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Abstract
Uncertainty in parameter estimates from fitting within-host models to empirical data limits 
the model’s ability to uncover mechanisms of infection, disease progression, and to guide 
pharmaceutical interventions. Understanding the effect of model structure and data availability 
on model predictions is important for informing model development and experimental design. 
To address sources of uncertainty in parameter estimation, we used four mathematical models 
of influenza A infection with increased degrees of biological realism. We tested the ability of 
each model to reveal its parameters in the presence of unlimited data by performing structural 
identifiability analyses. We then refined the results by predicting practical identifiability of 
parameters under daily influenza A virus titers alone or together with daily adaptive immune cell 
data. Using these approaches, we presented insight into the sources of uncertainty in parameter 
estimation and provided guidelines for the types of model assumptions, optimal experimental 
design, and biological information needed for improved predictions.
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1. Introduction
The study of host-virus interactions using dynamical models (within-host models) has 
improved our understanding of the mechanistic interactions that govern chronic infections 
caused by pathogens such as human immunodeficiency virus [1, 2] and hepatitis B virus 
[3, 4], and mechanistic interactions that govern acute infections caused by pathogens such 
as influenza virus [5, 6], dengue virus [7–9], Zika virus [10], and severe acute respiratory 
syndrome coronavirus 2 [11, 12]. Regardless of the virus considered, the most basic within-
host model has a general structure that includes the interaction between the cells susceptible 
to the virus, the cells infected by the virus, and the virus at short (acute) and long (chronic) 
timescales. The emergence of unexpected dynamics in the virus data, new information about 
the virus’ life-cycle, data describing host immunity to the infection, or a combination of 
some or all of the above, may require addition of complexity into the within-host modeling 
process (see [13, 14] for a review).

Data fitting techniques for simple or complex within-host models use (normalized) least-
squares approaches, in which the Euclidean distance between the data and the mathematical 
model is minimized with respect to the unknown parameters. The first step in the parameter 
estimation algorithm is to provide an initial guess for each parameter based on prior 
biological knowledge, such as the duration of eclipse stages, life-span of an infected 
cell and/or virus in vitro, and knowledge from modeling of virus dynamics of related 
viruses. When prior knowledge is unknown, the user makes the assumption that any 
positive parameter guess is acceptable. Then, an optimization search algorithm is employed 
until a termination criterion is reached. For many within-host mathematical models and 
corresponding datasets, the optimization is ill-posed due to the structure of the model and/or 
the frequency of the data [15]. As a result, some parameters may be difficult or impossible to 
quantify. To determine whether the uncertainty in parameter estimations is due to the model 
or the data, both structural and practical identifiability questions need to be addressed.

Structural identifiability investigates the ability of a model to reveal its unknown parameters 
from noise-free infinite amount of data [16–18]. When nonstructural identifiability of 
parameters occurs, it is important to find the source of non-identifiability, such as correlation 
between model parameters. This allows the user to propose additional assumptions needed 
to make the model structurally identifiable. Only after the structural identifiability of 
the unknown parameters is guaranteed, can one conduct data fitting schemes to estimate 
parameter values.

Practical identifiability investigates the ability of a model to reveal unknown structurally 
identifiable parameters under scarce and noisy (among subjects) data, often examined using 
Monte Carlo simulations [18–20], the Fisher information matrix (FIM) or correlation matrix 
[16, 21–23], Bayesian method [24], and the profile likelihood method [25–27]. As with the 
structural identifiability, it is important to identify whether the practical identifiability issues 
are due to model structure. Additionally, it is important to determine whether increased 
data frequency, availability of data measurements for more than one model variable, 
and/or relaxing restrictions imposed on the unknown parameters can improve practical 
identifiability issues.
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To address these important considerations in model validation, one needs to compare a 
set of models for the same virus infection system and the same empirical data. Here, we 
accomplish that by investigating four previously developed models of influenza A virus 
(IAV) infection in mice [28]. The first three models, all validated with the same virus titer 
dataset, are ranging from the basic within-host model to models with increased complexity 
through the addition of nonlinear terms and/or the inclusion of additional variables for the 
host cell populations infected by the influenza virus. The fourth model is the most complex, 
due to the addition of both nonlinear terms and variables for the host immune system. This 
results in a large number of unknown parameters. To compensate for the added complexity, 
this model is validated with two datasets: the same virus titer data and an additional immune 
cell population data.

The goal of this study is to determine how model complexity and data availability induce 
uncertainty in parameter estimates. Using the proposed models as proof of concept, we aim 
to provide a framework for model validation, from structural to practical identifiability, that 
can be generalized to other models of virus infections.

2. Within-host influenza models
We consider four within-host models of acute infections used to describe influenza A virus 
infection in mice [5]. They all describe the same influenza A virus titer data, but they 
account for increased biological complexity, as follows. Model 1 assumes that influenza A 
virus infects all available susceptible target cells before being cleared according to first order 
infected cells death and viral clearance rates (target cell limitation); Model 2 explains an 
observed viral biphasic decay in the data by assuming a second order (density dependent) 
infected cell killing rate; Model 3 explains an observed viral expansion delay in the data by 
assuming the presence of an eclipse phase; and Model 4 utilizes a secondary immune cells 
dataset by adding a model population that describes immune-mediated antiviral responses. 
With each model, we include biological realism that describes the dynamics of virus 
expansion and decay in more detail, while at the same time increasing model complexity 
through the addition of nonlinearities and increased numbers of model parameters. The flow 
charts of the four models are presented in Figure 1. Below we describe all models in detail, 
and address the ability of accounting for complexity given the available data by investigating 
structural and practical identifiability of each model considered.

Model 1 is the classical target-cell limitation model of viral infection, which considers the 
interaction between target cells, infected cells, and virus as follows [5, 28]. Target cells, T, 
interact with the virus, V, at rate β to become infected cells I. Infected cells die at per capita 
rate δ and produce virus at rate π. Virus is cleared at rate c. Model 1 is described by the 
system of ordinary differential equations (ODE) Eq (2.1) below,

Model 1: dT
dt = − βTV ,
dI
dt = βTV − δI,
dV
dt = πI − cV ,
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(2.1)

with initial conditions T(0) = T0, I(0) = I0, and V(0) = 0.

Experimental data has shown that, following peak expansion, virus decays in a biphasic 
manner. To capture the dynamics of viral decay, a modified death rate has been considered. 
It assumes that the rate of infected cell clearance increases as the density of infected cells 
decreases, as described by δ/ Kδ + I , where δ is the maximum per capita death rate and Kδ

is infected cell population where death rate is half-maximal [28]. This leads to the modified 
target-cell limitation Model 2 given by the ODE system Eq (2.2) below,

Model 2: dT
dt = − βTV ,
dI
dt = βTV − δ

Kδ + I I,
dV
dt = πI − cV ,

(2.2)

with initial conditions T(0) = T0, I(0) = I0, and V(0) = 0.

