoint of µ. Since the Euclidean distance
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between the endpoints of µ is at least |µ|∕2, !′
µ
must be smaller than the timewhen /� hits the other

endpoint of µ. Hence, /�([!µ , !
′
µ
]) ∩ »
 = ∅. In particular, Lemma 5.30 implies that [!µ , !

′
µ
] ⊂ [J, K].

By Lemma 5.21, /�|[J,K] does not hit 
� ⧵ »
. Therefore, (5.99) holds. □

5.10.6 Pigeonhole arguments

In light of Lemma 5.34, we seek an arc µ ∈ ∗ for which 4µ − !µ is much smaller than
(|µ|∕�)1∕4�̃ℎ(�, �). To find such an arc, we will partition the set ∗ based on the Euclidean sizes
of the arcs. Let

T ∶= ⌊log2(1∕�5)⌋ and T ∶= ⌈log2(1∕�9)⌉ − 1. (5.101)

For q ∈ [T,T]Z, let

∗
q
∶=
{
µ ∈ ∗ ∶ |µ| ∈ [2−q−1�, 2−q�)

}
. (5.102)

By Lemma 5.31 and the definition (5.89) of ∗, we have �9� ⩽ |µ| ⩽ �5� for each µ ∈ ∗. Hence, ∗

is the disjoint union of ∗
q
for q ∈ [T,T]Z.

The proof that there exists an arc µ ∈ ∗ for which 4µ − !µ is small is based on a pigeonhole
argument. Lemma 5.33 implies that the total Euclidean length of the arcs in ∗ is close to |¾
|.
Hence, theremust be some q ∈ [T,T]Z for which#∗

q
is larger than a constant times �−12q∕2|¾
|:

otherwise, the sum of the lengths of the arcs in ∗ would be too small (Lemma 5.35). In the proof
of Lemma 5.26, we will then use an argument based on Lemma 5.34 and Markov’s inequality to
show that there must be an µ ∈ ∗

q
for which 4µ − !µ is sufficiently small.

Let us start with the pigeonhole argument for the Euclidean lengths of the arcs in ∗.

Lemma 5.35. Let ­ > 0 be the constant appearing in Lemma 5.2, so that the radius of »� satisfies

©�� ∈ [­��, ­1∕2��]. Almost surely, there exist a random q ∈ [T,T]Z and a collection of arcs ∗∗
q

⊂ ∗
q

such that #∗∗
q

⪰ 2q∕2­�, with a deterministic universal implicit constant, and the balls b3|µ|(�µ) for
µ ∈ ∗∗

q
are disjoint (here �µ is the first endpoint of µ hit by /�, as in Lemma 5.34).

Proof. We have

|¾
|∕2 ⩽ |¾
| − 6ª©�� (since |¾
| ⩾ ©��∕8 by (5.76))

⩽
∑

µ∈∗

|µ| (by Lemma 5.33)

⩽

T∑

q=T

∑

µ∈∗
q

|µ| (since ∗ =
⋃T

q=T ∗
q
)

⩽ �

T∑

q=T

2−q#∗
q

(by (5.102)). (5.103)
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We claim that there exists q ∈ [T,T]Z such that #∗
q
⩾ 2q∕2�−1|¾
|. Indeed, if this is not the case

then (5.103) gives

|¾
|∕2 ⩽ |¾
|
T∑

q=T

2−q∕2 ⇒ 1∕2 ⩽
1

1 − 2−1∕2
2−T∕2

which is not true since 2−T∕2 ⩽ 2�5
1∕2, which is much smaller than (1 − 2−1∕2)∕2.

Henceforth, fix q ∈ [T,T]Z such that #∗
q
⩾ 2q∕2�−1|¾
|. The arcs in ∗

q
are disjoint and have

lengths in [2−q−1�, 2−q�). Hence, for each µ ∈ ∗
q
, the number of arcs in ∗

q
which are contained in

b3|µ|(�µ) is at most some universal constant. It follows that we can find a subcollection ∗∗
q

⊂ ∗
q

such that#∗∗
q

⪰ 2q∕2�−1|¾
| and the ballsb3|µ|(�µ) for µ ∈ ∗∗
q
are disjoint.We conclude by noting

that by (5.76) and our choice of ©�� in Lemma 5.2,

�−1|¾
| ⪰ �−1©�� ⩾ ­�.

