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Abstract—Deep learning models are being adopted and applied
across various critical medical tasks, yet they are primarily
trained to provide point predictions without providing degrees of
confidence. Medical practitioner’s trustworthiness of deep learn-
ing models is increased when paired with uncertainty estimations.
Conformal Prediction has emerged as a promising method to pair
machine learning models with prediction intervals, allowing for a
view of the model’s uncertainty. However, popular uncertainty es-
timation methods for conformal prediction fail to provide highly
accurate heteroskedastic intervals. In this paper, we propose a
method to estimate the uncertainty of each sample by calculating
the variance obtained from a Deep Regression Forest. We show
that the deep regression forest variance improves the efficiency
and coverage of normalized inductive conformal prediction when
applied on an anti-cancer drug sensitivity prediction task.

Index Terms—Deep Learning, Uncertainty estimation, Confor-
mal Prediction, drug response prediction

I. INTRODUCTION

In the field of machine learning (ML), a significant part
of research focuses on the generalization error of the trained
models, largely in terms of accuracy for classification or
mean squared error for regression. ML is being used at an
increasing rate for life-dependent decision-making across the
healthcare field for example on tasks such as diagnosis or
treatment recommendations [1]–[3]. In these extreme-stakes
decision-making cases, minimizing error isn’t always enough,
especially with deep networks that act like black boxes [4].
With the increase in real-world ML medical applications, ML
model predictions should be paired with a degree of confidence
to enable insight into the model’s predictive uncertainty for
each sample.

One method that has recently seen an increase in popularity
for conveying the predictive confidence of ML models is
Conformal Prediction (CP) [5], [6]. CP is a powerful method
that guarantees marginally valid prediction intervals under the
assumption that the data is exchangeable, or i.i.d. CP can be
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performed with any ML model and even on pre-trained models
without the need for further training, making it a powerful and
flexible method. However, traditional CP provides constant
intervals for all samples which is often not the best repre-
sentation of uncertainty in prediction. Improvements to CP
have been explored to introduce local adaptivity, the ability
to have wider intervals for harder to predict samples, and
conversely, smaller intervals for less uncertain samples. One
popular method due to its simplicity is normalized conformal
prediction, which normalizes the nonconformity scores based
on an estimated degree of difficulty for each sample. Common
methods for estimating the difficulty of each sample include
measuring the variance of ensemble predictions, training an
additional model to predict the error of the sample [7], and
measuring the variance using Monte-Carlo dropout (MCD)
with a neural network [8].

There has been an increasing amount of work in the field of
CP recently, specifically with inductive conformal prediction
(ICP) due to its flexibility and practicality. Some work focuses
on improving ICP through adaptivity and the ability to handle
distribution shift [9], [10], while others focus more on appli-
cations of CP such as in computational drug discovery [11] or
medical imaging [12] for example. ICP has been successfully
applied to numerous problems, specifically in drug design [7],
[8]. For instance, [7] investigated using normalized ICP on the
prediction of anti-cancer inhibitory activity of molecules and
showed that ICP can be used as a tool to guide phenotypic drug
design. For normalization, they trained two models, one as the
point predictor and another to estimate the prediction error or
sample uncertainty. Instead of training an additional model to
predict the sample errors, [8] showed that test time MCD to
estimate the sample uncertainties is an effective normalization
and prediction error estimation method on 24 bioactivity data
sets.

In this paper, we instigate the use of Deep Regression
Forests (DRF) for normalizing conformal predictions to pro-
vide more efficient instance-wise uncertainty estimations on
an anticancer drug sensitivity prediction task. DRFs pair deep
neural networks for feature extraction with probabilistic trees



for ensemble predictions [13]. We show that traditional nor-
malization methods, while valid, fail to provide accurate con-
ditional coverage across different target ranges. Additionally,
we show that using the DRF variance for normalization leads
to more efficient and conditionally valid Prediction Intervals
(PI) which could thereby increase medical practitioner’s trust
in the model predictions.

