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Abstract

Uncertainty in parameter estimates from fitting within-host models to empirical data limits

the model’s ability to uncover mechanisms of infection, disease progression, and to guide
pharmaceutical interventions. Understanding the effect of model structure and data availability
on model predictions is important for informing model development and experimental design.
To address sources of uncertainty in parameter estimation, we used four mathematical models
of influenza A infection with increased degrees of biological realism. We tested the ability of
each model to reveal its parameters in the presence of unlimited data by performing structural
identifiability analyses. We then refined the results by predicting practical identifiability of
parameters under daily influenza A virus titers alone or together with daily adaptive immune cell
data. Using these approaches, we presented insight into the sources of uncertainty in parameter
estimation and provided guidelines for the types of model assumptions, optimal experimental
design, and biological information needed for improved predictions.
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Introduction

The study of host-virus interactions using dynamical models (within-host models) has
improved our understanding of the mechanistic interactions that govern chronic infections
caused by pathogens such as human immunodeficiency virus [1, 2] and hepatitis B virus

[3, 4], and mechanistic interactions that govern acute infections caused by pathogens such
as influenza virus [5, 6], dengue virus [7-9], Zika virus [10], and severe acute respiratory
syndrome coronavirus 2 [11, 12]. Regardless of the virus considered, the most basic within-
host model has a general structure that includes the interaction between the cells susceptible
to the virus, the cells infected by the virus, and the virus at short (acute) and long (chronic)
timescales. The emergence of unexpected dynamics in the virus data, new information about
the virus’ life-cycle, data describing host immunity to the infection, or a combination of
some or all of the above, may require addition of complexity into the within-host modeling
process (see [13, 14] for a review).

Data fitting techniques for simple or complex within-host models use (normalized) least-
squares approaches, in which the Euclidean distance between the data and the mathematical
model is minimized with respect to the unknown parameters. The first step in the parameter
estimation algorithm is to provide an initial guess for each parameter based on prior
biological knowledge, such as the duration of eclipse stages, life-span of an infected

cell and/or virus in vitro, and knowledge from modeling of virus dynamics of related
viruses. When prior knowledge is unknown, the user makes the assumption that any
positive parameter guess is acceptable. Then, an optimization search algorithm is employed
until a termination criterion is reached. For many within-host mathematical models and
corresponding datasets, the optimization is ill-posed due to the structure of the model and/or
the frequency of the data [15]. As a result, some parameters may be difficult or impossible to
quantify. To determine whether the uncertainty in parameter estimations is due to the model
or the data, both structural and practical identifiability questions need to be addressed.

Structural identifiability investigates the ability of a model to reveal its unknown parameters
from noise-free infinite amount of data [16—18]. When nonstructural identifiability of
parameters occurs, it is important to find the source of non-identifiability, such as correlation
between model parameters. This allows the user to propose additional assumptions needed
to make the model structurally identifiable. Only after the structural identifiability of

the unknown parameters is guaranteed, can one conduct data fitting schemes to estimate
parameter values.

Practical identifiability investigates the ability of a model to reveal unknown structurally
identifiable parameters under scarce and noisy (among subjects) data, often examined using
Monte Carlo simulations [18—-20], the Fisher information matrix (FIM) or correlation matrix
[16, 21-23], Bayesian method [24], and the profile likelihood method [25-27]. As with the
structural identifiability, it is important to identify whether the practical identifiability issues
are due to model structure. Additionally, it is important to determine whether increased

data frequency, availability of data measurements for more than one model variable,

and/or relaxing restrictions imposed on the unknown parameters can improve practical
identifiability issues.
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To address these important considerations in model validation, one needs to compare a

set of models for the same virus infection system and the same empirical data. Here, we
accomplish that by investigating four previously developed models of influenza A virus
(IAV) infection in mice [28]. The first three models, all validated with the same virus titer
dataset, are ranging from the basic within-host model to models with increased complexity
through the addition of nonlinear terms and/or the inclusion of additional variables for the
host cell populations infected by the influenza virus. The fourth model is the most complex,
due to the addition of both nonlinear terms and variables for the host immune system. This
results in a large number of unknown parameters. To compensate for the added complexity,
this model is validated with two datasets: the same virus titer data and an additional immune
cell population data.

The goal of this study is to determine how model complexity and data availability induce
uncertainty in parameter estimates. Using the proposed models as proof of concept, we aim
to provide a framework for model validation, from structural to practical identifiability, that
can be generalized to other models of virus infections.

