
AdapToR: Adaptive Topological1

Regression for quantitative2

structure-activity relationship modeling3

Yixiang Mao1, Souparno Ghosh2, Ranadip Pal1*
4

1Department of Electrical and Computer Engineering, Texas Tech5

University, Lubbock, 79409, TX, USA.6

2Department of Statistics, University of Nebraska-Lincoln, Lincoln,7

68588, NB, USA.8

*Corresponding author(s). E-mail(s): Ranadip.Pal@ttu.edu;9

Abstract10

Quantitative structure-activity relationship (QSAR) modeling has become a11

critical tool in drug design. Recently proposed Topological Regression (TR),12

a computationally efficient and highly interpretable QSAR model that maps13

distances in the chemical domain to distances in the activity domain, has14

shown predictive performance comparable to state-of-the-art deep learning-based15

models. However, TR’s dependence on simple random sampling-based anchor16

selection and utilization of radial basis function for response reconstruction con-17

strain its interpretability and predictive capacity. To address these limitations,18

we propose Adaptive Topological Regression (AdapToR) with adaptive anchor19

selection and optimization-based reconstruction. We evaluated AdapToR on the20

NCI60 GI50 dataset, which consists of over 50,000 drug responses across 6021

human cancer cell lines, and compared its performance to Transformer CNN,22

Graph Transformer, TR, and other baseline models. The results demonstrate23

that AdapToR outperforms competing QSAR models for drug response predic-24

tion with significantly lower computational cost and greater interpretability as25

compared to deep learning-based models.26

Scientific contributions:27

AdapToR introduces novel features that improve the scalability, stability, inter-28

pretability, and predictive performance of the TR framework for quantitative29

structure activity prediction. It achieves superior performance on large-scale30

datasets while maintaining a simple, inherently interpretable structure and31

high computational efficiency. These qualities make AdapToR well-suited for32

real-world drug discovery and other QSAR applications.33
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1 Introduction36

Quantitative structure-activity relationship (QSAR) modeling predicts the biological37

activities of chemical compounds from their molecular structures. This modeling tech-38

nique has become an essential tool to accelerate the drug discovery process, saving39

time, costs, and resources [1–4]. It is widely used in several phases of drug discovery,40

including virtual screening for hits identification, hits-to-lead optimization, and lead41

optimization [1–3]. In virtual screening, QSAR models can help to identify promising42

compounds from large chemical libraries, reducing the number of compounds for syn-43

thesis and assays [1, 2]. In hits-to-lead and lead optimization, QSAR modeling can44

guide the multi-parameter optimization process by elucidating connections between45

chemical structures and their biological activities, such as potency, selectivity, and46

pharmacokinetic parameters [1].47

The majority of QSAR models are supervised machine learning (ML) models and48

can be broadly categorized into feature-based and similarity-based approaches. In49

feature-based approaches, molecular structures are first transformed into machine-50

comprehensible features. Common feature types include (a) vectors, such as molecular51

descriptors and fingerprints [5–7], (b) graphs, and (c) strings, such as Simplified52

Molecular Input Line Entry System (SMILES). These features are then used to train53

predictive ML models. In recent decades, there has been a shift from traditional shal-54

low learners, such as linear regression (LR), Support Vector Machines, and Random55

Forest (RF) [8–10], towards more sophisticated deep learning (DL)-based QSAR mod-56

els [11–17]. One group of DL methods utilizes large language models with SMILES57

strings as input [11, 12]. For example, the Transformer-Convolutional Neural Network58

(TCNN) model proposed in [12] combines a Transformer encoder with a Text-CNN,59

exhibiting superior performance on both regression and classification tasks across mul-60

tiple datasets. Another group of DL models employs Graph Convolutional Networks61

to learn features from molecular graphs [13, 15–17]. These models are commonly62

designed to predict cancer drug responses with additional cell line features learned63

by other DL networks. While these models have demonstrated superior performance64

on mixed tests (where the test set was randomly picked from all possible drug-cell65

line pairs), their performance degrades in drug-blind settings (i.e., predicting unseen66

drugs) [13, 17].67

Despite achieving better predictive performance compared to traditional shallow68

learners, DL-based QSAR models suffer from high computational complexity and lack69

of interpretability. Recall that model interpretability is different from model explain-70

ability. Following the definitions proposed in [18], we view an interpretable model71

to be one whose construction is inherently interpretable, whereas explainable ML72

tries to provide post hoc explanations for existing black box models. As an example73

of explainable QSAR models, [12] used Layer-wise Relevance Propagation algorithm74
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[19, 20] to assign importance scores to input features based on their contribution to75

the final prediction. Although these scores indicate the relative influence of features76

on the final prediction, they do not reveal how the model explicitly utilizes these fea-77

tures to obtain the final prediction. In contrast, white box models, such as LR and78

Decision Trees, are inherently interpretable. Their decision-making processes can be79

directly examined by analyzing model weights (in LR) or decision nodes (in Decision80

Trees) [21]. While interpretability may not be critical for hits identification, it can be81

essential for hits-to-lead and lead optimization, where QSAR models are responsible82

for linking chemical structures to biological activities.83

Similarity-based methods, such as K−Nearest Neighbor (KNN) and kernel regres-84

sion [22], offer intuitive interpretability, as their predictions are typically computed85

as a weighted sum of the target values of training samples, with weights determined86

by similarity in the input space. Recently, [23] introduced a novel similarity-based87

regression approach called Topological Regression (TR), which is statistically robust,88

computationally efficient, and interpretable. TR builds linear models that use dis-89

tances in the structure (input) space to predict distances in the response space. These90

distances are calculated between samples and anchor points that are randomly selected91

from training samples. When testing, the estimated response distances between a test92

sample and the anchor points are converted to weights through a Radial Basis Function93

(RBF). The final prediction is then reconstructed as a weighted sum of the responses94

of the anchor points. When evaluated on ChEMBL datasets [24, 25], the predictive95

performance of TR was comparable to that of TCNN, but at a significantly lower96

computational cost and greater interpretability. In addition, TR outperformed other97

competing models, including RF, metric learning kernel regression, and ChemProp98

[26].99

Although TR had demonstrated promising predictive capacity and great inter-100

pretability, the performance of this framework could be improved by optimizing the101

process of anchor point selection and response reconstruction methodologies. First,102

TR selects the anchor points via simple random sampling, resulting in uncertainty in103

model performance. To mitigate the effect of random anchor selection, [23] proposed104

Ensemble TR that averages predictions across multiple models trained with different105

sets of anchor points. While the ensemble approach achieves better predictive perfor-106

mance, it sacrifices computational efficiency and model interpretability. In this work,107

we propose an adaptive anchor selection strategy to address the uncertainty and to108

improve model performance. Since this adaptive strategy produces a single set of109

anchor points, it is more interpretable and time-efficient than the ensemble approach.110

Furthermore, in the original TR, the RBF-based response reconstruction overem-111

phasized small distance estimates in the response space, while disregarding large112

distance estimates. However, large distance estimates can also carry meaningful infor-113

mation. For example, if a test sample has a large estimated response distance to an114

anchor with a low response value, it could indicate a high response value for that test115

sample. In addition, the RBF-based reconstruction is not optimized in any form. To116

address these weaknesses, we propose an optimization-based response reconstruction117

approach that can utilize information across all distance estimations and is opti-118

mized under the stated loss criterion. In addition to these innovative approaches,119
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we implemented several other modifications to stabilize model behavior and reduce120

computation time. We refer to this adaptive version of TR as Adaptive Topological121

