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In this paper we study the global well-posedness of the Allen—-Cahn—Ohta—Nakazawa model with
two fixed nonlinear volume constraints. Utilizing the gradient flow structure of its free energy, we
prove the existence and uniqueness of the solution by following De Giorgi’s minimizing movement
scheme in a novel way.
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1. Introduction

Ohta—Nakazawa (ON) model was originally introduced in [7] and has drawn much attention in
materials science, particularly for the study of phase separation of triblock copolymers. Due to their
remarkable ability for self-assembly into nanoscale ordered structures [6], triblock copolymers have
generated much interest in materials engineering. Triblock copolymers are chain molecules made
by three different segment species, say A, B and C species. Due to the chemical incompatibility,
the three species tend to be phase-separated; on the other hand, the two species are connected by
covalent chemical bonds, which leads to the so-called microphase separation. The ON model can
describe such microphase separation for triblock copolymers by the ON free energy functional:
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Here T3 = 1_[1'3=1 [—X;. X;] C R3 denotes a periodic box, and 0 < € < 1 is an interface parameter
that indicates the system is in the deep segregation regime. Phase field label functions that represent
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the density of A and B species are denoted by ¢; = ¢;(x), i = 1,2, respectively. Meanwhile, the
concentration of C species can be implicitly represented by 1 — ¢; (x) — ¢2(x) since the system is
considered to be incompressible. The triple-well potential Wr is of the form

Wr (g1, $2) == W(g1) + W(g2) + W(1 — ¢1 — ¢2),

with W(s) = 18(s? — s5)2. It is noted that Wy has three minima at (1,0, 0), (0, 1,0) and (0,0, 1),
which correspond to the phase separation between the A, B, C species. It is also worth pointing out
that the first integral in (1.1) represents the short-range interaction accounting for the interfacial free
energy of the system and favors large domains with small surface area, while the second integral
term in (1.1) describes long range interaction between chain molecules. We denote by y;;, i, j =
1,2 the strength of such long range interactions, and the constant matrix [y;;]2x2 is assumed to be
symmetric and positive definite.
The newly introduced term

flgi) =3¢7 —2¢7, i=1,22 (1.2)

is adopted to mimic ¢;, as the indicators for the A and B species, respectively. In our earlier work
[9, 10], a similar term has been introduced to some binary system with long-range interaction in
order to study the associated L? gradient flow dynamics and maintain a better hyperbolic tangent
profile for the solution and preserve its maximum principle at both continuous and discrete level.
Meanwhile, we impose the usual fixed volume constraints

I o
@)= [ S = o 1= 12 (13

For technical reasons (see the proof of Proposition 2.5), we assume
w; #0,1, i=1,2, (1.4)

namely, no single species occupies the entire region of T>. The operator (—A)_%u is the square
root of the operator (—A)~'u with periodic boundary condition. Note that u has to have zero mean
for the operator (—A)™!u to be well defined, we will take (—A)~!u := (—A)™'(u — u) when u
is not zero mean. In other words, removal of the zeroth Fourier mode for u will make (—A)™'u
always well defined. Besides, hereafter for any function u, we always set (—A)~'u and (—A)_%u
to be with zero mean.

In order to study the equilibria of the ON model, we consider the L? gradient flow 0;¢; =
—gT]i — Ai f'(¢;) generated by the ON energy functional

2
— e as — 2 Yk AT (@) — k) £1(@0) = M (0 f @) (15)
k=1

$i(x,0) = ¢io(x), (1.6)

for (x,1) € T3 x (0, +00), i, j =1,2andi # j, subject to the volume constraints

—_— 1
f((bi(t)):m[ﬁ f(d)i(t,x))dx:a),-, vVt €[0,400), w; #0,1. .7
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Here w; are given constants and A; (¢) are the corresponding Lagrange multipliers to (1.7):

M:hr%ﬁﬂmmy 0
Jos 1F7 (@) dx

Hereafter, we will refer to (1.5)—(1.6) as Allen—-Cahn—Ohta—Nakazawa (ACON) equations. If
(p1(x,1), Pp2(x,1)) is a solution of the ACON dynamics (1.5)—(1.6), it is well known that it satisfies

2

SEON
dx <0, (1.9)
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31
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which implies that the ON energy is decreasing along the solution trajectory (¢;(x, ), ¢2(x,1)).
This is the so-called energy dissipation law for the general gradient flow dynamics.

The contribution in this paper is that we prove the existence and uniqueness of the solution for
ACON system by following the De Giorgi’s minimizing movement scheme in a novel way. Different
from all existing literature in utilizing this classical implicit Euler scheme to derive the Euler—
Lagrange equations at the discrete level, we identify the limit curve first and use an approximation
of this limit curve to establish the nonlinear terms caused by the nonlinear volume constraints in
discrete Euler-Lagrange equations.

De Giorgi’s minimizing movement scheme [1, 4], which is also referred to as the Rothe’s
method, is an implicit Euler scheme specialized at gradient flows in separable Hilbert spaces (later
extended to general metric spaces). Given a gradient flow d,u = —V F(u), where the energy F
is coercive and lower semicontinuous, this very scheme provides an energy-driven implicit-time
discretization to solve the evolution equation within a natural framework. Considering the gradient
flow (2.2) with the nonlinear volume constraints (1.7), the great advantage to apply De Giorgi’s
minimizing movement scheme is that it ensures the preservation of such volume constraints at
each discrete step. Nevertheless, to prove the existence of solutions to (2.2) there are still essential
difficulties arising from (1.7): after acquiring a discrete sequence (¢{‘r, ¢§r), usually the next step
is to establish the Euler—Lagrange equations for this discrete sequence; however, if we follow
the standard procedures the denominators in the corresponding Lagrange multiplier terms caused
by (1.7) cannot be ensured to be nonzero. To solve this issue, alternatively we identify the limit
curve (¢1(t), ¢2(t)) of the piecewise constant interpolation functional (¢1¢(¢), p2¢(¢)) as T — 0
first, based on the uniform bounds achieved in Lemma 2.4. The assumption (1.4) together with
the refined Arzela—Ascoli theorem in [2] ensures that the quantities [5 | /(¢ (1))|*dx, i = 1,2,
related to the limit curve, stay away from 0, which plays the crucial role to further derive the
Euler-Lagrange equations of the discrete sequence as well as the uniform bound of the discrete
Lagrange multipliers. To the best of our knowledge, this has been the first time that the De Giorgi’s
minimizing movement scheme is used in such a manner. Meanwhile, we also want to point out that
the success of such derivation might be undermined due to the non-integrability of certain terms
in the discrete Lagrange multipliers. Therefore, instead of using the limit curve directly, we shall
perform approximations first by virtue of the classical resolvant operator J; = (I — AA)~! for
sufficiently small A > 0.