□

Proof of Lemma 5.26. Throughout the proof, all implicit constants are required to be deterministic
and depend only on -.
Let q ∈ [T,T]Z and ∗∗

q
⊂ ∗

q
be as in Lemma 5.35, so that #∗∗

q
⪰ 2q∕2­�. For µ ∈ ∗∗

q
, let

J′ < !µ < 4µ < K′ be as in Lemma 5.34. Lemma 5.34 tells us that /�([!µ , 4µ]) ⊂ b3|µ|(�µ). Lemma 5.35
implies that the balls b3|µ|(�µ) are disjoint for different choices of µ ∈ ∗∗

q
. Hence, the intervals

[!µ , 4µ] for µ ∈ ∗∗
q
are disjoint.

In light of Lemma 5.34, we seek µ ∈ ∗∗
q
for which 4µ − !µ is much smaller than (|µ|∕�)1∕4. To

find such an µ, we will first choose a sub-collection of ∗∗
q
, which is not too much smaller than

∗∗
q
, such that the increments 4µ − !µ for µ ∈ ∗∗

q
are all comparable (step 1). We will then use

Lemma 5.34 to upper bound the sum of the increments 4µ − !µ over all arcs µ in this collection
(step 2). Finally, we will use a pigeonhole argument to find an µ for which 4µ − !µ is small (step 3).
Step 1: Finding a sub-collection on which 4µ − !µ is controlled. We seek a collection of dis-

tinct arcs µ1, … , µ� ∈ ∗∗
q

such that � is not too much smaller than #∗∗
q

and the geodesic
time increments 4µ� − !µ� for � = 1,… ,� are all comparable. We will find such a collection via
a pigeonhole argument.
The bound (5.93) of Lemma 5.34 followed by the definition (5.102) of ∗

q
shows that for µ ∈ ∗∗

q
,

4µ − !µ ⩾

(
|µ|
4�

)-(A+3)

�-A�-ℎ�(0) ⩾ 2−(q+2)-(A+3)�-A�-ℎ�(0). (5.104)

By combining this with the crude bound 4µ − !µ ⩽ R − � and Lemma 5.21, we get that for µ ∈ ∗∗
q
,

4µ − !µ ∈ [2−(q+2)-(A+3)�-A�-ℎ�(0), �5
-(A+3)�-A�-ℎ�(0)]

⊂ [2−(q+2)-(A+3)�-A�-ℎ�(0), �-A�-ℎ�(0)]. (5.105)

The number of intervals of the form [I, 2I] for I > 0 needed to cover
[2−(q+2)-(A+3)�-A�-ℎ�(0), �-A�-ℎ�(0)] is at most a constant (depending only on -) times q.
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Consequently, we can find a random I > 0, an integer

� ⪰ q−1#∗∗
q

⪰ q−12q∕2­�, (5.106)

and intervals µ1, … , µ� ∈ ∗∗
q
such that 4µ� − !µ� ∈ [I, 2I] for each � ∈ [1,�]Z.

Since the intervals [!µ� , 4µ� ] for � ∈ [1,�]Z are disjoint, we can choose our numbering so that

!µ1 < 4µ1 < !µ2 < 4µ2 < ⋯ < !µ� < 4µ� . (5.107)

Step 2: Bounding I. We will now use the estimate (5.94) from Lemma 5.34 to show that the
number I from the preceding paragraph must be small relative to �̃ℎ(�, �). For each � ∈ [1,�]Z,
we have |µ�| ∈ [2−q−1�, 2−q�] and 4µ� − !µ� ∈ [I, 2I]. By plugging these bounds into (5.94), we get

�ℎ−��

(
/�(4µ� ), �;A�,4�(0)