II. BACKGROUND/METHODS

To formalize CP, consider a regression set, Z , containing
i.i.d. samples zi = (xi ∈ Rd, yi ∈ R), where each zi
consists of a d-dimensional vector of features, xi, and a
response variable, yi. With no assumptions on the distribution
of the data or the underlying predictive model, f(xi), the
goal of CP is to construct a prediction interval C(xi) for a
new feature vector, xn+1, given a misscoverage rate, α, or
Confidence Level (CL), 1 − α. CP provides the guarantee
that the unobserved response variable yn+1 is covered by the
interval with probability 1− α:

P[yn+1 ∈ C(xn+1)] ≥ 1− α (1)

CP is a flexible method as it makes minimal assumptions about
the data, except for exchangeability, and can be applied on
nearly any pre-trained point-predictor in which we can define a
non-conformality score for each sample. The non-conformality
score quantifies the disagreement between model prediction
and response variable and is typically the mean absolute error
for regression problems:

a(xi, yi) = |yi − f(xi)| (2)

Conformal Prediction CP was initially designed to be re-
trained for each new sample which made the method com-
putationally expensive and unreasonable. Inductive conformal
prediction (ICP), also known as split-conformal prediction,
was later introduced to mitigate this issue by using only one
trained model at the expense of using part of the training data
for CP calibration.

A. Inductive Conformal Prediction

For ICP, the dataset, Z , must be split into proper training
and calibration datasets, Zt and Zc respectively. Once the
predictive model, f , is trained on Zt, ICP uses the model
to obtain non-conformality scores for each sample in Zc. This
produces a list of scores, A = a1, ..., am where m = |Zc|.
Next, q̂ is taken as the (1−α) quantile of A. Then for future
samples, ICP returns the prediction intervals:

C(xn+1) = [f(xn+1)− q̂, f(xn+1) + q̂]. (3)

As seen in equation (3), traditional ICP returns a constant
interval for each sample, specifically with width 2 ∗ q̂. ICP
has guarantees of valid marginal coverage satisfying equation
(1). However, since the intervals are constant for all samples,
the intervals fail to provide adaptivity. Adaptivity can be
considered through the lens of conditional coverage [14], [15]:

P[yn+1 ∈ C(xn+1)|xn+1] ≥ 1− α (4)

Conditional coverage is much stronger than marginal coverage
as now it tries to return valid PIs for each input xi. Conditional
coverage isn’t a guarantee that comes with any general ICP
method, in fact, in the most general sense it is impossible
to achieve with finite samples [14], [16]. Thus, conditional
coverage is an important proxy to evaluate the adaptivity of
the different methods.

In addition to coverage validity, efficiency is another metric
often used to measure how effective the PIs are. In regression
tasks, the efficiency is often the average interval width where
smaller intervals are preferred while maintaining valid (1−α)
PIs. Validity exceeds efficiency in terms of priority as it is
necessary to form valid PIs, while efficiency helps measure
how effective the different methods are.

A simple method to add adaptivity into ICP, while often
improving efficiency, is through normalized, or locally adap-
tive, conformal prediction. With normalized ICP, the non-
conformality scores are normalized with sample-level predic-
tions of uncertainty, σi:

a(xi, yi) =
|yi − f(xi)|

σi + β
(5)

with β as a smoothing parameter. Then the prediction intervals
for new samples are computed as:

C(xn+1) = [f(xn+1)− q̂(σn+1+β), f(xn+1)+ q̂(σn+1+β)].
(6)

with q̂ calculated the same as above.
The measure of uncertainty, σi, can be approximated in

multiple different ways. Some popular methods include ap-
proximating σi as the variance of ensemble predictions, as
the variance of multiple Monte Carlo Dropout (MCD) model
predictions, or fitting a second model to estimate the residuals
of the first model given the input features.

In the rest of this paper, we focus on the adaptivity and
efficiency of different normalization methods for normalized
ICP. We investigate the effects of using MCD, secondary resid-
ual fitted model, and DRF leaf variance as the normalization
uncertainty measure of each sample. For a more in-depth study
on conformal prediction, we refer the readers to the recent
reviews [15], [17], [18].

B. Deep Regression Forests for Uncertainty Estimation

DRFs combine the rich representational feature extraction of
deep neural networks with ensemble predictions [13], [19]. To
achieve this, the trees in the forest are probabilistic, rather than
deterministic as in the case of random forests. The extracted
rich representational output features of a neural network are
transformed into probabilities by a sigmoid function and used
as the routing probability of the tree nodes. Formally, DRFs
consist of multiple deep regression trees. Each tree is a binary
tree with split nodes N and leaf nodes L. Each split node,
n ∈ N , consists of a split function that guides the input xi to
the right or left subtree:

sn(xi; Θ) = σ(fφ(n)(xi; Θ)) (7)



where σ(·) is the sigmoid function and φ(n) is an indexing
function to map the neural network outputs, f(xi; Θ), to split
nodes n, with neural network parameters Θ [13].