Regression (AdapToR).122

In [23], TR is evaluated on ChEMBL datasets with small to moderate sample sizes123

(that range from 100 to 7890 with a median sample size of 677). This evaluation may124

favor simpler models like TR over DL models that typically require a large number of125

training samples for optimal performance. In this work, we evaluated TR and proposed126

AdapToR on the NCI60 GI50 dataset [27] that consists of over 50,000 drug responses127

across 60 human cancer cell lines. To the best of our knowledge, it is one of the128

largest real-world datasets for cancer drug response prediction. For comparison, we129

implemented and evaluated multiple baseline models, including LR, RF, and KNN, as130

well as the state-of-the-art DL models, including TCNN [12] and Graph Transformer131

(GraTrans) [17]. Our results show that AdapToR outperforms all competing models132

while being considerably more time-efficient compared to TR and the DL models.133

Furthermore, we present an illustrative example to demonstrate the interpretability134

of a trained AdapToR model and discuss the insights that can be derived from it.135

The paper is organized as follows. Section 2 provides a short description of the data136

and experiments along with the results. Section 3 provides a discussion on the frame-137

work. Section 5 provides detailed descriptions of the methods used in the manuscript.138

The data and code availability are included in Section 6.139

2 Results140

2.1 Data and experiment description141

2.1.1 NCI60 GI50 dataset142

The NCI60 GI50 dataset assesses the anticancer activity of over 50,000 compounds143

across 60 human cancer cell lines. Drug responses are measured as GI50 values (in144

molar units, M), representing the concentration required to inhibit 50% of cell pro-145

liferation [27]. We transformed the GI50 values into their negative logarithmic form,146

referred to as NLOGGI50 (NLOGGI50=− log10(GI50)), and used that as response147

values. Higher NLOGGI50 values indicate stronger inhibitory effects.148

The drugs’ unique NSC# was used to obtain their SMILES through PubChem.149

Drugs that do not have valid SMILES strings were excluded. The molecular fin-150

gerprints and graphs are then generated based on their SMILES. For fingerprints,151

we generated Extended-Connectivity Fingerprints with a radius of 2 (ECFP4) using152

RDKit [28], and MinHash Fingerprints with a radius of 3 (MHFP6) [6]. The number153

of bits was set to 2048 for both fingerprints. ECFP4 was originally used in TR, and154

MHFP6 has been shown to outperform ECFP4 in nearest neighbor searches [6]. Our155

empirical results (see in Fig. 3) indicate that using MHFP6 enhances the performance156

of TR. Molecular graphs were generated following the procedure described in [17] and157

used as inputs to the GraTrans model.158

We excluded the cell line MDA-MB-468, which has less than 10,000 drugs. Thus,159

our final dataset consisted of 59 cell lines and 51,312 unique drug compounds. Table S1160

shows the number of drugs for each cell line.161
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2.1.2 Comparison procedure162

Our goal is to predict drug response for each cell line in a drug-blind setting. The pre-163

dictive performance of each candidate model was assessed using 5-fold cross-validation164

(CV), with each fold consisting of 80% training and 20% testing data. The separation165

of training and testing sets is independent for each cell line. We evaluated the can-166

didate models using normalized root mean square error (NRMSE), Spearman’s rank167

correlation coefficient (ρ), Pearson correlation coefficient (PCC, r), and bias in pre-168

dictions (bias). NRMSE compares the predictive residuals of a trained model to the169

prediction error obtained from a null model (recall, a null model uses the mean of the170

training responses as the point prediction for all test samples). Spearman’s ρ assesses171

the monotonic relationship between the observed and predicted responses. It will be172

close to unity if the predicted and observed responses have similar ranks. PCC, on173

the other hand, measures the linear relationships between the predicted and observed174

responses. The bias in prediction is defined as the slope of the best-fit line through175

the residuals (prediction error) as a function of the observed responses. It evaluates176

whether the residuals are systematically related to the observed responses. Empiri-177

cally, if we observe the residuals to be randomly distributed about 0, the bias value178

will tend to be zero, indicating an unbiased prediction. Denote the observed and pre-179

dicted responses in the test set as yi and ŷi, i = 1, 2, ..., n, respectively. Define the180

corresponding mean values as ȳ and ¯̂y, the corresponding estimated standard devia-181

tion values as σ̂y and σ̂ŷ, and the difference between the ranks of the observed and182

predicted responses as vi, i = 1, 2, ..., n, the performance metrics are calculated as183

follows:184

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

σ̂y
=

√∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

ρ = 1− 6
∑n

i v2
i

n(n2 − 1)

r =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)
nσ̂yσ̂ŷ

Bias =
∑n

i=1(yi − ȳ)(yi − ŷi)∑n
i=1(yi − ȳ)2 = tan∠(y, y − ŷ)

(1)

2.1.3 GPU and CPU systems185

For a fair comparison and to optimize hardware performance for each model, we186

trained and tested the DL models on a GPU system equipped with an NVIDIA Tesla187

V100 GPU and an Intel Xeon Cascade Lake 6248 CPU (2.5 GHz, 20 cores, 40 threads).188

Other models were trained on a CPU system featuring an AMD EPYC ROME 7702189

CPU (2.0 GHz, 64 cores, 128 threads).190
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2.2 Model performance comparison191

2.2.1 NCI60 GI50 datasets192

The average NRMSE, Spearman’s ρ, PCC, and bias for each model over 59 cell lines193

and 5-fold CV splits are listed in Table 1. Fig. 1 shows the boxplots of the performance194

metrics. As shown in the table and figure, AdapToR achieves the best performance,195

exhibiting the lowest NRMSE and bias, as well as the highest Spearman’s ρ and196

PCC. TCNN with data augmentation (TCNN-Aug) demonstrates performance that197

is comparable, though slightly inferior, to AdapToR. Following these two models, TR,198

TCNN, GraTrans, RF, and KNN show moderate performance, whereas LR performs199

the worst. To reveal a more fine-grained picture, Fig. 2 shows scatter plots of the200

NRMSE values of AdapToR versus (a) TCNN-Aug and (b) TR across 59 cell lines201

and 5 CV splits (a total of 295 data splits). As shown in Fig. 2 (a), for 289 out of202

the 295 splits (98%), AdapToR achieves less NRMSE than TCNN-Aug. In Fig. 2 (b),203

AdapToR shows less NRMSE than TR in all data splits.204

In addition to the performance metrics, we also compared the time complexity205

of different models. Table 1 provides the average training and testing times for each206

model. AdapToR shows moderate training and testing times of 121.1 and 7.6 sec,207

respectively. Its training time is only longer than LR (5.3 sec) and KNN (6.3 sec)208

and is significantly lower than TR (4993.3 sec), GraTrans (1993.6 sec), and TCNN-209

Aug (1613.6 sec). The testing time of AdapToR (7.6 sec) is considerably shorter than210

TCNN-Aug (162.6 sec) and TR (106.1 sec) and is slightly longer than the baseline211

models and GraTrans (ranging from 0.04 to 5.9 sec). TR exhibits the longest training212

time because solving Eq. 4 becomes numerically unstable in the presence of multi-213

collinearity. TCNN-Aug demonstrates the longest testing time because it generates,214

evaluates, and averages predictions for multiple augmented samples per test instance.215

