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Abstract

Quantitative structure-activity relationship (QSAR) modeling has become a
critical tool in drug design. Recently proposed Topological Regression (TR),
a computationally efficient and highly interpretable QSAR model that maps
distances in the chemical domain to distances in the activity domain, has
shown predictive performance comparable to state-of-the-art deep learning-based
models. However, TR’s dependence on simple random sampling-based anchor
selection and utilization of radial basis function for response reconstruction con-
strain its interpretability and predictive capacity. To address these limitations,
we propose Adaptive Topological Regression (AdapToR) with adaptive anchor
selection and optimization-based reconstruction. We evaluated AdapToR on the
NCI60 GI50 dataset, which consists of over 50,000 drug responses across 60
human cancer cell lines, and compared its performance to Transformer CNN,
Graph Transformer, TR, and other baseline models. The results demonstrate
that AdapToR outperforms competing QSAR models for drug response predic-
tion with significantly lower computational cost and greater interpretability as
compared to deep learning-based models.

Scientific contributions:

AdapToR introduces novel features that improve the scalability, stability, inter-
pretability, and predictive performance of the TR framework for quantitative
structure activity prediction. It achieves superior performance on large-scale
datasets while maintaining a simple, inherently interpretable structure and
high computational efficiency. These qualities make AdapToR well-suited for
real-world drug discovery and other QSAR applications.
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1 Introduction

Quantitative structure-activity relationship (QSAR) modeling predicts the biological
activities of chemical compounds from their molecular structures. This modeling tech-
nique has become an essential tool to accelerate the drug discovery process, saving
time, costs, and resources [1-4]. It is widely used in several phases of drug discovery,
including virtual screening for hits identification, hits-to-lead optimization, and lead
optimization [1-3]. In virtual screening, QSAR models can help to identify promising
compounds from large chemical libraries, reducing the number of compounds for syn-
thesis and assays [1, 2]. In hits-to-lead and lead optimization, QSAR modeling can
guide the multi-parameter optimization process by elucidating connections between
chemical structures and their biological activities, such as potency, selectivity, and
pharmacokinetic parameters [1].

The majority of QSAR models are supervised machine learning (ML) models and
can be broadly categorized into feature-based and similarity-based approaches. In
feature-based approaches, molecular structures are first transformed into machine-
comprehensible features. Common feature types include (a) vectors, such as molecular
descriptors and fingerprints [5-7], (b) graphs, and (c) strings, such as Simplified
Molecular Input Line Entry System (SMILES). These features are then used to train
predictive ML models. In recent decades, there has been a shift from traditional shal-
low learners, such as linear regression (LR), Support Vector Machines, and Random
Forest (RF) [8-10], towards more sophisticated deep learning (DL)-based QSAR mod-
els [11-17]. One group of DL methods utilizes large language models with SMILES
strings as input [11, 12]. For example, the Transformer-Convolutional Neural Network
(TCNN) model proposed in [12] combines a Transformer encoder with a Text-CNN,
exhibiting superior performance on both regression and classification tasks across mul-
tiple datasets. Another group of DL models employs Graph Convolutional Networks
to learn features from molecular graphs [13, 15-17]. These models are commonly
designed to predict cancer drug responses with additional cell line features learned
by other DL networks. While these models have demonstrated superior performance
on mixed tests (where the test set was randomly picked from all possible drug-cell
line pairs), their performance degrades in drug-blind settings (i.e., predicting unseen
drugs) [13, 17].

Despite achieving better predictive performance compared to traditional shallow
learners, DL-based QSAR models suffer from high computational complexity and lack
of interpretability. Recall that model interpretability is different from model explain-
ability. Following the definitions proposed in [18], we view an interpretable model
to be one whose construction is inherently interpretable, whereas explainable ML
tries to provide post hoc explanations for existing black box models. As an example
of explainable QSAR models, [12] used Layer-wise Relevance Propagation algorithm
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[19, 20] to assign importance scores to input features based on their contribution to
the final prediction. Although these scores indicate the relative influence of features
on the final prediction, they do not reveal how the model explicitly utilizes these fea-
tures to obtain the final prediction. In contrast, white box models, such as LR and
Decision Trees, are inherently interpretable. Their decision-making processes can be
directly examined by analyzing model weights (in LR) or decision nodes (in Decision
Trees) [21]. While interpretability may not be critical for hits identification, it can be
essential for hits-to-lead and lead optimization, where QSAR models are responsible
for linking chemical structures to biological activities.

Similarity-based methods, such as K —Nearest Neighbor (KNN) and kernel regres-
sion [22], offer intuitive interpretability, as their predictions are typically computed
as a weighted sum of the target values of training samples, with weights determined
by similarity in the input space. Recently, [23] introduced a novel similarity-based
regression approach called Topological Regression (TR), which is statistically robust,
computationally efficient, and interpretable. TR builds linear models that use dis-
tances in the structure (input) space to predict distances in the response space. These
distances are calculated between samples and anchor points that are randomly selected
from training samples. When testing, the estimated response distances between a test
sample and the anchor points are converted to weights through a Radial Basis Function
(RBF). The final prediction is then reconstructed as a weighted sum of the responses
of the anchor points. When evaluated on ChEMBL datasets [24, 25], the predictive
performance of TR was comparable to that of TCNN, but at a significantly lower
computational cost and greater interpretability. In addition, TR outperformed other
competing models, including RF, metric learning kernel regression, and ChemProp
[26].

Although TR had demonstrated promising predictive capacity and great inter-
pretability, the performance of this framework could be improved by optimizing the
process of anchor point selection and response reconstruction methodologies. First,
TR selects the anchor points via simple random sampling, resulting in uncertainty in
model performance. To mitigate the effect of random anchor selection, [23] proposed
Ensemble TR that averages predictions across multiple models trained with different
sets of anchor points. While the ensemble approach achieves better predictive perfor-
mance, it sacrifices computational efficiency and model interpretability. In this work,
we propose an adaptive anchor selection strategy to address the uncertainty and to
improve model performance. Since this adaptive strategy produces a single set of
anchor points, it is more interpretable and time-efficient than the ensemble approach.

Furthermore, in the original TR, the RBF-based response reconstruction overem-
phasized small distance estimates in the response space, while disregarding large
distance estimates. However, large distance estimates can also carry meaningful infor-
mation. For example, if a test sample has a large estimated response distance to an
anchor with a low response value, it could indicate a high response value for that test
sample. In addition, the RBF-based reconstruction is not optimized in any form. To
address these weaknesses, we propose an optimization-based response reconstruction
approach that can utilize information across all distance estimations and is opti-
mized under the stated loss criterion. In addition to these innovative approaches,
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we implemented several other modifications to stabilize model behavior and reduce
computation time. We refer to this adaptive version of TR as Adaptive Topological
Regression (AdapToR).