Some conventional notations adopted throughout the paper are collected here. We will denote
by || - [l» and || - || s the standard norms for the periodic Sobolev spaces Lfer(T?) and Hp3, (T?).

The standard L? inner product will be denoted by (-, -).
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2. Existence and uniqueness of the solution of ACON system

Without loss of generality, throughout this section, we consider € = 1 in (1.1) and |T3| = 1.
Accordingly EON is replaced by an energy functional E:

E(¢1.¢2) = /1r3 [%(|V¢1|2 + |Véa|* + V¢ 'V¢2) + %WT(¢17¢2):| dx

2 .. 1 .
+ 2 %, fT (072 (f@) = @) x )73 (f@) —wy)] ax. @)

i,j=1

The associated L? gradient flow dynamics (1.5)—(1.6) is replaced by

Apj  1Wr
D = Ay + =~ 379~ 2 AT (@) — ) 90— 1O @) 22)
k=1
¢i (X,O) = ¢i0(x)’ (23)

for (x,t) € T3 x (0, +00), i,j = 1,2andi # j, subject to the volume constraints (1.7). Here
Ai(t) are the corresponding Lagrange multipliers to (1.7) by replacing E°N by E:

a5 /1 ($i) dx

i . 2.4
Y Je (@) dx
2.1 Implicit Euler scheme
We define functional spaces
HL = {u e HY(T3), T(u) = a)i}, i=1,2, 2.5)
and start the argument from the following lemma.
Lemma 2.1. Forany ¢; € Ha‘)i,i = 1,2, one has
162 1371z < 4E (1. p2) + 2. (2.6)
Proof. Using Young’s inequality, we get
4 20k, — 2 2 C_1)2 200 1)2 2
P RO (Bt Bl VAR 1 1, ek e PR Bk L /Y
4 4 4 2 2
Hence

/ i (x)]? dx < / (97 — ¢i)?dx + 2|T3| = / (7 — pi)?dx +2 < / W(¢1)dx + 2.
T3 T3 T3 T3
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Note that the energy E(¢1, ¢2) can be rewritten as
1 1 1
E(¢1.92) = 5/ [§|V¢1|2 + W(¢1)} + |:§|V¢2|2 + W(¢>2)i|
T3

+ BW(I — 1= B)P + Wl — ¢ — @)} dx

2 .. 1 !
+ ) %]/T [ (@0 = @) x 22 (f@#) o)) | ax

i,j=1

and the positive definiteness of [y;;] implies the nonnegativity of the second part of E (¢, ¢2), the
proof is finished by using (2.1). O

Next, for any fixed time step t > 0 and (¢}, ¢5) € L*(T>) x L2(T?), we consider the functional

161 = 03 12203, + 192 = 83 1225,
2T

Fr(p1.02:97.03) = E($1.¢2) +

’

¢i € Hy (T, i =1,2. (2.7)

and prove the existence of its minimizers. To this end, we need to derive the following inequalities
first.

Lemma 2.2, Let w € Lg("JI‘3) and ¥ = (—A)"'w = G x w, where G is Green’s function for the
Laplacian operator coupled with periodic boundary condition. Then there exists a generic constant
C > 0, such that

I¥llLs(r3y < Cllw]| (2.8)

6 b
L5(T3)

IV¥liL2r3) < Cllwll 2.9)

LSy
Proof. Since ¥ satisfies

—AY = w,

Jp3 ¥ (x)dx =0,

we multiply both sides of the first equation above by ¥, and then integrate over T>. It yields

V1) = [ w0 dx < W lgoes ]

S Cl¥laranliwll g o5 < CIVE Iz 0]

Lg('ﬂ‘3)
L83y

in which the last inequality is due to Poincaré’s inequality and hence (2.9) is proved. Furthermore,
(2.8) comes directly from the Sobolev inequality [|[¥| 1613y < C || g1 13y, Poincar€’s inequality
and (2.9). ]

By Lemmas 2.1 and 2.2, it is immediate to check the following result.

Lemma 2.3. The functional F; has a minimizer in Hal)] X Hal)z.
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Proof. First, F; is nonnegative thus there exists a minimizing sequence {(¢1,, ¢2,)} in H a1>1 x H al,z
satisfying

€ .
i i i w;

. . 1
0< Igl Fr(Y1,¥2) < Fe(d1n, Pan) < Hlfl Fr(Y1,92) + o
eH}. )

Hence E(¢1,, ¢2,) is bounded. By Lemma 2.1, {(¢1,, ¢2,)} is bounded in H'(T3) x H'(T?), and
(up to a subsequence) we get ¢;n, — ¢; weakly in H'(T?), ¢;n, — ¢; strongly in L?(T?), for
p€[l,6)andi = 1,2. Hence ¢; € Halji, and we can further derive

/3 (IV41P + |Vgal” + Vi - Vpo) dx
T‘
1 2 1 2 1 2
= | $IVé1 +Vga|"dx+ [ S[Vhi|"dx+ | =|Vga|"dx
T3 2 T3 2 T3 2
o 1 o 1 o 1
< l}crgloréf - §|V¢>1nk + V¢2nk|2dx + l}crilogf[p §|V¢1nk|2dx + l}crilcgf/p §|V¢2nk|2dx

= llmll’lf/ (|V¢1nk |2 + |V¢2nk |2 + V¢1nk : V¢2nk) dx,
k—o0 T3

and
leII;o Wr(P1ny > P2n) = Wr(d1, ¢2).

Besides, denoting ¥;,, = G * (f(¢,-nk) - a),-), v, =G % (f(q&,-) — a),-), by (2.9), it yields

0 lim [[V¥in, = V¥ilL2ery < C lim [[f(@ine) = F@0] g ) =0

which implies V¥;,, — V¥; in L?(T3). As a consequence, we have
. _1 _1
iim [ 2073 (£Gn) — ) x A H (@) — )
k—o0 JT3
= lim VUi - V¥, dx = / V¥ - VY, dx
k—o00 T3 T3
_1 _1
= [t @0 — o) x ot (@) - o) a.
To sum up, we conclude that
E($1,¢2) < l}cn_l)iol;l)fE(Qﬁlnkvqban)s
and henceforth

Fr(¢1. ¢2) < liminf Fr(pin, . d2n,) = inf  Fe(Y1,92),
k—o00 vieH).

