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Abstract: We study the stability and convergence properties of a semi-implicit time stepping scheme for

the incompressible Navier-Stokes equations with variable density and viscosity. The density is assumed to

be approximated in a way that conserves the minimum-maximum principle. The scheme uses a fractional

time-stepping method, and the momentum, which is equal to the product of the density and velocity,

as a primary unknown. The semi-implicit algorithm for the coupled momentum-pressure is shown to be

conditionally stable and the velocity is shown to converge in L2 norm with order one in time. Numerical

illustrations confirm that the algorithm is stable and convergent under classic CFL condition even for sharp

density profiles.
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1 Introduction

This paper focuses on the stability and error estimates for a numerical approximation of incompressible

viscous Newtonian fluids with variable density and viscosity in an open bounded domain Ω ⊂ R
d, with d = 2

or 3, up to a given time T . These flows are governed by the time-dependent incompressible Navier-Stokes

equations

∂tρ+ u · ∇ρ = 0, in Ω × (0, T ], (1.1a)

∂t(ρu) + ∇·(ρu ⊗ u) − 2∇·(ηε(u)) + ∇p = f , in Ω × (0, T ], (1.1b)

∇·u = 0, in Ω × (0, T ], (1.1c)

where ρ is the density, u the velocity, p the pressure, ε(u) = 1
2 (∇u + (∇u)⊤) the strain rate tensor, and η(ρ)

is the dynamical viscosity that we assume to be a function of the density. We note that this assumption, i.e. η

a function of the density, is consistent for Newtonian multi-fluids where temperature effects are disregarded.

For non-Newtonian fluid, the dynamical viscosity can be computed using viscosity models like the power-law

model [10, 25]. However, such models are beyond the scope of this paper. The function f represents a given

source term such as gravity force. The above system is supplemented with initial conditions

u(x, 0) = u0 and ρ(x, 0) = ρ0 in Ω, (1.2)

and homogeneous Dirichlet condition on the velocity

u = 0 on ∂Ω × [0, T ], (1.3)
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such that no boundary condition needs to be enforced on the density as there is no inflow on the boundary.

The approximation of the solution of the system (1.1a) - (1.1c), whose existence and uniqueness have

been established for two-dimensional domains with constant viscosity in [13, 28, 31, 36], presents many

challenges such as enforcing the incompressiblity constraint, the tracking of the interface between fluids with

different density, or more generally, the approximation of density functions that present sharp gradients.

The difficulties associated to the incompressibility constraint (1.1c) can be handled using projection type

methods [2, 5, 6, 14, 17, 39, 46] and also artificial compression techniques [33] which were both originally

developed for constant density flow [8, 9, 29, 41, 42]. The tracking of the interface between fluids of different

density has also been the focus of extensive studies, which led to the development of various approximation

methods such as front tracking methods [43], phase field method [1, 7, 32] and level set techniques [37, 38].

While the error analysis of methods for incompressible flows with constant density has been extensively

studied, for instance see [19] and references therein, the case of incompressible flows with variable density

presents more difficulties and fewer results are available. In [18], the space-time error estimates for the

velocity equations are established under the assumption that the density is approached via a method that

preserves the minimum-maximum principle. Recent work in [6] shows the time-convergence properties for

the full set of equations (1.1a)-(1.1c) using a convective Gauge Uzawa scheme, and [4] establishes space-time

error for a fully discretized algorithm that couples the velocity-pressure. We note that all the above works

provide error estimates for schemes that involve a constant positive dynamical viscosity η. Moreover, these

schemes involve the discretization of the quantity ρ∂tu which leads to algorithms with time-dependent

stiffness matrices that need to be reassembled at each time iteration.

To improve the computational efficiency, in [5], one of the authors introduced a time independent

stiffness matrix algorithm to approximate incompressible flows with variable density and viscosity. One

of the main ideas consists of using the momentum m, equal to the product of the density and the

velocity, as a primary unknown, so the time derivative in equation (1.1b) can be rewritten as ∂tm. As

the diffusion operator involves the velocity and a variable viscosity, following [2, 14, 15], it is rewritten as

−∇·(νmaxε(m)) + ∇·(νmaxε(m) − ηε(u)), allowing us to treat the first term implicitly and the correction

explicitly, so the resulting stiffness matrices become time-independent when advective terms are made

explicit. While this method has been studied numerically on various settings, see [23, 24], no theoretical

result on its stability and convergence properties has been established yet. This paper aims to fill this

gap by establishing stability and temporal error estimates of a semi-implicit discretization version of the

velocity-pressure coupling algorithm where we assume that the density is approximated in a way that

satisfies the minimum-maximum principle.

The paper is organized as follows: in the next section, we introduce some notations and hypotheses

on the dynamical viscosity and the regularity of the solutions of (1.1a)-(1.1c). In Section 3, we state our

hypothesis on the approximated density, and we introduce a semi-implicit time stepping scheme for the

velocity-pressure system described by the equations (1.1b)-(1.1c). The conditional stability and convergence

of the algorithm are established in Sections 4-5. Numerical results are reported in Section 6, which also

includes numerical investigations of an explicit version of the algorithm presented in Section 3. Concluding

remarks are given in Section 7.

2 Preliminaries

In this section, we define some notations that will be used in the rest of the paper. We also recall some

classic results, such as Korn and Poincaré inequalities, and we introduce some hypotheses that are used

later in the paper to establish the stability and convergence of the scheme proposed in Section 3.
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2.1 Notations and classic results

We consider the incompressible Navier-Stokes system (1.1a)-(1.1c) with variable density and viscosity on

the time interval [0, T ] and in an open, connected bounded domain, Ω ⊂ R
d, with d = 2 or 3.

We first denote the time step τ := T/N , where N is the number of time iterations. For any time-

dependent function f , we set f(tn) := f(nτ), 0 ≤ n ≤ N , and we denote by fn an approximation of f at

time tn. The sequence f0, f1, ..., fN is denoted by fτ .

The space Wm,p(Ω) stands for the standard Sobolev spaces, with 0 ≤ m ≤ ∞, 1 ≤ p ≤ ∞. We use the

simplified notation Hs(Ω) for the Hilbert spaces W s,2, and set L2(Ω) := H0(Ω). The closure of the space of

infinitely differentiable functions compactly supported in Ω, C∞
0 (Ω), in Wm,p(Ω) is denoted by Wm,p

0 (Ω),

with the simplified notation Hm
0 (Ω) = Wm,2

0 (Ω). The norm in L2(Ω) is denoted by ‖ · ‖L2 and its inner

product by ⟨·, ·⟩. Furthermore, the norm in L∞(Ω) is defined by ‖f‖L∞ := maxx∈Ω |f(x)|. In the rest of

the paper, we use bold fonts for vector-valued functions and spaces, and regular fonts for scalar-valued

functions and spaces. We also remind the readers of the Korn inequality,

‖∇v‖L2 ≤ c1‖ε(v)‖L2 ∀v ∈ H
1, (2.1)

and Poincaré inequality,

‖v‖L2 ≤ c2‖∇v‖L2 ∀v ∈ H
1
0, (2.2)

that hold for positive constants c1 and c2 that are independent of the space and time discretization. In

addition, the proofs in this paper use repeatedly, without reminder, the polarization identity 2(a− b)a =

a2 − b2 + (a− b)2, the divergence bound ‖∇·v‖L2 ≤
√
d‖∇v‖L2 , and the Young inequality

2‖u‖L2‖v‖L2 ≤ ε‖u‖2
L2 + ε−1‖v‖2

L2 ,

that holds for any constant ε > 0.

2.2 Hypotheses on regularity and model

In the remainder of the paper, we make the following assumptions. First, we assume that the solution of

(1.1a)-(1.3) possesses the following regularity:

ρ ∈ L∞(W 1,∞) ∩W 2,∞(L2), u ∈ L∞(H2) ∩W 1,∞(L2), p ∈ W 1,∞(H1), (2.3)

where the space Lp(X), withX a Banach space, is a Bochner space with norm ‖u‖Lp(X) = (
∫ T

0
‖u(t)‖p

X dt)1/p.

Second, we assume that the dynamical viscosity η is a Lipschitz function of the density, meaning that

there exists a positive constant L, such that for any reals ρ, ρ̃, we have

|η(ρ) − η(ρ̃)| ≤ L|ρ− ρ̃|. (2.4)

This hypothesis will allow us to bound the error in dynamical viscosity by the error in density in the

convergence analysis established in Section 5. We note that the above relation is consistent with immiscible

two phase field models where the dynamical viscosity varies from η1 to η2 while the density varies from ρ1

to ρ2. In these models, the dynamical viscosity can be defined as

η(ρ) := η1 +
η2 − η1

ρ2 − ρ1
(ρ− ρ1), (2.5)

which is a Lipschitz function of the density with L = η2−η1

ρ2−ρ1

.

3 Time discretization

We introduce in this section the semi-implicit time-stepping algorithm used to approximate the velocity-

pressure couple, and we describe the hypotheses made on the given approximation of the density.
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3.1 Hypotheses on the density approximation

We assume that the density equation (1.1a) is approximated by a sequence ρτ that satisfies an equation of

the form:
ρn+1 − ρn

τ
+ u

n · ∇ρn+1 = ρn+1Rn+1, (3.1)

where Rn is a consistent term at each time step n, meaning that it is assumed to be small. We also assume

that Rn is defined is a way such that the approximated density ρτ satisfies for all integer 0 ≤ n ≤ N , the

minimum-maximum principle

0 < ρmin ≤ ρn(x) ≤ ρmax, ∀x ∈ Ω, (3.2)

and the following relations:
⃦

⃦∇ρn+1
⃦

⃦

L∞
≤ Cρ, (3.3)

⃦

⃦

⃦

⃦

ρn+1 − ρn

ηn+1

⃦

⃦

⃦

⃦

L∞

≤ γ2. (3.4)

for some positive constant Cρ and γ2. Combining the hypotheses (3.2)-(3.3), we note that the condition

(3.4) can be seen as an upper bound for the time step, a condition less restrictive than classic Courant-

Friedrichs-Lewy condition (CFL). The hypotheses (3.2)-(3.3) present many challenges to enforce as the

mass conservation is an hyperbolic equation. Describing in details methods that can satisfy the above

hypothesis is out of the scope of our paper, but we note that such properties can be achieved using monotone

scheme, flux transport corrected techniques [3, 7, 21, 27, 47], discontinuous Galerkin methods with limiters

technologies [11, 26, 45], or even entropy viscosity techniques [16]. Before describing the numerical scheme

we use to approximate the couple velocity-pressure, we note that for immiscible incompressible flows, e.g.

two phase flows, the condition (3.3) cannot be enforced as the gradient of the density scales with inverse of

the mesh size. As shown in Sections 4-5, our stability and error analysis still holds for such problems by

relaxing the hypothesis (3.3) into a condition of the form:

√
τ

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

≤ γ1, (3.5)

with γ1 a positive constant. Introducing a spatial discretization with a mesh size h, we note that the above

hypothesis becomes very restrictive as it implies τ ∝ h2 when the density’s gradient scales in h−1. However,

we will show with numerical illustrations in Section 6 that such condition does not need to be enforced,

even for problems with discontinuous density, meaning that the proposed algorithm remains stable and

convergent under classic CFL condition.