In [23], TR is evaluated on ChEMBL datasets with small to moderate sample sizes
(that range from 100 to 7890 with a median sample size of 677). This evaluation may
favor simpler models like TR over DL models that typically require a large number of
training samples for optimal performance. In this work, we evaluated TR and proposed
AdapToR on the NCI60 GI50 dataset [27] that consists of over 50,000 drug responses
across 60 human cancer cell lines. To the best of our knowledge, it is one of the
largest real-world datasets for cancer drug response prediction. For comparison, we
implemented and evaluated multiple baseline models, including LR, RF, and KNN, as
well as the state-of-the-art DL models, including TCNN [12] and Graph Transformer
(GraTrans) [17]. Our results show that AdapToR outperforms all competing models
while being considerably more time-efficient compared to TR and the DL models.
Furthermore, we present an illustrative example to demonstrate the interpretability
of a trained AdapToR model and discuss the insights that can be derived from it.

The paper is organized as follows. Section 2 provides a short description of the data
and experiments along with the results. Section 3 provides a discussion on the frame-
work. Section 5 provides detailed descriptions of the methods used in the manuscript.
The data and code availability are included in Section 6.

2 Results

2.1 Data and experiment description
2.1.1 NCI60 GI50 dataset

The NCI60 GI50 dataset assesses the anticancer activity of over 50,000 compounds
across 60 human cancer cell lines. Drug responses are measured as GI50 values (in
molar units, M), representing the concentration required to inhibit 50% of cell pro-
liferation [27]. We transformed the GI50 values into their negative logarithmic form,
referred to as NLOGGI50 (NLOGGI50=—log,,(GI50)), and used that as response
values. Higher NLOGGI50 values indicate stronger inhibitory effects.

The drugs’ unique NSC+# was used to obtain their SMILES through PubChem.
Drugs that do not have valid SMILES strings were excluded. The molecular fin-
gerprints and graphs are then generated based on their SMILES. For fingerprints,
we generated Extended-Connectivity Fingerprints with a radius of 2 (ECFP4) using
RDKit [28], and MinHash Fingerprints with a radius of 3 (MHFP6) [6]. The number
of bits was set to 2048 for both fingerprints. ECFP4 was originally used in TR, and
MHFP6 has been shown to outperform ECFP4 in nearest neighbor searches [6]. Our
empirical results (see in Fig. 3) indicate that using MHFP6 enhances the performance
of TR. Molecular graphs were generated following the procedure described in [17] and
used as inputs to the GraTrans model.

We excluded the cell line MDA-MB-468, which has less than 10,000 drugs. Thus,
our final dataset consisted of 59 cell lines and 51,312 unique drug compounds. Table S1
shows the number of drugs for each cell line.
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2.1.2 Comparison procedure

Our goal is to predict drug response for each cell line in a drug-blind setting. The pre-
dictive performance of each candidate model was assessed using 5-fold cross-validation
(CV), with each fold consisting of 80% training and 20% testing data. The separation
of training and testing sets is independent for each cell line. We evaluated the can-
didate models using normalized root mean square error (NRMSE), Spearman’s rank
correlation coefficient (p), Pearson correlation coefficient (PCC, r), and bias in pre-
dictions (bias). NRMSE compares the predictive residuals of a trained model to the
prediction error obtained from a null model (recall, a null model uses the mean of the
training responses as the point prediction for all test samples). Spearman’s p assesses
the monotonic relationship between the observed and predicted responses. It will be
close to unity if the predicted and observed responses have similar ranks. PCC, on
the other hand, measures the linear relationships between the predicted and observed
responses. The bias in prediction is defined as the slope of the best-fit line through
the residuals (prediction error) as a function of the observed responses. It evaluates
whether the residuals are systematically related to the observed responses. Empiri-
cally, if we observe the residuals to be randomly distributed about 0, the bias value
will tend to be zero, indicating an unbiased prediction. Denote the observed and pre-
dicted responses in the test set as y; and §;, i = 1,2, ...,n, respectively. Define the
corresponding mean values as § and ¢, the corresponding estimated standard devia-
tion values as ¢, and 6, and the difference between the ranks of the observed and
predicted responses as v;, i = 1,2,...,n, the performance metrics are calculated as
follows:

r= n(n? —1) i (1)
r—= > (i - 3?)(791 —9)

i) — ) an .
S > L

2.1.3 GPU and CPU systems

For a fair comparison and to optimize hardware performance for each model, we
trained and tested the DL models on a GPU system equipped with an NVIDIA Tesla
V100 GPU and an Intel Xeon Cascade Lake 6248 CPU (2.5 GHz, 20 cores, 40 threads).
Other models were trained on a CPU system featuring an AMD EPYC ROME 7702
CPU (2.0 GHz, 64 cores, 128 threads).
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2.2 Model performance comparison
2.2.1 NCI60 GI50 datasets

The average NRMSE, Spearman’s p, PCC, and bias for each model over 59 cell lines
and 5-fold CV splits are listed in Table 1. Fig. 1 shows the boxplots of the performance
metrics. As shown in the table and figure, AdapToR achieves the best performance,
exhibiting the lowest NRMSE and bias, as well as the highest Spearman’s p and
PCC. TCNN with data augmentation (TCNN-Aug) demonstrates performance that
is comparable, though slightly inferior, to AdapToR. Following these two models, TR,
TCNN, GraTrans, RF, and KNN show moderate performance, whereas LR performs
the worst. To reveal a more fine-grained picture, Fig. 2 shows scatter plots of the
NRMSE values of AdapToR versus (a) TCNN-Aug and (b) TR across 59 cell lines
and 5 CV splits (a total of 295 data splits). As shown in Fig. 2 (a), for 289 out of
the 295 splits (98%), AdapToR achieves less NRMSE than TCNN-Aug. In Fig. 2 (b),
AdapToR shows less NRMSE than TR in all data splits.

In addition to the performance metrics, we also compared the time complexity
of different models. Table 1 provides the average training and testing times for each
model. AdapToR shows moderate training and testing times of 121.1 and 7.6 sec,
respectively. Its training time is only longer than LR (5.3 sec) and KNN (6.3 sec)
and is significantly lower than TR (4993.3 sec), GraTrans (1993.6 sec), and TCNN-
Aug (1613.6 sec). The testing time of AdapToR (7.6 sec) is considerably shorter than
TCNN-Aug (162.6 sec) and TR (106.1 sec) and is slightly longer than the baseline
models and GraTrans (ranging from 0.04 to 5.9 sec). TR exhibits the longest training
time because solving Eq. 4 becomes numerically unstable in the presence of multi-
collinearity. TCNN-Aug demonstrates the longest testing time because it generates,
evaluates, and averages predictions for multiple augmented samples per test instance.