2. Within-host influenza models

We consider four within-host models of acute infections used to describe influenza A virus
infection in mice [5]. They all describe the same influenza A virus titer data, but they
account for increased biological complexity, as follows. Model 1 assumes that influenza A
virus infects all available susceptible target cells before being cleared according to first order
infected cells death and viral clearance rates (target cell limitation); Model 2 explains an
observed viral biphasic decay in the data by assuming a second order (density dependent)
infected cell killing rate; Model 3 explains an observed viral expansion delay in the data by
assuming the presence of an eclipse phase; and Model 4 utilizes a secondary immune cells
dataset by adding a model population that describes immune-mediated antiviral responses.
With each model, we include biological realism that describes the dynamics of virus
expansion and decay in more detail, while at the same time increasing model complexity
through the addition of nonlinearities and increased numbers of model parameters. The flow
charts of the four models are presented in Figure 1. Below we describe all models in detail,
and address the ability of accounting for complexity given the available data by investigating
structural and practical identifiability of each model considered.

Model 1 is the classical target-cell limitation model of viral infection, which considers the
interaction between target cells, infected cells, and virus as follows [5, 28]. Target cells, 7,
interact with the virus, V, at rate g to become infected cells Z Infected cells die at per capita
rate 6 and produce virus at rate z. Virus is cleared at rate ¢. Model 1 is described by the
system of ordinary differential equations (ODE) Eq (2.1) below,

. 4T _

Model 1: = BTV,
dI
E-ﬂTV—éI,
dv
W—n’[—cV,
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2.1

with initial conditions 7{0) = T, £0) = f, and V{0) = 0.

Experimental data has shown that, following peak expansion, virus decays in a biphasic
manner. To capture the dynamics of viral decay, a modified death rate has been considered.
It assumes that the rate of infected cell clearance increases as the density of infected cells
decreases, as described by 6/(K; + I), where § is the maximum per capita death rate and K;
is infected cell population where death rate is half-maximal [28]. This leads to the modified
target-cell limitation Model 2 given by the ODE system Eq (2.2) below,

ar _

Model 2: e - pTV,
dI 3
ar =PV - K5+II’
%:nI—CV,

(2.2)

with initial conditions 7{0) = T, £0) = f, and {0) = 0.

It was observed experimentally that, following influenza A virus exposure, there is a delay
between infection of target cells and viral production by infected cells [29]. The delay
was accounted for by assuming that, upon infection, cells enter an eclipse phase /;, where
cells are infected but do not produce virus. They become productively infected 74 after 1/k
days [6], where 1/k is the average time spent in eclipse phase. This leads to the target-cell
limitation model with eclipse phase Model 3 given by the ODE system Eq (2.3) below,

Model 3: ﬂ= - pTV,
dt
dI,
W_ﬁTV—kI,,
dI, 8
W‘“'_Kﬁlzh’
dv

ar = zl,—cV,

(2.3)

with initial conditions 7{0) = Ty, 1;(0) = Iy, 5L(0) =0, and V(0) = 0.

The first three models do not explicitly account for any immune responses, but indirectly
assume infected cell loss at nonspecific rate § (or 6/(K; + I,)) and viral clearance at
nonspecific rate ¢. The observed biphasic viral decay captured by Models 2 and 3 given
by Eqgs (2.2) and (2.3), however, has the additional feature that the timing of the second
phase viral decay coincides with the development of adaptive immune cells in the form of
CD8™" T cells, which are responsible for killing infected cells and resolving the infection
[5]. To account for adaptive immunity (especially in the presence of immune cell data),
an additional variable £is considered. It only accounts for the effector CD8" T cell
population (and ignores the memory CD8" T cell population), as follows. In the absence
of infection, a baseline of influenza A virus-specific effector CD8" T cells are present,
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E0) = E,. Infection results in recruitment of additional effector CD8" T cells at a rate
proportional to the productively infected cells 5. This is modeled in a density dependent
manner at rate /(K + E), where 4 is the maximum influx and K is the effector CD8"

T cell population where the influx is half-maximal. Effector CD8" T cells proliferate in

the presence of infection. This is modeled by a delayed term nI,(t — 7,) E, which assumes
that expansion occurs following interaction between effector CD8" T cells and cells that
became productively infected 7, days ago. To account for effector CD8" T cells function, the
model assumes that effector CD8" T cells kill infected cells in a density dependent manner
modeled by the term 6./(K; + I,), where 6, is the maximum per capita killing rate and K; is
the b concentration where the killing is half-maximal. A nonspecific infected cell killing
rate 6 is still considered. The resulting delay differential equations (DDE) immune model is
described by the DDE system Eq (2.4) below,

o g,

% = BTV — kI,

% = kI, - 61, - Kf: FEL,

% =xl,—cV,

% = ﬁlz +nEL(t — 7)) — d,E,

2.4)

with initial conditions 7{0) = Tp, 1;(0) = &, V(0) =0, E0) = Ey, and 5(#) =0 for -7, <1 <0.