Taken together, when evaluated on the NCI60 GI50 dataset, AdapToR outperforms216

competing models in all performance metrics (NRMSE, Spearman’s ρ, PCC, and bias)217

and demonstrates an order of magnitude less training and testing times as compared218

to TCNN-Aug.219

2.2.2 ChEMBL datasets220

As supplementary results, we trained and evaluated AdapToR on 530 ChEMBL221

datasets. Detailed descriptions of dataset selection and data processing are available222

in [23]. Table S2 summarizes the average NRMSE, Spearman’s ρ, and training and223

testing times for AdapToR, TR, Ensemble TR, TCNN, and TCNN-Aug over 530224

ChEMBL datasets and 5-fold CV splits. Consistent with previous findings, AdapToR225

achieves the best performance at much lower training and testing times compared to226

Ensemble TR, TCNN, and TCNN-Aug.227

2.3 Ablation analysis of AdapToR228

Compared to TR, AdapToR achieves a 41-fold reduction in training time, a 14-fold229

reduction in testing time, 8.0% and 16.8% reductions in NRMSE and bias, respectively,230

and an approximate 5% increase in Spearman’s ρ and PCC. To better understand the231
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implications of each modification introduced in AdapToR, we performed an ablation232

analysis of AdapToR.233

As shown in Fig. 7 and described in detail in Section 5, AdapToR uses MHFP6234

to calculate the structure distances and adds four key model features to the vanilla235

TR model. These additional features include (1) training a Ridge regression model236

(denoted as L2) to map structure distances to response distances, (2) selecting 10237

response anchors with k−means clustering (denoted as Kmeans), (3) novel adaptive238

anchor selection in the structure space, and (4) novel optimization-based response239

reconstruction.240

Starting with vanilla TR, we incrementally added one modification at a time,241

resulting in six different models: TR, TR (L2), TR (L2, MHFP6), TR (L2, MHFP6,242

Kmeans), AdapToR (RBF), and AdapToR. AdapToR (RBF) represents the AdapToR243

model with optimization-based reconstruction replaced by RBF-based reconstruction.244

Fig. 3 shows boxplots of the performance metrics, and Table 2 lists the corresponding245

average values.246

Regarding the performance metrics, all modifications, except for the use of247

Ridge regression, had a positive impact on the performance metrics, reducing the248

NRMSE and bias while increasing Spearman’s ρ and PCC. Specifically, NRMSE249

steadily decreased from TR (L2) to AdapToR. For Spearman’s ρ and PCC, major250

improvements are observed after incorporating MHFP6 and adaptive anchor selection.251

For bias, the largest reduction was attributed to optimization-based reconstruction,252

followed by adaptive anchor selection.253

Regarding time complexity, using Ridge regression leads to a significant reduction254

in training time. Additionally, selecting 10 response anchors with k−means results in255

shorter training and testing times. Incorporating adaptive anchor selection, however,256

increases training time because additional time is required to evaluate training samples257

and train intermediate models during the anchor selection process. Optimization-258

based reconstruction slightly reduces both training and testing times.259

2.3.1 Performance of ensemble and stacking TR260

In this section, we assess the performance of AdapToR when replacing adaptive anchor261

selection with the ensemble approach proposed in [23]. The resulting model is denoted262

as Ensemble TR (enhanced). The ensemble approach randomly selects 30% to 90% of263

the training samples as structure anchors to train fifteen TR models, where the per-264

centages are sampled from a Gaussian distribution (mean = 0.6, std = 0.3). The final265

prediction is obtained by averaging the predictions from these models. In addition to266

the ensemble approach, we also evaluated the performance of stacking the predictions267

with a linear model, where 10% of the training samples were randomly selected as the268

validation set to estimate stacking weights. The resulting model is denoted as Stack269

TR (enhanced). Moreover, we explored the ensemble and stack approaches within the270

adaptive anchor selection framework. We averaged or stacked the predictions from271

the intermediate and final models trained in adaptive anchor selection, leading to272

AdapToR (ensemble) and AdapToR (stack), respectively.273

The performance of these models is summarized in Table 3. As shown in the table,274

Ensemble TR (enhanced) and Stack TR (enhanced) exhibit lower performance and275
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longer training and testing times compared to AdapToR. Furthermore, averaging or276

stacking predictions from models trained in adaptive anchor selection does not improve277

model performance and instead results in increased testing times.278

2.3.2 Comparing random and adaptive anchor selection279

To better understand how adaptive anchor selection works, Fig. 4 compares the abso-280

lute prediction error of AdapToR models trained with random and adaptive anchor281

selection on 500 samples randomly picked from the HCC2998 cell line. Fig. 4 (a) shows282

the ground truth response values. Figs. 4 (b) and (c) illustrate the absolute predic-283

tion error for the first and second models trained in the adaptive anchor selection284

process, respectively. The red dots in those figures represent the 75 (15%) randomly285

selected structure anchors used to train the first model, denoted as S1. The orange286

stars in Fig. 4 (c) indicate the 75 samples not in S1 that exhibited the highest abso-287

lute prediction error from the first model, denoted as S∗
1. The combination of the red288

dots and orange stars was used to train the second model. For comparison, Fig. 4 (d)289

shows the absolute prediction error for the second model when samples in S∗
1 were290

randomly selected from samples not in S1.291

In Figs. 4 (a-d), we used yellow boxes to highlight the regions where the absolute292

prediction error from the first model is high. In Fig. 4 (c), after selecting samples with293

high prediction error as structure anchors, the magnitude of the prediction error in the294

yellow-boxed regions is significantly reduced. In contrast, in Fig. 4 (d), the absolute295

prediction error is reduced in only one out of the seven yellow boxes because a sample296

with high prediction error in that box was randomly selected as a structure anchor.297

The prediction error of the other six boxes remains high since no high-error samples298

were picked as structure anchors in those regions. These results demonstrate that299

adaptive anchor selection strategically selects samples in regions where the current300

model performs poorly as structure anchors to effectively improve the performance of301

subsequent models.302

2.3.3 Comparing RBF-based and optimization-based response303

reconstruction304

As mentioned in Section 1, the RBF-based reconstruction (see Eq. 5) fails to utilize305

large distance estimations, whereas the optimization-based reconstruction (see Eq. 9)306

ensures that all distance estimations contribute to the final prediction. In this section,307

we illustrate the distinction with simple toy examples shown in Fig. 5.308

In these examples, there are four response anchor points (blue-filled circles) with309

response values of 4, 5, 6, and 8 (denoted as A1, A2, A3, and A4, respectively), and310

one test sample (red diamond) with a response value of 7. As shown in Figs. S10, the311

response distance estimation error of the test samples from three representative cell312

lines has mean and std values around 0 and 0.5, respectively, and follows bell-shaped313

distributions that resemble a Gaussian distribution. Additionally, the magnitude of the314

estimation error is not linearly related to the actual response distances, as indicated315

by the PCC values being close to zero. Hence, in the toy examples, we added random316

Gaussian noise (mean=0, std=0.5) to the response distances between the test sample317
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and anchor points to simulate response distance estimation error. The resulting noisy318

distances serve as simulated distance estimations and are used to reconstruct the319

response of the test sample using RBF-based and optimization-based approaches.320

Figs. 5 (a-c) show three cases where the Gaussian noise has different patterns.321