)
⪯ ª�−-�8�̃ℎ(�, �) + 2q∕4I, ∀� ∈ [1,�]Z (5.108)

with a universal implicit constant.
By (5.108) (with � = 1 and � = �) and the triangle inequality for the points /(4µ1), �, /(4µ� ),

4µ� − 4µ1 = �ℎ−��

(
/�(4µ1), /�(4µ� );A�,4�(0)

)
⪯ ª�−-�8�̃ℎ(�, �) + 2q∕4I. (5.109)

On the other hand, (5.107) and our choices of � and I around (5.106) shows that

4µ� − 4µ1 ⩾

�∑

�=2

(4µ� − !µ� ) ⩾ (� − 1)I ⪰ q−12q∕2­�I. (5.110)

Combining (5.109) and (5.110) gives

q−12q∕2­�I ⪯ ª�−-�8�̃ℎ(�, �) + 2q∕4I (5.111)

which re-arranges to give

I ⪯
ª

q−12q∕2­� − Y2q∕4
�−-�8�̃ℎ(�, �) (5.112)

for a constant Y > 0 which depends only on -.
Step 3: Conclusion. We have 2q ⩾ 2T ⩾ 1∕(2�5), which can be taken to be as large as we

would like as compared to 1∕(­�) (recall from the discussion surrounding (5.22) that �5 is chosen
after � and the parameters from Lemma 5.2). Hence, we can arrange that q−12q∕2­�I ⩾ 2Y2q∕4.
Therefore, (5.112) gives

I ⪯
q2−q∕2

­�
�−-�8�̃ℎ(�, �). (5.113)

Plugging (5.113) into (5.108) shows that for each � ∈ [1,�]Z,

�ℎ−��

(
/�(4µ� ), �;A�,4�(0)

)
⪯

(
ª +

q2−q∕4

­�

)
�−-�8�̃ℎ(�, �). (5.114)

Since q ⩾ T ⩾ log2(1∕�5) − 1, the coefficient on the right side of (5.114) can be made to be
smaller than 2ª provided the parameters are chosen appropriately. This yields (5.71) for an
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F IGURE 24 Illustration of the proof of Proposition 5.18. We consider a � ∈ ³� for which ��,�� occurs as in

Lemma 5.23. We look at the corresponding pair of points �, � such that �̃ℎ(�, �) ⩽ ^′
0
�ℎ(�, �) and there is a

�̃ℎ-geodesic /̃ from � to � which is contained in ¨�,�� ⊂ �� . Lemma 5.26 tells us that there are times !, 4 for /�

such that �ℎ(/�(4), �) and �ℎ(/�(!), �) are each much smaller than �−-�8 �̃ℎ(�, �) = �̃ℎ−��
(�, �). We then use the

triangle inequality to show that �̃ℎ(/�(4), /�(!)) ⩽ ^′|! − 4|.

appropriate choice of U. The inclusion (5.70) holds since 4µ ∈ [J′, K′] and /�([J
′, K′]) ⊂ »out by

definition (5.73). □

5.11 Proof of Proposition 5.18

Step 1: Choice of ! and 4. See Figure 24 for an illustration. Let � ∈ ³� and �, � ∈ X¨�,�� be as in
Subsection 5.10, so that ��,�� occurs and �, � are as in the definition of ��,��. In particular,

�̃ℎ(�, �) ⩽ ^′0�ℎ(�, �). (5.115)

By Lemma 5.26, almost surely there exists 4 ⊂ [�, R] such that

/�(4) ∈ b©��+(3�5+�9)�
(��,��) and �ℎ−��

(
/�(4), �;A�,4�(0)

)
⩽ Uª�−-�8�̃ℎ(�, �). (5.116)

By the definition of ��,��, we have � ∈ b©��∕2
(��,��). By this, (5.116), and the triangle inequality,

|/�(4) − �| ⩽ ©�� + (3�5 + �9)� +
©��

2
⩽ 2­1∕2��, (5.117)

where the second inequality comes from the fact that ©�� ⩽ ­1∕2�� (Lemma 5.2) and the fact that
each of �5 and �9 can be chosen to be much smaller than ­.
By Lemma 5.26 with ��,�� and � in place of ��,�� and �, there exists ! ∈ [�, R] such that