@j

which finishes the proof. O
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As a consequence, for any initial data (@19, ¢20) € H,,, X Hal,z, using Lemma 2.3, one may
k .
define a discrete sequence {(¢1r, ¢5.)} recursively by

(¢Y;.93,) = ($10. P20).

((j)k+1 k+1) = argmin F; (¢>1,¢2,¢>1r,¢12‘r), vk = 0.
¢IEH(UI

(2.10)

Correspondingly, we consider a piecewise constant interpolation ¢ € [0, +00) > (¢1:(7), P2 (1))
by
($10(1). d2c(0) = (1. 95,) forke <1 < (k + Dr. (2.11)

Then we can collect the following estimates for the piecewise constant functional (¢1.(?), ¢2.(2)).

Lemma 24. Forany T > 0, t € (0,1),0 < s <t < T,andi = 1,2, the piecewise constant
interpolation functional (¢1.(t), P2 (1)) satisfies

up izl g1 3y < VAE(¢r0. $20) + 2, (2.12)
E(¢1:(t), p2c(t)) < E(¢1:(5). 92:(5)) < E(d10. ¢20). (2.13)
16i(t) — iz ()| Lowsy < Clero. oo, )t —s+ 1), Vpe[2.6).  (214)

Proof. First, since (¢k +1 ¢§ *1) is a minimizer of F; with (@7.¢3) = (gb1 . ¢§T), we know that

B + 5 (105 = 8 oo + 1057 = Lo < E@bo),
Vk =0, (2.15)

which implies that for all ¢ € [0, T'] it holds
E(¢12(t), ¢22(1)) < E(¢1r. b3;) = E(¢10. $20)-
As a consequence, it follows from Lemma 2.1 that
|pi=(2) H,qu(qp) S4E(pr1:(1), $22 (1)) + 2 < 4E(¢10, $20) + 2.

Moreover, forall 0 < s <t < T, letus write m = [s/t]|, n = |t/7]. Repeated use of (2.15)
directly yields

E(¢12(), ¢2c(1)) = E(@1r. ¢3,) < E(@1. 9537) = E(¢1:(5). $2:(5)).

Meanwhile using Holder’s inequality and summing (2.15) over k = m,...,n — 1, we obtain

|7 - ¢f¥HLz(Ts)\ZI|¢"“ #icl e < ZH¢"“ A P

< «/2rn —2tm+/E(¢10.¢20), i =12
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which further indicates

|ic(®) = $ic ()| 203y < V2E(¢10.$20)V1 =5 + 7. (2.16)
Therefore, using Sobolev interpolation, (2.12) and (2.16), we have that for all p € [2, 6)

6=p 3p—6
i) = bic (Lo 3y < Clidic(t) = G ()| sy 16 (1) = bie (] L6y
6—p 3p—6

< Cligie(t) = b sy 1952 (0) = bie () ¥ s
6=p 3p=6
SC(t—s+71)% (4E(pr0,$20) +2) ¥
which leads to (2.14). O

The next result immediately follows from Lemma 2.4.

Proposition 2.5. There exists a sequence {t,} \, 0T, such that

{i; g; : 28 strongly in LP(T?), Yt €[0,T], Vp € [2,6). (2.17)

where g1, ¢ € C([0, T]; LP(T3)) N L>®(0, T; H'(T3)). Besides, forallt € [0,T]andi = 1,2
f(#:i(0) = |T1_3|/m f($i(t, %)) dx = o, (2.18)
AJﬂ@wwmﬂh=%A4#mm—@&mfm>ﬁ, (2.19)

where > 0 is some positive constant depending on the initial data {¢10, P20}

Proof. To begin with, using (2.12), (2.14), the compact embedding of H!(T?) into L?(T?), and a
celebrated refined version of the Arzela—Ascoli theorem (see [2, Proposition 3.3.1]), we can extract
a subsequence 7, N\, 0%, such that

%z"" g; : zlg strongly in L?(T?), V¢ € [0,T]. Vp € [2.6), (2.20)
2ty 2
and

¢i € C([0,T]; LP(T?), i=1,2. (2.21)

Moreover, it is easy to check (2.18) is also valid.
To prove (2.19), suppose there exists 7 € [0, T'], such that

F(pi(F,x)) = 6(¢i(F,x) — (., x)) =0 ae.in T.

That is, ¢;(f,x) = 0 or 1 ae. in T3. Approximating f’ by bounded functions, we deduce
V(i (f,x)) = f(¢;(f,x))Vp; = 0 ae. in T3. Hence f(¢; (7)) is constant a.e. in T>. Since
£(0) # f(1), so either ¢; (7, x) = 0 a.e.in T or ¢; (7, x) = 1 a.e. in T>. But neither case results
in (2.18) because w; # 0,1 in (1.7). Therefore, [13|f'(¢i(7,x))|*dx > 0, for all 1 € [0,T].
Thus (2.19) is valid due to the fact that ¢; € C([0, T]; L?(T?)), for2 < p < 6. O
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2.2 Euler-Lagrange equations for the discrete sequence

Before the derivation of the Euler-Lagrange equations for the discrete sequence {(gblftn , ¢§z,, )}, we
need to first establish from (2.19) the following result concerning the approximation of the limit
curve (¢1, ¢2) by more regular functions. Such approximation is necessary, otherwise some terms
in the Lagrange multipliers could not be kept under control (see Remark (2.9) below for details)

Proposition 2.6. Let (¢1,p2) be the limits in Proposition 2.5, then there exist &1,& €
C([0,T]; W2P(T3)), for all p € [2,6), satisfying

B

o Vel TLi=12. (2.22)

/TB £/ (Et.0)) = f' (9 (. ) [ dx <

Proof. Tt suffices to prove for i = 1. First, it is easy to check —A : W2P(T3) — LP(T?) is
an infinitesimal generator of a linear semigroup of contractions. For any A > 0, we consider the
resolvent operator J, = (I —AA)~!. Then Jj is a linear bounded operator from L7 (T?) into itself,
and (see [11, Lemma 2.2.1])

Al <1, VA>0. (2.23)

Since ¢ € C([0, T]; LP(T3)), for all £ > 0, there exists § = g(e) > 0 such that
~ 3 ~ 5
[1(s) — P13 Lo 13y < 3 whenever |s —§| < 6. (2.24)

Choosing K € N sufficiently big such that 7/K < 8, and letting

mT
thm=—, YO0<m<K
K
By [11, Lemma 2.2.1], there exists § = §(¢) > 0 such that

[Ja1(tm) — P1(tm)llLr(r3) < 5. YO<A <4, 0<m<K. (2.25)

W[ ™

In all, for any ¢ € [0, T, there exists some #; (0 < j < K), such that [t —¢;| < §, hence we get
from (2.23), (2.24) that