To unify the goal of investigating uncertainty in parameter estimates when fitting ODE
systems of virus dynamics to data, we first approximate the DDE system given by Eq (2.4)
with an ODE system as follows [30]. For a delay of 7, days, we incorporate n dummy
variables which all span z,/n days in the variable 5’s dynamics. Briefly, we let y;be the

productively infected cell populations at times ¢ — %T, days post infection, for =1, ..., n,

and consider the following ODE system for dummy variables y(?),

dy, -7 _n

ar TIY1,
dy _n,  _n
ar - lei—l le,-,
dy, _ n

dt len—] P Yn

2.5)

with y(0) =0 for 7= 1, ..., n. Then, the delayed productively infected cell population is
given by

Lt = 7)) = y.1).

(2.6)
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Without loss of generality, we assume n= 3. The corresponding immune Model 4 is given
by the ODE system Eq (2.7) below,

Model 4: %: - pTV,
dI,
W—ﬂTV—kll
dl, OF
W—kll—élz K5+IZEIZ
dv
I—IIIZ—CV
dE )
@ TR+ ERTNEVs—dik
dy _ 3
ar Iz—TIYJ,
dn_3 3
ar lel Tl}’z,
ds_3 3
ar Tl)’z leS’

@7

with initial conditions 7{0) = T, 1;(0) = &y, 5(0) =0, V0) =0, E(0) = Ey, and y{0) =0 for s
=1,2,3.

3. Structural identifiability analysis
To study the structural identifiability of the Models 1-4, we rewrite them in the following
general form
x'(1) = f(x, p),
(ER))

and the observations as

1) = g(x, p).
(3.2)

Here, x denotes the state variables, p is the parameter vector, and y is the output (given by
the empirical data), also called the observations. The generic model given by Eq (3.1) is
called structurally identifiable if the parameter vector p can be determined uniquely from the
observations given by the smooth curve y(7). Otherwise, it is said to be unidentifiable. The
formal definition of structural identifiability is provided below.

Definition 1. Letp and p be two distinct parameter vectors. Model Eq (3.1) is said to be
globally (uniquely) structurally identifiable if and only If,

g(x,p) = g(x,p) implies p=p.

Definition 2. Model Eq (3.1) is said to be locally structurally locally identifiable if for any p
within an open neighborhood of p in the parameter space,
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g(x,p) = g(x,p) implies p=p.

Various methods have been proposed for analyzing the structural identifiability of ODE
models [16, 17, 31]. In this study, we employ the differential algebra approach. It performs
the elimination of unobserved state variables, resulting in equations expressed as functions
of model parameters and observed state variables. These are referred to as the input-output
equations, and are differential-algebraic polynomials consisting of the outputs, y(#), with
model parameters, p, as coefficients. The formal definition of structural identifiability within
the differential algebra approach for model Eq (3.1) is provided below.

Definition 3. Let o(p) denote the coefficients of the input-output equation corresponding
to model Eq (3.1). We say that model Eq (3.1) is structurally identifiable fiom unlimited
observations y(?) if and only If,

c(p) = c(p) implies p=p.

Studying structural identifiability of ODE models using the differential algebra methods
can be accomplished using several platforms and available open-source software. Here,
we present three such platforms: the differential algebra for identifiability of system
(DAISY) [32], the identifiable combinations web application (COMBOS) [33], and the
Structuralldentifiability.jl in JULIA [34].

There are many similarities among the three methods. All of them offer insights into

the structural identifiability status of each parameter by categorizing them into locally
identifiable, globally identifiable, or non-identifiable. They employ a differential elimination
method to calculate input-output equations of the considered system, and test the one-to-
one map between the coefficients of the input-output equations and model parameters.
COMBOS and the Structuralldentifiability.jl package in JULIA are superior to DAISY, as
they provide globally identifiable parameter correlations in an otherwise non-identifiable
system. Even though DAISY does not print parameter correlations, the correlations can be
derived using the coefficients of the input-output equations and algebraic manipulations in
software such as MATHEMATICA. Of the three software, COMBOS does not print the
input-output equations, making for a faster (yet more opaque) platform. Previous studies
have shown that COMBOS works best for small to medium-size models and is not assured
for models with large parameter vectors [33, 35, 36]. While highly similar, it is up to the
user to determine which software is best suited for studying the identifiability of the models
considered.