It was observed experimentally that, following influenza A virus exposure, there is a delay 
between infection of target cells and viral production by infected cells [29]. The delay 
was accounted for by assuming that, upon infection, cells enter an eclipse phase I1, where 
cells are infected but do not produce virus. They become productively infected I2 after 1/k 
days [6], where 1/k is the average time spent in eclipse phase. This leads to the target-cell 
limitation model with eclipse phase Model 3 given by the ODE system Eq (2.3) below,

Model 3: dT
dt = − βTV ,
dI1
dt = βTV − kI1,
dI2
dt = kI1 − δ

Kδ + I2
I2,

dV
dt = πI2 − cV ,

(2.3)

with initial conditions T(0) = T0, I1(0) = I0, I2(0) = 0, and V(0) = 0.

The first three models do not explicitly account for any immune responses, but indirectly 
assume infected cell loss at nonspecific rate δ (or δ/ Kδ + I2 ) and viral clearance at 
nonspecific rate c. The observed biphasic viral decay captured by Models 2 and 3 given 
by Eqs (2.2) and (2.3), however, has the additional feature that the timing of the second 
phase viral decay coincides with the development of adaptive immune cells in the form of 
CD8+ T cells, which are responsible for killing infected cells and resolving the infection 
[5]. To account for adaptive immunity (especially in the presence of immune cell data), 
an additional variable E is considered. It only accounts for the effector CD8+ T cell 
population (and ignores the memory CD8+ T cell population), as follows. In the absence 
of infection, a baseline of influenza A virus-specific effector CD8+ T cells are present, 
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E(0) = E0. Infection results in recruitment of additional effector CD8+ T cells at a rate 
proportional to the productively infected cells I2. This is modeled in a density dependent 
manner at rate λ/ KE + E , where λ is the maximum influx and KE is the effector CD8+ 

T cell population where the influx is half-maximal. Effector CD8+ T cells proliferate in 
the presence of infection. This is modeled by a delayed term ηI2 t − τI E, which assumes 
that expansion occurs following interaction between effector CD8+ T cells and cells that 
became productively infected τI days ago. To account for effector CD8+ T cells function, the 
model assumes that effector CD8+ T cells kill infected cells in a density dependent manner 
modeled by the term δE/ Kδ + I2 , where δE is the maximum per capita killing rate and Kδ is 
the I2 concentration where the killing is half-maximal. A nonspecific infected cell killing 
rate δ is still considered. The resulting delay differential equations (DDE) immune model is 
described by the DDE system Eq (2.4) below,

dT
dt = − βTV ,
dI1
dt = βTV − kI1,
dI2
dt = kI1 − δI2 − δE

Kδ + I2
EI2,

dV
dt = πI2 − cV ,
dE
dt = λ

KE + EI2 + ηEI2 t − τI − dEE,

(2.4)

with initial conditions T(0) = T0, I1(0) = I0, V(0) = 0, E(0) = E0, and I2(t) = 0 for −τI ≤ t ≤ 0.

To unify the goal of investigating uncertainty in parameter estimates when fitting ODE 
systems of virus dynamics to data, we first approximate the DDE system given by Eq (2.4) 
with an ODE system as follows [30]. For a delay of τI days, we incorporate n dummy 
variables which all span τI /n days in the variable I2’s dynamics. Briefly, we let yi be the 

productively infected cell populations at times t − i
nτI days post infection, for i = 1, …, n, 

and consider the following ODE system for dummy variables yi(t),

dy1
dt = I2 − n

τIy1,
⋮

dyi
dt = n

τIyi − 1 − n
τIyi,

⋮
dyn
dt = n

τIyn − 1 − n
τIyn,

(2.5)

with yi(0) = 0 for i = 1, …, n. Then, the delayed productively infected cell population is 
given by

I2 t − τI ≈ yn(t) .

(2.6)
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Without loss of generality, we assume n = 3. The corresponding immune Model 4 is given 
by the ODE system Eq (2.7) below,

Model 4: dT
dt = − βTV ,
dI1
dt = βTV − kI1,
dI2
dt = kI1 − δI2 − δE

Kδ + I2
EI2,

dV
dt = πI2 − cV ,
dE
dt = λ

KE + EI2 + ηEy3 − dEE,
dy1
dt = I2 − 3

τIy1,
dy2
dt = 3

τIy1 − 3
τIy2,

dy3
dt = 3

τIy2 − 3
τIy3,

(2.7)

with initial conditions T(0) = T0, I1(0) = I0, I2(0) = 0, V(0) = 0, E(0) = E0, and yi(0) = 0 for i 
= 1, 2, 3.

3. Structural identifiability analysis
To study the structural identifiability of the Models 1–4, we rewrite them in the following 
general form

x′(t) = f(x, p),

(3.1)

and the observations as

y(t) = g(x, p) .

(3.2)

Here, x denotes the state variables, p is the parameter vector, and y is the output (given by 
the empirical data), also called the observations. The generic model given by Eq (3.1) is 
called structurally identifiable if the parameter vector p can be determined uniquely from the 
observations given by the smooth curve y(t). Otherwise, it is said to be unidentifiable. The 
formal definition of structural identifiability is provided below.

Definition 1. Let p and p̂ be two distinct parameter vectors. Model Eq (3.1) is said to be 
globally (uniquely) structurally identifiable if and only if,

g(x, p) = g(x, p) implies p = p .

Definition 2. Model Eq (3.1) is said to be locally structurally locally identifiable if for any p 
within an open neighborhood of p̂ in the parameter space,
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g(x, p) = g(x, p) implies p = p .

Various methods have been proposed for analyzing the structural identifiability of ODE 
models [16, 17, 31]. In this study, we employ the differential algebra approach. It performs 
the elimination of unobserved state variables, resulting in equations expressed as functions 
of model parameters and observed state variables. These are referred to as the input-output 
equations, and are differential-algebraic polynomials consisting of the outputs, y(t), with 
model parameters, p, as coefficients. The formal definition of structural identifiability within 
the differential algebra approach for model Eq (3.1) is provided below.

Definition 3. Let c(p) denote the coefficients of the input-output equation corresponding 
to model Eq (3.1). We say that model Eq (3.1) is structurally identifiable from unlimited 
observations y(t) if and only if,

c(p) = c(p) implies p = p .

Studying structural identifiability of ODE models using the differential algebra methods 
can be accomplished using several platforms and available open-source software. Here, 
we present three such platforms: the differential algebra for identifiability of system 
(DAISY) [32], the identifiable combinations web application (COMBOS) [33], and the 
StructuralIdentifiability.jl in JULIA [34].