3.2 Semi-implicit algorithm for the couple velocity-pressure

We introduce a semi-implicit scheme for the incompressible Navier-Stokes equations where the incompress-

iblity condition is enforced using a pressure-correction projection method. We note that traditional pressure

splitting methods lead to the introduction of an auxiliary scalar pressure φ that is solution of the following

Poisson problem with variable coefficient:

−∇·
(

1

ρn+1
∇φn+1

)

=
1

τ
∇·un+1.

Such formulation yields two disadvantages: (1) as the density depends of space and time, the matrix

associated to the above problem needs to be reassembled at each time iteration, increasing computation

costs; (2) the matrix can become ill-conditioned when the ratio of density, ρmax/ρmin, is large. Following

[17, 18], we overcome these difficulties by replacing ρn+1 by a constant χ in the above equation which was
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proven to not impact the stability and accuracy of the resulting projection-like method. The algorithm

described below is inspired from [5] where the momentum, m, is used as a primary unknown. The main

difference here is that we consider a semi-implicit version of the algorithm so we can establish the stability

and convergence of the algorithm in Sections 4-5. After initialization, the algorithm reads as follows: for

0 ≤ n ≤ N ,

Step 1. Update the density ρn+1 using an algorithm that satisfies the conditions (3.1)-(3.4).

Step 2. The momentum m
n+1 is the solution of

m
n+1 − m

n

τ
− 2ν̄∇·(ε(mn+1 − m

*,n)) + (ũn · ∇)mn+1

−2∇·(ηn+1ε(un)) + ∇(pn + φn) + 0.5m
n+1Rn+1 = f

n+1,

(3.6)

where m
*,n := ρn+1

u
n and ν̄ is a positive constant defined in the following section. The velocity u

n+1,

that does not satisfy the incompressiblity condition (1.1c), is then computed as follows

u
n+1 =

1

ρn+1
m

n+1. (3.7)

Step 3. The auxiliary pressure φn+1 is computed by solving

−Δφn+1 = −χ

τ
∇·un+1, ∂nφ

n+1 = 0 on ∂Ω, (3.8)

where χ is a positive constant.

Step 4. The pressure pn+1 and the incompressible velocity field ũ
n+1 are updated as follows:

pn+1 = pn + φn+1, (3.9)

ũ
n+1 = u

n+1 − τ

χ
∇φn+1. (3.10)

3.3 Hypotheses on stabilization parameters and time step

The analyses performed in Sections 4-5 show that the positive constant ν̄ and χ, used in (3.6)-(3.8), can be

defined as follows:

ν̄ >

⃦

⃦

⃦

⃦

η(ρ)

ρ

⃦

⃦

⃦

⃦

L∞(0,T ;L∞(Ω))

=

⃦

⃦

⃦

⃦

η(ρ0)

ρ0

⃦

⃦

⃦

⃦

L∞

, (3.11)

0 < χ < ρmin. (3.12)

We note that for Newtonian fluid, bounds on the density and dynamical viscosity can be derived using

the properties of the fluid considered under classic condition (e.g. given temperature) such that the above

constants can be computed with this knowledge before approximating the solutions of (1.1a)-(1.1c).

Also, to show the stability and convergence of the algorithm in the following sections, we assume the

time step τ and positive constants γ0, γ1 and γ2 satisfy the following conditions:

τ

χ
≤ γ0 <

1

2
, (3.13)

√
τ

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

≤ γ1 <
1

2ν̄
, (3.14)

⃦

⃦

⃦

⃦

ρn+1 − ρn

ηn+1

⃦

⃦

⃦

⃦

L∞

≤ γ2 <
1

ν̄
. (3.15)

As mentioned in Section 3.1, we remind that the condition (3.14) is heuristic, meaning that in practice, the

resulting algorithm is stable and convergent under classic CFL condition even for problems with density

function that either presents large gradient or is discontinuous, see Section 6.2.
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4 Stability estimates

This section is dedicated to establishing the conditional stability of the velocity-pressure semi-implicit

scheme (3.6)-(3.10) described in Section 3.2. The main result is summarized in the following theorem.

Theorem 1. Under the assumption that the sequence ρτ satisfies an algorithm of the form (3.1) that

preserves the bounds of the density (3.2) and satisfies (3.4)-(3.5), and assuming that the time step τ and the

constants ν̄, χ, γi satisfy (3.11)-(3.15), the sequences defined by the scheme (3.6)-(3.10) satisfy the following

stability estimate for all 0 ≤ n ≤ N

⃦

⃦

⃦

√

ρn+1u
n+1

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(un+1)
⃦

⃦

⃦

2

L2

+τ
⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+
τ2

χ

⃦

⃦∇pn+1
⃦

⃦

2

L2

≤ C

(

⃦

⃦

⃦

√

ρ0u
0
⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρ0ε(u0)
⃦

⃦

⃦

2

L2

+τ
⃦

⃦

⃦

√

η0ε(u0)
⃦

⃦

⃦

2

L2

+
τ2

χ

⃦

⃦∇ρ0
⃦

⃦

2

L2

)

+ Cτ

n+1
∑

k=1

⃦

⃦

⃦
fk

⃦

⃦

⃦

2

L2

,

(4.1)

where C is a positive constant that depends on the geometry of the domain Ω, the fluid’s properties, e.g.

ηmin, and the positive constant γ1 defined in Section 3.3.

Proof. We start by multiplying equation (3.6) by 2τu
n+1 and integrate over Ω to obtain

2
〈

m
n+1 − m

n,un+1
〉

+ 4τ ν̄
〈

ε(mn+1 − m
*,n), ε(un+1)

〉

+ 2τ⟨(ũn · ∇)mn+1,un+1⟩
+ 2τ⟨∇(pn + φn),un+1⟩ + 4τ⟨ηn+1ε(un), ε(un+1)⟩ − τ

〈

m
n+1Rn+1,un+1

〉

= 2τ⟨fn+1,un+1⟩.
(4.2)

We note that the following identities holds

2⟨mn+1 − m
n,un+1⟩ =

⃦

⃦

⃦

√

ρn+1u
n+1

⃦

⃦

⃦

2

L2

−
⃦

⃦

√
ρnu

n
⃦

⃦

2

L2
+

⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2

+ ⟨ρn+1 − ρn, |un+1|2⟩,

2τ⟨(ũn · ∇)mn+1,un+1⟩ = τ⟨ũn · ∇ρn+1, |un+1|2⟩,

4τ⟨ηn+1ε(un), ε(un+1)⟩ = −2τ
⃦

⃦

⃦

√

ηn+1ε(un+1 − u
n)

⃦

⃦

⃦

2

L2

+ 2τ
⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+ 2τ
⃦

⃦

⃦

√

ηn+1ε(un)
⃦

⃦

⃦

2

L2

.

Multiplying the mass conservation (3.1) by τ |un+1|2 yields the following

⟨ρn+1 − ρn, |un+1|2⟩ + τ⟨ũn · ∇ρn+1, |un+1|2⟩ − τ
〈

m
n+1Rn+1,un+1

〉

= 0.

Moreover, using Cauchy-Schwarz inequality combined with the definition of m
*,n = ρn+1

u
n and the fact

that the the density and viscosity are bounded away from zero, we get the following inequality

2ν̄⟨ε(mn+1 − m
*,n), ε(un+1)⟩ ≥ 2τ ν̄⟨ρn+1ε(un+1 − u

n), ε(un+1)⟩

− 2τ ν̄
⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

L2

.
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Substituting the above identities into equation (4.2) yields the following inequality:

⃦

⃦

⃦

√

ρn+1u
n+1

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(un+1)
⃦

⃦

⃦

2

L2

+ 2τ
⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+ 2τ
⃦

⃦

⃦

√

ηn+1ε(un)
⃦

⃦

⃦

2

L2

+
⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2
+ 2τ ν̄

⃦

⃦

⃦

√

ρn+1ε(un+1 − u
n)

⃦

⃦

⃦

2

L2

≤
⃦

⃦

√
ρnu

n
⃦

⃦

2

L2
+ 2τ

⃦

⃦

⃦

√

ηn+1ε(un+1 − u
n)

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(un)
⃦

⃦

⃦

2

L2

− 2τ⟨∇(pn + φn),un+1⟩ + 2τ⟨fn+1,un+1⟩

+ 4τ ν̄
⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

L2

:=
⃦

⃦

√
ρnu

n
⃦

⃦

2

L2
+

5
∑

i=1

Si.

(4.3)

The following aims to bound the terms Si. Using the hypothesis (3.11) on ν̄ and the minimum-maximum

principle (3.2), we get

S1 ≤ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(un+1 − u
n)

⃦

⃦

⃦

2

L2

.

Using the assumptions (3.11) and (3.15), the term S2 can be bounded by

S2 ≤ 2τ ν̄
⃦

⃦

√
ρnε(un)

⃦

⃦

2

L2
+ 2τ

⃦

⃦

⃦

√

ηn+1ε(un)
⃦

⃦

⃦

2

L2

.