�ℎ−��

(
/�(!), �;A�,4�(0)

)
⩽ Uª�−-�8�̃ℎ(�, �) and |/�(!) − �| ⩽ 2­1∕2��. (5.118)

We will check the conditions of (5.49) for this choice of ! and 4 (possibly with the order of ! and 4

interchanged).
Step 2: Lower bound for |! − 4|. Recall that the points � and � lie on the inner and outer bound-

aries, respectively, of the annulus A���,��(�). From this, the inequalities for Euclidean distances
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in (5.117) and (5.118), and the triangle inequality, we get

|/�(4) − /�(!)| ⩾ (1 − �)�� − 4­1∕2�� ⩾
1 − �

2
��, (5.119)

where in the last inequality we use that ­1∕2 is much smaller than 1 − � (Lemma 5.2).
This right side of (5.119) is at least �5�, so the reverse Hölder continuity condition 6 in the

definition of �� gives

�ℎ

(
/�(4), /�(!);A�,4�(0)

)
⩾ �5

-(A+3)�-A�-ℎ�(0). (5.120)

By Lemma 5.19, /�|[�′,R′] is a �ℎ−��
(⋅, ⋅;A�,4�(0))-geodesic. In fact, since /�([!, 4]) ⊂ A�,4�(0), we

have that /�|[!,4] is a �ℎ−��
(⋅, ⋅;A�,4�(0))-geodesic. Since �� ⩽ �8, we get from (5.120) that

|! − 4| = �ℎ−��

(
/�(4), /�(!);A�,4�(0)

)

⩾ �−-�8�ℎ

(
/�(4), /�(!);A�,4�(0)

)

⩾ �5
-(A+3)�−-�8�-A�-ℎ�(0) (5.121)

which gives the first inequality in (5.49).
Step 3: upper bound for �̃ℎ−��

(/�(4), /�(!);A�,4�(0)). We now prove the second inequality

in (5.49). From the bi-Lipschitz equivalence of �ℎ and �̃ℎ and Weyl scaling (Axiom III), we get
that �ℎ−��

and �̃ℎ−��
are also bi-Lipschitz equivalent, with the same lower and upper bi-Lipschitz

constants ^∗ and ℭ∗. Therefore, (5.116) and (5.118) imply that

max
{
�̃ℎ−��

(
/�(4), �;A�,4�(0)

)
, �̃ℎ−��

(
/�(!), �;A�,4�(0)

)}
⩽ ℭ∗Uª�−-�8�̃ℎ(�, �). (5.122)

Let /̃ be the �̃ℎ-geodesic from � to �which is contained in¨�,��, as in condition 2 in the definition
of ��,��. Since /̃ is a �̃ℎ-geodesic, /̃ ⊂ ��, and �� attains its maximal value �8 everywhere on ��,

�̃ℎ−��

(
�, �;A�,4�(0)

)
= �−-�8�̃ℎ(�, �). (5.123)

By (5.122), (5.123), and the triangle inequality, followed by (5.115),

�̃ℎ−��

(
/�(4), /�(!);A�,4�(0)

)
⩽ (1 + 2ℭ∗Uª)�−-�8�̃ℎ(�, �)

⩽ (1 + 2ℭ∗Uª)^′0�
−-�8�ℎ(�, �). (5.124)

On the other hand, since �� ⩽ �8, Weyl scaling gives

�ℎ−��
(�, �) ⩾ �−-�8�ℎ(�, �). (5.125)

Hence,

|! − 4| = �ℎ−��
(/�(4), /�(!)) (since /� is a �ℎ−��

-geodesic)

⩾ �ℎ−��
(�, �) − �ℎ−��

(/�(4), �) − �ℎ−��
(/�(!), �) (triangle inequality)