”JA(Pl(t) - ¢1(I)||LP(T3)
< a1 () = Jad1E) Lo o3y + 1I291(8) — b1 Lo 3y + 161(E) — P1(D Lo (r3)
< g1 (@) = b1t sy + 1I201(5) — pr1E) Lo (r3y + 1d1(E) — b1 (Dl Lr 13

_E . e n € _
<X 5 . PRSE
33 3
provided A < §. Note that ¢ () € C([0, T]; L?(T?)) and that inequality (2.23) implies J;¢;(¢) €
C([0, T); WP (T?)).
Finally, choosing A sufficiently small and setting & = J; ¢1, we finish the proof. O

To proceed with our proof, we shall show that along the decreasing sequence {t,}, the
minimizers to Fr, satisfy the following Euler-Lagrange equations provided 7 is sufficiently large.
To simplify the notation, we write N, = |T/t,].
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Remark 2.7. It is worth mentioning that we only consider the rest of the sequence {t,} as n
becomes large enough because it ensures the denominator in the Lagrange multipliers will be kept
away from zero, see (2.30) below.

Lemma 2.8. There exists N = N(B) € N, such that for alln = N, we have
k+1

i 1 1 1 1 1
/ Po” "0 L aghr gt Lagkn v ] S (@) =W (-1 — 45
3 T 2 2 2 2

2
+ ) v ()T (@ — o) @ +Af;‘f'(¢ﬁjl)}vi(x) dx =0,
j=1

VO<k<N,—1, Yv e H(T?, i =1,2, (2.26)

where )tf-‘r'n"l is given by (2.32). Further, it holds

1 1 1 1 1
—A¢k+1 + —A¢k+1 + _A¢k+l _ —W/(¢k+1) + EW/(l _¢k+l _¢k+l)

H 2 1, 2ty ity 2 ity 1ty 2ty

Zy;,( A7 f@R = wp) f1($5T) = AT (0

L2(T3)

k+1 k
||¢i1” _¢ll’n||L2(T3)

Tn

, YOSk<SN,—-1,i=12. (227

Proof. First of all, by (2.17) and (2.19), there exists N = N(B) € N, such that for all » > N and
allt € [0,T7,

7
[ | (@i, (1, 3)) [* dx = ?ﬁ, / |/ (i (1,20) = f/(9i(t, x))[* dx < ﬁ, (2.28)
T3 T3
which together with Proposition 2.6 gives

[ 17 @ 0) = £t o) ax

2/ | (b (1)) = f(95(t, ) * dx +2f | £(9it %)) = £/ (& (1 x)) [ dx
T3 T3

p
T

As a consequence, by (2.10), forall n = N and all 0 < k < N, it turns out that
[ 10 ) ek )
= [ 17k, o+ [ 5k, ) @k 0) - 70k, )] ax
= [ 17 @k ) x4 [ 7 e ok ) (6 0k ) = F (i ()]
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> /T |/ (91 ke, ) x
- ”f/(‘pitn (Tnk7X)) ||L2(’11‘3) ”f/((pirn (Tnk’x)) - f/(gi(fnk’x)){|L2(T3)
iz ( B _ L)
8

8 8
Therefore, given each ¢>k € H, ! . let us choose

wk, (x) = f/(& (k. x)), (2.29)

which yields

/f(k+1(x)) k+1(x)dx>§, Yn=N, VO0O<k<N,—L (2.30)
T3

zrn 11,,

Consequently, we derive that ¢>k +l

details)

satisfies the Euler—Lagrange equation (see the Appendix for

¢1kr_:l ¢tr,, 1 1o k+1 1 ’ k+1 k+1
osz[T W@ =W (1 —er, - ):|v,(x)dx
/ [Zm A7 f(¢>j;jl)—w,-)f’<¢>§zjl)+xf;1f’(¢{‘;1)}vi(x>dx

1
+/ [Ew{‘;l + §v¢§;1 + Ewﬁl} - Vv; dx (2.31)
T3

where the corresponding Lagrange multiplier is given by

L !
it k+1y,, k+1
" f T3 f /(¢i T ) Wiz, dx

! 1
X[r_/ (#5," =9f) zkrild"*z/ (Voit! + Voki! + Vol v ?‘Jldx]
n T?’ T?’

! / [ ekt ty _ Ly k+1 k+1:| k1
- ~4 ( ) 1-— — wh dx
f']I‘3 f/(¢k+1)wk+l dox 2 ¢1r,1 2 ( ¢1‘fn ¢2Tn ) hay

ity

_ ! k+1y N\ 47 (c+1] k+1
fTB f/(¢lkr-ril-l)wk+1 dx/ [; vij (= A) f(¢]Tn ) wf)f (d)zrn ) Wiz, dx.

(2.32)

Meanwhile, note that (¢ — ¢¥. )/zu. W/ (@5, W/(1 = i1 — g5 1), (=)L (f(pf 1) —
w,-)f’(q&lkt:l) AEFLF/(@F 4 are all in L2(T3), hence AgfF! + A5t + Apit! e L2(T%)
and (2.26) is derived.
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To proceed further, for sufficiently small € > 0 we denote by ;e € H?(T?) the unique solution
(see for instance [3, Prop. 7.1]) to the elliptic problem

o= eBme = SAQKE!+ SAGKTY £ ABT - W) + W (- gkt — g
- Z vir AT F@RED — @) f1( @5 = A ().
It follows from classical result (see for instance [3, Prop. 7.2]) that as € — 0T
e A+ AT+ SA0KT —SWIGKT) W ol o)

—Zy,,( AT @Y —w)) £ = A (95T in LA(T?). (2.33)

Moreover, by choosing v; = n;¢ in (2.26), we get after integration by parts that

k+1
¢i n ¢t L

”nie“iZ(rﬂﬁ) + €||V77ie||22(']1~3) == 3 77n Nie(x) dx
o5t — ok N2
e Y (2.34)
n
Hence (2.27) is proved by combining (2.33) and (2.34). O

Remark 2.9. The main motivation to use the approximating function &; given in Proposition 2.6 is
due to the term

/ Ve vwitt = 6/ VoEIV[E (tak + ) — €7 (tuk + T0)]
T3
in the Lagrange multiplier (2.32). If we simply use ¢; instead of ;, the right-hand side above might

not be integrable.

From now on in this section and the Appendix, when we say “for n > N7, it is always the
N = N(p) given in Lemma 2.8.