There are many similarities among the three methods. All of them offer insights into 
the structural identifiability status of each parameter by categorizing them into locally 
identifiable, globally identifiable, or non-identifiable. They employ a differential elimination 
method to calculate input-output equations of the considered system, and test the one-to-
one map between the coefficients of the input-output equations and model parameters. 
COMBOS and the StructuralIdentifiability.jl package in JULIA are superior to DAISY, as 
they provide globally identifiable parameter correlations in an otherwise non-identifiable 
system. Even though DAISY does not print parameter correlations, the correlations can be 
derived using the coefficients of the input-output equations and algebraic manipulations in 
software such as MATHEMATICA. Of the three software, COMBOS does not print the 
input-output equations, making for a faster (yet more opaque) platform. Previous studies 
have shown that COMBOS works best for small to medium-size models and is not assured 
for models with large parameter vectors [33, 35, 36]. While highly similar, it is up to the 
user to determine which software is best suited for studying the identifiability of the models 
considered.

3.1. Structural identifiability results
To determine whether the considered models can reveal their parameters, we examine 
the structural identifiability of Models 1–3, given by Eqs (2.1)–(2.3), under unlimited 
observations of viral load and the structural identifiability of Model 4, given by Eq 
(2.7), under unlimited combined observations of viral load and effector CD8+ T cell 
concentrations. We used the differential algebra software DAISY.

Liyanage et al. Page 7

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



3.1.1. DAISY-based structural identifiability results for Model 1: We assume that 
all Model 1’s parameters p = β, δ,π, c  are unknown and that we have unlimited empirical 
observations of the viral load, y(t) = V(t). Using DAISY [32], we obtain the following 
input-output equation in variable V and model parameters p,

0 = V ‴V − V ″V ′ + V ″V 2β + V ″V (c + δ) − V ′2(c + δ) + V ′V 2β(c + δ) + V 3βcδ .

(3.3)

By Definition 3, we need to examine whether another set of parameters, p̂ = β̂, δ̂, π̂, ĉ
can produce the same empirical observation V(t), making the map from the parameter 
space p to the coefficients of input-output equation Eq (3.3) one-to-one. The coefficients of 
input-output equation Eq (3.3) are c p = β, c + δ, cδ . To determine whether the map from 
the parameter space p to the coefficients c(p) is one-to-one, we set c p = c p̂ , which is the 
following system:

β = β , c + δ = c + δ , cδ = cδ .

(3.4)

Solving Eq (3.4) results in the following two sets of solutions:

S1: β = β , c = c , δ = δ ,
S2: β = β , c = δ , δ = c .

Hence, only the infection rate β is globally structurally identifiable, while the infected 
cells killing rate δ and the virus clearance rate c are locally identifiable. Lastly, the virus 
production rate π does not appear in the input-output equation Eq (3.3). Therefore, it is not 
structurally identifiable. We summarize the results for Model 1 below (see Table 1).

Proposition 1. Model 1 given by Eq (2.1) is not structured to identify all of its 
parameters from unlimited viral load observations, V(t). More precisely, parameter β is 
globally structurally identifiable, parameters c and δ are locally structurally identifiable, 
and parameter π is not structurally identifiable. Moreover, Model 1 is globally structural 
identifiable under known initial conditions.

3.1.2. DAISY-based structural identifiability results for Model 2: We assume that 
all parameters p = β, δ,Kδ,π, c  of Model 2, given by Eq (2.2), are unknown and that we 
have unlimited empirical observations of the viral load, y(t) = V(t). Using DAISY, we obtain 
the following input-output equation,
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0 = V ‴V ′2V + 2V ‴V ′V 2c + 2V ‴V ′VKδπ + V ‴V 3c2 + 2V ‴V 2cKδπ + V ‴VKδ
2π2

− V ″V ′3 + V ″V ′2V 2β − V ″V ′2V c − 2V ″V ′2Kδπ + 2V ″V ′V 3βc + V ″V ′V 2 2βKδπ + c2

− V ″V ′Kδ
2π2 + V ″V 4βc2 + V ″V 3c 2βKδπ + c2 + V ″V 2Kδπ βKδπ + c2

+ V ″VKδπ2 cKδ + δ − V ′4c + V ′3V 2βc − 2V ′3V c2 + V ′3π −2cKδ − δ + 2V ′2V 3βc2
+ V ′2V 2 2βcKδπ + βδπ − c3 − 2V ′2V cπ cKδ + δ − V ′2Kδπ2 cKδ + δ + V ′V 4βc3

+ 2V ′V 3βcπ cKδ + δ + V ′V 2π βcKδ
2π + βδKδπ − c2δ + V 4βc2δπ + V 3βcδKδπ2 .

(3.5)

As before, we examine whether another set of parameters, p̂, can produce the same 
empirical observation V(t), making the map from the parameter space p to the coefficients of 
input-output equation Eq (3.5) one-to-one. If we set c p = c p̂ , we obtain

c = c , β = β , Kδπ = Kδπ, cπ cKδ + δ = cπ cKδ + δ , βc2δπ = βc2δπ,
βcKδπ + βδπ − c3 = βcKδπ + βδπ − c3, Kδπ2 ckδ + δ = Kδπ2 ckδ + δ ,

with solutions

c = c , β = β , δπ = δπ, πKδ = πKδ .

Hence, Model 2 is not structurally identifiable. In particular, infection rate β, viral clearance 
rate c, and the products δπ,Kδπ (but not the individual parameters δ,π, and Kδ) are globally 
identifiable. Since the correlations δπ and Kδπ are known, fixing one of these parameters can 
make model Eq (2.2) identifiable. We summarize the structureal identifiability results for 
Model 2 below (see Table 1).

Proposition 2. Model 2 given by Eq (2.2) is not structured to identify all of its parameters 
from unlimited viral load observations, V(t). More precisely, parameters β and c are 
globally structurally identifiable. Moreover, the parameter products δπ and Kδπ are globally 
identifiable. Since the correlations are known, fixing δ,π, or Kδ makes the Model 2 globally 
structurally identifiable from unlimited observations V(t). Moreover, Model 2 is globally 
structural identifiable under known initial conditions.

3.1.3. DAISY-based structural identifiability results for Model 3: We assume that 
all parameters p = β, δ, k, δEKδ,π, c  of Model 3, given by Eq (2.3), are unknown and that we 
have unlimited empirical observations of the viral load, y(t) = V(t). Using DAISY, we can 
derive the input-output equations (they are too messy and will not be presented here). As 
before, we examine whether another set of parameters, p̂, can produce the same empirical 
observation V(t), making the map from parameter space p to coefficients of input-output 
equation (not shown) one-to-one. If we set c p = c p̂ , we obtain

c = c , β = β , k = k, δ
Kδ

= δ
Kδ

, πKδ = πKδ .
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Hence, Model 3 is not structurally identifiable. In particular, the infection rate β, the eclipse 
parameter k, the viral clearance rate c, the ratio δ/Kδ, and the product Kδπ (but not the 
individual parameters δ, π, and Kδ) are globally identifiable. Since the correlations are 
known, fixing one of these parameters makes the model Eq (2.3) identifiable. We summarize 
the results for Model 3 below (see Table 1).