Taken together, when evaluated on the NCI60 GI50 dataset, AdapToR outperforms
competing models in all performance metrics (NRMSE, Spearman’s p, PCC, and bias)
and demonstrates an order of magnitude less training and testing times as compared
to TCNN-Aug.

2.2.2 ChEMBL datasets

As supplementary results, we trained and evaluated AdapToR on 530 ChEMBL
datasets. Detailed descriptions of dataset selection and data processing are available
in [23]. Table S2 summarizes the average NRMSE, Spearman’s p, and training and
testing times for AdapToR, TR, Ensemble TR, TCNN, and TCNN-Aug over 530
ChEMBL datasets and 5-fold CV splits. Consistent with previous findings, AdapToR
achieves the best performance at much lower training and testing times compared to
Ensemble TR, TCNN, and TCNN-Aug.

2.3 Ablation analysis of AdapToR

Compared to TR, AdapToR achieves a 41-fold reduction in training time, a 14-fold
reduction in testing time, 8.0% and 16.8% reductions in NRMSE and bias, respectively,
and an approximate 5% increase in Spearman’s p and PCC. To better understand the



232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

implications of each modification introduced in AdapToR, we performed an ablation
analysis of AdapToR.

As shown in Fig. 7 and described in detail in Section 5, AdapToR uses MHFP6
to calculate the structure distances and adds four key model features to the vanilla
TR model. These additional features include (1) training a Ridge regression model
(denoted as L2) to map structure distances to response distances, (2) selecting 10
response anchors with k—means clustering (denoted as Kmeans), (3) novel adaptive
anchor selection in the structure space, and (4) novel optimization-based response
reconstruction.

Starting with vanilla TR, we incrementally added one modification at a time,
resulting in six different models: TR, TR (L2), TR (L2, MHFP6), TR (L2, MHFP6,
Kmeans), AdapToR (RBF), and AdapToR. AdapToR (RBF) represents the AdapToR
model with optimization-based reconstruction replaced by RBF-based reconstruction.
Fig. 3 shows boxplots of the performance metrics, and Table 2 lists the corresponding
average values.

Regarding the performance metrics, all modifications, except for the use of
Ridge regression, had a positive impact on the performance metrics, reducing the
NRMSE and bias while increasing Spearman’s p and PCC. Specifically, NRMSE
steadily decreased from TR (L2) to AdapToR. For Spearman’s p and PCC, major
improvements are observed after incorporating MHFP6 and adaptive anchor selection.
For bias, the largest reduction was attributed to optimization-based reconstruction,
followed by adaptive anchor selection.

Regarding time complexity, using Ridge regression leads to a significant reduction
in training time. Additionally, selecting 10 response anchors with k—means results in
shorter training and testing times. Incorporating adaptive anchor selection, however,
increases training time because additional time is required to evaluate training samples
and train intermediate models during the anchor selection process. Optimization-
based reconstruction slightly reduces both training and testing times.

2.3.1 Performance of ensemble and stacking TR

In this section, we assess the performance of AdapToR when replacing adaptive anchor
selection with the ensemble approach proposed in [23]. The resulting model is denoted
as Ensemble TR (enhanced). The ensemble approach randomly selects 30% to 90% of
the training samples as structure anchors to train fifteen TR models, where the per-
centages are sampled from a Gaussian distribution (mean = 0.6, std = 0.3). The final
prediction is obtained by averaging the predictions from these models. In addition to
the ensemble approach, we also evaluated the performance of stacking the predictions
with a linear model, where 10% of the training samples were randomly selected as the
validation set to estimate stacking weights. The resulting model is denoted as Stack
TR (enhanced). Moreover, we explored the ensemble and stack approaches within the
adaptive anchor selection framework. We averaged or stacked the predictions from
the intermediate and final models trained in adaptive anchor selection, leading to
AdapToR (ensemble) and AdapToR (stack), respectively.

The performance of these models is summarized in Table 3. As shown in the table,
Ensemble TR (enhanced) and Stack TR (enhanced) exhibit lower performance and
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longer training and testing times compared to AdapToR. Furthermore, averaging or
stacking predictions from models trained in adaptive anchor selection does not improve
model performance and instead results in increased testing times.

2.3.2 Comparing random and adaptive anchor selection

To better understand how adaptive anchor selection works, Fig. 4 compares the abso-
lute prediction error of AdapToR models trained with random and adaptive anchor
selection on 500 samples randomly picked from the HCC2998 cell line. Fig. 4 (a) shows
the ground truth response values. Figs. 4 (b) and (c) illustrate the absolute predic-
tion error for the first and second models trained in the adaptive anchor selection
process, respectively. The red dots in those figures represent the 75 (15%) randomly
selected structure anchors used to train the first model, denoted as S;. The orange
stars in Fig. 4 (c) indicate the 75 samples not in S; that exhibited the highest abso-
lute prediction error from the first model, denoted as S7. The combination of the red
dots and orange stars was used to train the second model. For comparison, Fig. 4 (d)
shows the absolute prediction error for the second model when samples in S7 were
randomly selected from samples not in S;.

In Figs. 4 (a~d), we used yellow boxes to highlight the regions where the absolute
prediction error from the first model is high. In Fig. 4 (c), after selecting samples with
high prediction error as structure anchors, the magnitude of the prediction error in the
yellow-boxed regions is significantly reduced. In contrast, in Fig. 4 (d), the absolute
prediction error is reduced in only one out of the seven yellow boxes because a sample
with high prediction error in that box was randomly selected as a structure anchor.
The prediction error of the other six boxes remains high since no high-error samples
were picked as structure anchors in those regions. These results demonstrate that
adaptive anchor selection strategically selects samples in regions where the current
model performs poorly as structure anchors to effectively improve the performance of
subsequent models.

2.3.3 Comparing RBF-based and optimization-based response
reconstruction

As mentioned in Section 1, the RBF-based reconstruction (see Eq. 5) fails to utilize
large distance estimations, whereas the optimization-based reconstruction (see Eq. 9)
ensures that all distance estimations contribute to the final prediction. In this section,
we illustrate the distinction with simple toy examples shown in Fig. 5.