Following [17], see equations (3.11)-(3.13) therein, we get the following bound for S3:

S3 ≤ −τ2

χ

⃦

⃦∇(pn − pn−1)
⃦

⃦

2

L2
+
τ

χ

⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2

− τ2

χ

⃦

⃦∇pn+1
⃦

⃦

2

L2
+
τ2

χ
‖∇pn‖2

L2 .

Applying Young inequality, with a constant ε1 > 0 whose value is set later in the proof, we get

S4 ≤ 1

ε1
τ

⃦

⃦f
n+1

⃦

⃦

2

L2
+ ε1τ

⃦

⃦u
n+1

⃦

⃦

2

L2

≤ 1

ε1
τ

⃦

⃦f
n+1

⃦

⃦

2

L2
+ τ

c1c2ε1
ηmin

⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

,

where we apply Korn and Poincaré inequalities (2.1)-(2.2) to obtain the second inequality. Using the

hypothesis (3.14) and applying Young inequality to the term S5 reads

S5 ≤ 8τ2ν̄2‖ 1
√

ρnηn+1
∇ρn+1‖2

L∞

⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+
1

2

⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2

≤ 8ν̄2γ2
1τ

⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+
1

2

⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2
.

Substituting the above bounds for the terms Si back in (4.3) we obtain the resulting inequality

⃦

⃦

⃦

√

ρn+1u
n+1

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(un+1)
⃦

⃦

⃦

2

L2

+
τ2

χ

⃦

⃦∇pn+1
⃦

⃦

2

L2

+ τ(2 − 8ν̄2γ2
1 − c1c2ε1

ηmin
)
⃦

⃦

⃦

√

ηn+1ε(un+1)
⃦

⃦

⃦

2

L2

+ (
1

2
− τ

χ
)
⃦

⃦

√
ρn(un+1 − u

n)
⃦

⃦

2

L2

≤
⃦

⃦

√
ρnu

n
⃦

⃦

2

L2
+ 2τ ν̄

⃦

⃦

√
ρnε(un)

⃦

⃦

2

L2
+
τ2

χ
‖∇pn‖2

L2 +
τ

ε1

⃦

⃦f
n+1

⃦

⃦

2

L2
,

where we drop the positive term τ2

χ

⃦

⃦∇(pn − pn−1)
⃦

⃦

2

L2
in the above left handside. Using the hypothesis

(3.12) and setting ε1 = ηmin

c1c2

(1 − 8ν̄2γ2
1), a positive term thanks to the hypothesis 3.14, we can drop the

terms of the second line in the above inequality. We conclude the proof by applying a standard telescopic

argument which yields the stability estimate (4.1) with C = ε−1
1 .
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Remark 1. We note that the hypothesis (3.14) can be replaced by the hypothesis (3.3), i.e. assuming that

the gradient of the approximated density can be bounded in L∞-norm independently of the time step. In

such case, the above result still holds if we assume that the time step satisfies

τ <
ρminηmin

ν̄2C2
ρ

. (4.4)

As discussed in the Section 3, the assumption (3.3) cannot be considered for general setups of immiscible

flows where the gradient of the approximated density, ρτ can become very sharp around the fluids interface,

i.e. scaling with the inverse of the mesh size which led us to use the assumption (3.14). We note that in

such case, this hypothesis is very restrictive as it can be read as the time step is proportional to the square

of the mesh size. We will show in the Section 6 that it is not necessary to enforce such restrictions even for

problem with discontinuous density, meaning that the algorithm remains stable under classic CFL condition.

5 Error estimates

In this section, we carry out the time error analysis of the scheme introduced in Section 3 for the couple

velocity-pressure. The main result is described in Theorem 3. First, we introduce the following quantities

that will be used to represent the errors in density, pressure, velocity, and auxiliary velocity, respectively:

en
ρ := ρ(tn) − ρn, (5.1)

en
p := p(tn) − pn, (5.2)

e
n
u := u(tn) − u

n, (5.3)

ẽ
n
u := u(tn) − ũ

n. (5.4)

Using hypothesis (2.4), we note that the error for the dynamical viscosity η, defined by en
η := η(tn) − ηn, is

bounded by the error in density, eρ, as we can write

en
η ≤ Len

ρ . (5.5)

Before performing the error analysis of the scheme (3.6)-(3.10) in Section 5.3, we introduce an equivalent

scheme that uses the velocity as primary unknown, and we describe our hypothesis on the density error in

the following sections.

5.1 Equivalent scheme

First, we show that the steps (3.6)-(3.7) of the algorithm can be replaced by the following update: Find

u
n+1 solution of

ρn
(

u
n+1 − u

n
)

τ
+ (ρn+1

ũ
n · ∇)un+1 − 2ν̄∇·

(

ε(ρn+1(un+1 − u
n))

)

− 2∇·(ηn+1ε(un+1))

+ 2∇·(ηn+1ε(un+1 − u
n)) + ∇(pn + φn) +

1

2
m

n+1Rn+1 = f
n+1.

(5.6)

The main difference with the algorithm introduced in Section 3.2 is that the momentum is not used as

primary unknown. While rewriting the algorithm in this form allows us to perform the following analysis,

we note that in practice, using the momentum as primary unknown is more efficient as it results in a mass

matrix that does not depend on the density and can be assembled at initialization.

Theorem 2. Under the assumptions that the sequence ρτ satisfies (3.1), solving the scheme (3.6)-(3.10)

with unknowns (m, φ, p) is equivalent to solving the scheme (5.6)-(3.8)-(3.9) with unknowns (u, φ, p).
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Proof. We note that equation (3.1) can be rewritten as

ρn+1
u

n+1

τ
=
ρn

u
n+1

τ
− (ũn · ∇ρn+1)un+1 + m

n+1Rn+1. (5.7)

Thanks to the above identity, the definition of m
n+1 := ρn+1

u
n+1, and the product rule, equation (3.6) is

equivalent to (5.6). Thus, both schemes are equivalent.

5.2 Assumptions on the residual of the mass conservation and the error in density

In addition to the hypothesis (3.1)-(3.5), we assume that the approximated density ρτ and the residual Rn,

defined in (3.1), satisfy the following inequalities

N−1
∑

k=0

τ
⃦

⃦Rk+1
⃦

⃦

2

L2
≤ Cτ2 + C

N−1
∑

k=0

τ
⃦

⃦e
k
u

⃦

⃦

2

L2
, (5.8)

N−1
∑

k=0

τ
(

⃦

⃦ek+1
ρ

⃦

⃦

2

L2
+

⃦

⃦ek
ρ

⃦

⃦

2

L2

)

≤ Cτ2 + C

N−1
∑

k=0

τ
⃦

⃦e
k
u

⃦

⃦

2

L2
. (5.9)

These assumptions are consistent with the use of a first order algorithm for the density equation that

preserves the density’s lower and upper bounds.

Our purpose in the rest of this section is to establish a priori estimates in L
2(Ω) for the solutions of the

scheme (5.6)-(3.8)-(3.9).

5.3 Time error analysis

The proof is split into three lemmas, where we introduce error equations for the velocity, for the pressure,

and bounds for some of the resulting terms, before we establish the final error estimate in Theorem 3. In the

following, we assume that the approximated density results from an algorithm of the form (3.1) and that

the velocity, pressure and auxiliary pressure approximation, (uτ , pτ , φτ ), are computed using the algorithm

(5.6)-(3.8)-(3.9).

First, the equation that controls the error on the velocity is given in the following lemma.

Lemma 1. Assume that the solution to (1.1a)-(1.3) satisfies the regularity hypothesis (2.3) and the minimum-

maximum principle (3.2). Then the following holds for all integers 0 ≤ n ≤ N

⃦

⃦

⃦

√

ρn+1en+1
u

⃦

⃦

⃦

2

L2

−
⃦

⃦

√
ρnen

u

⃦

⃦

2

L2
+

⃦

⃦

√
ρn

(

en+1
u − en

u

)⃦

⃦

2

L2
+ 4τ

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

= 2τ
〈

Rn+1
u +Rn+1

p +Rn+1
η +Rn+1

NL1 +Rn+1
NL2, e

n+1
u

〉

,

(5.10)

where

Rn+1
u := ρn u(tn+1) − u(tn)

τ
− ρ(tn+1)∂tu(tn+1),

Rn+1
p := −∇(p(tn+1) − pn − φn),

Rn+1
η := 2∇·

(

en+1
η ε(u(tn+1))

)

+ 2∇·
(

ηn+1ε(un+1 − u
n)

)

− 2ν̄∇·
(

ε(ρn+1(un+1 − u
n))

)

,

Rn+1
NL1 := − (p(tn+1)u(tn+1) · ∇) u(tn+1) + (pn+1

ũ
n · ∇)un+1 +

(

ρn+1
ũ

n · ∇
)

en+1
u ,

Rn+1
NL2 :=

1

2
m

n+1Rn+1 + ρn+1Rn+1en+1
u .
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Proof. Using the mass conservation (1.1a) and the incompressibility condition (1.1c), we rewrite equation

(1.1b) as follows

ρ∂tu + (ρu · ∇)u − 2∇·(ηε(u)) + ∇p = f.

Taking the difference of the above equation at time tn+1 and equation (5.6), multiplying the difference by

2τe
n+1
u and integrating over Ω, we get

⃦

⃦

√
ρne

n+1
u

⃦

⃦

2

L2
−

⃦

⃦

√
ρne

n
u

⃦

⃦

2

L2
+

⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

2

L2
+ 4τ

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

= −2τ
〈

(p(tn+1)u(tn+1) · ∇) u(tn+1), en+1
u

〉

+ 2τ
〈

(pn+1
ũ

n · ∇)un+1, en+1
u

〉

+ τ
〈

m
n+1Rn+1, en+1

u

〉

+ 2τ
〈

R
n+1
u +Rn+1

p +Rn+1
η , en+1

u

〉

.