Proposition 3. Model 3 given by Eq (2.3) is not structured to identify all of its parameters 
from unlimited viral load observations, V(t). More precisely, parameters β, k, and c are 
globally structurally identifiable. Moreover, the parameter ratio δ/Kδ and the parameter 
product Kδπ are globally identifiable. Since the correlations are known, fixing the parameter 
δ,π, or Kδ makes Model 3 globally structurally identifiable from unlimited observations V(t). 
Moreover, Model 3 is globally structural identifiable under known initial conditions.

3.1.4. DAISY-based structural identifiability results for Model 4: To study the 
structural identifiability of Model 4 (given by Eq (2.7)), we assume that all parameters, 
p = β, δ, k, δEKδ,π, cλ, η, dE, τI,E0 , are unknown and that we have unlimited empirical 
observations for the viral load y1(t) = V(t) and the effector cell CD8+ T cell data y2(t) 
= E(t). Using DAISY, we can obtain input-output equations (they are messy and will not be 
presented here). As before, we examine whether another set of parameters, p̂, can produce 
the same empirical observations V(t) and E(t), making the map from the parameter space p 
to the coefficients of input-output equations (not shown) one-to-one. If we set c p = c p̂ , we 
obtain

c = c , β = β , k = k, dE = dE, δ = δ , KE = KE, τI = τ I,

δEη = δEη , Kδη = Kδη , λ
η = λ

η , π
η = π

η .

Hence, Model 4 is not structurally identifiable. In particular, the infection rate β, the eclipse 
parameter k, the viral clearance rate c, the effector cells death rate dE, the generic killing rate 
δ, the half-maximal level KE, the delay τI, the ratios λ/η and π/η, and the products dEη and 
Kδη (but not the individual parameters δE, η,Kδ,π, λ) are globally identifiable. If the parameter 
η is fixed, then the model Eq (2.7) becomes identifiable. We summarize the results for 
Model 4 below (see Table 1).

Proposition 4. Model 4 given by Eq (2.7) is not structured to identify all of its parameters 
from unlimited viral load and effector cell observations, V(t) and E(t). More precisely, 
parameters β, k, c, dE, δ, KE, and τI are globally structurally identifiable. Moreover, the 
parameter ratios λ/η and π/η and the parameter products dEη and Kδη are globally identifiable. 
If the parameter η is fixed, then Model 4 becomes globally structurally identifiable from 
unlimited observations V(t) and E(t).

We do not know (from DAISY) whether knowing initial conditions guarantees global 
stability of Model 4 (see Table 1).
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3.2. Comparison among structural identifiability software
Studying structural identifiability of ODE models can be achieved using software other than 
DAISY To determine how these methods compare, results from three platforms, DAISY, 
COMBOS [33], and StructuralIdentifiability.jl in JULIA [34], for Models 1–4 are presented 
side by side in Table 1.

We find that all three software uncover the same structural identifiability results for Models 
1–3. On the other hand, DAISY and StructuralIdentifiability.jl in JULIA uncover the same 
identifiability results (while COMBOS cannot find results) for Model 4 under unknown 
initial conditions. Even though Models 3 and 4 employ different interpretations of the 
parameter correlations among platforms, simple algebraic manipulations show that the 
obtained correlations are equivalent. Given the similarity in the results among Models 1–3, 
it is up to the user to decide which of the three software is best suited for their analysis. 
Similarly, given the similarity in the results among DAISY and StructuralIdentifiability.jl in 
JULIA for Model 4 with unknown initial conditions, it is up to the user to decide which of 
the two software is best suited for their analysis. However, only StructuralIdentifiability.jl 
in JULIA can be used to determine the structural identifiability of Model 4 with unknown 
E0 and known other initial conditions. Hence, for larger systems with nonlinear terms of 
interactions, this method should be employed.

4. Data fitting methods
4.1. Empirical data

We use previously published longitudinal influenza A infectious virus titer and CD8+ T cell 
data in mice from Smith et al. [5]. Adult mice were inoculated intranasally with 75 TCID50 
of mouse adapted influenza A/Puerto Rico/8/34 (H1N1) (PR8) virus.

Total infectious virus (log 10 TCID50 per lung) was measured for ten mice each day. 
Nine days after inoculation, the infectious virus was no longer detectable in any of the 
mice. Therefore, we only consider infectious virus titer data from the first nine days post 
inoculation in our analyses. We let E V data i  be the mean infectious virus titer data at day i = 
{1, …, 9} and Var V data j  be the infectious virus titer variance at days i = {1, …, 9} among 
the ten mice.

Moreover, total effector CD8+ T cells (cells per lung) were measured daily for five mice. 
Since influenza A-specific effector CD8+ T cells were detectable for all twelve days of the 
study, we consider effector CD8+ T cells data from the first twelve days post inoculation in 
our analyses. We let E Edata j  be the mean CD8+ T cell data (per lung) at day j = {1, …, 
12} and Var Edata j  be the CD8+ T cell data variance at days j = {1, …, 12} among the five 
mice.

4.2. Model parameters and initial conditions
For all models, we assume known initial conditions T(0) = 107 cells/ml, I(0) = 75 
cells/ml, and V(0) = 0 virus/ml as in [5]. For Models 3 and 4, we additionally 
assume that I2(0) = 0, and for Model 4, we assume yi(0) = 0, for i = 1, 2, 3. For 
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Model 4, we assume E(0) = E0 is unknown, therefore adding E0 to the parameter 
vector to be estimated from the data. Lastly, we assume all parameters are unknown. 
When parameters are either very large or very small, we estimate their value on 
natural logarithmic scale. In particular, we estimate p1 = ln β , δ,π, c  for Model 1, 
p2 = ln β , ln δ , ln Kδ ,π, c  for Model 2, p3 = ln β , ln δ , ln Kδ ,π, c, k  for Model 3, and 
p4 = ln β , δ, ln Kδ ,π, c, k, δE, ln η , ln λ , dE, ln KE , τI, ln E0  for Model 4.

4.3. Data fitting algorithm

To estimate parameters p1–p3, we fit the predicted viral load log10 V model
w i  given by Models 

1–3 to the longitudinal mean (among the ten mice) infectious virus (log10 TCID50 per lung) 
E V data i , knowing that the variance in the data at day i is Var V data i , for i = {1…9} days. 
We assume that the data satisfies the following statistical model [19, 37]

E V data(i) = log10V model
w i, pw + ϵi Var V data(i) ,

(4.1)

where V model
w i  is the predicted virus trajectory given by Model w at days i = {1, …, 9} post 

infection; p1 = ln β , δ,π, c ,p2 = ln β , ln δ , ln Kδ ,π, c , and p3 = ln β , ln δ , ln Kδ ,π, c, k ; 
and ϵi are independent and identically distributed with mean zero and standard deviation σ. 
Given the statistical model Eq (4.1), we assume that the measured data, E V data i , follows a 
normal distribution with a mean equal to the model prediction log10 V model

w i  and with variance 
equal to σ2Var V data i . Moreover, the availability of measurements from several animals that 
vary with time allows us to account for the change in data variance over time, Var V data i . 
Therefore, we consider the following functional (weighted residual sum of squares), to 
estimate the model parameters,

RSSw pw =
i = 1

9 log10V model
w i, pw − E V data(i) 2
Var V data(i) .