3.1. Structural identifiability results

To determine whether the considered models can reveal their parameters, we examine
the structural identifiability of Models 1-3, given by Egs (2.1)—(2.3), under unlimited
observations of viral load and the structural identifiability of Model 4, given by Eq
(2.7), under unlimited combined observations of viral load and effector CD8" T cell
concentrations. We used the differential algebra software DAISY.

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.
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3.1.1. DAISY-based structural identifiability results for Model 1: We assume that
all Model 1’s parameters p = {8, 6, =, ¢} are unknown and that we have unlimited empirical
observations of the viral load, y(#9 = V(9. Using DAISY [32], we obtain the following
input-output equation in variable V and model parameters p,

0=V"V V'V 4+ V'V V' V(c+8) = V'Hc+8) + V'V +8) + V3pes.

(3.3)

By Definition 3, we need to examine whether another set of parameters, p = { i) 5,7, ?:}

can produce the same empirical observation {¢), making the map from the parameter
space p to the coefficients of input-output equation Eq (3.3) one-to-one. The coefficients of
input-output equation Eq (3.3) are ¢(p) = {f, ¢ + 6, ¢5}. To determine whether the map from
the parameter space p to the coefficients o(p) is one-to-one, we set ¢(p) = c(p), which is the

following system:

(=B, c+6=0+5, c6=05).

(3.4

Hence, only the infection rate g is globally structurally identifiable, while the infected
cells killing rate 6 and the virus clearance rate c are locally identifiable. Lastly, the virus
production rate = does not appear in the input-output equation Eq (3.3). Therefore, it is not
structurally identifiable. We summarize the results for Model 1 below (see Table 1).

Proposition 1. Model I given by Eq (2.1) is not structured to identify all of its
parameters from unlimited viral load observations, V(f). More precisely, parameter B is
globally structurally identifiable, parameters c and § are locally structurally identifiable,
and parameter r is not structurally identifiable. Moreover, Model 1 is globally structural

Identifiable under known initial conditions.

3.1.2. DAISY-based structural identifiability results for Model 2: We assume that
all parameters p = {8, 4, K, =, ¢} of Model 2, given by Eq (2.2), are unknown and that we
have unlimited empirical observations of the viral load, y{(#) = W #. Using DAISY, we obtain
the following input-output equation,

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.
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0=V"V2V 420V 4 2V V'V Kea + V'V 4 2V"VEeKom + V"V Kir2
vV v v ive -2V K+ 20V Ve + VIV VA (2pKon + 2)
~ V'V K2+ V' VR + V(2K + 2) + VIV Ko Ko + )

+ V' VKa2(cKs+6) = Ve + VAV2pe =203V + V3 n(=2eK, - 6) + 2v V3 pc2
+ V2V 2peKom + o — )~ 20 P en(eK, + 8) - V2 KoaX (K, + 8) + V'V g
+2V'V3pen(cK; + 6) + V'V a{ peKin + pKom — 26) + VA pcor + V3 pesKon®

(3.5)

As before, we examine whether another set of parameters, p, can produce the same
empirical observation V{?#), making the map from the parameter space p to the coefficients of
input-output equation Eq (3.5) one-to-one. If we set ¢(p) = ¢(p), we obtain

c=8 p=f. K=K cn(cK,+5)=2a(eK,+3). pelor = pe 6,
PeKm + por — 3 = PRz + P67 — &, Kon(ck, +5) = Kaa(ek, + ),

with solutions

Hence, Model 2 is not structurally identifiable. In particular, infection rate g, viral clearance
rate ¢, and the products éx, K;z (but not the individual parameters §, =, and K;) are globally
identifiable. Since the correlations §z and K,z are known, fixing one of these parameters can

make model Eq (2.2) identifiable. We summarize the structureal identifiability results for
Model 2 below (see Table 1).

Proposition 2. Model 2 given by Eq (2.2) 1s not structured to identify all of its parameters
from unlimited viral load observations, V({). More precisely, parameters f and c are
globally structurally identifiable. Moreover, the parameter products éx and Kz are globally
identifiable. Since the correlations are known, fixing é, =, or K; makes the Model 2 globally
structurally 1dentifiable from unlimited observations V(). Moreover, Model 2 is globally
structural identifiable under known initial conditions.