In these examples, there are four response anchor points (blue-filled circles) with
response values of 4, 5, 6, and 8 (denoted as A1, A2, A3, and A4, respectively), and
one test sample (red diamond) with a response value of 7. As shown in Figs. S10, the
response distance estimation error of the test samples from three representative cell
lines has mean and std values around 0 and 0.5, respectively, and follows bell-shaped
distributions that resemble a Gaussian distribution. Additionally, the magnitude of the
estimation error is not linearly related to the actual response distances, as indicated
by the PCC values being close to zero. Hence, in the toy examples, we added random
Gaussian noise (mean=0, std=0.5) to the response distances between the test sample
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and anchor points to simulate response distance estimation error. The resulting noisy
distances serve as simulated distance estimations and are used to reconstruct the
response of the test sample using RBF-based and optimization-based approaches.
Figs. 5 (a~c) show three cases where the Gaussian noise has different patterns.

For RBF-based reconstruction, in all three cases, the RBF weights assigned to Al
and A2 (the two anchors that are distant from the test sample) are close to zero,
contributing negligibly to the final prediction. Consequently, the accuracy of the RBF-
based approach depends primarily on the distance estimations of A3 and A4. In Fig. 5
(¢), when the distance errors of A3 and A4 have the same sign and similar magnitude,
the reconstructed response (purple cross) is close to the actual response. However,
when the distance errors of A3 and A4 have opposite signs or different magnitudes,
as shown in Figs. 5 (a) and (b), the reconstructed responses deviate significantly from
the actual response.

In contrast, the responses reconstructed by the optimization-based approach (green
plus) stay close to the actual response across all three cases. Furthermore, when Al
and A2 are excluded (because RBF assigns negligible weights to these samples) in
the optimization-based reconstruction, the reconstructed responses (cyan plus) shift
away from the actual response in Fig. 5 (a) and (b). These results demonstrate that
large distance estimations contribute meaningfully to response reconstruction in the
optimization-based approach.

2.4 Interpreting AdapToR model

In this section, we present an example of interpreting the AdapToR model trained
on the HCC2998 cell line. By analyzing the model weights, we identified several key
drugs and investigated how they impact AdapToR’s final prediction. The estimated
weights, W, is a K by K, matrix, where K, and K, are the numbers of structure
and response anchors. The estimated response distance matrix, ﬁ,«, is calculated as
DT = |DSVV + 1,3\, where D, is the structure distance matrix. The ith column of w
is responsible for estimating the ith column in D, that corresponds to the distances
associated with the ith response anchor. Thus, we define the ith column of W as the
weights associated with the ith response anchor. Similarly, we define the jth row of W
as the weights associated with the jth structure anchor. A positive (or negative) (¢, j)-
entry of W indicates a positive (or negative) relation between a sample’s structure
distance to the jth structure anchor and its response distance to the ith response
anchor.

Figs. 6 (a-b) show the top five structure anchors with the most positive (red) and
negative (blue) weights associated with two representative response anchors: response
anchor (A) (NSC# 638495 with NLOGGI50=4.28), and response anchor (B) (NSC+#
699490 with NLOGGI50=7.86). Note that the NLOGGI50 values of all drugs range
approximately from 4 to 8. For response anchor (A), a small structure distance to
structure anchors with large positive weights would result in a small response dis-
tance to response anchor (A), suggesting a low response value. This aligns with our
observation that the top five structure anchors with positive weights all exhibit low
response values. In contrast, a small structure distance to structure anchors with large
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negative weights would lead to a large response distance to response anchor (A), indi-
cating a high response value. As expected, all the top five structure anchors with
negative weights show high response values. For response anchor (B), which has a high
response value, we observe a reverse pattern: the top structure anchors with positive
weights exhibit high response values, whereas those with large negative weights have
low response values.

Interestingly, we find common structure anchors in Figs. 6 (a) and (b). For exam-
ple, structure anchor NSC# 798889 (with NLOGGI50=7.93) shows the most positive
weight with response anchor (B) and the most negative weight with response anchor
(A). While these weights have opposite signs, they deliver the same message that a
small structure distance to NSC# 798889 would lead to a high response value. In
contrast, structure anchor NSC# 624672 (with NLOGGI50= 4.03) exhibits a large
negative weight with response anchor (B) and a large positive weight with response
anchor (A), indicating that a large structure distance to NSC# 624672 would result
in a high response value.

These findings motivate us to combine the weights across the response anchors
to identify critical structure anchors for the HCC2998 cell line. To achieve this, we
adjusted W by multiplying -1 to the columns corresponding to the response anchors
with response values below 5 (an arbitrary threshold for low responses) and then
summed the adjusted weights over the response anchors (i.e., along the columns).
Structure anchors with large (positive or negative) sums of adjusted weights are con-
sidered to be critical, as a large response value can be associated with small (or large)
structure distances to anchors with large positive (or negative) sums.

Fig. 6 (c) shows the top five structure anchors with the most positive (red) and
negative (blue) sums of adjusted weights. The top five structure anchors showing the
most positive sum of adjusted weights are NSC# 26258, 758889, 315626, 715192, and
626405, with their respective NLOGGI50 values of 6.50, 7.93, 6.86, 6.44, and 6.99.
Their 2D structures are shown in Fig. 6 (d). The top five structure anchors with the
most negative sum of adjusted weights are NSC# 363072, 624672, 338307, 529861,
and 772496, with their respective NLOGGI50’s given by 4.00, 4.03, 4.77, 4.00, and
4.00. Their 2D structures are shown in Fig. 6 (e).

3 Discussion

In this work, we introduced Adaptive Topological Regression (AdapToR) for QSAR
modeling. AdapToR builds upon Topological Regression (TR) [23] by incorporating
features that enhance scalability, stability, interpretability, and predictive capacity.
When tested on the NCI60 GI50 dataset, AdapToR demonstrates 5% to 17% improve-
ments in performance metrics and significant reductions in training and testing times
compared to TR. Also, AdapToR is compared against three baseline models: Lin-
ear Regression (LR), Random Forest (RF), and K —Nearest Neighbors (KNN), and
two state-of-the-art deep learning models: Transformer-Convolutional Neural Network
(TCNN) [12] and Graph Transformer (GraTrans) [17]. Our results show that Adap-
ToR outperforms all competing models in all performance metrics. While TCNN with
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data augmentation (TCNN-Aug) produced predictive performance similar to Adap-
ToR, our posited model achieved an order of magnitude gain in training and testing
times. These results establish AdapToR as a powerful and computationally efficient
tool for QSAR modeling.

In addition to the NCI60 dataset, we trained and evaluated AdapToR on 530
ChEMBL datasets. Again, AdapToR achieved the best predictive performance at
considerably lower training and testing times compared to TCNN-Aug, demonstrating
AdapToR’s superior performance across different datasets.