(4.2)

Consequently, parameters of Models 1–3 are estimated by minimizing the weighted least-
squares given by

Jw pw = min
pw

RSSw pw .

(4.3)

Moreover, to estimate parameters p4, we fit both the predicted viral load log10 V model
4 i , given 

by Model 4, to the longitudinal mean (among ten mice) infectious virus E V data i  (knowing 
that the variance in the data at days i = {1…9} is Var V data i ) and the predicted effector 
cell population log10 Emodel

4 j , given by Model 4, to the longitudinal mean (among five mice) 
CD8+ T cell data E Edata j  (knowing that the variance in the data at days j = {1…12} is 
Var Edata j ). We assume that the data is satisfying the following statistical model [19, 37]
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E V data(i) = log10V model
4 i, p4 + ϵi Var V data(i) ,

(4.4)

E Edata(j) = log10Emodel
4 j, p4 + ηj Var Edata(j) ,

(4.5)

where V model
4 i  is the predicted virus trajectory given by Model 4 at days i = {1, …, 9} post 

infection, Emodel
4 j  is the predicted CD8+ T cell population given by Model 4 at days j = {1, 

…, 12} post infection, and p4 = ln β , δ, ln Kδ ,π, c, k, δE, ln η , ln λ , dE, ln KE , τI, ln E0 . Here, 
ϵi and ηj are independent and identically distributed with mean zero and standard deviations 
σV  and σE, respectively. As before, the measured data E Edata j  follows a normal distribution 
whose mean is the model prediction log10 Emodel

w i  and whose variance is σE
2Var Edata j . We 

consider the following functional (weighted residual sum of squares),

RSS4 p4 = u1
i = 1

9 log10V model
4 i,p4 − E V data(i) 2
Var V data(i) + u2

j = 1

12 log10Emodel j,p4 − E Edata(j) 2
Var Edata(j) .

(4.6)

Consequently, parameters of Model 4 are estimated by minimizing the weighted least-
squares given by,

J4 p4 = min
p4

RSS4 p4 .

(4.7)

Note that we weighted the virus and effector cells contributions, with weights u1 = 1 and 
u2 = max

j
Var Edata j /max

i
Var V data i . We minimize all least-square functionals RSSw using 

the fmincon function in MATLAB with ranges for parameters pw given in Table 2.

4.4. Model selection
To compare Models 1–4, we calculate the corrected Akaike information criteria (AICc), 
given below

AICc = nln Jw
n + 2(M + 1) + 2(M + 1)(M + 2)

n − M ,

(4.8)

where n is the number of data points used to estimate parameters pw and M is the number of 
estimated parameters. In Models 1–3, n = 9 and M = 4, 5, and 6, respectively. In Model 4, n 
= 21 and M = 13.
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4.5. Model prediction confidence interval
To quantify the uncertainty associated with predicted solutions of each model, we perform 
parametric bootstrapping. It is a simulation-based method which assumes that data comes 
from a known distribution with unknown parameters. For Models 1–3, we assume that the 
predicted viral population for best parameter estimates, log10 V model

w i, pw , is the mean of the 
data’s normal distribution and σ2Var V data i  is its variance (see Eq (4.1)). Then, σ can be 
approximated as follows,

σ2 ≈ 1
n − M i = 1

n log10V model
w i, pw − E V data(i) 2

Var V data(i) ,

(see Banks et al. for a full derivation [37]). Here, n = 9 is the number of viral samples and 
M is the number of parameters (M = 4, M = 5, and M = 6 for Models 1–3, respectively). 
To find a confidence region in our model predictions, we generate 1000 simulated datasets 
using the distribution space given by Eq (4.1), and fit Models 1–3 to each datasets.

Similarly, for Model 4, assuming that viral data and effector cell data come from 
distributions with means log10 V model

4 i,p4  and log10 Emodel
4 i,p4  (the predicted variables for best 

parameter fits) and that σV
2Var V data i  and σE

2Var Edata j  are the variances, then

σV2 ≈ 1
ntot − M i = 1

nV log10V model
4 i, p4 − E V data(i) 2
Var V data(i) ,

and

σE2 ≈ 1
ntot − M j = 1

nE log10 Emodel j,p4 − E Edata(j) 2

Var Edata(j) ,

as before. Here, nV = 9 is the number of viral samples, nE = 12 is the number of CD8+ T cell 
samples, ntot = nV + nE = 21 is the number of total data samples, and M = 13 is the number 
of parameters fitted.

5. Data fitting results
We fitted Models 1–3 to previously published longitudinal influenza A infectious virus titer 
and we fitted Model 4 to both longitudinal influenza A infectious virus titer and longitudinal 
CD8+ T cell data in infected mice [5], using a normalized least-square optimization 
algorithm (see Section 4). The results from fitting V(t) given by Models 1–3 to viral load 
data are shown in Figure 2A–C and the best parameter fits are given in Table 3. The results 
from fitting both V(t) and E(t) given by Model 4 to viral titer and effector cell data are 
shown in Figure 2D and the best parameter fits are given in Table 3. Model selection, using 
the corrected AICc, predicts that Model 4 best describes the data (see Table 3). To quantify 
the uncertainty associated with predicted solutions of each model, we find a 90% confidence 
region in our model predictions (see Section 4.5), illustrated by shaded gray areas in Figure 
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2A–C for Models 1–3 and by gray and blue shaded regions in Figure 2D for Model 4. We 
see large error regions in virus population predictions for all models during the decay phase 
(gray regions in Figure 2A–D). Moreover, Models 2–4 better capture the virus population 
expansion phase compared to Model 1 (gray regions in Figure 2B–D versus gray region in 
Figure 2A). Lastly, the largest error in CD8+ T cell prediction in Model 4 occurs in the 
second week of infection (blue region in Figure 2D).

6. Practical identifiability analysis
While structural identifiability investigates whether parameters can be uniquely determined 
from a model given unlimited data in the absence of measurement error or noise, practical 
identifiability determines whether parameters can be accurately identified in real-world 
scenarios, where observed discrete and variable among subject data is contaminated with 
measurement errors. We and others have employed several methods to study practical 
identifiability of within-host and infectious disease models, such as Monte Carlo simulations 
[18–20], Fisher information matrix or correlation matrix [16, 21–23], and Bayesian methods 
[24]. In this study, we use the profile likelihood method [25, 38] described in detail below.