For RBF-based reconstruction, in all three cases, the RBF weights assigned to A1322

and A2 (the two anchors that are distant from the test sample) are close to zero,323

contributing negligibly to the final prediction. Consequently, the accuracy of the RBF-324

based approach depends primarily on the distance estimations of A3 and A4. In Fig. 5325

(c), when the distance errors of A3 and A4 have the same sign and similar magnitude,326

the reconstructed response (purple cross) is close to the actual response. However,327

when the distance errors of A3 and A4 have opposite signs or different magnitudes,328

as shown in Figs. 5 (a) and (b), the reconstructed responses deviate significantly from329

the actual response.330

In contrast, the responses reconstructed by the optimization-based approach (green331

plus) stay close to the actual response across all three cases. Furthermore, when A1332

and A2 are excluded (because RBF assigns negligible weights to these samples) in333

the optimization-based reconstruction, the reconstructed responses (cyan plus) shift334

away from the actual response in Fig. 5 (a) and (b). These results demonstrate that335

large distance estimations contribute meaningfully to response reconstruction in the336

optimization-based approach.337

2.4 Interpreting AdapToR model338

In this section, we present an example of interpreting the AdapToR model trained339

on the HCC2998 cell line. By analyzing the model weights, we identified several key340

drugs and investigated how they impact AdapToR’s final prediction. The estimated341

weights, Ŵ , is a Ks by Kr matrix, where Ks and Kr are the numbers of structure342

and response anchors. The estimated response distance matrix, D̂r, is calculated as343

D̂r = |DsŴ + 1β̂|, where Ds is the structure distance matrix. The ith column of Ŵ344

is responsible for estimating the ith column in D̂r that corresponds to the distances345

associated with the ith response anchor. Thus, we define the ith column of Ŵ as the346

weights associated with the ith response anchor. Similarly, we define the jth row of Ŵ347

as the weights associated with the jth structure anchor. A positive (or negative) (i, j)-348

entry of Ŵ indicates a positive (or negative) relation between a sample’s structure349

distance to the jth structure anchor and its response distance to the ith response350

anchor.351

Figs. 6 (a-b) show the top five structure anchors with the most positive (red) and352

negative (blue) weights associated with two representative response anchors: response353

anchor (A) (NSC# 638495 with NLOGGI50=4.28), and response anchor (B) (NSC#354

699490 with NLOGGI50=7.86). Note that the NLOGGI50 values of all drugs range355

approximately from 4 to 8. For response anchor (A), a small structure distance to356

structure anchors with large positive weights would result in a small response dis-357

tance to response anchor (A), suggesting a low response value. This aligns with our358

observation that the top five structure anchors with positive weights all exhibit low359

response values. In contrast, a small structure distance to structure anchors with large360
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negative weights would lead to a large response distance to response anchor (A), indi-361

cating a high response value. As expected, all the top five structure anchors with362

negative weights show high response values. For response anchor (B), which has a high363

response value, we observe a reverse pattern: the top structure anchors with positive364

weights exhibit high response values, whereas those with large negative weights have365

low response values.366

Interestingly, we find common structure anchors in Figs. 6 (a) and (b). For exam-367

ple, structure anchor NSC# 798889 (with NLOGGI50=7.93) shows the most positive368

weight with response anchor (B) and the most negative weight with response anchor369

(A). While these weights have opposite signs, they deliver the same message that a370

small structure distance to NSC# 798889 would lead to a high response value. In371

contrast, structure anchor NSC# 624672 (with NLOGGI50= 4.03) exhibits a large372

negative weight with response anchor (B) and a large positive weight with response373

anchor (A), indicating that a large structure distance to NSC# 624672 would result374

in a high response value.375

These findings motivate us to combine the weights across the response anchors376

to identify critical structure anchors for the HCC2998 cell line. To achieve this, we377

adjusted Ŵ by multiplying -1 to the columns corresponding to the response anchors378

with response values below 5 (an arbitrary threshold for low responses) and then379

summed the adjusted weights over the response anchors (i.e., along the columns).380

Structure anchors with large (positive or negative) sums of adjusted weights are con-381

sidered to be critical, as a large response value can be associated with small (or large)382

structure distances to anchors with large positive (or negative) sums.383

Fig. 6 (c) shows the top five structure anchors with the most positive (red) and384

negative (blue) sums of adjusted weights. The top five structure anchors showing the385

most positive sum of adjusted weights are NSC# 26258, 758889, 315626, 715192, and386

626405, with their respective NLOGGI50 values of 6.50, 7.93, 6.86, 6.44, and 6.99.387

Their 2D structures are shown in Fig. 6 (d). The top five structure anchors with the388

most negative sum of adjusted weights are NSC# 363072, 624672, 338307, 529861,389

and 772496, with their respective NLOGGI50’s given by 4.00, 4.03, 4.77, 4.00, and390

4.00. Their 2D structures are shown in Fig. 6 (e).391

3 Discussion392

In this work, we introduced Adaptive Topological Regression (AdapToR) for QSAR393

modeling. AdapToR builds upon Topological Regression (TR) [23] by incorporating394

features that enhance scalability, stability, interpretability, and predictive capacity.395

When tested on the NCI60 GI50 dataset, AdapToR demonstrates 5% to 17% improve-396

ments in performance metrics and significant reductions in training and testing times397

compared to TR. Also, AdapToR is compared against three baseline models: Lin-398

ear Regression (LR), Random Forest (RF), and K−Nearest Neighbors (KNN), and399

two state-of-the-art deep learning models: Transformer-Convolutional Neural Network400

(TCNN) [12] and Graph Transformer (GraTrans) [17]. Our results show that Adap-401

ToR outperforms all competing models in all performance metrics. While TCNN with402
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data augmentation (TCNN-Aug) produced predictive performance similar to Adap-403

ToR, our posited model achieved an order of magnitude gain in training and testing404

times. These results establish AdapToR as a powerful and computationally efficient405

tool for QSAR modeling.406

In addition to the NCI60 dataset, we trained and evaluated AdapToR on 530407

ChEMBL datasets. Again, AdapToR achieved the best predictive performance at408

considerably lower training and testing times compared to TCNN-Aug, demonstrating409

AdapToR’s superior performance across different datasets.410

Another advantage of AdapToR is its interpretability. We provided an illustrative411

example demonstrating how a trained AdapToR model can be interpreted and how412

meaningful insights can be derived from it. By analyzing its weights across response413

anchors, we identified critical structure anchors shown in Figs. 6 (d) and (e). Our414

analyses suggest that a large response value can be associated with small structure415

distances to the drugs shown in (d) and large structure distances to the drugs shown416

in (e). We believe that revealing such associations can be helpful for hits-to-lead and417

lead optimization.418

AdapToR incorporates four model features that enhance the stability, scalability,419

interpretability, and predictive capacity of the TR framework. First, the adoption of420