(5.11)

Multiplying equation (3.1) with τ |en+1
u |2 and integrating over Ω reads

⃦

⃦

⃦

√

ρn+1e
n+1
u

⃦

⃦

⃦

2

L2

− 2τ⟨(ρn+1
ũ

n · ∇)en+1
u , en+1

u ⟩ − τ
〈

ρn+1Rn+1
e

n+1
u , en+1

u

〉

=
⃦

⃦

√
ρne

n+1
u

⃦

⃦

2

L2
.

Combining the above identity with equation (5.11) yields the error equation (5.10) for eu.

The following lemma establishes the error equation for the pressure.

Lemma 2. Under the same assumptions as Lemma 1, we get

τ2

χ

(

⃦

⃦∇en+1
p

⃦

⃦

2

L2
−

⃦

⃦∇en
p

⃦

⃦

2

L2
+

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2

)

≤ 2τ⟨en+1
u ,∇(2en

p − en−1
p )⟩ +

2τ2

χ
⟨∇(p(tn+1) − p(tn)),∇(2en

p − en−1
p )⟩

+ χ
⃦

⃦en+1
u − en

u

⃦

⃦

2

L2
+ 2τ⟨en+1

u − en
u,∇(p(tn+1) − 2p(tn) + p(tn−1))⟩

+
τ2

χ
‖∇(p(tn+1) − 2p(tn) + p(tn−1))‖2

L2 .

(5.12)

Proof. The proof follows closely some arguments from the analysis of pressure correction projection methods

such as the one in [18] that we report them here for completeness. Combining the equations (3.8)-(3.9), we

write

Δ(en+1
p − en

p ) =
χ

τ
∇·en+1

u + Δ(p(tn+1) − p(tn)). (5.13)

Taking the inner product with 2τ2

χ (en+1
p − 2en

p + en−1
p ), we obtain

τ2

χ

(

⃦

⃦∇(en+1
p − en

p )
⃦

⃦

2

L2
−

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
+

⃦

⃦∇(en+1
p − 2en

p + en−1
p )

⃦

⃦

2

L2

)

= 2τ
〈

e
n+1
u ,∇(en+1

p − 2en
p + en−1

p )
〉

+
2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇
(

en+1
p − 2en

p + en−1
p

)〉

.

(5.14)

We then multiply (5.13) with 2τ2

χ en+1
p . It reads

τ2

χ

(

⃦

⃦∇en+1
p

⃦

⃦

2

L2
−

⃦

⃦∇en
p

⃦

⃦

2

L2
+

⃦

⃦∇(en+1
p − en

p )
⃦

⃦

2

L2

)

= 2τ⟨en+1
u ,∇en+1

p ⟩ +
2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇en+1
p

〉

.

(5.15)

Taking the difference of (5.14) and (5.15), we obtain the following equality

τ2

χ

(

⃦

⃦∇en+1
p

⃦

⃦

2

L2
−

⃦

⃦∇en
p

⃦

⃦

2

L2
+

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
−

⃦

⃦∇(en+1
p − 2en

p + en−1
p )

⃦

⃦

2

L2

)

= 2τ
〈

e
n+1
u ,∇(2en

p − en−1
p )

〉

+
2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇(2en
p − en−1

p )
〉

.

(5.16)
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Next, we multiply the difference of (5.13) at times tn+1 and tn with τ(en+1
p − 2en

p + en−1
p ) to get

τ
⃦

⃦∇(en+1
p − 2en

p + en−1
p )

⃦

⃦

2

L2

=
〈

χ(en+1
u − e

n
u) + τ∇(p(tn+1) − 2p(tn) + p(tn−1)),∇(en+1

p − 2en
p + en−1

p )
〉

≤
⃦

⃦χ(en+1
u − e

n
u) + τ∇(p(tn+1) − 2p(tn) + p(tn−1)

⃦

⃦

L2

⃦

⃦∇(en+1
p − 2en

p + en−1
p )

⃦

⃦

L2
,

which implies

τ2

χ

⃦

⃦∇(en+1
p − 2en

p + en−1
p )

⃦

⃦

2

L2
≤ χ

⃦

⃦e
n+1
u − e

n
u

⃦

⃦

2

L2

+ 2τ
〈

e
n+1
u − e

n
u,∇(p(tn+1) − 2p(tn) + p(tn−1))

〉

+
τ2

χ
‖∇(p(tn+1) − 2p(tn) + p(tn−1)‖2

L2 .

(5.17)

Combining equations (5.16) and (5.17), we get the desired inequality (5.12).

We now outline the bounds for the residual terms Rn+1
η , Rn+1

NL1, R
n+1
NL2 defined in (5.10) in the following

Lemma.

Lemma 3. Under the assumptions (2.3)-(2.4), (3.11)-(3.12), and (5.8)-(5.9), there exists a positive constants

C, independent on the time step, such that the following holds for any arbitrarily small positive constants

ε1, ε2, ε3, ε4, ε5 that are also not dependent on the time step.

2τ
〈

Rη, e
n+1
u

〉

≤ Cτ
⃦

⃦en+1
ρ

⃦

⃦

2

L2
+ τηminε5

⃦

⃦ε(en+1
u )

⃦

⃦

2

L2

+
4ν̄C2

ρ

ηminρminε1
τ

⃦

⃦

√
ρn(en+1

u − en
u)

⃦

⃦

2

L2
+ τ(2 + ν̄ε1 + ν̄ε2)

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

− τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+ τ ν̄
⃦

⃦

√
ρnε(en

u)
⃦

⃦

2

L2
+ τ(ε3 + ε4)

⃦

⃦ε(en+1
u )

⃦

⃦

2

L2
+ Cτ3,

(5.18)

2τ
〈

Rn+1
NL1, e

n+1
u

〉

≤ Cτ
⃦

⃦en+1
ρ

⃦

⃦

2

L2
+ Cτ

⃦

⃦en+1
u

⃦

⃦

2

L2
+ Cτ ‖en

u‖2
L2

+ C
τ3

χ2

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
+ Cτ3,

(5.19)

2τ
〈

Rn+1
NL2, e

n+1
u

〉

≤ Cτ
(

⃦

⃦en+1
u

⃦

⃦

2

L2
+

⃦

⃦Rn+1
⃦

⃦

2

L2

)

. (5.20)

Proof. First, we use integration by parts to rewrite 2τ
〈

Rn+1
η , en+1

u

〉

as

2τ
〈

Rn+1
η , en+1

u

〉

= 4τ ν̄⟨(un+1 − u
n) ⊗ ∇ρn+1 + ∇ρn+1 ⊗ (un+1 − u

n), ε(en+1
u )⟩

+ 4τ ν̄⟨ρn+1ε(un+1 − u
n), ε(en+1

u )⟩
− 4τ⟨ηn+1ε(un+1 − u

n), ε(en+1
u )⟩

− 4τ⟨en+1
η ε(u(tn+1)), ε(en+1

u )⟩

:=

4
∑

i=1

Ai.

The first term, A1, is bounded as follows

A1 ≤ 4τ ν̄
⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

L2

+ 4τ ν̄
⃦

⃦

√
ρn(u(tn+1) − u(tn))

⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

L2

≤
4ν̄C2

ρ

ηminρminε1
τ

⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

2

L2
+ (ε1 + ε2)ν̄τ

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+ Cτ3,
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where we use the Young inequality and the assumption (3.3) to obtain the last inequality. Applying

polarization identity on the term A2 gives

A2 = −2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en
u)

⃦

⃦

⃦

2

L2

− 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en+1
u − e

n
u)

⃦

⃦

⃦

2

L2

+ 4τ ν̄
〈

ρn+1ε(u(tn+1) − u(tn)), ε(en+1
u )

〉

.

Combining the hypothesis (3.11) and (3.15), we get

ν̄
⃦

⃦

⃦

√

ρn+1ε(en
u)

⃦

⃦

⃦

2

L2

≤ ν̄
⃦

⃦

√
ρnε(en

u)
⃦

⃦

2

L2
+

⃦

⃦

⃦

√

ηn+1ε(en
u)

⃦

⃦

⃦

2

L2

.

Using the regularity hypothesis (2.3), the term A2 can be bounded as follows

A2 ≤ −2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+ 2τ ν̄
⃦

⃦

√
ρnε(en

u)
⃦

⃦

2

L2
+ 2τ

⃦

⃦

⃦

√

ηn+1ε(en
u)

⃦

⃦

⃦

2

L2

− 2τ ν̄
⃦

⃦

⃦

√

ρn+1ε(en+1
u − e

n
u)

⃦

⃦

⃦

2

L2

+ τε3
⃦

⃦ε(en+1
u )

⃦

⃦

2

L2
+ Cτ3.

In a similar use of polarization identity and regularity (2.3), we get:

A3 ≤ 2τ
⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

− 2τ
⃦

⃦

⃦

√

ηn+1ε(en
u)

⃦

⃦

⃦

2

L2

+ 2τ
⃦

⃦

⃦

√

ηn+1ε(en+1
u − e

n
u)

⃦

⃦

⃦

2

L2

+ τε4
⃦

⃦ε(en+1
u )

⃦

⃦

2

L2
+ Cτ3.

Using Young inequality, the regularity hypothesis (2.3), and the Lipschitz condition (2.4), we get

A4 ≤ Cτ
⃦

⃦en+1
ρ

⃦

⃦

2

L2
+ ηminε5τ

⃦

⃦ε(en+1
u )

⃦

⃦

2

L2
.

Summing up these Ai terms, we obtain the inequality (5.18).

The first nonlinear residual term is reformulated as

2τ
〈

Rn+1
NL1, e

n+1
u

〉

= −2τ
〈

(en+1
ρ u(tn+1) · ∇)u(tn+1), en+1

u

〉

− 2τ
〈

(ρn+1
ẽ

n
u · ∇)u(tn+1), en+1

u

〉

− 2τ
〈(

ρn+1(u(tn+1) − u(tn)) · ∇
)

u(tn+1), en+1
u

〉

,

then applying Cauchy-Schwarz inequality and regularity (2.3), we get

2τ
〈

Rn+1
NL1, e

n+1
u

〉

≤ Cτ
(

⃦

⃦en+1
ρ

⃦

⃦

2

L2
+

⃦

⃦e
n+1
u

⃦

⃦

2

L2
+ ‖ẽ

n
u‖2

L2

)

+ Cτ3.