Each leaf node consists of a probability density distribution,
typically modeled through a Gaussian distribution with mean
µl and variance σ2

l , over the target space. The probability of
reaching a leaf node is the product of all preceding parent
nodes’ routing probabilities in the tree:

P (ℓ|x; Θ) =
∏
n∈N

sn(x; Θ)1(ℓ∈Lnl
)(1− sn(x; Θ))1(ℓ∈Lnr )

(8)
with 1(·) denoting the indicator function, Lnl and Lnr cor-
responding to the sets of leaf nodes owned by subtrees of
parent node n, and with nl and nr as the left and right
children of node n. The predictions of the trees are the
routing probability-weighted sum of the expected values of
the leaf node distributions and can be viewed as a mixture
distribution with mixing coefficients P (ℓ|x; Θ). With the leaf
node distribution parameters for a tree denoted by π and the
overall forest leaf node distribution parameters denoted by Π,
the point prediction from a tree is given by:

pT (yi|xi; Θ, π) =
∑
ℓ∈L

P (ℓ|x; Θ)µℓ (9)

Thus, with K trees in the forest, the prediction from the entire
forest is the average across all tree predictions:

pF (yi|xi; Θ,Π) =
1

K

K∑
k=1

pTk
(yi|xi; Θ, πk) (10)

DRFs thus must learn both the network parameters as well
as the leaf node distribution parameters. The networks used
for feature extraction are typically CNNs, as in [13], [20],
[21], but any back-propagation compatible model can be used.
Training consists of 2 steps, one to update the neural network
parameters through typical backpropagation while the leaf
parameters are frozen, and another to update the leaf node
parameters through variational bounding while the network
parameters are frozen. Interestingly, in addition to aggregating
the sample probability-weighted mixture distribution mean for
a point prediction for each sample, we can also aggregate
the mixture distribution variance for an estimation of the
uncertainty for each sample. Formally, the variance of a sample
from a deep regression tree can be calculated as:

σT (yi|xi; Θ, π)2 =∑
ℓ∈L

P (ℓ|x; Θ)σ2
ℓ + P (ℓ|x; Θ)µ2

ℓ − (P (ℓ|x; Θ)µℓ)
2 (11)

and as above, we can calculate the forest variance as the
average across all trees.

σF (yi|xi; Θ,Π)2 =
1

K

K∑
k=1

σT (yi|xi; Θ, πk)
2 (12)

Additionally, as in typical ensemble uncertainty predictions
like MCD, we can also calculate the variance of the tree

predictions across the forest to act as another measure of
uncertainty:

σ2
Ensemble = V ar[pT1(yi|xi; Θ, π1), ..., pTK

(yi|xi; Θ, πK)]
(13)

III. RESULTS AND DISCUSSION

A. Dataset

Since a large motivating factor in explainable ML can be
contributed to healthcare applications, we chose to assess
the performance of competing normalized ICP methods on
a human anticancer drug efficacy prediction task. The cancer
cell line encyclopedia (CCLE) contains a detailed genetic and
pharmacologic characterization of a large panel of human
cancer cell lines [22]–[25]. CCLE contains the inhibitory
responses, expressed in terms of IC50, of 24 anticancer drugs
screened on 504 different cancer cell lines with known ge-
nomic information. The data was obtained and pre-processed
the same as in [19]. The dataset contains two inputs (a)
PaDEL descriptors [26] of the 24 anti-cancer molecules and
(b) microarray gene expressions of the 504 cell lines before
drug application. The response consists of the area under
the curve (AUC) of the drug responses for a particular drug
applied on a particular cell line. The preprocessed dataset
contained 10,838 AUC measurements, with 1072 chemical
descriptor features and 1101 gene expression features. To
form the full feature space, the chemical descriptors and gene
expressions were concatenated to create a full feature vector
for each drug-cell pair.

B. Competing Methods

Several different methods for normalizing ICP exist. Popular
methods include training an additional model to predict the
residuals given the feature vector, using the variance of an
ensemble of models, and using MCD to simulate ensemble
predictions from a neural network to obtain the variance
of predictions. We compare the normalization performance
of different uncertainty predictions using a random forest
(RF) residual model, MCD, and the variance obtained from
DRFs. To test non-normalized ICP as well as MCD and
RF uncertainties, we paired them with the predictions of an
artificial neural network (ANN). Each ANN or DRF method
uses the same trained model for each different ICP method.
The 5 different competing methods are described in further
detail below.
ANN CP: Traditional (non-normalized) ICP with ANN as the
point predictor.
ANN RF: Normalized ICP with ANN as the point predictor
and a Random Forest as the uncertainty prediction model.
ANN MCD: Normalized ICP with ANN as the point predictor
and MCD for prediction uncertainty.
DRF STD: Normalized ICP with DRF as the point predictor
and DRF STD for the prediction uncertainty.
DRF STD + Ensemble STD: Normalized ICP with DRF as
the point predictor and DRF STD + Ensemble STD for the
prediction uncertainty.