For each fixed n = N, based on the Lagrange multipliers )Ll , 1 = 1,2, we introduce a
piecewise constant interpolatlont €0, T] = (A1g, (2), A2g, (1)) by

Aiz, (1) = ” , fortk <t <tk+1), (2.35)

where Af.‘rn are given in (2.32). Then for the piecewise-constant interpolation functional sequence
{(¢11,, P21,)} (n = N) defined in (2.11), one may further retrieve the following a priori estimates.

Lemma 2.10. There exists a constant C > 0 that may only depend on T, ¢19, P20, @1, w2, B, and
vij (i, j = 1,2), such that along the sequence {ty}, it holds that for alln = N

T
/ iz, (D123t < C, i=1,2. (2.36)
0
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Proof. Consider (2.27) for any fixed n = N. Summing over k from 0 to N,, — 2, we get from (2.15)
that

Nutn
/'Cn

38010, (0) + 5 A0, () + 3 Adie, () = 3 W' (B0, () + 3 W' (1= b15,0) = s, (1)

L2(’]I‘3)

2
= A (F (B )~ 0) £ Biea 0) = iy (001 (1, 0|
j=1

N2 pled2m [ERE SN T SNV TR 1, k41 kt1
<> AP 4 S AEFY 4 S AQET - W (@FY) 4 W (1 — gkt — gkt
= Jurne 12 2 2 2

1t 21, ity 2 ity 1, 2t

2
—Zy,,( DTG =) LG =M L @B e
N,—2 k+1
< ||¢zrn Tzrn ||L2('Jl‘3) < 2E(¢?m,¢gm) = 2E(¢10. $20). (2.37)
k=0 "

From (2.8), Holder’s inequality and (2.12), we obtain that foralln = N, allt € [0,T] and j = 1,2

|27 (b2 () = @) £ (i, (1)) ||L2(’J1‘3)
<G * (f (e () = @) | o3y ILf " @iz O L3(23)
< C|lf(jr ) —w_/||Lg(T3)(||¢iz,,(t)||ip(T3) + 1)
< C(d10. 20, w1, w2). (2.38)

Furthermore, in (2.32) let us use the notation

Tk+1 _ f’JI‘3( k+1 k )wlk‘rjl_l dx

it tr,,

o Jos f (k+l) f‘r‘:ldx

tr,,

It is easy to infer from (2.8), (2.4), (2.30) that foralln = N,0 < k < N, — 1, it holds that
M =R = [(nwﬁ;luy + IV e ) IVl
+ (||W/(¢,-’z:1>||Lz W= gt = gD )kt e
- Z il -G+ (F@F) — @) | ol £/ (8155 ) s llwl! ||Lz]

< C(¢10,¢20,601,602,/3, Yitl» Yi2)-
Using (2.30), we have

k+1 _ 4k k+1
T < 8 gz, — ¢, lleallwig, 2 _ c(p) g5, = ¢5, l.2
ith ~ IB ~ .

Tn n
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Henceforth we obtain

Nutn
/ H/\”n f/(d)ifn (t)) Hi2(’ﬂ‘3) dr
Tn

Nn—=2 .(k+2)1,
<y / 2108, = A5, P+ 135 )£ @5 |2y d
= J&+n,
Na2 H¢tkrj;1 11:,1 ”LZ(T3)
< C($10. ¢20. 01, 2. B, ¥ir. ¥i2) + C(B) Y
k=0
< C(T, ¢10. $20. w1, 2, B, Vi1, Vi2)- (2.39)

In all, summing up Young’s inequality, (2.12), (2.37), (2.38), (2.39), we conclude that
Nptn 5
| 18610,0) + 820, 0+ 615, 055
Tn

Nptn
< 16E(¢10, $20) + 16 / | W/ (i, () + W' (1= b1z, (1) = b2, () |21, At

Nptn
Yij ]rnt trnt L2(T3 !
16Z| AT (B0 ) =) (0 )22 d

j=1
N'l n 2
+16 / (i £ ( iz )| 123, 1
Tn
< C(T7¢10a¢20’w170)2»,3,)/il,)/iz). (2.40)

Therefore, using Young’s inequality and (2.40), we have

Nut, >
[ 140,02y

1 Nptn
= 6/ ”2[2A¢1rn (t) + A¢2rn ([)] - [2A¢2rn (l) + A¢1rn (t)] ||iz(T3) dr

8 Nntn 2 2 Nutn 2
<3 / [24¢ 10, () + Az, (1) [ 2ry dt + 5 f |124¢20, (6) + Adr, ()| 12 g3, dt
n Tn

< C(T, ¢10, P20, 01, 02, B, Y11, V12, Y22)-

and the estimate for f N HA¢>2rn (t)” L2(1%) dr can be established in a similar manner, which
together with (2.12), and monotone convergence theorem leads to (2.36). O

2.3 Convergence to the limit curve

After collecting all the a priori estimates and the Euler—Lagrange equation (2.26) established in the
previous subsections, now we shall show that the limit curve (¢, ¢») retrieved in Proposition 2.5
indeed solves the equation (2.2).
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_ To begin with, forall0 <7 < T and alln = N, denote N, = |t/ ]. Summing & from 0 to
N, — 1in (2.26), using (2.10), (2.11) and (2.35), it is easy to check that

/T B 13) = g0 ()]s () dx

ﬁnrn+rn
= [ 3 01050+ 8030530 + 3010, 5.5) = W (1, 5.0) ) s

ann+'5n 1
/
+/ / |:—W (1 =911, — P21,)
n T3 2

2
- Z Vij (=) (f (b2, (5. X)) — @) £/ (i, (5, x))]vi (x) dxds

i=1
Nnrn +15
—/ / [ (91 (i, (5. 0) Jos (¥) dvds, 7 = 1,2. (2.41)
™ T3
By equation (2.41), Proposition 2.5, Lemmas 2.4-2.10, we are ready to prove the main theorem

regarding to the existence result.

Definition 2.11. We call (¢1(¢, x), $2(z, x)) a global weak solution to problem (2.2)—(1.7), if for
all T > 0, (¢1, ¢2) satisfies

¢i € C([0.T]: LP(T*) N L=(0.T: H,) N L*(0.T: H*(T?)), 2<p<6. i=12,
the initial condition (2.3), and the volume constraint (1.7), for all ¢ € [0, T']. Further, for any ¢ €

(0, T) and arbitrary test functions wy, w, € L?(T?), it holds

d 1 1 1 1 o 1 ,
5/@ ¢i (1, X)w; (x) dx = /w [§A¢>1 + §A¢z + §A¢,~ - EW (¢:) + EW (1= ¢ — ¢)

2
- Z Vij (D) TS (@) — wy) £/ (i) — )tif'(¢i)]wi (x)dx
=1
’ (2.42)

in the distributional sense in (0, T) fori = 1, 2.