Using the definition of ũ
n, see (3.10), we get the following identity

ẽ
n
u = e

n
u +

τ

χ
∇(en

p − en−1
p ) − τ

χ
∇(p(tn) − p(tn−1)),

and thus, by regularity (2.3), we obtain

‖ẽ
n
u‖2

L2 ≤ C ‖e
n
u‖2

L2 + C
τ2

χ2

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
+ Cτ2,

which yields the inequality (5.19).

Eventually, the second nonlinear residual term is bounded as follows

2τ
〈

Rn+1
NL2, e

n+1
u

〉

= τ
〈

ρn+1Rn+1
u(tn+1), en+1

u

〉

≤ Cτ
(

⃦

⃦e
n+1
u

⃦

⃦

2

L2
+

⃦

⃦Rn+1
⃦

⃦

2

L2

)

,

thanks to minimum-maximum principle (3.2) and regularity (2.3).

We are now ready to state the main result of this section.
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Theorem 3. Assume that the sequence ρτ satisfies an algorithm of the form (3.1) that preserves the bounds

of the density (3.2) and satisfy (3.3)-(3.5), the conditions (2.3)-(2.4), (3.11)-(3.12), and (5.8)-(5.9) hold,

and that the initial conditions are chosen such that e0
u = e0

p = 0. Assume also that the time step is small

enough, meaning that it satisfies

τ ≤ min

(

(2C1)−1,
ηminρmin

8ν̄2C2
ρ

,
χ

1 + χ

)

, (5.21)

for a constant C1 that only depends on the strong solution (ρ,u, p) defined on Ω× [0, T ]. Then, the sequences

(un, pn) defined by equations (3.6)-(3.10) satisfy the following for all 0 ≤ n ≤ N

‖en
u‖2

L2 +
τ2

χ

⃦

⃦∇en
p

⃦

⃦

2

L2
+ τ

n
∑

k=0

⃦

⃦

⃦

√

ηkε(ek
u)

⃦

⃦

⃦

2

L2

≤ Cτ2, (5.22)

where C is a positive constant that is independent of the time step τ .

Proof. In the following, we denote by C and C1 some generic constants that only depend on the geometry

of the domain, the final time T , the minimum and maximum of the density and dynamical viscosity, and the

regularity of the strong solutions (ρ,u, p). Thus, these constants are independent of the time discretization.

Adding the relations (5.10) and (5.12), and using the hypothesis (3.2), yields the following

⃦

⃦

⃦

√

ρn+1e
n+1
u

⃦

⃦

⃦

2

L2

+
τ2

χ

⃦

⃦∇en+1
p

⃦

⃦

2

L2
+ 4τ

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+

(

1 − χ

ρmin

)

⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

2

L2
+
τ2

χ

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2

≤
⃦

⃦

√
ρne

n
u

⃦

⃦

2

L2
+
τ2

χ

⃦

⃦∇en
p

⃦

⃦

2

L2
+ 2τ

〈

e
n+1
u ,∇(2en

p − en−1
p )

〉

+ 2τ
〈

e
n+1
u − e

n
u,∇(p(tn+1) − 2p(tn) + p(tn−1))

〉

+
2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇(2en
p − en−1

p )
〉

+
τ2

χ
‖∇(p(tn+1) − 2p(tn) + p(tn − 1))‖2

L2

+ 2τ
〈

Rn+1
u +Rn+1

p +Rn+1
η +Rn+1

NL1 +Rn+1
NL2, e

n+1
u

〉

.

(5.23)

The following shows how the terms of the right hand side of the above inequality are bounded.

First, we note that the term R
n+1
u can be rewritten as

Rn+1
u = −∂tu(tn+1) (ρ(tn+1) − ρ(tn)) + ρn

(

u(tn+1) − u(tn)

τ
− ∂tu(tn+1)

)

− en
ρ∂tu(tn+1).

Using regularity assumptions (2.3) and minimum-maximum principle (3.2), we bound this term as follows

2τ
〈

R
n+1
u , en+1

u

〉

≤ Cτ
(

⃦

⃦e
n+1
u

⃦

⃦

2

L2
+

⃦

⃦en
ρ

⃦

⃦

2

L2

)

+ Cτ3. (5.24)

Next, we note that the identity below holds

〈

Rn+1
p , en+1

u

〉

= −2τ ⟨en
u,∇(p(tn+1) − 2p(tn) + p(tn−1))⟩ − 2τ

〈

e
n+1
u ,∇(2en

p − en−1
p )

〉

+ 2τ
〈

e
n+1
u − e

n
u,∇(p(tn+1) − 2p(tn) + p(tn−1))

〉

.
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Combining all the pressure terms of the right hand side, applying Poincaré and Korn inequality, we obtain

2τ
〈

Rn+1
p , en+1

u

〉

+ 2τ
〈

e
n+1
u ,∇(2en

p − en−1
p )

〉

+ 2τ
〈

e
n+1
u − e

n
u,∇(p(tn+1) − 2p(tn) + p(tn−1))

〉

+
2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇(2en
p − en−1

p )
〉

+
τ2

χ
‖∇(p(tn+1) − 2p(tn) + p(tn − 1))‖2

L2

≤ − 2τ ⟨en
u,∇(p(tn+1) − 2p(tn) + p(tn−1))⟩ +

2τ2

χ

〈

∇(p(tn+1) − p(tn)),∇(2en
p − en−1

p )
〉

+
τ2

χ
‖∇(p(tn+1) − 2p(tn) + p(tn − 1))‖2

L2

≤Cτ3 + τε6ηmin ‖ε(en
u)‖2

L2 +
τ3

χ

⃦

⃦∇en
p

⃦

⃦

2

L2
+
τ3

χ

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
,

(5.25)

where ε6 is a positive constant that can be chosen arbitrarily small.

Combining (5.18)-(5.20), and (5.23)-(5.25) reads

(1 − Cτ)
⃦

⃦

⃦

√

ρn+1e
n+1
u

⃦

⃦

⃦

2

L2

+

(

1 −
4ν̄C2

ρ

ηminρminε1
τ

)

⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

2

L2

+ τ

(

2 − ν̄ε1 − ν̄ε2 − ε5 − ε3 + ε4
ηmin

)

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+
τ2

χ

⃦

⃦∇en+1
p

⃦

⃦

2

L2
+
τ2

χ

(

1 − τ − τ

χ

)

⃦

⃦∇(en
p − en−1

p )
⃦

⃦

2

L2
+ τ ν̄

⃦

⃦

⃦

√

ρn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

≤ (1 + Cτ)
⃦

⃦

√
ρne

n
u

⃦

⃦

2

L2
+ τε6

⃦

⃦

√
ηnε(en

u)
⃦

⃦

2

L2
+ τ ν̄

⃦

⃦

√
ρnε(en

u)
⃦

⃦

2

L2

+
τ2

χ
(1 + τ)

⃦

⃦∇en
p

⃦

⃦

2

L2
+ Cτ3 + Cτ

(

⃦

⃦en+1
ρ

⃦

⃦

2

L2
+

⃦

⃦en
ρ

⃦

⃦

2

L2
+

⃦

⃦Rn+1
⃦

⃦

2

L2

)

.

(5.26)

We introduce the variable An defined by

An =
⃦

⃦

√
ρne

n
u

⃦

⃦

2

L2
+ τ

⃦

⃦

√
ηnε(en

u)
⃦

⃦

2

L2
+ τ ν̄

⃦

⃦

√
ρnε(en

u)
⃦

⃦

2

L2
+
τ2

χ

⃦

⃦∇en
p

⃦

⃦

2

L2
,

and we set the positive constant εi as follows

ε1 =
1

2ν̄
, ν̄ε2 +

ε3 + ε4
ηmin

+ ε5 =
1

2
, ε6 = 1.

We then drop the second term of the first and third line of the equation (5.26) as they can be shown to be

positive using (5.21). The above inequality reads

(1 − C1τ)An+1 ≤ (1 + C1τ)An + Cτ3 + Cτ
(

⃦

⃦en+1
ρ

⃦

⃦

2

L2
+

⃦

⃦en
ρ

⃦

⃦

2

L2
+

⃦

⃦Rn+1
⃦

⃦

2

L2

)

, (5.27)

where C1 is a positive constant independent of the time step. Using the assumptions (5.8)-(5.9), and

summing over n, from 0 to N − 1, yields

N−1
∑

k=0

(1 − C1τ)Ak+1 ≤
N−1
∑

k=0

(1 + C1τ)Ak + CTτ2, (5.28)

where we use the relation Nτ = T with T being the final time. Reminding that the time step τ is chosen

small enough, so that 2C1τ < 1, the proof is concluded using discrete Grönwall lemma.

Corollary 1. Replacing the hypothesis 3.3 by the hypothesis 3.14 in theorem 3 leads to the following error

estimates for all 0 ≤ n ≤ N

‖en
u‖2

L2 +
τ2

χ

⃦

⃦∇en
p

⃦

⃦

2

L2
+ τ

n
∑

k=0

⃦

⃦

⃦

√

ηkε(ek
u)

⃦

⃦

⃦

2

L2

≤ Cτ. (5.29)
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Proof. The proof is similar to that of Theorem 3. The only difference arises when bounding the term A1 in

the proof of Lemma 3. The bound now reads as follows

A1 ≤ 4τ ν̄
⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

L2

+ 4τ ν̄
⃦

⃦

√
ρn(u(tn+1) − u(tn))

⃦

⃦

L2

⃦

⃦

⃦

⃦

⃦

1
√

ρnηn+1
∇ρn+1

⃦

⃦

⃦

⃦

⃦

L∞

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

L2

≤ ν̄γ2
1

ε1

⃦

⃦

√
ρn(en+1

u − e
n
u)

⃦

⃦

2

L2
+ (ε1 + ε2)ν̄τ

⃦

⃦

⃦

√

ηn+1ε(en+1
u )

⃦

⃦

⃦

2

L2

+ Cτ2,

where we use the Young inequality and the assumption (3.14) to obtain the last inequality. As the bound

now involves a term in O(τ2), versus a O(τ3) for the proof of Theorem 3, the resulting order of convergence

in L2 norm is reduced by one half.