(a) ANN CP (b) ANN RF (c) ANN MCD

(d) DRF STD (e) DRF STD with Ensemble STD

Fig. 1: CCLE Prediction Intervals for the 5 competing methods with CL set to 90% for 500 test samples

C. Model Training

For proper evaluation of the methods, the CCLE dataset was
split into Zt, Zc, and Ztest with an 80/10/10% split. This was
performed for 5 random partitions of the data and the results
were averaged. The models were trained on Zt, the ICP was
calibrated with Zc, and Ztest was held out for reporting the
evaluation results.

The ANN architecture was determined through a grid search
over the number of layers, number of neurons in each layer,
learning rate, and with and without batch normalization. The
optimal model contained 7 layers with neuron sizes 1500,
1000, 600, 300, 100, 50, and 1, all without batch normal-
ization. All ANN layers were followed by a dropout layer
with a drop probability of 10%. The DRF architecture was
based on the optimized ANN architecture with the last 3
layers replaced by a forest of 15 trees, each with a depth of
7. The main difference between the architectures, besides the
forest, was that the DRF benefited from the addition of batch
normalization, and the output of the 4th layer was changed
from 300 to 600 for generating the routing probabilities for
the trees.

The models were trained using Python 3.8 and the PyTorch
package. For optimization, the Adam optimizer was used and
the learning rate was set to 1e-4 with a batch size of 256.
Since Zc was held out of training, it was used as a validation
set for early stopping and learning rate scheduling. Once the
model had 5 consecutive epochs without improvement, the
learning rate was reduced by a factor of 10. Additionally, after
10 consecutive epochs without improvement, the training was
halted and the best-performing model was saved.

Once the models were trained, the saved model was used
to calculate the non-conformality scores of each sample of Zc

using (2) for traditional ICP and (5) for normalized ICP. The
scores were then sorted in ascending order and the (1 − α)
percentile of the non-conformality scores was taken as q̂.
Finally, the estimated intervals were calculated for the test
samples in Ztest using (3) for traditional ICP and (6) for
normalized ICP. The results of each method are averaged
across all 5 random partitions. In our experiments, we vary
the confidence level, 1 − α, with values of 70%, 80%, and
90% for all competing methods and set β to 0.

D. Metrics

The coefficient of determination, or R2, is reported to
evaluate the performance of the point predictions. Moreover,
to evaluate the performance of the uncertainty quantification,
we report the Pearson correlation coefficient (PCC) of the
predicted uncertainty and the model errors. For evaluation of
the prediction intervals, we report the coverage in terms of
the percent of test sample target values that lie within the
estimated prediction intervals. In addition to coverage, we
also report the efficiency, or average interval width, across all
test samples. Coverage paired with efficiency allows a view
into how effective the normalization methods are, as smaller
intervals with proper coverage often convey more information.
Since conditional coverage can’t be calculated directly, we
proxy it by evaluating the marginal coverage for different
target ranges while the overall marginal coverage is calculated
across all target values.

E. Evaluating Adaptivity

The average predictive performance and uncertainty quan-
tification across 5 random partitions for 3 different confidence
levels are presented in table I. As shown, the ANN and DRF
achieve comparable R2. However, the PCCs show that the



TABLE I: CCLE Conditional Coverage Results averaged across all 5 partitions with a varying CL

ANN CP ANN MCD ANN RF DRF STD DRF STD + Ensemble STD
R2 0.85182 0.85175 0.85182 0.84416 0.84416

PCC of uncertainty and error N/A 0.33682 0.30112 0.38339 0.37793
Coverage Low (yi ≤ 2) 0.77102 0.65618 0.66225 0.73872 0.72625

Coverage Med(2 < yi ≤ 4) 0.48562 0.84534 0.57261 0.69401 0.70353
Coverage High(yi > 4) 0.44949 0.92553 0.54003 0.67749 0.6986470%

MAD Conditional Coverage 0.17864 0.13823 0.10837 0.02241 0.01038
Coverage Low (yi ≤ 2) 0.86164 0.77273 0.69613 0.84038 0.83063

Coverage Med(2 < yi ≤ 4) 0.58458 0.89257 0.59629 0.76109 0.77271
Coverage High(yi > 4) 0.55062 0.96019 0.55485 0.75715 0.7857680%