Another advantage of AdapToR is its interpretability. We provided an illustrative
example demonstrating how a trained AdapToR model can be interpreted and how
meaningful insights can be derived from it. By analyzing its weights across response
anchors, we identified critical structure anchors shown in Figs. 6 (d) and (e). Our
analyses suggest that a large response value can be associated with small structure
distances to the drugs shown in (d) and large structure distances to the drugs shown
in (e). We believe that revealing such associations can be helpful for hits-to-lead and
lead optimization.

AdapToR incorporates four model features that enhance the stability, scalability,
interpretability, and predictive capacity of the TR framework. First, the adoption of
Ridge regression effectively addresses multicollinearity, an issue increasingly prevalent
with larger datasets, thereby numerically stabilizing model behavior and significantly
reducing training times. Second, AdapToR employs a reduced set of response anchors
selected via k-means clustering to reduce model complexity while still ensuring ade-
quate coverage of the response space. This clustering-based selection not only improves
scalability but also enhances predictive performance by excluding redundant response
anchors.

Furthermore, AdapToR includes two novel model features: adaptive structure
anchor selection and optimization-based response reconstruction. The adaptive anchor
selection approach strategically picks samples in underperformed areas as structure
anchors. Compared to random anchor selection, adaptive selection results in struc-
ture anchors that are more informative for response prediction, hence enhancing
model interpretability and predictive performance. Lastly, AdapToR reconstructs the
optimal response under the loss objective stated in Eq. 9. This optimization-based
approach is able to utilize all response distance estimates to improve the model’s pre-
dictive capacity. In addition, it leads to a roughly 10% decrease in testing time. While
seemingly modest for thousands of test samples, this improvement can yield con-
siderable computational savings in large-scale applications, such as virtual screening
involving millions of compounds.

4 Conclusion

In conclusion, AdapToR is a powerful, reliable, computationally efficient, and inter-
pretable tool for QSAR modeling. We theoretically show that AdapToR admits a
coherent Bayesian hierarchical model and, therefore, is amenable to formal statisti-
cal inference. We anticipate that its implementation in real-world drug discovery and
other QSAR tasks will further demonstrate its practical value and effectiveness.
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5 Methods

5.1 Topological regression

Topological regression (TR) is a computationally efficient and highly interpretable
QASR model recently proposed by [23]. TR builds linear models that use distances in
the structure (input) space to predict distances in the response (output) space. The
driving regression model in TR can be written as

D, =D,W+18+¢€ (2)

where Dy, € RV*Es and D, € RV*Er are the structure and response distance
matrices, respectively, N is the number of samples, K, and K, are the numbers
of structure and response anchors, respectively, W € Rs*Kr contains the model
weights, 1 € RY*! is an all-one vector, 8 € R'*%r represents the intercept terms
and € € RV*Xr is the error term. In TR, 60% of the training samples are randomly
selected as both structure and response anchors, resulting in Ky = K, = round(0.6N).
By defining D% = [1, Ds] and W* = [,BT, WT]T the equation can be rewritten as:

D, =DW" +e (3)

The least-square error solution W and the predicted response distance D, are given
by:

W' = (D" D))" D" D, (4)
D, =DW’

The response values are then reconstructed as follows:

K’V‘
o Zk:l Utk
= T ()
Dkl Uk
where £, is the reconstructed response value for the nth sample, ¢ is the response
value of the kth response anchor. The predicted distances D,. are converted to weights,
ug, k =1,2,..., K, using a Radial Basis Function (RBF) [23].

5.2 Adaptive Topological Regression (AdapToR)

In this work, we modified the TR methodology to enhance its scalability, stability,
interpretability, and predictive capacity. Fig. 7 outlines the TR workflow and high-
lights the key model features added in AdapToR. These additional features include
(1) the adoption of Ridge regression, (2) response anchor selection with k-means clus-
tering, (3) adaptive structure anchor selection, and (4) optimization-based response
reconstruction. The following sections provide detailed descriptions of these features.
The pseudo-code for AdapToR is presented in Algorithm 1.
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5.2.1 Model features for enhancing scalability, stability,
interpretability, and predictive capacity

Ridge regression: As demonstrated in Fig. S11, we observed that the condition
number of the input distance matrix D is exceptionally large, resulting in unstable
model weights and abnormally long training times (see Table 2). To address this, we
replaced the linear regression model with a Ridge regression model. Ridge regression
adds an L2 penalty to the normal linear regression objective function as follows

L(W?) = | D, — DYW"[[; + \|W"|[3 (6)

where || - || calculates the Frobenius norm, which sums the squares of all elements in
the matrix, and A is a hyperparameter controlling the strength of the L2 penalty. In
this work, we found that the optimal value for X is 0.05 (see Section 5.2.3 for more
details). By minimizing the objective function, the closed-form solution for Ridge
regression is

W = (DD +\I)"'D' D, (7)
Since DT D* + AT is well-conditioned (because of A\I), we observed stable model
weights (in Fig. S11) and reduced training time (in Table 2) after adding the L2-
penalty.

Select response anchors with k-means clustering: To reduce model com-
plexity, we used an independent and much smaller set of anchor points in the response
space, making K, << K. These response anchors were not selected randomly but
were chosen by k-means clustering. Specifically, we applied k-means clustering in the
response space with K. clusters and selected the samples closest to the cluster cen-
ters as the response anchors. In this work, the optimal value for K, was determined
to be 10 (see Section 5.2.3 for more details). In Fig. S12, we presented the response
values of the 10 anchors selected by k-means clustering in the response space for three
representative cell lines. It can be observed that these anchors were distributed across
the response space.

Adaptive anchor selection: As discussed in Section 1, TR randomly selects
anchor points, resulting in uncertainty in model performance. Although the average
of multiple independent TR models (i.e. Ensemble TR) can address such uncertainty,
it reduces computational efficiency and model interpretability. To avoid this trade-
off, we proposed a novel adaptive anchor selection strategy that can preserve model
interpretability while achieving better performance and lower computational costs
compared to Ensemble TR. As shown in Algorithm 1, the adaptive anchor selection
starts with randomly selecting K, training samples as the initial set of structure
anchors, denoted as Si, to train the first TR model. Next, the training samples not
included in S; are evaluated on the first model, and the top K, samples with the
highest absolute prediction error, denoted as S7, are added to the structure anchors to
train the second model (i.e. S5 = S7 U S7). This process is repeated iteratively, with
the pth model being trained on the set of structure anchors S}, which is expressed as

Sp="58p1U S;Fl (8)
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where S),_1 represents the set of structure anchors to train the (p — 1)th model and
5271 consists of the K, training samples not in §,_; that exhibit the highest absolute
prediction error on the (p—1)th model. After completing the iterative process, the last
model is used for evaluation. The adaptive anchor selection has two hyperparameters:
the number of structure anchors selected at each step K, and the number of steps
(i.e., models) P. Section 5.2.3 describes how these hyperparameters are fine-tuned.