Theorem 2.12. For any w1, w, € R that satisfy (1.4), (¢10.¢P20) € Haljl X Haz)z, there exists a
unique global weak solution (¢1, ¢2) to problem (2.2)—~(2.3) with volume constraint (1.7). Further,
the free energy E(¢1(t), ¢p2(t)) is decreasing in time.

Proof. Existence: To begin with, using (2.12), (2.36), we can further get up to a subsequence (for
simplicity we shall not distinguish the sequence {7, } and its subsequence now and later) that

iy (1) = i (), weak % in L®(0,T; H'(T?)),

Giz, (1) — ¢i(t), weakly in L>(0, T; H*(T?)). (2.43)
From now on in the proof, we will take the test functions v; (x) € H!(T?) with better regularity

than w; (x) € L?(T?) in (2.42), then by a classical density argument, it is easy to check that (2.54)
below is valid for any test function w; € L2(T?3).
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As a consequence, taking the limit n — 400 in (2.41) we get by (2.20) that

[ e =gotlucoax > [ 400 = goelutds

Meanwhile, using (2.12), (2.20) and the dominated convergence theorem, we get
Nutn+1tn t
/ / W' (Piz, (s, %)) v (x) dxds — / / W' (i (s, x))v; (x) dxds, (2.45)
™ T3 o Jr3

ann"rfn t
/ /3 W'(1 — ¢11, — g, )vi(x) dxds — / /3 W/ (1 —¢1 — ¢2)vi(x)dxds. (2.46)
™ T o Jr

It is worth pointing out that in (2.45) and (2.46) the bordering time integral (the lower bound ;)
can be ignored because the above bordering time integrand is bounded in L>°(0, T'; L (T3)).
To proceed, note that (2.36) and (2.43) together imply that

Ag; € L*(0.T: L*(T%)). (2.47)
and henceforth we know from (2.43) and (2.47) that

Nntn +t t
/ / Adiq, (5, x)v;(x) dxds — [ / A; (s, x)v; (x) dxds. (2.48)
o T3 o JT3

It is worth mentioning that bordering time integrals can be neglected for the same reason as in (2.45).
Next, using the dominated convergence theorem, we derive from (2.8), (2.12) and (2.17) that

' [ [ 87 0 = o Gre ) avas
0 T3

- [ f (A (F (@) — ;) £ (@r)vi (x) dds
0 T3

< [ [l @ = 1) 1 @rnpuo)
+ [T (@) = @) [ i) = £ @0)]0s ()| dxds
< 16+ (/@560 — 1 5,0)]

L6(T3) ” f/(¢irn (S)) ||L3(T3) ” Ui ||L2(T3) ds
* /0 G = (f(¢j(5)) — w)) ||L6('ﬂ‘3) | £/ (iz, () — 1 (i (s))”Lz(Ts)”Ui 2313y ds

<C [ 17 @) = 1@ O], oy 0

L5 (T3)

LS (@3) ||f/(¢ifn (8)) = f'(¢i (s)) ||L2(T3) ds

e [ 1560 o]

—0

)
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for j = 1,2. Note that the H' regularity of the test function v; (x) is to bound [|v; ||13p3y in the
above estimate. Hence we get (after ignoring borderline time integrands) that

2 Npth+tn

;)’ij/

Tn

[ A7 @0, 5:0) = 0 1 (1, 520 1) s

2 t
Y | [ (6.0 =) @G5, 0)u ) axas, (2.49)

Finally, let us consider the convergence of the last term on the right-hand side of (2.41). By
(2.12), (2.17), and the dominated convergence theorem we get

/ I @iz, (s, x))vi (x) dx — / £/ (i (s, x))vi(x)dx strongly in L*(0, T). (2.50)
T3 T3

Moreover, in a similar manner as in the proof of Lemma 2.10 we obtain

T—1, 5
/ |Ai, ()| de
Tn

Np—2

(k+2)1y _ 5
<[ ek, -, i, P e
ko S+,
Nu=2 || gkt — gk |75 s
ity ity T

< C(T, ¢10, $20, 01, 02, B, Y11, Y12, ¥22) + C(B) Z @
k=0

< C(T, ¢10, P20, @1, 2, B, V11, V12, V22), (2.51)

which together with the monotone convergence theorem implies
Aiz, (8) = Ai(s) weaklyin L*(0,T), where A;(s) € L*(0,T). (2.52)

In all, (2.50)—(2.52) give

/jﬂnﬂn /11‘3 [Am ()1 ($i, (S,x))]vi (x) dxds — /ot /1r3 [ () " (i (5, %)) Jvi (x) duedss.
(2.53)

In conclusion, summing up the convergence results in (2.44), (2.45), (2.46), (2.48), (2.49), (2.53),
we manage to establish for all 0 < ¢ < T the equation

[JI‘3 [¢l (t,x) —¢io(X)]v,- (x)dx
t 1 1 . | 1
= A /1;3 |:§A¢l + §A¢2 + EA(PI — 5W’(¢[) + EW/(l _¢1 _¢2)

2
= v (AT (f(¢) — @) £ (i) — lif/(¢i):|vi (x) dxds. (2.54)
j=1
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Hence we obtain a weak solution to the problem (2.2)—(2.3) in its integral form, which is equivalent
to (2.2) by [8, Lemma 1.1, Chapter 3]. Further, to establish (2.4), we multiply both sides of (2.2) by
f'(¢;) and then integrate over T3. Note that (1.7) and (2.19) can be utilized.

Uniqueness: Suppose there are two global weak solutions, namely (¢1,¢2), (¢7,¢3) to
problem (2.2)—(2.3). First of all, we know that

¢i. ¢ € L®(0,T; H'(T?)) N L*(0,T; H*(T?)), 1<i<2,
[r@enpaczp=o. [ 1r@nestac=pr o vic.Tl
T- T
Let us define ¢; = ¢; — ¢, i =1,2,then (¢1. ) satisfies

=105 57

—Zm[( A7 @) = o) £160) = (A7 (1) — ) 1@

azqgi = A¢~>i +

=A@ f (@) + AT (PF), 1<ij<2,0i# ) (2.55)
subject to periodic boundary condition and the initial conditions
$i(0,x)=0, i=12. (2.56)

Multiplying equation (2.55) with 2¢;, and summing over i from 1 to 2, after integrating over T3,
we get