⩾ �−-�8�ℎ(�, �) − 2Uª�−-�8�̃ℎ(�, �) (by (5.116), (5.118), and (5.125))
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⩾ �−-�8�ℎ(�, �) − 2Uª�−-�8ℭ∗�ℎ(�, �) (bi-Lipschitz equivalence)

= (1 − 2ℭ∗Uª)�−-�8�ℎ(�, �). (5.126)

Combining (5.124) and (5.126) gives

�̃ℎ−��

(
/�(4), /�(!);A�,4�(0)

)
⩽

1 + 2ℭ∗Uª

1 − 2ℭ∗Uª
^′0|! − 4|. (5.127)

Since ^′
0
< ^′ and ^′

0
, ^′ depend on the laws of �ℎ and �̃ℎ (recall (5.1)), we can choose ª to be small

enough, in a manner depending only on laws of �ℎ and �̃ℎ, so that

1 + 2ℭ∗Uª

1 − 2ℭ∗Uª
^′0 ⩽ ^′. (5.128)

Then (5.127) gives the second inequality in (5.49). □

ACKNOWLEDGEMENTS

We thank an anonymous referee for helpful comments on an earlier version of this article. Jian
Ding was partially supported by NSF grants DMS-1757479 and DMS-1953848. Ewain Gwynne was
partially supported by a Clay research fellowship.

JOURNAL INFORMATION

The Proceedings of the LondonMathematical Society is wholly owned andmanaged by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. M. Ang, Comparison of discrete and continuum Liouville first passage percolation, Electron. Commun. Probab.

24 (2019), Paper No. 64, 12, 1904.09285. MR4029433.

2. J. Aru, N. Holden, E. Powell, and X. Sun,Mating of trees for critical Liouville quantum gravity, arXiv:2109.00275,

2021.

3. G. Beer, Upper semicontinuous functions and the Stone approximation theorem, J. Approx. Theory 34 (1982),

no. 1, 1–11. MR647707.

4. N. Berestycki, Diffusion in planar Liouville quantum gravity, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015),

no. 3, 947–964, 1301.3356. MR3365969.

5. N. Berestycki and E. Powell, Gaussian free field, Liouville quantum gravity, and Gaussian multiplicative chaos.

https://homepage.univie.ac.at/nathanael.berestycki/Articles/master.pdf.

6. D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33,

American Mathematical Society, Providence, RI, 2001. MR1835418.

7. F. David, Conformal field theories coupled to 2-D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988),

no. 17, 1651–1656.

8. J. Ding, J. Dubédat, A. Dunlap, and H. Falconet, Tightness of Liouville first passage percolation for � ∈ (0, 2),

Publ. Math. Inst. Hautes Études Sci. 132 (2020), 353–403, 1904.08021. MR4179836.

9. J. Ding, J. Dubedat, and E. Gwynne, Introduction to the Liouville quantum gravity metric. arXiv:2109.01252.

10. J. Ding and E. Gwynne, The fractal dimension of Liouville quantum gravity: universality, monotonicity, and

bounds, Comm. Math. Phys. 374 (2018), 1877–1934, 1807.01072.

11. J. Ding and E. Gwynne, Tightness of supercritical Liouville first passage percolation, J. Eur. Math. Soc. (JEMS)

(2020), to appear, 2005.13576.

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



332 DING and GWYNNE

12. J. Ding and E. Gwynne, Regularity and confluence of geodesics for the supercritical Liouville quantum gravity

metric. arXiv:2104.06502.

13. J. Ding and E. Gwynne, The critical Liouville quantum gravity metric induces the Euclidean topology.

arXiv:2108.12067.

14. J. Ding and E. Gwynne,Up-to-constants comparison of Liouville first passage percolation and Liouville quantum

gravity, Sci. China Math. (2021), to appear, 2108.12060.

15. J. Ding, E. Gwynne, and A. Sepúlveda, The distance exponent for Liouville first passage percolation is positive,

Probab. Theory Related Fields 181 (2021), no. 4, 1035–1051, 2005.13570. MR4344137.