Optimization-based response reconstruction: With the predicted distances
between the samples and the response anchors, TR reconstructs the responses as
shown in Eq. 5. As mentioned in Section 1, the RBF-based reconstruction fails to
utilize large response distance estimates and is not optimized. Therefore, we proposed
an optimization-based reconstruction method that can utilize information across all
distance estimates and is optimized under the stated loss criterion. The response of
the nth sample (denoted as fn) is determined by minimizing the sum of the square of
the differences between maz (0, Jrnk) and |£,, — t3| across all response anchors, which
can be expressed as

K,
t, = argtmin Z(max(o, dronte) — |t — ti])? )
n =1

where cZ,,n,k is the estimated response distance between the mth sample and kth
response anchor and tj is the response value of the kth response anchor. The func-
tion max(-,-) ensures that the distance estimations are non-negative. We used the
Nelder-Mead algorithm to solve the optimization problem [29].

5.2.2 Statistical Analysis of AdapToR

Our goal in this section is to offer a statistical formulation to understand the statistical
coherence of the AdapToR technique. [23] showed that the original TR admits formal
statistical inference. Since we had modified the prediction strategy in AdapToR (using
Eq. 9 instead of Eq. 5), we theoretically show that AdapToR also admits a coherent
Bayesian hierarchical model and, therefore, is amenable to formal statistical inference.

Observe, if we ignore the cross-product term obtained after expanding Eq. 9, then
t,, is simply the mean of t1,ta, ..., tx, With >, dﬁn & broviding the offset term (because
at the time of response reconstruction, d is already known). The cross-product term
dr,n7k|tn — t| forces the distance in the response space, after reconstruction, to be
positively associated with estimated distances and hence ensures convexity of Eq. 9.

So, from inferential perspective, we treat response reconstruction as an estimation
problem. We mimic the cross-product term of Eq. 9 to construct a concave joint
conditional distribution of Tk, = (t1, ..., tk, ) as follows:

Tic,|tn, 72, 72 " N(t,1,D,) (10)
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where D, = diag(7Z, 73, ... TK ). Next, we define conditionally independent exponen-
tial distribution for each 77 as follows:

Q

d?

k 72
[T1, 72, s TK, | i 15 -0 i K H nk o= i /2 (11)
k=1
Result: For each k = 1,2,..,K, the distribution of tx|t,,drpnr IS

Laplace(tyn,1/dr k)
Proof: For each k, conditional moment-generating function (MGF) of ¢

Mtk|tn,7's (5) — 6tn6+527_73/2 (12)

Integrating over 7y, the resulting MGF is given by

E (Mt;vlt

nuk

oo 2
@) = [ e e yar
s [ 8212 /2 dznk 7(12 T2/2 5 2
= e n / e k 2 rn,k'k di
0
2

_ ot Bk /OO T 10272
d22 0 (13)

tn6 | T,k . 2
2 d?

rn,k
etnd

T1-8/d

ron,k

= MGF of Laplace(ty,1/drn k)

52

Thus, after integrating out 77, we have

d
[l iy ] o =T sl ind (14)

Observe that if we exponentiate the cross product term in Eq.9, it yields

eiQZdr‘"*’“‘t’rt"l, which is essentially the same as the exponential term of the joint
distribution of t1,ta, ...tk |tn, drn 1y oy drn K, -

So, the optimization problem in Eq.9 can be treated as a statistical point
estimation problem under the following hierarchy

TK |tn,7’12, ...,7'}2(T ~ NKT(tn,DT)

(15)
Tk ‘dr n,k ™ Exp(dz,n,k/2)

d2
where —5-* is the rate parameter.
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At the so-called process level, we have:

[108(d7 15 7 16, )|W 03] ' Nig, (dsn W, 031 i) (16)
where d; ,, is the nth row of D,, in Eq.2. Note that, under this construction, we
only need D, to contain non-negative elements. They need not be proper metrics.
Consequently, we do not need to impose positive semi-definiteness when predicting
br, we are essentially predicting the mean of the precision term associated with the
model for Tk, .

To accommodate Ridge regularization, following [30], we impose the following
priors on the elements of W
wijlo?, A % N(0,03/))
02|\ ~ Inverse Gammma(\,by)

A ~ Gammal(ay,by)

Note that, the above X is the ridge parameter. But, under Bayes paradigm, it is
a random variable admitting a distribution on positive support. To complete the
hierarchy, we specify a Normal(0, o2) prior on ,.

Result: Under the above hierarchical model, the conditional specification of
the response variable is preserved. In other words, the conditional distribution of
Ty, |tn, T2, ..., TIQ(T belongs to the same family of distributions as the full conditional
posterior distribution of ¢, |72, ..., 72,02, Tk,..

Proof. We only need to prove that the full conditional of [t,|77,...,72,0%, Tk,] is
Normal.

[tnlTE, s TR 02 Tr, ] o< [Tre, |TE, ooy TR ] [tn |0
o e~ Qo /TR 2tn Yt /TRALL /T | ot /207 (17)
“HEHE B B (ET )
x e k k k
Thus, [tn|77, 75, ..., 72,02, Tk,] ~ N(u*,v*) where v* = (& + 2:13)—1 and u* =

ty
T—’%v*. ]

Thus, the conditional posterior distribution of ¢, is unimodal and u* is the point
estimate of ¢,,. We can explicitly see how the values of the response anchors determine
the estimates of reconstructed responses. The estimated values of d, , 1, ...dr n, K, enter
into the point estimate of ¢,, via 71,72, ..., Tk,..

5.2.3 Hyperparameters fine-tuning

In AdapToR, we have four hyperparameters: (1) A, which controls the L2 penalty; (2)
the number of response anchors, K,; (3) the number of structure anchors selected at
each step of adaptive anchor selection, K, ; and (4) the number of steps, P. We utilized
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the Python package Optuna with the tree-structure Parzen estimator [31] to fine-tune
the hyperparameters on the training samples of three representative cell lines. For
each cell line, the training samples were divided into training (80%), testing (10%),
and validation (10%). Note that these splits were solely for hyperparameter tuning.