(|¢1(t )P + 12, 0)%) dx

dr
= —2/ (IV1(t.x)* + [Va(t, x)*) dx
Wr oW,
_2/ Vo1 - Valt, x)dx—Z/ [ r_ ¢T}¢,(z x)dx
-2 Z / yik A (F @) — F@D) f @i (6. x) dx
i,k=1
2 Z/ Yk (A (£ — o) @) — £/ @)1, %) dx
i,k=1
Y a0 [ L0 = @i - 50 -2 0)] [, @i as
i=1 i i=1
& 2| Vit )2, 2| Vot ) |72 + I+ + L. (2.57)
We shall estimate /4, ..., I individually. First, it is easy to check

L < Vet )72 + |Vt ) |12 (2.58)
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Next, using the mean value theorem, the interpolation inequality and Young’s inequality, we know
that

I < C67 + 3 + 67" + 837 + 1 2 (11174 + 16211 74)
~ ~ 1 ~ ~
< C(Idr@ )72 + It )172) + Z(IIV¢>1(I,-)IIiz + [V (t.)7>) (2.59)
To proceed further, by the mean value theorem and (2.8) we have
2
<2 ) il | AT @) = FEN | oy L @Dl ws) il L2y

i,k=1
2

< Y Cl(f @) = f@] e

i,k=1

L$ (T3)||¢i ll2(r3)

2
Z Cllf' Mollsllgill?.  where n € (k. ¢5)

C(||¢>1 @22 + g2 (2.3 ). (2.60)
At the same time, by the mean value theorem, (2.8) and Young’s inequality, one can show that

14 <2 Z ikl [ (AT (85 = 00 | Lol £/ (80) = £/ (@) 211l s

-
_

CIF@O) — x|, ¢ IS " @)lzelldillLsligills  where ni € (¢i.67)

1

]TM“

i

<

<

~ 1 ~ 1 - 2
C(Igi 12,1V 1125 + il 2)

VR

i=1

. . 1, - .
< C(I1(t, )72 + b2, )1I72) + Z(IIV¢1(L-)IIiz + Va2, )1172)- (2.61)

We proceed to estimate /5 as follows:

2
Is < YOI f/@) = £/ @D 211612

i=1

2
<D PO S @) | ol gills il where mi € (¢i,¢7)
i=1

2 1 ~ 1 ~
< D CIONGill2 (161 721Vl + Iill2)

i=1

SCA+ MOP + A20P) (161 (2. )25 + llga(2.)1122)

1 ~ ~
+t3 IV, )72 + IV2(t,)72) - (2.62)
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Finally, to deal with /¢, first we estimate |A; (1) — A7 ()| fori = 1,2. By (2.4), we see that
A1(t) — AT ()
_ e 1S @DPAx f13 (V117 /" (@1) dx + frs |/ (@) Pdx fra VTP £ (9F) dx
Jp3 | f/(@D)12dx [ | £/ (97)[2dx
s 1S @DIPdx fp3 (Vo1 - Vo) £ ($1) dx — fra |/ (@) Pdx fr3 (Yo} - Ve3) £ ($7) dx
2 fr3 | f1(@D)12dx [r3 | £/ (@) Pdx
s 1 @DPdx [y W) f1($1) dx — fra |/ (@) Pdx frs W(9]) £ (97) dx
2 fpa | /1 (@D)12dx [r3 | £/ (@) Pdx
L I @DPAx fra W= ¢1 = 62) 1/ ($1) ¥ = Jra I (@) Pdx fpa W'(1 = ¢ — 63) /' (#]) dx
2 fp3 | f1(@0)12dx [ | £/ (@) [2dx
~ 22: o3 111 @) Pdx [ v ()1 (F (@) — i) £ (1) dx
Jo3 | f1(@D)12dx [ | £/ (¢7)[2dx

Joa LF @RS 2y~ 4 (F@) — ) S/ @]
Z
Jpa 1Lf1(@1)12dx [z | f/(9T)]2dx

def

=Ji+--+Je.
Note that

Ji = Ju3(LF'@DI? = £ (@D)?) dx [13 [V [ £ ($1) dx
Joa 1S/ (@0)1Pdx [ | f/(¢7)Pdx
fw |f' @D dx frs (IV@1[> f"(¢1) — VT P f"(97)) dx
Jos |/ (@0)1Pdx [rs | f7(¢7)[7dx

def

= J1a+~]1b

where, using the interpolation inequality, we get

|J1al < BB / /'@ = f @D (¢1)+f(¢1)|dX/ /" (@0IIVen | dx

<7 ﬂI/ a0l @) + 167 \dx/ @DV dx

where 71 € (¢1.97)
< Cllgy ||L2(1r3)||f”(¢1)||L6(T*)||V¢1 23y IVor1llLscr

< Clg sy (1901 22 sy 14611 2o gy + (V1 1205))
1
< C(1+ 1801172y 191 l223)-
and

1
il < - | [ (Vi = 19617 o ax+ [ 1967 (1760 - 116D) ax

sc/ IV¢31I(IV¢1I+|V¢i‘|)|f”(¢1)|dx+C/ PARZEET
T3 T3
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< CI" @Dl (191 lLs + VAT IL3)IVPiliLe + IdillL2 V7 17 4
1 1 ~ ~
SC(L+ 1141l + 1467 17)IVeillL2 + CA + [ AdT[IL2) 1612
In all, we have
5 et 1)1V 12)16
11 < C(1+ 1801172 + 146712 ) IV lz2 + C (1 + 14122 + 1467 =) I .2
Similarly to the estimate of J;, we get

1 1 3 _
|2] < C(1+ 149711 7> + 1Ad2115) (V12 + [ V2llL2)
+ C(1+ | A1ll2 + A2 22) 11l 22

Besides,
<L / *N\12 ’ 2 / /
51 = g || (P @DP =17 @0 ax [ Wignignax
4 —ﬁl* / (W) /(1) — WD) /' (@D) dx
1 1JT3

=€ Mf (f'@D) = f' @) (/' @D + /' (91)) dx

#0000 = Wh) s 0+ WD 90 1 @D) i

< Cligal2 /" )lLe] £/ @) + £/ @0 |15 + Cllgall2 W )liLs 1/ (¢1) | 16
+ Clgill2 W @Dl )| e where m1 € ($1.67)

< Cldulla (1 + lignlizee + 97 llzoc)

1 1 ~
< C(1+ 140117 + 1467172 1912

Similar to J3, we have

1 1 1 ~ ~
al < (14 140117 + 1AGT 122 + 140315 ) (1112 + I211.2),

Meanwhile, it is easy to check from (2.8) that
1
s+ 26l < e [ 17760 = 70D @0 + 6D ax