Remark 2. We state the above result to show that the above analysis still holds for more complex problems

where the density is allowed to present very sharp gradients, or discontinuity. While one could expect a

better rate of convergence for the velocity, i.e one, we note that in such settings the density, and so the

momentum, becomes singular so the best order of convergence rate one can expect for these quantities

is half in L1 norm. We refer to Section 6.2.1 where numerical tests are performed with a discontinuous

density to show that the algorithm is stable under classic CFL condition and converges with order one for

the velocity-pressure couple in L2 norm and for the density in L1 norm.

6 Numerical results

In this section, we study the space-time convergence properties of the algorithm described in Section 3. First,

we introduce a spatial discretization of the algorithm (3.1)-(3.9) using finite element methods. Second, we

test the accuracy of our semi-implicit algorithm using smooth and nonsmooth manufactured solutions. We

conclude by introducing an explicit version of our scheme and by comparing its convergence and stability

properties to the above semi-implicit scheme. All tests are performed on two dimensional domains, denoted

by Ω, using the code FreeFEM++. More information on this software can be found in [22].

6.1 Spatial discretization and weak formulation

The spatial discretization is done using a continuous Galerkin finite element method. We introduce a

conforming, shape regular mesh sequence Eh of the domain Ω that consists of simplex elements. The mesh

size is defined by h = maxK∈Eh
hK , where hK represents the diameter of a cell K. The unknowns (ρ,m, p)

are approximated using the following spaces respectively:

Xh = {ψ ∈ C0(Ω;R) | ψ|K ∈ P2, ∀K ∈ Eh}, (6.1)

Xh = {v ∈ C0(Ω;R2) | v|K ∈ PPP2, ∀K ∈ Eh}, (6.2)

Mh = {q ∈ C0(Ω;R) | q|K ∈ P1, ∀K ∈ Eh}, (6.3)

where Pk represents the vector space of polynomials with total degree of at most k. We note that the pair

(Xh,Mh) used to approximate the couple velocity-pressure is the P2-P1 Taylor-Hood approximation space.

The fully discrete problem, using the time discretization algorithm (3.1)-(3.9), reads as follow.

Find ρn+1 ∈ Xh such that the following holds for all ψ ∈ Xh

∫

Ω

ρn+1 − ρn

τ
ψ dx +

∫

Ω

(ũn · ∇ρn+1)ψ dx +

∫

Ω

νh∇ρn+1 · ∇ψ dx = 0. (6.4)
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Find m
n+1 ∈ Xh such that

∫

Ω

(

1

τ
(mn+1 − m

n)·v + 2ν̄ε(mn+1 − m
*,n):ε(v) + (ũn · ∇)mn+1 · v

)

dx

=

∫

Ω

(

−2ηn+1ε(un):ε(v) − ∇(pn + φn)·v + f
n+1·v

)

dx, (6.5)

holds for all v ∈ Xh where m
*,n = ρn+1

u
n. The velocity u

n+1 is then updated using (3.7).

Find φn+1 ∈ Mh such that:

∫

Ω

∇φn+1 · ∇q dx = −χ

τ

∫

Ω

(∇·un+1)q dx, ∀q ∈ Mh. (6.6)

The pressure pn+1 and the velocity ũ
n+1 can then be updated using (3.9)-(3.10).

Notice that the above formulation of the mass equation has been stabilized with an artificial viscosity

νh as the density can present large gradients, which represents the term Rn+1 introduced in Section 3.1.

There exist many stabilization techniques in literature such as entropy-based viscosity [5, 16], residual

viscosity [34, 40], and first order viscosity (i.e. νh is made proportional to O(h) with h the mesh size). In

the following, we use an h-viscosity to stabilize the equation. While such artificial viscosity has a strong

diffusive effect, it is one of the most robust. Moreover, it will not impact the convergence properties of

the algorithm under classic CFL condition, i.e. τ = O(h), as we show in the following that the algorithm

converges with order one in time for smooth density functions. We also note that the above formulation does

not guarantee minimum/maximum principle of the density due to the discretization in space. Maximum-

preserving methods can be construct using flux transport corrected techniques [3, 7, 21, 27, 47]. However,

the simulations reported in the following conserve the density’s bound up to a few percents so we did not

implement such techniques.

In the following of the paper, the constants ν̄ and χ are defined as follows:

ν̄ = 1.1 max

(

η

ρ

)

, χ = 0.99ρmin,

which satisfies the hypotheses (3.11)-(3.12) used in Sections 4-5 to establish the stability and convergence

properties of the semi-implicit scheme.

6.2 Tests with semi-implicit scheme

In this section, we use manufactured solutions to check the accuracy of the above semi-implicit method. We

perform convergence tests on four different setups with various choices of dynamical viscosity functions

and ratios of magnitude of fluid parameters. The first test, referred to as Test 1, considers a nonsmooth

density function and a constant dynamical viscosity. The goal of the test is to show that the condition

(3.14) is heuristic so that, in practice, the proposed scheme remains stable and convergent under classic

CFL condition τ ∼ h. The subsequent tests aim to study the convergence property of our scheme for

various dynamical viscosity functions where the density is smooth. The second test, Test 2, uses a density

and velocity that satisfy the mass conservation equation (1.1a). The dynamical viscosity is made linearly

dependent on the density, and the kinematic viscosity, ν = η/ρ, is constant. The third test, Test 3, considers

a more complex set of solutions which leads us to add a non-zero source term in the mass conservation

equation (1.1a). It allows us to study the convergence of our method on problems where the kinematic

viscosity varies in space and time and where the diffusion term in the Navier-Stokes equations is non-zero.

Finally, in Test 4, the dynamical viscosity is chosen to be a nonlinear Lipschitz function of the density by

setting η = ρ−1.
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6.2.1 Test 1: nonsmooth density and constant dynamical viscosity

We start our numerical investigations section by considering a problem where the density function is

discontinuous. The domain is set to the unit disk and the time domain is set to [0, T ] = [0, 1]. We consider

the following exact solutions:

u(x, y, t) =
1

2

[

−y
x

]

,

p(x, y, t) = sin(x) sin(y) sin(t),

ρ =

⎧

⎨

⎩

2 if
−π + t

2
< θ <

π + t

2
,

1 else,

where θ = arctan( y
x ). The dynamical viscosity η is set to one so the source term f in the momentum

equation can be computed as follows

f =

[

−0.25xρ(x, y, t) + cos(x) sin(y) sin(t)

−0.25yρ(x, y, t) + sin(x) cos(y) sin(t)

]

.

We note that although the velocity is time-independent, the momentum, equal to ρu, is not. Moreover,

both the density and momentum are discontinuous functions. Thus, we compute the density errors using

L1 norm, as the best rate of convergence in space we can expect is one in L1 norm. We also note that the

dynamical viscosity is set to one so the source term does not involve a Dirac delta function. As shown in [5],

stabilizing the mass conservation equation with a h-viscosity can lead to a poor approximation when the

density presents discontinuity or a sharp gradient around an interface Σ. To obtain a density profile that

is not overly diffused, we combine this stabilization method with a compression technique introduced in

[12, 35, 44]. In a nutshell, an additional term, equal to ∇·(νhh
−1(ρ− ρmin)(ρmax − ρ) ∇ρ

‖∇ρ‖ ), is added in the

left hand side of the mass conservation equation.

Our results, summarized in Table 1, show that the algorithm converges with order one when the time

step is set to τ = h/10, i.e. the algorithm is stable and convergent under a CFL condition τ ∼ h even when

the gradient of the density scales with the inverse of the mesh size. The main conclusion of this investigation

is that the condition (3.14), that reads τ ≤ Ch2 when the density gradient is sharp, is mostly heuristic and

does not need to be enforced in practice.

τ Velocity Pressure Density

L2 error Order L2 error Order L1 error Order

0.05 4.21E-3 - 8.74E-2 - 6.71E-2 -

0.025 1.04E-3 2.02 2.87E-2 1.60 3.50E-2 0.94

0.0125 2.04E-4 2.35 8.54E-3 1.75 1.82E-2 0.95

0.00625 5.97E-4 1.77 3.09E-3 1.47 8.91E-3 1.03

0.003125 1.65E-5 1.86 1.55E-3 1.00 4.46E-3 1.00

Tab. 1: Results of convergence test for nonsmooth density with τ = h/10. Semi-implicit scheme with νh = 0.125h.

6.2.2 Test 2: Linear dynamical viscosity and constant kinematic viscosity

In this test, the domain is set to Ω = {(x, y) ∈ R
2 : x2 + y2 < 1} and Dirichlet boundary conditions are

applied for the density and the momentum. We consider the following exact solutions

u(x, y, t) =
1

2

[

−y cos(0.5t)

x cos(0.5t)

]

,
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p(x, y, t) = sin(x) sin(y) sin(t),

ρ(x, y, t) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2

√

x2 + y2 cos(θ − sin(0.5t)),

η(x, y, t) = η1 +
η2 − η1

ρ2 − ρ1
(ρ(x, y, t) − ρ1) ,

where θ = arctan( y
x ). Moreover, ρ1 and ρ2 are constants satisfying 0 < ρ1 < ρ2 that allow us to control the

ratio of density. The source term f in the momentum equation can then be computed as follows

f =

[

0.25ρ(x, y, t)
(

y sin(0.5t) − x cos2(0.5t)
)

+ cos(x) sin(y) sin(t)

−0.25ρ(x, y, t)
(

x sin(0.5t) + y cos2(0.5t)
)

+ sin(x) cos(y) sin(t)

]

.

We note that although the velocity u can be represented exactly in Xh, the momentum m = ρu, one of the

primary unknowns of the algorithm, cannot. We first perform a series of tests using a small ratio of density

and viscosity’s magnitudes by setting (ρ1, ρ2) = (η1, η2) = (1, 3). We use five different grids of respective

mesh sizes h = 0.1, 0.5, 0.25, 0.125, and 0.0625. To run simulations with a constant CFL of order 1, we

define the time step as τ = 0.5h and set the final time to T = 1. The L2 relative errors at the final time T

of the velocity, pressure, and density are displayed in Table 2. We recover a rate of convergence close to or

larger than one for all the unknowns. We note that initially the density convergence rates are smaller than

one, which could be improved by using a less diffusive stabilization method than the h-viscosity. These

results are compatible with the theoretical order of convergence O(τ) for smooth density functions as the

error in space is bounded by O(h), due to the use of h-viscosity in the mass equation, and that the mesh

size is proportional to the time step τ .