Consider that the vector of parameters p is partitioned into p=(r, s), where r represents the 
parameter whose practical identifiability we are investigating and s represents the vector of 
remaining parameters. The profile likelihood of r is given by,

PL(r) = min
s

RSS(r, s),

(6.1)

where RSS is the objective functional used for data fitting (in our case, Eq (4.2) for Models 
1–3 and Eq (4.6) for Model 4). In other words, PL(r) finds the minimum of the objective 
functional RSS(r, s) for an array of fixed r values over the space of the remaining parameters 
s. The shape of PL(r) informs the identifiability of r, with a u-shaped PL(r) that exceeds a 
threshold (corresponding to a chosen confidence level) indicating practical identifiability of r 
and a flat PL(r) indicating nonpractical identifiability of r.

We estimate PL(r) over a mesh of equally spaced values of r, centered at the best-fit estimate 
r , with the number of mesh points chosen to have enough data to generate a confidence 
interval for r , as follows. If we consider a model with parameters p unknown and a model 
with parameters s unknown, we obtain two nested models that differ by parameter r. It has 
been shown that the likelihood ratio of the nested models converges to a χ2 distribution with 
one degree of freedom, d f = 1 (see Corrollary 2 in [38] for more detail). This helps us define 
the Δ-level likelihood-based confidence interval for parameter r to be

CI = r ∣ PL(r) < J + Δ ,

(6.2)
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where Δ is the percentile of the χ2 distribution with d f = 1, and J is the weighted 
least-squares functional at the best parameter estimate [38]. This can be summarized, as 
follows.

Definition 4. Let CI = r ∣ PL r < J + Δ  be the likelihood-based confidence interval for 
parameter r.

i. If CI ⊂ r1, r2 , where r1 and r2 are finite, then parameter r is practically 
identifiable.

ii. If either r1 or r2 is infinite, then parameter r is not practically identifiable.

A model is practically identifiable if all parameters are practically identifiable.

For Models 1–3, we generated the profile likelihoods PL(r) for each parameter r ∈ {pw} for 
w = {1, 2, 3} by fitting the functional RSSw(pw) given by Eq (4.2) and Model w to mean 
population viral load data. We obtained best estimates for the remaining parameters s over 
a mesh of equally spaced, known r values. Similarly, for Model 4, we generated the profile 
likelihood PL(r) for unknown parameters r ∈ {p4} by fitting functional RSS4(p4) given by 
Eq (4.6) simultaneously to the mean population viral titer and the mean population effector 
cell data. We obtained best estimates for the remaining parameters s over a mesh of equally 
spaced, known r values.

Additionally, to further explore the relationship between data availability and practical 
identifiability, we generated profile likelihoods for parameters pw and Model w using 
simulated, noise-free, high frequency datasets. In particular, we assumed that the virus titer 
data was collected every fourteen minutes (for a total of 899 evenly spaced points) for 
Models 1–3 and that both the virus titer data and the effector cell data were collected every 
fourteen minutes (for a total of 899 evenly spaced points of each data type) for Model 4. 
We fitted each model to this high frequency data and generated profile likelihoods of the 
resulting parameter values. In all of our models, we chose Δ to be the 90-th percentile of 
the χ2-distribution, χ2

90 [38]. This guaranteed us a 90% confidence interval in the estimated 
parameter r.

6.1. Practical identifiability results
Since we determined that Models 1–4 are structurally identifiable under known initial 
conditions and unlimited data, we were allowed to search for best estimates for all models’ 
parameters. The resulting fitting routine may still be ill-posed, given that the data consisted 
of discrete (daily) datasets that varied among the infected mice, rather than the unlimited 
data required by the structural identifiability theory. Therefore, we performed practical 
identifiability for Models 1–4 under the discrete subject data in [28]. We used the Profile 
Likelihood practical identifiability method [23, 25–27], which has the advantage of not only 
determining whether a parameter is practically identifiable, but also of determining a 90% 
confidence interval for the parameter space where practical identifiability occurs.

When using the empirical population mean virus titer data in [5] for Model 1, we found 
that β is practically identifiable with 90% confidence interval CI ⊂ [1.64 × 10−6, 2.94 
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× 10−5] and π is practically identifiable with 90% confidence interval CI ⊂ [0.31, 3.18], 
respectively. On the other hand, both δ and c are not practically identifiable, with identical 
90% confidence intervals CI ⊂ [0.87, ∞] (see Figure 3A). Adding high frequency data 
and rerunning the profile likelihood analysis resulted in practical identifiability of all four 
parameters, consistent with the structural identifiability results for Model 1 (see Figure 3B).

Similar to Model 1, when using the empirical population mean virus titer data in [5] for 
Model 2, we found that δ, Kδ, and π are practically identifiable with 90% confidence 
intervals CI ⊂ [1.41 × 106, 2.06 × 106], CI ⊂ [1.74 × 104, 4.19 × 105], and CI ⊂ [0.44, 
5.24], respectively. On the other hand, both β and c are not practically identifiable, with 90% 
confidence intervals CI ⊂ [6.62 × 10−6, ∞] and CI ⊂ [3.98, ∞], respectively (see Figure 
3C). Adding high frequency data and rerunning the profile likelihood analysis resulted in 
practical identifiability of all five parameters, consistent with the structural identifiability 
results for Model 2 (see Figure 3D).

For Model 3, when using the empirical population mean virus titer data in [5], we found 
that β, δ, Kδ, and π are practically identifiable with 90% confidence intervals CI ⊂ [2.17 × 
10−5, 1.60 × 10−4], CI ⊂ [1.47 × 106, 2.03 × 106], CI ⊂ [1.59 × 105, 4.32 × 105], and CI 
⊂ [1.07, 4.49], respectively. On the other hand, both c and k are not practically identifiable, 
with 90% confidence intervals CI ⊂ [3.98, ∞] and CI ⊂ [∞, ∞], respectively (see Figure 
3E). Adding high frequency data and rerunning the profile likelihood analysis did not result 
in practical identifiability of all six parameters (see Figure 3F). However, if we additionally 
relaxed constraints on parameters c and k to range in the [0, 1000] and [0, 50] intervals, 
compared to the constraints chosen in Table 2, we observed practical identifiability of all 
five parameters, consistent with the structural identifiability results for Model 3 (see Figure 
4).

For Model 4, when using the discrete empirical population mean virus titer data and the 
empirical population mean effector cell data in [5] simultaneously, we found that π and E0 
are practically identifiable with 90% confidence intervals CI ⊂ [0.29, 2.49] and CI ⊂ [66, 
5.41 × 10−4]. Parameters k, λ, and KE are not practically identifiable with the same 90% 
confidence interval CI ⊂ [−∞, ∞]. Parameters β, δE,Kδ, η, and c are also not practically 
identifiable with 90% confidence intervals CI ⊂ [8.00 × 10−6, ∞], CI ⊂ [1.10, ∞], CI ⊂ 
[42.98, ∞], CI ⊂ [5.37 × 10−8, ∞], and CI ⊂ [3.89, ∞], respectively. Lastly, parameters 
δ, dE, and τ are not practically identifiable on the positive domain with an undefined lower 
bound (ULB) for the 90% confidence interval and a finite upper bound. In particular, CI 
⊂ [ULB, 0.63], CI ⊂ [ULB, 3.20], CI ⊂ [ULB, 6.99], for δ, dE, and τI, respectively 
(see Figure 5A). Adding high frequency data and rerunning the profile likelihood analysis 
resulted in practical identifiability of all thirteen parameters, consistent with the structural 
identifiability results for Model 4 (see Figure 5B).