The optimal values for the hyperparameters were determined by minimizing the
NRMSE evaluated on the test samples over 100 trials. Fine-tuning A and K, is
straightforward. However, it may not be optimal or feasible to directly fine-tune K,
and P. For K,, we fine-tuned the percentage of structure anchors, calculated as %,
which can be more generalizable to cell lines with different numbers of drugs. For P,
directly fine-tuning it may cause potential issues as its feasible range depends on the
value of % Alternatively, we implemented early-stopping, monitored by validation
samples, and fine-tuned the early-stopping hyperparameter min_delta (with a fixed
patience of 2). The number of steps used with the optimal min_delta was regarded as
the optimal value for P.

Table 4 summarizes the suggested value ranges and fine-tuned values for the
hyperparameters. In this work, the hyperparameters were set to A = 0.05, K, = 10,
% = 0.15 and P = 4, based on the averaged optimal values over the three
representative cell lines.

5.3 QSAR models for comparison
5.3.1 Baseline models

We implemented and evaluated several commonly used baseline QSAR models, includ-
ing random forest (RF), linear regression (LR), LR with L1-penalty (LASSO), LR with
L2-penalty (Ridge), and K —Nearest Neighbors (KNN) regression. These models take
molecular fingerprints as input features to predict the responses. As shown in Fig. S13,
all models showed the lowest NRMSE with ECFP4 as input. Also, we observed that
LR and Ridge showed similar NRMSE and outperformed LASSO. Therefore, only
the LR results are included in the main text. For KNN, the number of nearest neigh-
bors was set to 5, as increasing the value to 10 or 15 led to higher NRMSE. RF
was implemented with the scikit-learn function RandomForestRegressor with default
settings.

5.3.2 Transformer-Convolutional Neural Network

Transformer-Convolutional Neural Network (TCNN) is a powerful DL model,
described as a Swiss-army knife for QSAR modeling [12]. The TCNN architecture
combines a pre-trained Transformer encoder, trained on over 17 million string pairs
for SMILES canonicalization, with a task-specific Text-CNN model for predictions.
Additionally, TCNN supports data augmentation in testing and training by gener-
ating multiple non-canonical SMILES for each compound. We followed the TCNN
instructions and trained the model on the SMILES strings, with and without augmen-
tation, for up to 35 epochs using learning rate scheduling and early stopping. TCNN
with augmentation is denoted as TCNN-Aug.
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5.3.3 Graph Transformer

Graph Transformer (GraTrans) is a DL model that utilizes graph representations of
the drugs to predict drug responses [17]. The model architecture consists of Trans-
former encoders, Graph Attention Network (GAT) and Graph Convolutional Network
(GCN) layers to extract features from molecular graphs, followed by two fully con-
nected layers for response prediction (model architecture is shown in Fig. S14). The
hyperparameters were set as follows: dropout rate = 0.5, learning rate = 104, and
batch size = 512. These hyperparameters were fine-tuned using the Python package
Optuna over 100 trials on the HCC2998 cell line. The model was trained for up to 200
epochs with learning rate scheduling and early stopping.

6 Data and code availability

NCI60 GI50 dataset is available in the Development Therapeutic Program (DTP)
repository (https://dtp.cancer.gov/databases_tools/bulk_data.htm). The ChEMBL
datasets are available in the ChEMBL database (https://www.ebi.ac.uk/chembl/).
AdapToR is publicly available at https://github.com/yixmao/adaptor.

7 Abbreviations

QSAR: Quantitative structure-activity relationship
TR: Topological Regression

AdapToR: Adaptive Topological Regression

ML: Machine Learning

SMILES: Simplified Molecular Input Line Entry System
LR: Linear Regression

RF: Random Forest

DL: Deep Learning

CNN: Convolutional Neural Network

TCNN: Transformer-CNN

TCNN-Aug: TCNN with data augmentation

KNN: K-Nearest Neighbor

RBF': Radial Basis Function

GraTrans: Graph Transformer

NLOGGI50: Negative logarithmic form of GI50 values
ECFP: Extended-Connectivity Fingerprint

MHFP: MinHash Fingerprint

CV: Cross Validation

NRMSE: Normalized Root Mean Square Error

PCC: Pearson correlation coefficient

MGPF: Moment-Generating Function

LASSO: Least Absolute Shrinkage and Selection Operator
GAT: Graph Attention Network

GCN: Graph Convolutional Network
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« 11 Tables

Table 1: Model performance averaged over 59 cell lines of the NCI60 GI50 dataset
and 5-fold cross-validation splits

Model NRMSE Spearman PCC  Bias Train time (sec) Test time (sec)
LR 0.829 0.498 0.564 0.644 5.3 0.04

RF 0.704 0.643 0.711  0.515 219.2 0.1
KNN 0.719 0.633 0.702  0.440 6.3 6.0
GraTrans 0.723 0.638 0.693 0.484 1993.6 2.6
TCNN 0.724 0.630 0.694  0.487 214.8 11.1
TCNN-Aug 0.664 0.698 0.751  0.413 1613.6 162.6

TR 0.708 0.669 0.723  0.481 4993.3 106.1
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Table 2: Ablation analysis of AdapToR. Performance of different TR configurations
averaged over 59 cell lines of the NCI60 GI50 dataset and 5-fold cross-validation splits

Model NRMSE Spearman PCC  Bias  Train time (sec) Test time (sec)
TR 0.708 0.669 0.723  0.481 4993.3 106.1

TR (L2) 0.712 0.676 0.725  0.506 104.3 99.5

TR (L2, MHFP6) 0.698 0.689 0.735 0.483 102.7 100.0

TR (L2, MHFP6, Kmeans) 0.676 0.691 0.739  0.488 37.9 8.7
AdapToR (RBF) 0.662 0.698 0.752  0.466 138.4 8.5
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Descriptions of the listed models can be found in Section 2.3.
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Table 3: Performance of ensemble and stacking TR models averaged over 59 cell lines
of the NCI60 GI50 dataset and 5-fold cross-validation splits

Model NRMSE Spearman PCC  Bias  Train time (sec) Test time (sec)
Ensemble TR (enhanced) 0.662 0.695 0.750  0.418 701.7 123.4
Stack TR (enhanced) 0.670 0.689 0.743  0.428 582.8 123.5
AdapToR (ensemble) 0.652 0.700 0.759 0.399 137.1 33.0
AdapToR (stack) 0.659 0.694 0.753  0.409 136.7 32.7
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Descriptions of the listed models can be found in Section 2.3.1.