τ Velocity Pressure Density

L2 error Rate L2 error Rate L2 error Rate

0.05 3.01E-3 - 8.52E-2 - 8.67E-3 -

0.025 6.62E-4 2.18 2.27E-2 1.91 4.71E-3 0.88

0.0125 1.81E-4 1.87 8.98E-3 1.34 2.32E-3 1.02

0.00625 5.69E-5 1.67 4.01E-3 1.16 1.04E-3 1.17

0.003125 1.99E-5 1.52 2.11E-3 0.93 5.35E-4 0.95

Tab. 2: Results of Test 2 for smooth density with (ρ1, ρ2) = (1, 3) and τ = h/2. Semi-implicit scheme with νh = 0.125h

and η = ρ.

For the second series of tests, we consider solutions with a larger ratio of density by setting (ρ1, ρ2) =

(η1, η2) = (1, 100). We perform five runs using the above mesh sizes and time steps. The L2 relative errors

at the final time T are displayed in Table 3. Both series of tests confirm that the algorithm converges with

order one in time. We note that the errors in pressure are initially larger when a large ratio of density is

considered due to the modification of the projection step (3.8) where ρ is replaced by a constant χ set to

0.99ρmin. We also note that, although the dynamical viscosity is variable, the above tests are performed

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 1.92E-3 - 1.13E0 - 1.57E-2 -

0.025 6.29E-4 1.61 9.09E-1 0.31 8.54E-3 0.88

0.0125 2.13E-4 1.56 4.28E-1 1.09 4.23E-3 1.01

0.00625 7.12E-5 1.58 1.97E-1 1.12 1.97E-3 1.11

0.003125 3.25E-5 1.13 9.49E-2 1.05 9.84E-4 1.00

Tab. 3: Results of Test 2 for smooth density with (ρ1, ρ2) = (1, 100) and τ = h/2. Semi-implicit scheme with νh = 0.125h

and η = ρ.



A. Vu et al., Stability and error analysis for approximating variable density flows 19

with η = ρ, meaning the kinematic viscosity ν is constant. Thus, the following setup focuses on problems

with variable kinematic viscosity.

6.2.3 Test 3: Linear dynamical viscosity and variable kinematic viscosity

This test aims to study the impact of variable dynamical and kinematic viscosity of the convergence

properties of the proposed semi-implicit scheme. A setup inspired from [30] is considered. The manufactured

solutions are given by

u(x, y, t) =

(

3

4
+

1

4
sin(t)

) [

− sin2(x) sin(y) cos(y)

sin(x) cos(x) sin2(y)

]

,

p(x, y, t) = sin(x) sin(y) sin(t),

ρ(x, y, t) =
ρ1 + ρ2

2
+
ρ2 − ρ1

2

√

x2 + y2 cos(θ − sin(0.5t)),

η(x, y, t) = η1 +
η2 − η1

ρ2 − ρ1
(ρ(x, y, t) − ρ1).

We note that unlike the problem considered in the previous section, the couple (ρ,u) is not solution of

the mass conservation (1.1a). Thus a source term, denoted by fρ, is added to the right hand-side of the

mass conservation. The source terms fρ and f are computed accordingly such that (ρ,u, p) is a solution of

the system (1.1a)-(1.1b). We note that this setup is more challenging than in the previous section as the

right hand-side of the Navier-Stokes equations now depends on the dynamical viscosity η as the strain-rate

tensor, ε(u), is non zero.

The computational domain is kept to the unit disk and the time interval is set to [0, T ] = [0, 1]. To study

the impact of variable kinematic viscosity, we set (ρ1, ρ2) = (1, 100) and consider three set of parameters

(η1, η2) for the dynamical viscosity: (1, 50), (1, 10), and (1, 2). As the dynamical viscosity goes from η1 to η2

when the density varies from ρ1 to ρ2, the effective ratios of kinematic viscosity considered here are 2, 10 and

50. Our simulations are performed with the same mesh size and time step as those in the previous section,

meaning that τ = h/2 and h = 0.1, 0.5, 0.25, 0.125, and 0.0625. Our results are summarized in Tables 4, 5,

and 6. They show that the algorithm converges with order 1 under a CFL of order 1 for problems with

variable dynamical and kinematic viscosities.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 2.18E-2 - 3.54E0 - 1.04E-2 -

0.025 5.60E-3 1.96 1.04E0 1.77 6.14E-3 0.75

0.0125 1.72E-3 1.70 5.23E-1 0.99 3.21E-3 0.94

0.00625 6.35E-4 1.44 2.07E-1 1.34 1.53E-3 1.07

0.003125 2.68E-4 1.24 8.38E-2 1.31 7.55E-4 1.01

Tab. 4: Results of Test 3 for smooth density with (ρ1, ρ2) = (1, 100), (η1, η2) = (1, 50), and τ = h/2. Semi-implicit

scheme with νh = 0.125h.

6.2.4 Test 4: Nonlinear dynamical viscosity

This last test uses the same setup than Test 3 described in section 6.2.3 modulo that the dynamical viscosity

is now chosen to be a nonlinear function of the density. Specifically, we set

η(x, y, t) =
1

ρ(x, y, t)
.
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τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.02E-2 - 2.38E0 - 1.05E-2 -

0.025 1.09E-2 1.47 6.22E-1 1.94 6.10E-3 0.78

0.0125 4.59E-3 1.25 1.91E-1 1.70 3.20E-3 0.93

0.00625 2.24E-3 1.03 7.21E-2 1.41 1.45E-3 1.14

0.003125 1.09E-3 1.05 2.86E-2 1.33 7.51E-4 0.95

Tab. 5: Results of Test 3 for smooth density with (ρ1, ρ2) = (1, 100), (η1, η2) = (1, 10), and τ = h/2. Semi-implicit

scheme with νh = 0.125h.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.90E-2 - 2.30E0 - 1.05E-2 -

0.025 1.61E-2 1.27 4.34E-1 2.41 6.09E-3 0.78

0.0125 7.68E-3 1.07 1.33E-1 1.71 3.20E-3 0.93

0.00625 4.01E-3 0.94 5.39E-2 1.30 1.45E-3 1.14

0.003125 2.01E-3 1.00 2.54E-2 1.09 7.49E-4 0.95

Tab. 6: Results of Test 3 for smooth density with (ρ1, ρ2) = (1, 100), (η1, η2) = (1, 2), and τ = h/2. Semi-implicit scheme

with νh = 0.125h.

We note that the definition of the density yields ρ(x, y, t) ∈ [ρ1, ρ2] for all (x, y) ∈ Ω and t ∈ [0, T ]. Thus,

the above dynamical viscosity is a Lipschitz function of the density with Lipschitz constant L = ρ−2
1 .

The computational domain is set to Ω = {(x, y) ∈ R
2 : x2 + y2 < 1} and the time interval is set to

[0, T ] = [0, 1]. We perform three series of tests with (ρ1, ρ2) = (1, 3), (ρ1, ρ2) = (1, 50) and (ρ1, ρ2) = (1, 100).

As a result, the kinematic viscosity ν = η/ρ lives in the intervals [0.11, 1], [4 × 10−4, 1], and [10−4, 1]

respectively. The L2 relative errors at final time are displayed in Tables 7-8-9. They confirm that the

algorithm converges with order one even for problems where the dynamical viscosity is a nonlinear function

of the density and where the kinematic viscosity presents large ratio of magnitude.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.52E-2 - 1.86E-1 - 5.78E-3 -

0.025 6.37E-3 2.47 4.11E-2 2.18 3.37E-3 0.78

0.0125 2.40E-3 1.40 1.32E-2 1.64 1.76E-3 0.93

0.00625 1.12E-3 1.10 3.97E-3 1.73 8.41E-4 1.07

0.003125 5.27E-4 1.09 1.22E-3 1.70 4.20E-4 1.00

Tab. 7: Results of Test 4 for smooth density with (ρ1, ρ2) = (1, 3), η = 1/ρ and τ = h/2. Semi-implicit scheme with

νh = 0.125h.

6.3 Tests with an explicit scheme

In this section, we study the accuracy of an explicit version of the semi-implicit scheme (6.4)-(6.6). A

similar scheme has originally been introduced by one of the authors in [5] and has been tested with

a pseudo-spectral code named SFEMaNS [20]. The main difference here is that we do not use a level

set technique to approximate the mass conservation equation and that the space discretization is done

using finite elements, see Section 6.1. In addition to be suitable for spectral codes, another motivation for

investigating the accuracy of explicit schemes is that the stiffness matrices of the mass and momentum
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τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 4.04E-2 - 6.48E-1 - 1.00E-2 -

0.025 1.75E-2 1.21 1.90E-1 1.77 5.97E-3 0.75

0.0125 9.71E-3 0.85 5.36E-2 1.82 3.13E-3 0.93

0.00625 5.14E-3 0.92 2.51E-2 1.10 1.49E-3 1.07

0.003125 2.62E-3 0.97 1.23E-2 1.02 7.45E-4 1.00

Tab. 8: Results of Test 4 for smooth density with (ρ1, ρ2) = (1, 50), η = 1/ρ and τ = h/2. Semi-implicit scheme with

νh = 0.125h.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.97E-2 - 8.97E-1 - 1.02E-2 -

0.025 1.84E-2 1.11 4.33E-1 1.05 6.07E-3 0.74

0.0125 1.03E-2 0.84 1.31E-1 1.73 3.18E-3 0.94

0.00625 5.33E-3 0.95 5.04E-2 1.37 1.51E-3 1.07

0.003125 2.73E-3 0.97 2.49E-2 1.01 7.57E-4 1.00

Tab. 9: Results of Test 4 for smooth density with (ρ1, ρ2) = (1, 100), η = 1/ρ and τ = h/2. Semi-implicit scheme with

νh = 0.125h.

equations become time-independent. As a consequence, these matrices only need to be assembled and

preconditioned at initialization. On the other hand, the semi-implicit scheme studied earlier requires a

reassembling of these matrices at each time iteration which can hinder the computational performance of

the algorithm. The following compares the convergence and stability properties of the explicit scheme with

the semi-implicit scheme on various setups.