3.1.3. DAISY-based structural identifiability results for Model 3: We assume that
all parameters p = {8, 4, k, 5:K;, =, ¢} of Model 3, given by Eq (2.3), are unknown and that we
have unlimited empirical observations of the viral load, y(# = W#). Using DAISY, we can
derive the input-output equations (they are too messy and will not be presented here). As
before, we examine whether another set of parameters, p, can produce the same empirical
observation {#), making the map from parameter space p to coefficients of input-output
equation (not shown) one-to-one. If we set ¢(p) = ¢(p), we obtain

K5 = ﬁl/(\,; .

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.
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Hence, Model 3 is not structurally identifiable. In particular, the infection rate g, the eclipse
parameter &, the viral clearance rate c, the ratio 6/K;, and the product K,z (but not the
individual parameters &, =, and K;) are globally identifiable. Since the correlations are

known, fixing one of these parameters makes the model Eq (2.3) identifiable. We summarize
the results for Model 3 below (see Table 1).

Proposition 3. Model 3 given by Eq (2.3) is not structured to identify all of its parameters
from unlimited viral load observations, V(). More precisely, parameters §, k, and c are
globally structurally identifiable. Moreover, the parameter ratio §/ K; and the parameter
product K,z are globally identifiable. Since the correlations are known, fixing the parameter
8, =, or K; makes Model 3 globally structurally identifiable from unlimited observations WV(¥).
Moreover, Model 3 1s globally structural identifiable under known initial conditions.

3.1.4. DAISY-based structural identifiability results for Model 4: To study the
structural identifiability of Model 4 (given by Eq (2.7)), we assume that all parameters,

p =1{B.6,k, 6:K;, m,cA,n,dg, 71, Ey}, are unknown and that we have unlimited empirical
observations for the viral load y;(#) = V(¢ and the effector cell CD8" T cell data y»(?)

= E(f). Using DAISY, we can obtain input-output equations (they are messy and will not be
presented here). As before, we examine whether another set of parameters, p, can produce
the same empirical observations W) and (), making the map from the parameter space p
to the coefficients of input-output equations (not shown) one-to-one. If we set ¢(p) = ¢(p), we

obtain

¢, ﬂ=ﬁ» k=i<\, dg

{c

P P
o =6, Ksn= K, i

Uy
RS

5

VBTN

1)
z
n

Hence, Model 4 is not structurally identifiable. In particular, the infection rate g, the eclipse
parameter k, the viral clearance rate c, the effector cells death rate df, the generic killing rate
5, the half-maximal level K, the delay z,, the ratios A/n and z/5, and the products d.n and
K, (but not the individual parameters &, #, K;, 7, 1) are globally identifiable. If the parameter
7 is fixed, then the model Eq (2.7) becomes identifiable. We summarize the results for
Model 4 below (see Table 1).

Proposition 4. Model 4 given by Eq (2.7) 1s not structured to identify all of its parameters
from unlimited viral load and effector cell observations, V(#) and E(f). More precisely,
parameters B, k, ¢, dg, 6, K, and t, are globally structurally identifiable. Moreover, the
parameter ratios Aln and n/n and the parameter products d.n and K are globally identifiable.
Ifthe parameter 1 is fixed, then Model 4 becomes globally structurally identifiable from
unlimited observations V(¢) and K(?).

We do not know (from DAISY) whether knowing initial conditions guarantees global
stability of Model 4 (see Table 1).

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.
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3.2. Comparison among structural identifiability software

Studying structural identifiability of ODE models can be achieved using software other than
DAISY To determine how these methods compare, results from three platforms, DAISY,
COMBOS [33], and Structuralldentifiability.jl in JULIA [34], for Models 14 are presented
side by side in Table 1.

We find that all three software uncover the same structural identifiability results for Models
1-3. On the other hand, DAISY and Structuralldentifiability.jl in JULIA uncover the same
identifiability results (while COMBOS cannot find results) for Model 4 under unknown
initial conditions. Even though Models 3 and 4 employ different interpretations of the
parameter correlations among platforms, simple algebraic manipulations show that the
obtained correlations are equivalent. Given the similarity in the results among Models 1-3,
it is up to the user to decide which of the three software is best suited for their analysis.
Similarly, given the similarity in the results among DAISY and Structuralldentifiability.jl in
JULIA for Model 4 with unknown initial conditions, it is up to the user to decide which of
the two software is best suited for their analysis. However, only Structuralldentifiability.jl
in JULIA can be used to determine the structural identifiability of Model 4 with unknown
Ejy and known other initial conditions. Hence, for larger systems with nonlinear terms of
interactions, this method should be employed.