Table 4: Fine-tuned hyperparameters with three representative cell lines: HCC2998,
786-O and Colo205

Hyperparameter Suggested range HCC2998 786-O Colo205 Average Value used

) 0.01-0.2 0.05 0.1 0.03 0.06 0.05
K, 5-15 14 10 10 11 10
Ky 0.01-0.2 0.14 019  0.16 0.16 0.15

min_delta 0.001-0.01 0.004  0.005  0.009  0.006 \
p \ 4 4 4 4 4

A: it controls L2-penalty, K,: # of response anchors, %: percent of structure
anchors added at each step of adaptive anchor selection, P: # of steps in adaptive
anchor selection.
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Algorithm 1: AdapToR

10

11

12

13
14

15

16

Input: Set of N training samples S;, # of response anchors K., # of

structure anchors selected at each step K,, # of steps P, response
values t € RV*! structure and response distance matrices
D o1, Dy € RN*N and the L2-penalty hyperparameter \.

Output: Weights of the last model W7,

/%

Select the response anchors and distances */

S, + set of K, response anchors selected with k-means clustering from the
training samples

D,

/%

€ RN*Kr « oxtract distances associated with S, and S; from D, a1
Train the first model */

85,1 < first set of K, structure anchor randomly selected from the training
samples

D, € RV*Ka + extract distances associated with S5,1 and Sy from Dy 4y

W, € READXK: o minimizing || D, — D W75+ N|W7[|3 wrt. WH,
where D ; = [1,D, 1]

/%

Adaptively append new structure anchors and train models */

for p=2,3,..., P do

/* Evaluate the performance of samples in S;\ Sp_1 on Wi */
D, e RW-pEKa)xpKa ¢ eoxtract distances associated with Ssp—1 and
St \ Sp_l from Ds7all
D, =01, DS]W;;f1 + get the distance estimations
for n in Sy \ Sp,—1 do
tn,te, k =1,..., K, + extract the response values for the nth sample
and the K, response anchors from ¢.
t, = argmin, Zf;l(ma:c(o, cfmhk) — [tn — t&])? < optimization-based
reconstruction, where cfnn,k is the (n, k)-entry in ﬁr
Aty = |t, — fn| <+ calculate the absolute prediction error

/* Adaptive anchor selection */
S;71 < select top K, samples showing largest absolute prediction error
Sp,=8,1U S;_l + append the structure anchors
/* Train the pth model */
D, , € RNXPEKa  extract distances associated with S, and S; from
Ds,all
A%
W, € RKetDxKr « minimizing | D, — D ,W*[|3 + A|W*||% wr.t.
W, where DY , = [1, D, )]
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Fig. 1: Boxplots showing the (a) NRMSE, (b) Spearman’s rank correlation coeffi-
cient, (c) Pearson correlation coefficient, and (d) bias of different models, including
AdapToR, TR, TCNN, TCNN-Aug, GraTrans, RF, KNN, and LR. The orange lines
and green triangles represent the medians and the means, respectively. The notches
indicate the 95% confidence interval of the medians.
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Fig. 2: Scatter plots comparing the NRMSE values of AdapToR versus (a) TCNN-
Aug and (b) TR across 59 cell lines and 5 CV splits (a total of 295 data splits). The
red dashed line represents the unity line.
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Fig. 3: Ablation analysis of AdapToR. Boxplots show the (a) NRMSE, (b) Spearman’s
rank correlation coefficient, (c¢) Pearson correlation coefficient, and (d) bias of different
TR models, including TR, TR (L2), TR (L2, MHFP6), TR (L2, MHFP6, Kmeans),
AdapToR (RBF) and AdapToR. AdapToR (RBF) represents the AdapToR model
with optimization-based reconstruction replaced by RBF-based reconstruction. The
orange lines and green triangles represent the medians and the means, respectively.
The notches indicate the 95% confidence interval of the medians.
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(a) Ground truth responses (b) Predictions error of 1st model
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Fig. 4: Comparison of absolute prediction error for TR models trained with random
and adaptive anchor selection on 500 random samples from the HCC2998 cell line.
The samples were projected onto a 2D structural space using multidimensional scal-
ing (MDS), with landscapes interpolated using a Gaussian kernel. (a) Ground truth
response values. The gray dots represent the samples. (b-¢) Absolute prediction error
for the (b) first and (c) second models in adaptive anchor selection. The red dots rep-
resent the 75 (15%) randomly selected structure anchors used to train the first model,
denoted as S;. The orange stars in (c) indicate the 75 samples that are not in Sy and
showed the largest absolute prediction error from the first model, denoted as S7. The
combination of the red dots and the orange star was used to train the second model.
(d) Absolute prediction error for the second model when ST was randomly selected
from samples not in S;. The yellow boxes highlight the regions where the absolute
prediction error from the first model is high.
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Fig. 5: Toy examples comparing optimization-based and RBF-based response recon-
struction with random Gaussian distance errors. In these examples, there are four
anchor points (blue-filled circles) with response values of 4, 5, 6, and 8 (denoted as
A1, A2, A3, and A4, respectively), and one test sample (red diamond) with a response
value of 7. The red dashed circles represent the actual distances between the anchor
points and the test sample. Random Gaussian noise with zero mean and a std of 0.5 is
added to the actual distances. The noisy distances are represented by the blue dashed
circles and are used to reconstruct the response of the test sample. The plus sym-
bols indicate the responses reconstructed by the optimization-based approach with
all anchors (green) and with only A3 and A4 (cyan). The purple cross symbol shows
the response value reconstructed by the RBF-based approach. The text block in each
figure lists the distance errors (i.e., the added Gaussian noise) and the weights used in
RBF-based reconstruction. (a), (b), and (c) illustrate three cases where the distance
errors are different.
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(e) 2D structure of the top 5 structure anchors with the most negative sum of adjust weights
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Fig. 6: Interpreting the AdapToR model trained on the cell line HCC2998. (a-b)
Top 5 structure anchors with the most positive (red) and negative (blue) weights
associated with twp response anchors: (a) NSC# 638495 with NLOGGI50=4.28 and
(b) NSC+# 699490 with NLOGGI50=7.86. (c) Top 5 structure anchors with the most
positive (red) and negative (blue) sum of adjusted weights over the response anchors.
We adjusted w by multiplying -1 to the columns corresponding to the response
anchors with response values smaller than 5 and summed up the adjusted weights
along the columns. In (a-c), the drugs are represented as NSC# (NLOGGI50). (d-e)
2D structure of the top 5 structure anchors with the most (d) positive and (e) negative

sum of adjusted weights.
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Fig. 7: Comparison of TR and AdapToR methodologies. Green patches indicate
modifications in AdapToR, while the red patch represents the TR methodology. Key
features added in AdapToR are emphasized in bold.
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