6.3.1 Explicit time discretization

The time discretization of the explicit version of our algorithm reads as follows. After initialization of the

unknowns, solve the following sequential scheme for n ≥ 0.

ρn+1 − ρn

τ
+ u

n · ∇ρn − ∇·(νh∇ρn+1) = 0, (6.7a)

m
n+1 − m

n

τ
+ (un · ∇)mn − 2∇·(ηn+1ε(un))

− 2ν̄∇·(ε(mn+1 − m
*,n)) + ∇(pn + φn) = f

n+1,

(6.7b)

−Δφn+1 = −χ

τ
∇·un+1. (6.7c)

We note that in addition to making explicit the nonlinear terms ũ · ∇ρ and (u · ∇)m, we also replace the

projected velocity ũ by u in the mass conservation equation. This replacement allows us to avoid computing

ũ using equation (3.10) without impacting the accuracy of the resulting algorithm as shown in the following.

6.3.2 Comparison convergence property: semi-implicit vs explicit

We test the explicit scheme with the setup of Test 2 described in Section 6.2.2. Similarly to the semi-implicit

scheme, we perform simulations with the sets of parameters, (ρ1, ρ2) = (η1, η2) = (1, 3) and (1, 100).

Our numerical results are summarized in Tables 10-11. They recover a similar behavior compared to the

semi-implicit algorithm in the sense that both algorithms converge with first order under a CFL condition

of order 1 and that the respective L2 relative errors are of similar order of magnitude.
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τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 1.64E-3 - 8.53E-2 - 2.27E-2 -

0.025 4.33E-4 1.92 3.04E-2 1.49 1.40E-2 0.70

0.0125 1.62E-4 1.42 9.04E-3 1.75 7.48E-3 0.90

0.00625 6.69E-5 1.27 2.59E-3 1.80 3.59E-3 1.06

0.003125 3.43E-5 0.97 1.04E-3 1.32 1.89E-3 0.93

Tab. 10: Results of Test 2 with (ρ1, ρ2) = (η1, η2) = (1, 3) and τ = h/2. Explicit scheme with νh = 0.125h.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 2.72E-3 - 1.18E0 - 4.05E-2 -

0.025 8.70E-4 1.65 4.84E-1 1.29 2.53E-2 0.68

0.0125 3.42E-4 1.35 1.64E-1 1.56 1.36E-2 0.90

0.00625 1.60E-4 1.10 6.94E-2 1.24 6.52E-3 1.06

0.003125 8.01E-5 1.00 3.42E-2 1.02 3.34E-3 0.96

Tab. 11: Results of Test 2 with (ρ1, ρ2) = (η1, η2) = (1, 100) and τ = h/2. Explicit scheme with νh = 0.125h.

The convergence of the explicit scheme on problems with variable kinematic viscosity and nonlinear

dynamical viscosity is also studied using the setups described in Sections 6.2.3 (Test 3) and 6.2.4 (Test

4). First, we use the explicit scheme to approximate the solution of Test 3 with (ρ1, ρ2) = (1, 100) and

(η1, η2) = (1, 2) so that the kinematic viscosity presents a ratio of magnitude equal to 50. Then, we consider

the setup of Test 4, where η = ρ−1, with (ρ1, ρ2) = (1, 100). Our results are summarized in Tables 12 and

13. To facilitate the comparisons with the semi-implicit algorithm, see Tables 6 and 9, all the simulations

are performed with the same temporal and spatial discretization, i.e. we set τ = h/2. We observe that,

similarly to our simulations with Test 2, the explicit algorithm displays a rate of convergence akin to that

of the semi-implicit scheme for simulations with a CFL of order 1. The following section investigates the

possible advantage of using the semi-implicit for simulations performed with large time step, meaning CFL

larger than one, over long-time integration.

τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.90E-2 - 2.31E0 - 1.12E-2 -

0.025 1.62E-2 1.27 4.25E-1 2.44 6.54E-3 0.78

0.0125 7.69E-3 1.07 1.32E-1 1.69 3.47E-3 0.91

0.00625 4.01E-3 0.94 5.35E-2 1.30 1.59E-3 1.13

0.003125 2.01E-3 1.00 2.52E-2 1.09 8.21E-4 0.95

Tab. 12: Results of Test 3 for smooth density with (ρ1, ρ2) = (1, 100), (η1, η2) = (1, 2) and τ = h/2. Explicit scheme with

νh = 0.125h.

6.3.3 Long-time integration comparison between semi-implicit and explicit algorithms

To conclude our numerical illustrations, we propose to study the behavior of the semi-implicit and explicit

algorithms for long-time integration simulations with various time steps. Our goals are to determine if the

semi-implicit scheme offers a better stability property, in the sense that if it allows the use of larger time
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τ Velocity Pressure Density

L2 error Order L2 error Order L2 error Order

0.05 3.96E-2 - 9.00E-1 - 1.10E-2 -

0.025 1.85E-2 1.10 4.25E-1 1.08 6.58E-3 0.74

0.0125 1.03E-2 0.84 1.29E-1 1.72 3.43E-3 0.94

0.00625 5.33E-3 0.95 4.95E-2 1.38 1.65E-3 1.06

0.003125 2.73E-3 0.97 2.46E-2 1.01 8.28E-4 1.00

Tab. 13: Results of Test 4 for smooth density with (ρ1, ρ2) = (1, 100), η = 1/ρ and τ = h/2. Explicit scheme with

νh = 0.125h.

steps compared to the explicit scheme, and to check if the semi-implicit algorithm offers a better accuracy

for long-time integration simulations.

We consider two setups: Test 2 with (ρ1, ρ2) = (η1, η2) = (1, 100), and Test 4 with (ρ1, ρ2) = (1, 100).

While both setups involve large ratio of density, we note that they still present different challenges, e.g. large

variation of dynamical viscosity for the Test 2, and large variation of kinematic viscosity with a nonlinear

dynamical viscosity η(ρ) (Test 4). We set the mesh size to h = 1/40 and the final time to T = 100. The L2

relative error at final time obtained with the semi-implicit and explicit algorithms for a large range of time

steps are displayed in Tables 14-15.

τ Semi-Implicit Explicit

Velocity Pressure Density Velocity Pressure Density

1.0 1.84E-1 1.41E1 1.85E-1 NaN NaN NaN

0.5 5.52E-2 1.80E1 1.02E-1 NaN NaN NaN

0.25 1.80E-2 1.13E1 4.00E-2 NaN NaN NaN

0.1 3.18E-3 3.49E0 2.79E-2 7.19E-3 4.19E0 1.31E-1

Tab. 14: Stability semi-implicit vs explicit scheme for Test 2 with (ρ1, ρ2) = (η1, η2) = (1, 100). L2 error at final time

T = 100 with mesh size set to h = 1/40 and νh = 0.125h.

Our results for the Tests 2, where the dynamical viscosity is a linear function of the density, show that

the semi-implicit scheme remains stable for larger time steps compared to the explicit scheme, with an

observed factor of 10. We also note that the errors obtained with the explicit scheme are always larger than

the one obtained with the semi-implicit algorithm (with a factor of around 2). For the Test 4, where the

dynamical viscosity is a nonlinear function of the density, both the semi-implicit and the explicit schemes

behave in a similar way. We note that simulations are stabilized with a first order artificial viscosity. A

less diffusive stabilization method, such as an entropy or residual based viscosity [16, 34], could be used to

improve the accuracy of both schemes. Overall, we conclude from our numerical investigations that the

semi-implicit scheme always outperforms or at least matches the stability and accuracy of the the explicit

scheme. While both schemes behave similarly for simulations with CFL of order one, the semi-implicit

scheme seems to be more robust than the explicit scheme as it also allows the use of larger time-step for

some setups.

7 Conclusion

We introduced a semi-implicit scheme for the incompressible Navier-Stokes equations with variable density

and viscosity inspired from an explicit scheme introduced in [5]. Although the explicit scheme has been

successfully applied to complex problems in engineering such as aluminum reduction cell [23] and liquid metal

batteries [24], no theoretical analysis of the convergence and stability of the coupled density-velocity-pressure
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τ Semi-Implicit Explicit

Velocity Pressure Density Velocity Pressure Density

0.1 NaN NaN NaN NaN NaN NaN

0.05 1.27E-1 3.62E0 7.70E-2 1.26E-1 3.71E0 7.43E-2

0.025 4.30E-2 8.83E-1 5.94E-2 4.34E-2 8.73E-1 5.97E-2

0.01 1.69E-2 2.45E-1 3.64E-2 1.70E-2 3.43E-1 3.64E-2

Tab. 15: Stability semi-implicit vs explicit scheme for Test 4 with (ρ1, ρ2) = (1, 100). L2 error at final time T = 100 with

mesh size set to h = 1/40 and νh = 0.125h.

problem has been established. This paper fills this gap by showing the stability of its semi-implicit version

and by establishing error estimates for the time discretized algorithm. The order of convergence is shown to

be either one when the gradient of density is bounded or half when the density gradient is controlled by the

time step, meaning the density’s gradient scales with the inverse of the mesh size for simulations under CFL

condition. Numerical investigations with manufactured solutions show that the resulting algorithm converges

with order one in time under classic CFL condition. Numerical comparisons between the semi-implicit and

explicit schemes hint that the semi-implicit scheme can yield a better stability and accuracy properties for

some setups, while the explicit scheme has the advantages to be more suitable for spectral methods and

to involve time-independent stiffness matrices. However, both algorithms behave similarly when working

with a CFL of order one. For future work, we plan to extend this model to problems coupled with the

temperature equation, where the heat capacity and heat diffusion depend on space and time, and to extend

this numerical analysis for a fully discretized algorithm using finite element methods.
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