2
3 / e (A (@) — ox) | ()] dx
k=1’
1 2
+ g / il |2 () — F@D)]| (61| dx
1= /T

2
4 ﬁl ) / ikl A (F@D) — )| £1(1) — f1(67)| dx
1 T
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2
<Cldille +C Y- [ £ @) = F @D, 117/ @D s + ClidllL2

k=1

2
<Cldillz +C Y I m)lzslidel2 where i € (¢, ), 1 <k <2
k=1

< CligiliL> + Clall2-
Summing up all the above estimates from J; to Jg, after using Young’s inequality, we conclude that
2

2
() = A5 (1)) < C[l + > (1Al 2 + ||A¢;;||Lz)} > (Iellzz + IVHEllL2),  (2.63)
k=1

k=1

while the estimate for [A,(¢) — A5 ()| is identical to (2.63).
As a consequence, by (2.63) and Young’s inequality, we obtain

Is [1+Z |A¢k||L2+||A¢k||L2]ant Mz + 5 an»k(t M7z (264)

k=1

In conclusion, summing up (2.58)—(2.62) and (2.64), we arrive at the 1nequahty

d & -
O CAGDIEES [1+Z<|Ak(r>|2+||A¢k(r M3z + 1 Agg . )||L2>]Z||¢k(r Mz
k=1

k=1
(2.63)
Note that A¢ (1), Ay (1. ), Apf(t,-) € L*(0, T: L*(T?)) for 1 < k < 2, hence a direct application
of Gronwall’s inequality to (2.56) yields ¢ (z,-) = ¢o(z,-) = 0, which finishes the proof. O

Remark 2.13. Theorem 2.12 is still valid if T3 is replaced by any smooth and bounded
domain in R3, provided that homogeneous Dirichlet boundary conditions are imposed. Besides
Theorem 2.12 is also valid for two-dimensional case.

Remark 2.14. While Theorem 2.12 is in regard to the well-posedness of the ACON system in
Lagrange multiplier form, a direct application of the De Giorgi’s minimization movement scheme
can also lead to the well-posedness of the ACON system in penalty form as follows:

A oW
outy = Ay + S -0~ Z Yok (— O (o) — k) 1(@0)

_M/T3 (f(#) —wi)dx - f(9), (2.66)
$i(x,0) = gio(x), =12, (2.67)

where M > 1 is the penalty constant. Indeed, in the penalty form, one does not need to handle any
singularity arising from nontrivial denominators, which makes the application of the De Giorgi’s
minimization movement scheme much more straightforward.

Remark 2.15. The well-posedness of the Allen—Cahn—Ohta—Kawasaki (ACOK) equation [10], the
binary counterpart of the ACON system, either in the Lagrange multiplier form or penalty form, can
be similarly established by following the De Giorgi’s minimization movement scheme.
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3. Concluding remarks

In this paper, we prove the global well-posedness of the ACON system with two fixed nonlinear
volume constraints. Different from the standard De Giorgi’s minimizing movement scheme, we
identify the limit curve first and use an approximation of this limit curve to establish the nonlinear
terms caused by the nonlinear volume constraint in the discrete Euler—Lagrange equation. This
special treatment can be potentially used to study the well-posedness of other L2 gradient flow
dynamics with nonlinear constraints.

A. Appendix

In this appendix, we shall derive for all » > N the corresponding Euler—Lagrange equation for the

minimizer (¢{;'. $5) to the functional

”¢1 - ¢{(1:n ||i2('lf3) + ||¢2 - ¢§1—n ”22('[3)

Fz[¢17¢2;¢{cr,,»¢§rn] = Fi[$1, $2] + 7

(AD)

in the admissible set H al)l x H al>2' This is an adapted version of [5, Theorem 2, Section 8.4], but for
the sake of completeness we provide all details here. In the sequel the index i ranges from 1 to 2.

Step 1. Let vy, vy € H'(T?) be two independent functions. By (2.28), we know that
f/(¢k+l) is not equal to zero a.e. within T3, i =1,2.

ity

And by the choice of (2.29), we have

/.ﬂ@“%nﬂﬁ“umx¢a Vn=N VO<k <N, —1. (A2)
']1*3

ity ity

Let us consider the two functions

jx&o)::/?Lf@ﬁil+8m—+ouﬁ;w——wddx. (A3)
T
Then it is clear that
7100 = [ [165H ol =0, (Ad)
Besides, j is C 1 and satisfies
dj;
%(8,0) = [% _f/(gbfr':l + Sv; + owf;rl)vi(x) dx, (AS5)
']1\
dJj;
%(8,0) = /3 f’(qbf;;l + 8v; + awfrjl)wfrjl(x) dx. (A6)
T
Note that (A2) implies
dj;
Ji0,0) # 0.

90
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As a consequence, using implicit function theorem, there exist C! functions n; : R — R satisfying

n:(0) =0, (A7)
Jji(8.1i(8)) =0, for all sufficiently small |§] < 8. (A8)

for some 89 > 0. Then we obtain after differentiating both sides of (A8) that

dJi
T 6. m) + o (5. =0,

which together with (A5) and (A6) gives

Jos f (zkrjl)vz(x)dx
fT3f( ikr:,Ll) zkr—,i,_l(x)dx

n;(0) = — (A9)

Step 2. Next let us define
16) = Feglt! + v + m@uht!, o5t! + 60 + m@ukt o, 0k, |

By (AS8), ¢k+1 + Sv; + n,(8)wkJrl € H,_, forall |§| < &, i = 1,2. Thus the C' function /(")
takes the minimum value at 0, which ylelds 0 = I’(0). Since vy and v, are independent, we get
after expansion

k+1
O:/ |:¢1ry, ¢1rn 4z W(¢llc+1)
T3

- S -t - ¢§:;1)} [01Go) + M Owi ! ()] d
+ Z)/u( ATHFGE) — o) /@D o100 + Ok, ()] d
+ /T 3 (v¢{‘;1 + V¢>k+1)[Vv1(x)+n/1(0)lef:;1(x)]dx

and

k+1 _ 1k

0= / |:¢2Tn ¢2tn + lW/(qS;{t-:l) _ lW’(] _¢{€;:1 _ ¢§;1):| [Uz(X) + 7)2(0)U)2+1()€)]
T3 Tn 2 2
/ Zm( AT S@5T — o) F1 (@55 [v2(x) + s (0)ws,, (x)] dx

+ /TS (v¢§;1 4 §v¢{f;;1)[v02(x) + 50 Vwkt ! (x)] dx

Define Af:y:l as in (2.32), then the above two equations lead to the Euler-Lagrange equations (2.31).
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