4. Data fitting methods
4.1. Empirical data

We use previously published longitudinal influenza A infectious virus titer and CD8" T cell
data in mice from Smith et al. [5]. Adult mice were inoculated intranasally with 75 TCIDsy
of mouse adapted influenza A/Puerto Rico/8/34 (HIN1) (PR8) virus.

Total infectious virus (log 10 TCID5( per lung) was measured for ten mice each day.

Nine days after inoculation, the infectious virus was no longer detectable in any of the

mice. Therefore, we only consider infectious virus titer data from the first nine days post
inoculation in our analyses. We let E(V (i) be the mean infectious virus titer data at day 7=
{1, ..., 9} and Var(V,.(j)) be the infectious virus titer variance at days 7= {1, ..., 9} among

the ten mice.

Moreover, total effector CD8" T cells (cells per lung) were measured daily for five mice.
Since influenza A-specific effector CD8" T cells were detectable for all twelve days of the
study, we consider effector CD8" T cells data from the first twelve days post inoculation in
our analyses. We let E(E,..(j)) be the mean CD8" T cell data (per lung) at day j= {1, ...,
12} and Var(E,,,(j)) be the CD8" T cell data variance at days j= {1, ..., 12} among the five

mice.

4.2. Model parameters and initial conditions

For all models, we assume known initial conditions 7{0) = 107 cells/ml, 0) = 75
cells/ml, and V{(0) = 0 virus/ml as in [5]. For Models 3 and 4, we additionally
assume that 5(0) = 0, and for Model 4, we assume y(0) =0, for /=1, 2, 3. For
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Model 4, we assume E(0) = Ej is unknown, therefore adding £ to the parameter
vector to be estimated from the data. Lastly, we assume all parameters are unknown.
When parameters are either very large or very small, we estimate their value on

natural logarithmic scale. In particular, we estimate p, = {In(p), 6, =, ¢} for Model 1,

p, = {In(p), In(3), In(K;), z, ¢} for Model 2, p, = {In(p), In(5), In(K;), 7, ¢, k} for Model 3, and
p. = {In(p), 8, In(K5), 7, ¢, k, 6, In(n), In(4), dp, In(K), 7,, In(E,) } for Model 4.

4.3. Data fitting algorithm

To estimate parameters p1—p3, we fit the predicted viral load log,, Vm..(i) given by Models
1-3 to the longitudinal mean (among the ten mice) infectious virus (log;y TCIDs( per lung)
E(V (i), knowing that the variance in the data at day i is Var(V,.(i)), for 7= {1...9} days.
We assume that the data satisfies the following statistical model [19, 37]

E(V dara())) = 10810V modet(is Pw) + €3/ Var(V yua(i)),
4.1)

where V,,..(i) is the predicted virus trajectory given by Model w at days 7= {1, ..., 9} post
infection; p, = {In(p), 8, z, c}, p, = {In(B), In(8), In(K}), =, ¢}, and p, = {In(B), In(6), In(K5), z, ¢, k };
and ¢ are independent and identically distributed with mean zero and standard deviation o.
Given the statistical model Eq (4.1), we assume that the measured data, E(V ,..(i)), follows a
normal distribution with a mean equal to the model prediction log,, V..(i) and with variance
equal to 62Var(V ,.(i)). Moreover, the availability of measurements from several animals that
vary with time allows us to account for the change in data variance over time, Var(V (/).
Therefore, we consider the following functional (weighted residual sum of squares), to
estimate the model parameters,

9 w .
RSS,,,(pW) - Z (loglonadel(lv pw) - E(Vdaza(l)))z .