7. Discussion
In this study, we investigated the conditions needed to ensure model identifiability in four 
models of influenza A virus dynamics in infected mice. To apply the same methodology 
and software, all considered models were either modeled by systems of ODEs (Models 1–3 
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given by equations Eqs (2.1)–(2.3)) or approximated by a system of ODEs (Model 4 given 
by Eq (2.7)). The considered models differ in the number of equations (corresponding to the 
number of variables) from three in Models 1 and 2, to four in Model 3 to eight in Model 
4. Consequently, the number of unknown parameters is a maximum of four in Model 1, a 
maximum of five in Model 2, a maximum of six in Model 3, and a maximum of thirteen 
in Model 4. Lastly, the terms of interaction include only mass-action and linear terms for 
Model 1 and mass-action, linear terms, and density dependence terms for Models 2–4.

We found that the increased complexity needed to capture biological realism comes with 
a cost. It resulted in increased uncertainty in parameter estimates not only when discrete 
and noisy virus and immune cell empirical data is used for validation but also when we 
assumed (hypothetically) that unlimited data is available. This means that data fitting should 
not be conducted until it is established that parameters can be revealed from unlimited data 
under the considered model structure. In other words, the first step in the model validation is 
determining whether all unknown parameters are structurally identifiable (see Figure 6).

When it comes to investigating the structural identifiability of systems of ODEs several 
software platforms are available. Here, we compared results from three of them: DAISY 
[32], COMBOS [33], and StructuralIdentifiability.jl in JULIA [34]. For Models 1–3 and 
unlimited virus titer data, we found the same classification for the structurally identifiable 
parameters and the same (or equivalent) correlations between the nonstructurally identifiable 
parameters, regardless of the software used (Table 1). For the more complex Model 4 and 
unlimited virus titer and effector CD8+ T cell data, however, only StructuralIdentifiability.jl 
in JULIA found that the model is structurally identifiable under known (with the exception 
of initial effector population, E0) initial conditions (Table 1). When initial conditions 
are unknown, we found identical classification for structurally identifiable parameters 
and equivalent correlations between the nonstructurally identifiable parameters among 
StructuralIdentifiability.jl in JULIA and DAISY (Table 1). COMBOS cannot handle the 
structural stability analyses for Model 4, regardless of whether initial conditions are known 
or not (Table 1). While increased difficulty in analyzing the structural identifiability of 
Model 4 is not surprising given its increased dimensionality (eight equations), multiple 
parameters (thirteen), and complex terms of interaction, this model is validated with two 
datasets (virus titer load and effector CD8+ T cells). Our analysis showed that the addition of 
data for another model variable did not compensate for the size of the model and number of 
unknown parameters.

Interestingly, we found that all parameters (for all models) are structurally identifiable under 
known (with the exception of initial effector population, E0) initial conditions. Given that 
this is an inoculation study, the assumption of known viral inoculum (set by the experiment) 
and of known initial target cell population (approximated based on the animal body weight) 
is not unreasonable. When Models 1–4 are used to model natural infection, however, such 
initial conditions would be unknown due to differences in individual routes of infection, 
heterogeneity in individual immune responses, and variability in patient susceptibility. 
Under such unknowns, Models 1–4 would become structurally unidentifiable. Hence, it 
would be impossible to estimate all parameters even in the presence of unlimited data. A 
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reduction of the unknown parameter space (based on the reported parameter correlations) 
would be needed before model validation can be attempted.

We next validated Models 1–3 with discrete (daily) virus titer data (for the first nine days) 
and validated Model 4 with discrete (daily) virus titer data (for the first nine days) and 
discrete (daily) CD8+ T cell data (for the first twelve days). Model selection (based on AICc) 
favored Model 4 as the best model (Table 3). Interestingly, Model 1 was the second best 
model, even though it had the largest 90% error region around the predicted mean virus fit 
(Figure 2, gray shaded regions). All models perform the worst during the contraction interval 
(Figure 2, gray and blue shaded regions), suggesting uncertainty in death rates estimates (for 
the virus and infected cells).

We used the best parameter estimates obtained through data fitting for Models 1–4 to further 
investigate their practical identifiablity. Knowing that data used for validation was collected 
daily and that there was variability among the subjects at each time point, we wanted to 
determine whether there is uncertainty in estimated parameters. When it comes to practical 
identifiability, several methods are available, such as the Monte Carlo simulations [18–20], 
the Fisher information matrix or correlation matrix [16, 21–23], and Bayesian methods [24]. 
In this study, we used the profile likelihood method [25, 38] for two main reasons. First, 
it allowed us to not just classify the models as practically or non-practically identifiable, 
but to determine a 90% confidence interval for each practically identifiable parameter. 
Second, it allowed us to determine the required assumptions needed to improve practical 
identifiability, while maintaining biological realism (for example, by imposing positivity for 
all parameters).

We found that none of the models are practically identifiable for the daily empirical data 
collected in [28] and the parameter range restrictions imposed in Table 2 (see Figures 
3A,C,E, and 5A). While Model 1, Model 2, and Model 4 become practically identifiable 
if we assume data is collected every fourteen minutes (see Figures 3A,D, and 5B), Model 
3 does not (see Figure 3F). For this model, we can achieve practical identifiability only 
when we assume that the viral clearance rate can reach values as high as c = 500 per day 
(corresponding to a life-span for the influenza virus of 2.9 minutes), and that the epithelial 
cells spend 1/k = 1.2 hours in the eclipse phase before they become productively infected 
(see Figure 4). While large influenza clearance rates have been reported before [28], the 
eclipse phase 1/k is assumed to be conserved in a tight interval of 4–6 hours in most 
respiratory infections [6, 11, 28]. Therefore, this parameter is not practically identifiable 
from Model 3 even when data is collected at high frequency. This is a situation where 
a parameter should be removed from the data fitting routine in order to improve the 
uncertainty in the estimates of the remaining parameters (see Figure 6).

Our study has several limitations. First, Model 4 was originally expressed as a five order 
system of DDEs. Given the lack of methods that can be used to determine the structural 
identifiability of DDEs, we approximated it with an eight order system of ODEs. More 
work is needed to determine whether we maintain (or improve) the practical identifiability 
results when the DDE system is used in the place of the ODE system. Second, we assumed 
that all model parameters are unknown. It is feasible that the practical identifiability will 
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be improved if certain parameters (such as the eclipse phase) were assumed known. Lastly, 
all our practical identifiability results come in the context of daily data collection. It would 
be interesting to see how data collected with random frequency (especially unavailability 
of data measurements before peak viral load) changes the results. In conclusion, we 
investigated the structural and practical identifiability of four nested ODE models of 
influenza A virus infection in mice. We determined the tradeoff between model complexity 
(defined as combined system dimension, number of unknown parameters, nonlinearity in 
model interactions), data availability, and our ability to reliably estimate model parameters. 
We presented solutions for improving model identifiability. While our results dependent on 
the structure of the models considered the available data, the methods are generalizable and 
their use is needed to improve reliability and reproducibility of parameter estimates in other 
systems of ODEs applied to discrete biological data.