Ridge regression effectively addresses multicollinearity, an issue increasingly prevalent421

with larger datasets, thereby numerically stabilizing model behavior and significantly422

reducing training times. Second, AdapToR employs a reduced set of response anchors423

selected via k-means clustering to reduce model complexity while still ensuring ade-424

quate coverage of the response space. This clustering-based selection not only improves425

scalability but also enhances predictive performance by excluding redundant response426

anchors.427

Furthermore, AdapToR includes two novel model features: adaptive structure428

anchor selection and optimization-based response reconstruction. The adaptive anchor429

selection approach strategically picks samples in underperformed areas as structure430

anchors. Compared to random anchor selection, adaptive selection results in struc-431

ture anchors that are more informative for response prediction, hence enhancing432

model interpretability and predictive performance. Lastly, AdapToR reconstructs the433

optimal response under the loss objective stated in Eq. 9. This optimization-based434

approach is able to utilize all response distance estimates to improve the model’s pre-435

dictive capacity. In addition, it leads to a roughly 10% decrease in testing time. While436

seemingly modest for thousands of test samples, this improvement can yield con-437

siderable computational savings in large-scale applications, such as virtual screening438

involving millions of compounds.439

4 Conclusion440

In conclusion, AdapToR is a powerful, reliable, computationally efficient, and inter-441

pretable tool for QSAR modeling. We theoretically show that AdapToR admits a442

coherent Bayesian hierarchical model and, therefore, is amenable to formal statisti-443

cal inference. We anticipate that its implementation in real-world drug discovery and444

other QSAR tasks will further demonstrate its practical value and effectiveness.445
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5 Methods446

5.1 Topological regression447

Topological regression (TR) is a computationally efficient and highly interpretable448

QASR model recently proposed by [23]. TR builds linear models that use distances in449

the structure (input) space to predict distances in the response (output) space. The450

driving regression model in TR can be written as451

Dr = DsW + 1β + ϵ (2)

where Ds ∈ RN×Ks and Dr ∈ RN×Kr are the structure and response distance452

matrices, respectively, N is the number of samples, Ks and Kr are the numbers453

of structure and response anchors, respectively, W ∈ RKs×Kr contains the model454

weights, 1 ∈ RN×1 is an all-one vector, β ∈ R1×Kr represents the intercept terms455

and ϵ ∈ RN×Kr is the error term. In TR, 60% of the training samples are randomly456

selected as both structure and response anchors, resulting in Ks = Kr = round(0.6N).457

By defining D∗
s = [1, Ds] and W ∗ = [βT , W T ]T , the equation can be rewritten as:458

Dr = D∗
sW ∗ + ϵ (3)

The least-square error solution Ŵ
∗

and the predicted response distance D̂r are given459

by:460

Ŵ
∗

= (D∗T
s D∗

s)−1D∗T
s Dr

D̂r = D∗
sŴ

∗ (4)

The response values are then reconstructed as follows:461

t̂n =
∑Kr

k=1 uktk∑Kr

k=1 uk

(5)

where t̂n is the reconstructed response value for the nth sample, tk is the response462

value of the kth response anchor. The predicted distances D̂r are converted to weights,463

uk, k = 1, 2, ..., Kr, using a Radial Basis Function (RBF) [23].464

5.2 Adaptive Topological Regression (AdapToR)465

In this work, we modified the TR methodology to enhance its scalability, stability,466

interpretability, and predictive capacity. Fig. 7 outlines the TR workflow and high-467

lights the key model features added in AdapToR. These additional features include468

(1) the adoption of Ridge regression, (2) response anchor selection with k-means clus-469

tering, (3) adaptive structure anchor selection, and (4) optimization-based response470

reconstruction. The following sections provide detailed descriptions of these features.471

The pseudo-code for AdapToR is presented in Algorithm 1.472
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5.2.1 Model features for enhancing scalability, stability,473

interpretability, and predictive capacity474

Ridge regression: As demonstrated in Fig. S11, we observed that the condition475

number of the input distance matrix Ds is exceptionally large, resulting in unstable476

model weights and abnormally long training times (see Table 2). To address this, we477

replaced the linear regression model with a Ridge regression model. Ridge regression478

adds an L2 penalty to the normal linear regression objective function as follows479

L(W ∗) = ∥Dr −D∗
sW ∗∥2

2 + λ∥W ∗∥2
F (6)

where ∥ · ∥F calculates the Frobenius norm, which sums the squares of all elements in480

the matrix, and λ is a hyperparameter controlling the strength of the L2 penalty. In481

this work, we found that the optimal value for λ is 0.05 (see Section 5.2.3 for more482

details). By minimizing the objective function, the closed-form solution for Ridge483

regression is484

Ŵ
∗

= (D∗T
s D∗

s + λI)−1D∗T
s Dr (7)

Since D∗T
s D∗

s + λI is well-conditioned (because of λI), we observed stable model485

weights (in Fig. S11) and reduced training time (in Table 2) after adding the L2-486

penalty.487

Select response anchors with k-means clustering: To reduce model com-488

plexity, we used an independent and much smaller set of anchor points in the response489

space, making Kr << Ks. These response anchors were not selected randomly but490

were chosen by k-means clustering. Specifically, we applied k-means clustering in the491

response space with Kr clusters and selected the samples closest to the cluster cen-492

ters as the response anchors. In this work, the optimal value for Kr was determined493

to be 10 (see Section 5.2.3 for more details). In Fig. S12, we presented the response494

values of the 10 anchors selected by k-means clustering in the response space for three495

representative cell lines. It can be observed that these anchors were distributed across496

the response space.497

Adaptive anchor selection: As discussed in Section 1, TR randomly selects498

anchor points, resulting in uncertainty in model performance. Although the average499

of multiple independent TR models (i.e. Ensemble TR) can address such uncertainty,500

it reduces computational efficiency and model interpretability. To avoid this trade-501

off, we proposed a novel adaptive anchor selection strategy that can preserve model502

interpretability while achieving better performance and lower computational costs503

compared to Ensemble TR. As shown in Algorithm 1, the adaptive anchor selection504

starts with randomly selecting Ka training samples as the initial set of structure505

anchors, denoted as S1, to train the first TR model. Next, the training samples not506

included in S1 are evaluated on the first model, and the top Ka samples with the507

highest absolute prediction error, denoted as S∗
1, are added to the structure anchors to508

train the second model (i.e. S2 = S1 ∪ S∗
1). This process is repeated iteratively, with509

the pth model being trained on the set of structure anchors Sp, which is expressed as510

Sp = Sp−1 ∪ S∗
p−1 (8)
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where Sp−1 represents the set of structure anchors to train the (p − 1)th model and511

S∗
p−1 consists of the Ka training samples not in Sp−1 that exhibit the highest absolute512

prediction error on the (p−1)th model. After completing the iterative process, the last513

model is used for evaluation. The adaptive anchor selection has two hyperparameters:514

the number of structure anchors selected at each step Ka and the number of steps515

(i.e., models) P . Section 5.2.3 describes how these hyperparameters are fine-tuned.516

Optimization-based response reconstruction: With the predicted distances517

between the samples and the response anchors, TR reconstructs the responses as518

shown in Eq. 5. As mentioned in Section 1, the RBF-based reconstruction fails to519

utilize large response distance estimates and is not optimized. Therefore, we proposed520

an optimization-based reconstruction method that can utilize information across all521

distance estimates and is optimized under the stated loss criterion. The response of522

the nth sample (denoted as t̂n) is determined by minimizing the sum of the square of523

the differences between max(0, d̂r,n,k) and |t̂n− tk| across all response anchors, which524

can be expressed as525

t̂n = arg min
tn

Kr∑
k=1

(max(0, d̂r,n,k)− |tn − tk|)2 (9)

where d̂r,n,k is the estimated response distance between the nth sample and kth526

response anchor and tk is the response value of the kth response anchor. The func-527

tion max(·, ·) ensures that the distance estimations are non-negative. We used the528