~ Var(V (i)

4.2

Consequently, parameters of Models 1-3 are estimated by minimizing the weighted least-
squares given by
Ju(Py) = min RSS,,(p,,) -
p\'&v
(4.3)

Moreover, to estimate parameters p4, we fit both the predicted viral load log, V(i), given
by Model 4, to the longitudinal mean (among ten mice) infectious virus E(V ,..(i)) (knowing
that the variance in the data at days 7= {1...9} is Var(V,.(i))) and the predicted effector
cell population log,, Ey..(/j), given by Model 4, to the longitudinal mean (among five mice)
CD8" T cell data E(E,..(j)) (knowing that the variance in the data at days j= {1...12} is
Var(E,..(j))). We assume that the data is satisfying the following statistical model [19, 37]
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E(V dara()) = 10810V moaer(i- Pa) + enfVar(V (i),
4.4)

E(Equal))) = 10810Emodei(js Ps) + npVar(Esua()),
(4.5)

where V,,.(i) is the predicted virus trajectory given by Model 4 at days 7= {1, ..., 9} post
infection, E},.(j) is the predicted CD8" T cell population given by Model 4 at days j= {1,

., 12} post infection, and p, = {In(p), 6, In(K;), 7, ¢, k, 65, In(n), In(A), di, In(K;), 7;, In(E,) } . Here,
€;and 7;are independent and identically distributed with mean zero and standard deviations
oy and o, respectively. As before, the measured data E(E,,..(j)) follows a normal distribution
whose mean is the model prediction log,, i (i) and whose variance is o;Var(E,,.(j)). We

consider the following functional (weighted residual sum of squares),

el

- (logioV moaei(is Ps) = [E(Vdam(l))) (0210 Epocet(J: P) = [E(Ed"m(J)))
RSS(p) =1 2 Var(V gl ”2,—21 Var(Eaa)

(4.6)

Consequently, parameters of Model 4 are estimated by minimizing the weighted least-
squares given by,

J4(ps) = min RSS,(py) .
P4

@7

Note that we weighted the virus and effector cells contributions, with weights z; = 1 and
u, = max Var(E,,,(j))/maxVar(V ,.(i)). We minimize all least-square functionals RSS, using
J i

the fimincon function in MATLAB with ranges for parameters pyy given in Table 2.

4.4. Model selection

To compare Models 14, we calculate the corrected Akaike information criteria (AICc),
given below

2(M + 1)(M +2)
Iy a—

AIC, —nln(J )+2(M+1)+ —

4.8)

where nis the number of data points used to estimate parameters pyy and M is the number of
estimated parameters. In Models 1-3, n=9 and M =4, 5, and 6, respectively. In Model 4, n
=21 and M=13.
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4.5. Model prediction confidence interval

To quantify the uncertainty associated with predicted solutions of each model, we perform
parametric bootstrapping. It is a simulation-based method which assumes that data comes
from a known distribution with unknown parameters. For Models 1-3, we assume that the
predicted viral population for best parameter estimates, log,, Vi, p,), 1S the mean of the
data’s normal distribution and o2Var(V (i) is its variance (see Eq (4.1)). Then, o can be

approximated as follows,

n w 2
o2~ 1 Z (1og 1oV modgei(is Pw) = E(V ara(i)))
“n— M &~ Var(V uq(i)) ’

(see Banks et al. for a full derivation [37]). Here, n=9 is the number of viral samples and
M is the number of parameters (M =4, M= 5, and M= 6 for Models 1-3, respectively).
To find a confidence region in our model predictions, we generate 1000 simulated datasets
using the distribution space given by Eq (4.1), and fit Models 1-3 to each datasets.

Similarly, for Model 4, assuming that viral data and effector cell data come from
distributions with means log,, Viy..(i, p,) and log,, Ep..(i, p,) (the predicted variables for best

parameter fits) and that o;Var(V (i) and o;Var(E,,.(j)) are the variances, then

n, . A2
2 1 S (logloy:‘rmdd(la Ps) — [E(Vdam(l)))

Mot — Ml =1 \/ar(Vdam(i))

and

ie (lOgIO(Emodel(j’ p4) - E(Edata(j)))z

1

2

O N -
£ M‘]Z; \/ar(Edam(.]))

as before. Here, ny= 9 is the number of viral samples, ng = 12 is the number of CD8" T cell
samples, n;,,= ny+ ng= 21 is the number of total data samples, and M= 13 is the number
of parameters fitted.

5. Data fitting results

We fitted Models 1-3 to previously published longitudinal influenza A infectious virus titer
and we fitted Model 4 to both longitudinal influenza A infectious virus titer and longitudinal
CD8* T cell data in infected mice [5], using a normalized least-square optimization
algorithm (see Section 4). The results from fitting V{(#) given by Models 1-3 to viral load
data are shown in Figure 2A—C and the best parameter fits are given in Table 3. The results
from fitting both W{#) and £{(¢) given by Model 4 to viral titer and effector cell data are
shown in Figure 2D and the best parameter fits are given in Table 3. Model selection, using
the corrected AIC,, predicts that Model 4 best describes the data (see Table 3). To quantify
the uncertainty associated with predicted solutions of each model, we find a 90% confidence
region in our model predictions (see Section 4.5), illustrated by shaded gray areas in Figure
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2A—C for Models 1-3 and by gray and blue shaded regions in Figure 2D for Model 4. We
see large error regions in virus population predictions for all models during the decay phase
(gray regions in Figure 2A—D). Moreover, Models 2—4 better capture the virus population
expansion phase compared to Model 1 (gray regions in Figure 2B-D versus gray region in
Figure 2A). Lastly, the largest error in CD8" T cell prediction in Model 4 occurs in the
second week of infection (blue region in Figure 2D).