MAD Conditional Coverage 0.17548 0.09334 0.18424 0.04071 0.02405
Coverage Low (yi ≤ 2) 0.95006 0.89819 0.73119 0.94042 0.93725

Coverage Med(2 < yi ≤ 4) 0.75314 0.92513 0.63167 0.87264 0.87384
Coverage High(yi > 4) 0.72259 0.97909 0.58924 0.84704 0.8528690%

MAD Conditional Coverage 0.12478 0.03534 0.24930 0.04025 0.03684

TABLE II: CCLE Normalized ICP coverage and efficiency averaged across 5 random partitions with a varying CL

ANN MCD ANN RF DRF STD DRF STD + Ensemble STD
Coverage 0.71070 0.63708 0.72601 0.7201170% Interval Width 1.47967 0.91951 1.16082 1.16944
Coverage 0.80885 0.66753 0.82029 0.8175280% Interval Width 1.88772 0.97978 1.38464 1.40171
Coverage 0.91014 0.70277 0.92122 0.9195590% Interval Width 2.63836 1.06139 1.80832 1.82097

Fig. 2: Conditional Coverage for each competing method with
a CL of 70%

DRF standard deviations were more correlated with the model
errors, indicating it’s a more suitable method for sample-wise
uncertainty quantification compared to MCD. The random
forest model failed to successfully model the residual for the
test set, indicating that more data is needed to properly train
the model, which would decrease the predictive performance
of the ANN given a finite sample space Z . To display the
heteroskedasticity and accuracy of the prediction intervals we
plot the PIs of 500 test samples against the predicted values
with the target values overlaid in Fig. 1. As demonstrated, the
ANN MCD intervals are very wide for target values greater
than 2, and the ANN CP method provides constant intervals
that are too narrow for the same target range. Also, the
ANN RF normalization method produces intervals that are too
narrow and improperly fit for the test data. Looking at the DRF
intervals, they are much smoother and more closely capture the
heteroskedasticity of the model errors. To further investigate

the ability to capture the heterogeneity of model errors, we
proxied conditional coverage by evaluating the coverage of
3 different target ranges separately. Specifically, since our
target values range from 0-8, with most values between 0-
4, we split the target ranges into Low, for yi ≤ 2, Medium
(Med), for 2 < yi ≤ 4, and High for yi > 4. The results
for each range with each competing method are shown in
table I as well as the mean absolute deviation (MAD) of
the conditional coverage from the specified confidence levels.
As noted before, the traditional ANN CP method does not
accurately capture the heteroskedasticity of errors across all
target ranges. Since the intervals are constant, the method
has to overestimate the intervals for the Low range while
underestimating the intervals for the Med and High ranges.
Conversely, the MCD method overestimated the Med and
High ranges while underestimating the Low range. Finally,
the DRF STD methods slightly overestimated the low range
and underestimated the Med and High ranges, leading to much
more accurate conditional coverage across different confidence
levels as indicated by the MAD conditional coverage. This is
further shown through the spread of conditional coverage for
CL 70% in figure 2.

F. Evaluating Normalization Efficiency

The average marginal coverage and interval width across
the 5 random partitions for 3 different confidence levels are
presented in table II. As shown, all methods except ANN RF
achieved accurate marginal coverage across different confi-
dence levels due to the ICP procedure. The MCD method
provides correct coverage, but it returns large intervals, espe-
cially for larger target values, whereas the DRF normalization
methods provide much narrower and more efficient PIs. When
comparing DRF STD with DRF STD + Ensemble STD, the
ensemble STD can be viewed as a heteroskedastic smoothing



parameter, β. When including the Ensemble STD, the intervals
widen very slightly while allowing more accurate conditional
coverage, which slightly improves its overall marginal cover-
age.

IV. CONCLUSION

In this paper, we have presented a method to aggregate
the variance of DRF predictions to provide more accurate
estimates of predictive uncertainty for normalized ICP. We
applied our method to an anti-cancer drug-response prediction
dataset, CCLE, and compared it to traditional normalization
methods MCD and RF residual predictions. Results indicate
the potential for using DRF based conformal predictions
for providing uncertainty estimates for personalized medicine
applications. We showcase the ability of DRF CP normaliza-
tion to accurately capture the heteroskedasticity of the model
predictions. Additionally, we demonstrate that the DRF nor-
malization achieves better efficiency and accurate conditional
coverage. Considering the success of this method, other mean-
variance model predictors should be investigated for their
ability to accurately capture the predictive uncertainty and
improve upon ICP efficiency and conditional coverage.
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