Nelder–Mead algorithm to solve the optimization problem [29].529

5.2.2 Statistical Analysis of AdapToR530

Our goal in this section is to offer a statistical formulation to understand the statistical531

coherence of the AdapToR technique. [23] showed that the original TR admits formal532

statistical inference. Since we had modified the prediction strategy in AdapToR (using533

Eq. 9 instead of Eq. 5), we theoretically show that AdapToR also admits a coherent534

Bayesian hierarchical model and, therefore, is amenable to formal statistical inference.535

Observe, if we ignore the cross-product term obtained after expanding Eq. 9, then536

t̂n is simply the mean of t1, t2, ..., tKr with
∑

k d̂2
r,n,k providing the offset term (because537

at the time of response reconstruction, d̂ is already known). The cross-product term538

d̂r,n,k|tn − tk| forces the distance in the response space, after reconstruction, to be539

positively associated with estimated distances and hence ensures convexity of Eq. 9.540

So, from inferential perspective, we treat response reconstruction as an estimation541

problem. We mimic the cross-product term of Eq. 9 to construct a concave joint542

conditional distribution of TKr = (t1, ..., tKr ) as follows:543

TKr |tn, τ2
1 , ..., τ2

Kr

ind∼ N(tn1, Dτ ) (10)
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where Dτ = diag(τ2
1 , τ2

2 , ..., τ2
Kr

). Next, we define conditionally independent exponen-544

tial distribution for each τ2
k as follows:545

[τ1, τ2, ..., τKr |dr,n,1, ..., dr,n,Kr ] ∼
Kr∏
k=1

d2
r,n,k

2 e−d2
r,n,kτ2

k /2 (11)

Result: For each k = 1, 2, ..., Kr the distribution of tk|tn, dr,n,k is546

Laplace(tn, 1/dr,n,k)547

Proof: For each k, conditional moment-generating function (MGF) of tk548

Mtk|tn,τ2
k
(δ) = etnδ+δ2τ2

k /2 (12)

Integrating over τk, the resulting MGF is given by549

Eτ2
k
(Mtk|tn,τ2

k
(δ)) =

∫ ∞

0
etnδ+δ2τ2

k /2f(τ2
k )dτ2

k

= etnδ

∫ ∞

0
eδ2τ2

k /2 ·
d2

r,n,k

2 e−d2
r,n,kτ2

k /2dτ2
k

= etnδ ·
d2

r,n,k

2

∫ ∞

0
e−τ2

k (d2
r,n,k−δ2)/2dτ2

k

= etnδ ·
d2

r,n,k

2 · 2
d2

r,n,k − δ2

= etnδ

1− δ2/d2
r,n,k

= MGF of Laplace(tn, 1/dr,n,k)

(13)

Thus, after integrating out τ2
k , we have550

[tk|tn, dr,n,k] ∝ dr,n,k

2 e−dr,n,k|tk−tn| (14)

Observe that if we exponentiate the cross product term in Eq.9, it yields551

e−2
∑

d̂r,n,k|tk−tn|, which is essentially the same as the exponential term of the joint552

distribution of t1, t2, ..., tKr |tn, dr,n,1, ..., dr,n,Kr .553

So, the optimization problem in Eq.9 can be treated as a statistical point554

estimation problem under the following hierarchy555

T Kr |tn, τ2
1 , ..., τ2

Kr
∼ NKr (tn, Dτ )

τ2
k |d2

r,n,k ∼ Exp(d2
r,n,k/2)

(15)

where d2
r,n,k

2 is the rate parameter.556
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At the so-called process level, we have:557

[log(d2
r,n,1, ..., d2

r,n,Kr
)|W , σ2

d] ind∼ NKr (ds,nW , σ2
dIKr ) (16)

where ds,n is the nth row of Dn in Eq.2. Note that, under this construction, we558

only need Dr to contain non-negative elements. They need not be proper metrics.559

Consequently, we do not need to impose positive semi-definiteness when predicting560

D̂r, we are essentially predicting the mean of the precision term associated with the561

model for TKr .562

To accommodate Ridge regularization, following [30], we impose the following563

priors on the elements of W564

wij |σ2
d, λ

iid∼ N(0, σ2
d/λ)

σ2
d|λ ∼ Inverse Gammma(λ, b0)

λ ∼ Gamma(a1, b1)

Note that, the above λ is the ridge parameter. But, under Bayes paradigm, it is565

a random variable admitting a distribution on positive support. To complete the566

hierarchy, we specify a Normal(0, σ2) prior on tn.567

Result: Under the above hierarchical model, the conditional specification of568

the response variable is preserved. In other words, the conditional distribution of569

TKr |tn, τ2
1 , ..., τ2

Kr
belongs to the same family of distributions as the full conditional570

posterior distribution of tn|τ2
1 , ..., τ2

k , σ2,TKr .571

Proof. We only need to prove that the full conditional of [tn|τ2
1 , ..., τ2

k , σ2, T Kr ] is572

Normal.573

[tn|τ2
1 , ..., τ2

k , σ2, T Kr ] ∝ [T Kr |τ2
1 , ..., τ2

k , tn][tn|σ2]

∝ e− 1
2 (

∑
t2

k/τ2
k −2tn

∑
tk/τ2

k +t2
n/τ2

k ) · e−t2
n/2σ2

∝ e
− 1

2 ( 1
σ2 +

∑
1

τ2
k

)[tn−
∑

tk
τ2

k

( 1
σ2 +

∑
1

τ2
k

)−1]2

(17)

Thus, [tn|τ2
1 , τ2

2 , ..., τ2
k , σ2, T Kr ] ∼ N(u∗, v∗) where v∗ = ( 1

σ2 +
∑ 1

τ2
k

)−1 and u∗ =574 ∑ tk

τ2
k

v∗.575

Thus, the conditional posterior distribution of tn is unimodal and u∗ is the point576

estimate of tn. We can explicitly see how the values of the response anchors determine577

the estimates of reconstructed responses. The estimated values of dr,n,1, ...dr,n,Kr enter578

into the point estimate of tn via τ1, τ2, ..., τKr .579

5.2.3 Hyperparameters fine-tuning580

In AdapToR, we have four hyperparameters: (1) λ, which controls the L2 penalty; (2)581

the number of response anchors, Kr; (3) the number of structure anchors selected at582

each step of adaptive anchor selection, Ka; and (4) the number of steps, P . We utilized583
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the Python package Optuna with the tree-structure Parzen estimator [31] to fine-tune584

the hyperparameters on the training samples of three representative cell lines. For585

each cell line, the training samples were divided into training (80%), testing (10%),586

and validation (10%). Note that these splits were solely for hyperparameter tuning.587

The optimal values for the hyperparameters were determined by minimizing the588

NRMSE evaluated on the test samples over 100 trials. Fine-tuning λ and Kr is589

straightforward. However, it may not be optimal or feasible to directly fine-tune Ka590

and P . For Ka, we fine-tuned the percentage of structure anchors, calculated as Ka