16. J. Distler andH.Kawai,Conformal field theory and 2Dquantumgravity, Nucl. Phys. B 321 (1989), no. 2, 509–527.

17. J. Dubédat, H. Falconet, E. Gwynne, J. Pfeffer, and X. Sun, Weak LQG metrics and Liouville first passage

percolation, Probab. Theory Related Fields 178 (2020), no. 1–2, 369–436, 1905.00380. MR4146541.

18. B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333–393,

1206.0212. MR2819163 (2012f:81251).

19. C. Garban, R. Rhodes, and V. Vargas, Liouville Brownian motion, Ann. Probab. 44 (2016), no. 4, 3076–3110,

1301.2876. MR3531686.

20. E. Gwynne, Random surfaces and Liouville quantum gravity, Notices Amer. Math. Soc. 67 (2020), no. 4, 484–

491, 1908.05573. MR4186266.

21. E. Gwynne, The dimension of the boundary of a Liouville quantum gravity metric ball, Comm. Math. Phys. 378

(2020), no. 1, 625–689, 1909.08588. MR4124998.

22. E. Gwynne, N. Holden, J. Pfeffer, and G. Remy, Liouville quantum gravity with matter central charge in (1, 25):

a probabilistic approach, Comm. Math. Phys. 376 (2020), no. 2, 1573–1625, 1903.09111. MR4103975.

23. E. Gwynne, N. Holden, and X. Sun,Mating of trees for random planar maps and Liouville quantum gravity: a

survey, Panor. Synthèses (2019), to appear, 1910.04713.

24. E. Gwynne and J. Miller, Confluence of geodesics in Liouville quantum gravity for � ∈ (0, 2), Ann. Probab. 48

(2020), no. 4, 1861–1901, 1905.00381. MR4124527.

25. E. Gwynne and J. Miller, Local metrics of the Gaussian free field, Ann. Inst. Fourier (Grenoble) 70 (2020), no.

5, 2049–2075, 1905.00379. MR4245606.

26. E. Gwynne and J. Miller,Conformal covariance of the Liouville quantum gravity metric for � ∈ (0, 2), Ann. Inst.

Henri Poincaré Probab. Stat. 57 (2021), no. 2, 1016–1031. 1905.00384. MR4260493.

27. E. Gwynne and J. Miller, Existence and uniqueness of the Liouville quantum gravitymetric for � ∈ (0, 2), Invent.

Math. 223 (2021), no. 1, 213–333, 1905.00383. MR4199443.

28. E. Gwynne and J. Pfeffer, Bounds for distances and geodesic dimension in Liouville first passage percolation,

Electron. Commun. Probab. 24 (2019), no. 56, 12, 1903.09561.

29. E.Gwynne and J. Pfeffer,KPZ formulas for the Liouville quantumgravitymetric, Trans.Amer.Math. Soc. (2019),

to appear.

30. X. Hu, J. Miller, and Y. Peres, Thick points of the Gaussian free field, Ann. Probab. 38 (2010), no. 2, 896–926,

0902.3842. MR2642894 (2011c:60117)

31. J.-P. Kahane, Sur le chaosmultiplicatif, Ann. Sci.Math.Québec 9 (1985), no. 2, 105–150.MR829798 (88h:60099a).

32. A. Kupiainen, R. Rhodes, and V. Vargas, Integrability of Liouville theory: proof of the DOZZ formula, Ann. of

Math. (2) 191 (2020), no. 1, 81–166, 1707.08785. MR4060417.

33. J. Miller andW. Qian, The geodesics in Liouville quantum gravity are not Schramm-Loewner evolutions, Probab.

Theory Related Fields 177 (2020), no. 3–4, 677–709, 1812.03913.

34. J. Miller and S. Sheffield, Imaginary geometry I: interacting SLEs, Probab. Theory Related Fields 164 (2016),

no. 3–4, 553–705, 1201.1496. MR3477777.

35. J. Miller and S. Sheffield, Liouville quantum gravity and the Brownian map II: geodesics and continuity of the

embedding, Ann. Probab. 49 (2021), no. 6, 2732–2829, 1605.03563. MR4348679.