Identifiability analysis has critical implications for experimental design, particularly when 
it comes to ensuring that the data obtained in these experiments will provide accurate 
estimation of parameters. For instance, if a model is not structurally identifiable even with 
noise-free unlimited data, then no experimental design will allow for estimation of certain 
parameters. Furthermore, structural identifiability analysis informs us which variables need 
to be measured in order to obtain reliable parameter estimates. Therefore, these experiments 
can be designed with some structurally identifiable models in mind. On the other hand, 
practical identifiability reveals the optimal data sampling frequency, where the data is more 
informative for certain parameters. These results will refine the experimental design to 
obtain data at those times and reduce the uncertainty in parameter estimates.
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Figure 1. 
Flow charts for Models 1–4.
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Figure 2. 
Model predictions (solid lines) and 95% model confidence regions (dashed areas) obtained 
by fitting V(t) (black lines) given by A: Model 1, B: Model 2, C: Model 3 to virus load data 
(black circles) and by fitting V(t) (black line) and E(t) (blue line) given by D: Model 4 to 
o virus load data (black circles) and CD8+ T cell data (blue circles). Model parameters are 
given in Table 3.
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Figure 3. 
Profile likelihood curves generated using empirical data for A: Model 1, C: Model 2, E: 
Model 3; and profile likelihood curves generated using high frequency simulated data for B: 
Model 1, D: Model 2, F: Model 3. The red circles indicate best parameter estimates given in 
Table 3 and the dashed lines represent a threshold equivalent to 90% confidence level in the 
parameter estimate.
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Figure 4. 
Profile likelihood curves generated using empirical data for Model 3 when we relax 
constraints, such that c ∈ [0, 1000] and k ∈ [0, 50]. The red circles indicate the best 
parameter estimate given in Table 3 and the dashed line represents a threshold equivalent to 
90% confidence level in the parameter estimate.
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Figure 5. 
Profile likelihood curves generated using empirical data for A: Model 4, and profile 
likelihood curves generated using high frequency simulated data for B: Model 4. The red 
circles indicate best parameter estimates given in Table 3 and the dashed lines represent a 
threshold equivalent to 90% confidence level in the parameter estimate.
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Figure 6. 
Flow chart of performing identifiability theory to ODE models.
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Table 1.
Structural identifiability results for Models 1–4 using three software: DAISY, StructuralIdentifiability.jl 
package in JULIA, and COMBOS.

Model Observed states DAISY JULIA COMBOS

Model 1 unknown initial 
conditions V(t)

β
globally identifiable
c, δ

locally identifiable
Correlations:
c + δ = c + δ ,
cδ = cδ

β
globally identifiable
c, δ

locally identifiable
π
nonidentifiable
Correlations:
c + δ = c + δ ,
cδ = cδ

β
globally identifiable
c, δ

locally identifiable with 2 
solutions

Model 2 unknown initial 
conditions V(t)

β, c
globally identifiable
Correlations:
δπ = δπ,πKδ = πKδ

β, c
globally identifiable
π,Kδ, δ

nonidentifiable
Correlations:
δπ = δπ,πKδ = πKδ

β, c,Kδπ, δπ
globally identifiable

Model 3 unknown initial 
conditions V(t)

β, c, k
globally identifiable
Correlations:
δ
Kδ

= δ
Kδ

,πKδ = πKδ

β, c, k
globally identifiable
π,Kδ, δ

nonidentifiable
Correlations:
δπ = δπ,πKδ = πKδ

β, c,Kδπ, δπ
globally identifiable

Model 4 unknown initial 
conditions V(t), E(t)

β, c, dE, δ, k,KE, τI
globally identifiable
Correlations:
δEη = δEη ,
Kδη = Kδη ,
λ
η = λ

η , πη = π
η ,

β, c, dE, δ, k,KE, τI
globally identifiable
{δ;E, Kδ, π, λ η}
nonidentifiable
Correlations:
Kδπ = Kδπ,
Kδλ = Kδλ,
ηKδ = ηKδ,
δEπ = δEπ

identifiability unknown

All models known initial 
conditions except for E0

V(t)
V(t), E(t)

Models 1–3
globally identifiable
Model 4
identifiability unknown

Models 1–4
globally identifiable

Models 1–4
identifiability unknown
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Table 2.
Upper and lower bounds for parameters estimated by fitting Models 1–3 to influenza A virus titer and by 
fitting Model 4 to both influenza A virus titer and effector CD8+ T cell data from infected mice.

Parameter Model 1 Model 2 Model 3 Model 4

β × 10−5 0.1–10 0.1–10 0.1–10 0.1–10

δ 0–25 102–108 102–108 0–15

Kδ - 103–107 103–107 101–105

π 0–102 0–102 0–102 0–102

c 0–25 0–25 0–25 0–25

k - - 4–6 4–6

δE - - - 0–25

η × 10−7 - - - 10−2–100

λ × 103 - - - 10−2–102

dE - - - 0–25

KE × 106 - - - 0.1–103

τI - - - 0–10

E0 × 103 - - - 0.1–10
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Table 3.
Parameter estimates found by fitting Model 1, Model 2, and Model 3 to virus titer data and Model 4 to virus 
titer and effector CD8+ T cell data from mice infected with influenza A virus using fmincon routine in 
MATLAB.

Parameter Model 1 Model 2 Model 3 Model 4

β × 10−5 0.48 6.88 6.20 8.39

δ 1.47 1.59 × 106 1.72 × 106 0.196

Kδ - 4.69 × 104 2.37 × 105 5.49 × 103

π 1.18 0.86 1.69 0.69

c 1.48 6.49 12.34 6.19

k - - 4.82 5.02

δE - - - 14.20

η × 10−7 - - - 3.59

λ × 103 - - - 1.31

dE - - - 0.20

KE × 106 - - - 9.68

τI - - - 1.69

E0 × 103 - - - 1.21

Jw 21.12 2.09 2.39 2.14

AICc 37.67 40.88 114.1 36.78

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.


	Abstract
	Introduction
	Within-host influenza models
	Structural identifiability analysis
	Structural identifiability results
	DAISY-based structural identifiability results for Model 1
	DAISY-based structural identifiability results for Model 2
	DAISY-based structural identifiability results for Model 3
	DAISY-based structural identifiability results for Model 4

	Comparison among structural identifiability software

	Data fitting methods
	Empirical data
	Model parameters and initial conditions
	Data fitting algorithm
	Model selection
	Model prediction confidence interval

	Data fitting results
	Practical identifiability analysis
	Practical identifiability results

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.