N ,591

which can be more generalizable to cell lines with different numbers of drugs. For P ,592

directly fine-tuning it may cause potential issues as its feasible range depends on the593

value of Ka

N . Alternatively, we implemented early-stopping, monitored by validation594

samples, and fine-tuned the early-stopping hyperparameter min delta (with a fixed595

patience of 2). The number of steps used with the optimal min delta was regarded as596

the optimal value for P .597

Table 4 summarizes the suggested value ranges and fine-tuned values for the598

hyperparameters. In this work, the hyperparameters were set to λ = 0.05, Ka = 10,599
Ka

N = 0.15 and P = 4, based on the averaged optimal values over the three600

representative cell lines.601

5.3 QSAR models for comparison602

5.3.1 Baseline models603

We implemented and evaluated several commonly used baseline QSAR models, includ-604

ing random forest (RF), linear regression (LR), LR with L1-penalty (LASSO), LR with605

L2-penalty (Ridge), and K−Nearest Neighbors (KNN) regression. These models take606

molecular fingerprints as input features to predict the responses. As shown in Fig. S13,607

all models showed the lowest NRMSE with ECFP4 as input. Also, we observed that608

LR and Ridge showed similar NRMSE and outperformed LASSO. Therefore, only609

the LR results are included in the main text. For KNN, the number of nearest neigh-610

bors was set to 5, as increasing the value to 10 or 15 led to higher NRMSE. RF611

was implemented with the scikit-learn function RandomForestRegressor with default612

settings.613

5.3.2 Transformer-Convolutional Neural Network614

Transformer-Convolutional Neural Network (TCNN) is a powerful DL model,615

described as a Swiss-army knife for QSAR modeling [12]. The TCNN architecture616

combines a pre-trained Transformer encoder, trained on over 17 million string pairs617

for SMILES canonicalization, with a task-specific Text-CNN model for predictions.618

Additionally, TCNN supports data augmentation in testing and training by gener-619

ating multiple non-canonical SMILES for each compound. We followed the TCNN620

instructions and trained the model on the SMILES strings, with and without augmen-621

tation, for up to 35 epochs using learning rate scheduling and early stopping. TCNN622

with augmentation is denoted as TCNN-Aug.623

17



5.3.3 Graph Transformer624

Graph Transformer (GraTrans) is a DL model that utilizes graph representations of625

the drugs to predict drug responses [17]. The model architecture consists of Trans-626

former encoders, Graph Attention Network (GAT) and Graph Convolutional Network627

(GCN) layers to extract features from molecular graphs, followed by two fully con-628

nected layers for response prediction (model architecture is shown in Fig. S14). The629

hyperparameters were set as follows: dropout rate = 0.5, learning rate = 10−4, and630

batch size = 512. These hyperparameters were fine-tuned using the Python package631

Optuna over 100 trials on the HCC2998 cell line. The model was trained for up to 200632

epochs with learning rate scheduling and early stopping.633

6 Data and code availability634

NCI60 GI50 dataset is available in the Development Therapeutic Program (DTP)635

repository (https://dtp.cancer.gov/databases tools/bulk data.htm). The ChEMBL636

datasets are available in the ChEMBL database (https://www.ebi.ac.uk/chembl/).637

AdapToR is publicly available at https://github.com/yixmao/adaptor.638

7 Abbreviations639

QSAR: Quantitative structure-activity relationship640

TR: Topological Regression641

AdapToR: Adaptive Topological Regression642

ML: Machine Learning643

SMILES: Simplified Molecular Input Line Entry System644

LR: Linear Regression645

RF: Random Forest646

DL: Deep Learning647

CNN: Convolutional Neural Network648

TCNN: Transformer-CNN649

TCNN-Aug: TCNN with data augmentation650

KNN: K-Nearest Neighbor651

RBF: Radial Basis Function652

GraTrans: Graph Transformer653

NLOGGI50: Negative logarithmic form of GI50 values654

ECFP: Extended-Connectivity Fingerprint655

MHFP: MinHash Fingerprint656

CV: Cross Validation657

NRMSE: Normalized Root Mean Square Error658

PCC: Pearson correlation coefficient659

MGF: Moment-Generating Function660

LASSO: Least Absolute Shrinkage and Selection Operator661

GAT: Graph Attention Network662

GCN: Graph Convolutional Network663
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11 Tables678

Table 1: Model performance averaged over 59 cell lines of the NCI60 GI50 dataset
and 5-fold cross-validation splits

Model NRMSE Spearman PCC Bias Train time (sec) Test time (sec)
LR 0.829 0.498 0.564 0.644 5.3 0.04
RF 0.704 0.643 0.711 0.515 219.2 0.1
KNN 0.719 0.633 0.702 0.440 6.3 6.0
GraTrans 0.723 0.638 0.693 0.484 1993.6 2.6
TCNN 0.724 0.630 0.694 0.487 214.8 11.1
TCNN-Aug 0.664 0.698 0.751 0.413 1613.6 162.6
TR 0.708 0.669 0.723 0.481 4993.3 106.1
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Table 2: Ablation analysis of AdapToR. Performance of different TR configurations
averaged over 59 cell lines of the NCI60 GI50 dataset and 5-fold cross-validation splits

Model NRMSE Spearman PCC Bias Train time (sec) Test time (sec)
TR 0.708 0.669 0.723 0.481 4993.3 106.1
TR (L2) 0.712 0.676 0.725 0.506 104.3 99.5
TR (L2, MHFP6) 0.698 0.689 0.735 0.483 102.7 100.0
TR (L2, MHFP6, Kmeans) 0.676 0.691 0.739 0.488 37.9 8.7
AdapToR (RBF) 0.662 0.698 0.752 0.466 138.4 8.5
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Descriptions of the listed models can be found in Section 2.3.
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Table 3: Performance of ensemble and stacking TR models averaged over 59 cell lines
of the NCI60 GI50 dataset and 5-fold cross-validation splits

Model NRMSE Spearman PCC Bias Train time (sec) Test time (sec)
Ensemble TR (enhanced) 0.662 0.695 0.750 0.418 701.7 123.4
Stack TR (enhanced) 0.670 0.689 0.743 0.428 582.8 123.5
AdapToR (ensemble) 0.652 0.700 0.759 0.399 137.1 33.0
AdapToR (stack) 0.659 0.694 0.753 0.409 136.7 32.7
AdapToR 0.651 0.700 0.759 0.400 121.1 7.6

Descriptions of the listed models can be found in Section 2.3.1.

Table 4: Fine-tuned hyperparameters with three representative cell lines: HCC2998,
786-O and Colo205

Hyperparameter Suggested range HCC2998 786-O Colo205 Average Value used
λ 0.01-0.2 0.05 0.1 0.03 0.06 0.05

Ka 5-15 14 10 10 11 10
Ka

N 0.01-0.2 0.14 0.19 0.16 0.16 0.15
min delta 0.001-0.01 0.004 0.005 0.009 0.006 \

P \ 4 4 4 4 4
λ: it controls L2-penalty, Kr: # of response anchors, Ka

N : percent of structure
anchors added at each step of adaptive anchor selection, P : # of steps in adaptive
anchor selection.
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Algorithm 1: AdapToR
Input: Set of N training samples St, # of response anchors Kr, # of

structure anchors selected at each step Ka, # of steps P , response
values t ∈ RN×1, structure and response distance matrices
Ds,all, Dr,all ∈ RN×N and the L2-penalty hyperparameter λ.