36. J. Pfeffer,Weak Liouville quantum gravity metrics with matter central charge � ∈ (−∞, 25). arXiv:2104.04020.

37. A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), no. 3, 207–210. MR623209

(84h:81093a)

38. E. Powell, Critical Gaussian multiplicative chaos: a review, Markov Process. Relat. Fields 27, (2021), no. 4, 557–

506. MR4396197

39. R. Rhodes and V. Vargas,KPZ formula for log-infinitely divisiblemultifractal randommeasures, ESAIMProbab.

Stat. 15 (2011), 358–371, 0807.1036. MR2870520.

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 333

40. O. Schrammand S. Sheffield,A contour line of the continuumGaussian free field, Probab. Theory Related Fields

157 (2013), no. 1–2, 47–80, 1008.2447. MR3101840.

41. S. Sheffield,Gaussian free fields formathematicians, Probab. TheoryRelated Fields 139 (2007), no. 3–4, 521–541,

math/0312099. MR2322706 (2008d:60120).

42. S. Sheffield,Quantum gravity and inventory accumulation, Ann. Probab. 44 (2016), no. 6, 3804–3848, 1108.2241.

MR3572324.

43. W. Werner and E. Powell, Lecture notes on the Gaussian Free Field, Cours Spécialisés [Specialized Courses],

vol. 28, Société Mathématique de France, Paris, 2021. MR4466634.

 1
4

6
0

2
4

4
x

, 2
0

2
3

, 1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/p

lm
s.1

2
4
9
2
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

8
/1

1
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se


	Uniqueness of the critical and supercritical Liouville quantum gravity metrics
	Abstract
	1 | INTRODUCTION
	1.1 | Overview
	1.2 | Convergence of Liouville first passage percolation
	1.3 | Characterization of the LQG metric
	1.4 | Weak LQG metrics
	1.5 | Outline
	1.5.1 | Optimal bi-Lipschitz constants
	1.5.2 | Main idea of the proof
	1.5.3 | Section 2: Preliminary estimates
	1.5.4 | Section 3: Quantitative estimates for optimal bi-Lipschitz constants
	1.5.5 | Section 4: The core argument
	1.5.6 | Section 5: Constructing events and bump functions


	2 | PRELIMINARIES
	2.1 | Notational conventions
	2.2 | Some remarks on internal metrics
	2.3 | Independence for the GFF
	2.4 | Basic facts about weak LQG metrics
	2.5 | Estimates for distances in disks and annuli
	2.6 | Regularity of geodesics

	3 | QUANTIFYING THE OPTIMALITY OF THE OPTIMAL BI-LIPSCHITZ CONSTANTS
	3.1 | Events for the optimal bi-Lipschitz constants
	3.2 | Proof of Proposition 3.3

	4 | THE CORE ARGUMENT
	4.1 | Properties of events and bump functions
	4.2 | Estimate for ratios of and distances
	4.3 | Proof of Proposition 4.5
	4.4 | Proof of Proposition 4.6
	4.5 | Proof of uniqueness assuming Proposition 4.2

	5 | CONSTRUCTING EVENTS AND BUMP FUNCTIONS
	5.1 | Setup and outline
	5.2 | Existence of a shortcut with positive probability
	5.3 | Building block event
	5.4 | Definitions of , , and 
	5.5 | Definition of 
	5.6 | Properties of 
	5.7 | Proof of Proposition 4.2 assuming Proposition 5.18
	5.8 | Initial estimates for a geodesic excursion
	5.9 | Forcing a geodesic to enter balls centered at and 
	5.10 | Forcing a geodesic to get close to and 
	5.10.1 | Setup
	5.10.2 | Proof of Lemma 5.26 assuming that the accessible set is not too small
	5.10.3 | The set of arcs of 
	5.10.4 | Regularity of arcs in 
	5.10.5 | Building a path from a point of to 
	5.10.6 | Pigeonhole arguments

	5.11 | Proof of Proposition 5.18

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