Output: Weights of the last model W ∗
P

/* Select the response anchors and distances */
1 Sr ← set of Kr response anchors selected with k-means clustering from the

training samples
2 Dr ∈ RN×Kr ← extract distances associated with Sr and St from Dr,all

/* Train the first model */
3 Ss,1 ← first set of Ka structure anchor randomly selected from the training

samples
4 Ds,1 ∈ RN×Ka ← extract distances associated with Ss,1 and St from Ds,all

5 Ŵ
∗
1 ∈ R(Ka+1)×Kr ← minimizing ∥Dr −D∗

s,1W ∗∥2
2 + λ∥W ∗∥2

F w.r.t. W ∗,
where D∗

s,1 = [1, Ds,1]
/* Adaptively append new structure anchors and train models */

6 for p = 2, 3, ..., P do
/* Evaluate the performance of samples in St \ Sp−1 on Ŵ

∗
1 */

7 D̃s ∈ R(N−pKa)×pKa ← extract distances associated with Ss,p−1 and
St \ Sp−1 from Ds,all

8 D̂r = [1, D̃s]W ∗
p−1 ← get the distance estimations

9 for n in St \ Sp−1 do
10 tn, tk, k = 1, ..., Kr ← extract the response values for the nth sample

and the Kr response anchors from t.
11 t̂n = arg mintn

∑Kr

k=1(max(0, d̂r,n,k)− |tn − tk|)2 ← optimization-based
reconstruction, where d̂r,n,k is the (n, k)-entry in D̂r

12 ∆tn = |tn − t̂n| ← calculate the absolute prediction error
/* Adaptive anchor selection */

13 S∗
p−1 ← select top Ka samples showing largest absolute prediction error

14 Sp = Sp−1 ∪ S∗
p−1 ← append the structure anchors

/* Train the pth model */
15 Ds,p ∈ RN×pKa ← extract distances associated with Ss,p and St from

Ds,all

16 Ŵ
∗
p ∈ R(pKa+1)×Kr ← minimizing ∥Dr −D∗

s,pW ∗∥2
2 + λ∥W ∗∥2

F w.r.t.
W ∗, where D∗

s,p = [1, Ds,p]

679

22



12 Figures680

Fig. 1: Boxplots showing the (a) NRMSE, (b) Spearman’s rank correlation coeffi-
cient, (c) Pearson correlation coefficient, and (d) bias of different models, including
AdapToR, TR, TCNN, TCNN-Aug, GraTrans, RF, KNN, and LR. The orange lines
and green triangles represent the medians and the means, respectively. The notches
indicate the 95% confidence interval of the medians.
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Fig. 2: Scatter plots comparing the NRMSE values of AdapToR versus (a) TCNN-
Aug and (b) TR across 59 cell lines and 5 CV splits (a total of 295 data splits). The
red dashed line represents the unity line.
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Fig. 3: Ablation analysis of AdapToR. Boxplots show the (a) NRMSE, (b) Spearman’s
rank correlation coefficient, (c) Pearson correlation coefficient, and (d) bias of different
TR models, including TR, TR (L2), TR (L2, MHFP6), TR (L2, MHFP6, Kmeans),
AdapToR (RBF) and AdapToR. AdapToR (RBF) represents the AdapToR model
with optimization-based reconstruction replaced by RBF-based reconstruction. The
orange lines and green triangles represent the medians and the means, respectively.
The notches indicate the 95% confidence interval of the medians.
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(a) Ground truth responses (b) Predictions error of 1st model

(d) Predictions error of 2nd model (random)(c) Predictions error of 2nd model (adaptive)

Fig. 4: Comparison of absolute prediction error for TR models trained with random
and adaptive anchor selection on 500 random samples from the HCC2998 cell line.
The samples were projected onto a 2D structural space using multidimensional scal-
ing (MDS), with landscapes interpolated using a Gaussian kernel. (a) Ground truth
response values. The gray dots represent the samples. (b-c) Absolute prediction error
for the (b) first and (c) second models in adaptive anchor selection. The red dots rep-
resent the 75 (15%) randomly selected structure anchors used to train the first model,
denoted as S1. The orange stars in (c) indicate the 75 samples that are not in S1 and
showed the largest absolute prediction error from the first model, denoted as S∗

1. The
combination of the red dots and the orange star was used to train the second model.
(d) Absolute prediction error for the second model when S∗

1 was randomly selected
from samples not in S1. The yellow boxes highlight the regions where the absolute
prediction error from the first model is high.
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(a) (b) (c)

Fig. 5: Toy examples comparing optimization-based and RBF-based response recon-
struction with random Gaussian distance errors. In these examples, there are four
anchor points (blue-filled circles) with response values of 4, 5, 6, and 8 (denoted as
A1, A2, A3, and A4, respectively), and one test sample (red diamond) with a response
value of 7. The red dashed circles represent the actual distances between the anchor
points and the test sample. Random Gaussian noise with zero mean and a std of 0.5 is
added to the actual distances. The noisy distances are represented by the blue dashed
circles and are used to reconstruct the response of the test sample. The plus sym-
bols indicate the responses reconstructed by the optimization-based approach with
all anchors (green) and with only A3 and A4 (cyan). The purple cross symbol shows
the response value reconstructed by the RBF-based approach. The text block in each
figure lists the distance errors (i.e., the added Gaussian noise) and the weights used in
RBF-based reconstruction. (a), (b), and (c) illustrate three cases where the distance
errors are different.
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(a) Top structure anchors associated 
with response anchor 638495 (4.28)

(b) Top structure anchors associated 
with response anchor 699490 (7.86)

(c) Top structure anchors with large 
sum of adjusted weights

(d) 2D structure of the top 5 structure anchors with the most positive sum of adjust weights
315626 (6.86)26258 (6.50) 715192 (6.44)758889 (7.93) 626405 (6.99)

(e) 2D structure of the top 5 structure anchors with the most negative sum of adjust weights
529861 (4.00)363072 (4.00) 772496 (4.00)624672 (4.03) 338307 (4.77)

Fig. 6: Interpreting the AdapToR model trained on the cell line HCC2998. (a-b)
Top 5 structure anchors with the most positive (red) and negative (blue) weights
associated with twp response anchors: (a) NSC# 638495 with NLOGGI50=4.28 and
(b) NSC# 699490 with NLOGGI50=7.86. (c) Top 5 structure anchors with the most
positive (red) and negative (blue) sum of adjusted weights over the response anchors.
We adjusted Ŵ by multiplying -1 to the columns corresponding to the response
anchors with response values smaller than 5 and summed up the adjusted weights
along the columns. In (a-c), the drugs are represented as NSC# (NLOGGI50). (d-e)
2D structure of the top 5 structure anchors with the most (d) positive and (e) negative
sum of adjusted weights.
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Generate 
descriptors

Calculate 
distances

Select anchor 
points

Train linear model 

Reconstruct 
responses

Workflow of TR

§ ECFP4 § MHFP6

§ Structure distance: Jaccard 
§ Response distance: Euclidean § Same as the original TR

§ Same set of structure and response anchors
§ Random anchor selection

§ Structure anchors: novel adaptive anchor 
selection

§ Response anchors: selected by K-means

§ Linear regression model § Ridge regression model

§ RBF-based reconstruction § Novel optimization-based reconstruction

TR methodology AdapToR methodology

Fig. 7: Comparison of TR and AdapToR methodologies. Green patches indicate
modifications in AdapToR, while the red patch represents the TR methodology. Key
features added in AdapToR are emphasized in bold.
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