6. Practical identifiability analysis

While structural identifiability investigates whether parameters can be uniquely determined
from a model given unlimited data in the absence of measurement error or noise, practical
identifiability determines whether parameters can be accurately identified in real-world
scenarios, where observed discrete and variable among subject data is contaminated with
measurement errors. We and others have employed several methods to study practical
identifiability of within-host and infectious disease models, such as Monte Carlo simulations
[18-20], Fisher information matrix or correlation matrix [16, 21-23], and Bayesian methods
[24]. In this study, we use the profile likelihood method 25, 38] described in detail below.

Consider that the vector of parameters p is partitioned into p=(r; s), where rrepresents the
parameter whose practical identifiability we are investigating and s represents the vector of
remaining parameters. The profile likelihood of ris given by,

PL(r) = min RSS(r, s),
S

(6.1)

where RSS is the objective functional used for data fitting (in our case, Eq (4.2) for Models
1-3 and Eq (4.6) for Model 4). In other words, PL(r) finds the minimum of the objective
functional RSS(z; s) for an array of fixed rvalues over the space of the remaining parameters
s. The shape of PL(7) informs the identifiability of 7, with a u-shaped PL(z) that exceeds a
threshold (corresponding to a chosen confidence level) indicating practical identifiability of r
and a flat PL(7) indicating nonpractical identifiability of r.

We estimate PL(r) over a mesh of equally spaced values of 7, centered at the best-fit estimate
7, with the number of mesh points chosen to have enough data to generate a confidence
interval for 7, as follows. If we consider a model with parameters p unknown and a model
with parameters s unknown, we obtain two nested models that differ by parameter z. It has
been shown that the likelihood ratio of the nested models converges to a ;(2 distribution with
one degree of freedom, d =1 (see Corrollary 2 in [38] for more detail). This helps us define
the A-level likelihood-based confidence interval for parameter rto be

CI={r|PL(r) < J +A},
(62)
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where A is the percentile of the )(2 distribution with d =1, and Jis the weighted
least-squares functional at the best parameter estimate [38]. This can be summarized, as
follows.

Definition 4. Let CI = {r | PL(r) < J + A} be the likelihood-based confidence interval for
parameter r.

i. IfCI c [r,r,), where | and 1, are finite, then parameter r is practically
1dentifiable.
ii. Ifeither ny or ry Is infinite, then parameter r is not practically identifiable.

A model is practically identifiable if all parameters are practically identifiable.

For Models 1-3, we generated the profile likelihoods PL(7) for each parameter r € {p,} for
w = {1, 2, 3} by fitting the functional RSS ,(pyw) given by Eq (4.2) and Model w to mean
population viral load data. We obtained best estimates for the remaining parameters s over
a mesh of equally spaced, known rvalues. Similarly, for Model 4, we generated the profile
likelihood PL(r) for unknown parameters r € {p4} by fitting functional RSS4(p4) given by
Eq (4.6) simultaneously to the mean population viral titer and the mean population effector
cell data. We obtained best estimates for the remaining parameters s over a mesh of equally
spaced, known rvalues.

Additionally, to further explore the relationship between data availability and practical
identifiability, we generated profile likelihoods for parameters py and Model w using
simulated, noise-free, high frequency datasets. In particular, we assumed that the virus titer
data was collected every fourteen minutes (for a total of 899 evenly spaced points) for
Models 1-3 and that both the virus titer data and the effector cell data were collected every
fourteen minutes (for a total of 899 evenly spaced points of each data type) for Model 4.

We fitted each model to this high frequency data and generated profile likelihoods of the
resulting parameter values. In all of our models, we chose A to be the 90-th percentile of

the )(z—distribution, )(290 [38]. This guaranteed us a 90% confidence interval in the estimated
parameter r.

6.1. Practical identifiability results

Since we determined that Models 1—4 are structurally identifiable under known initial
conditions and unlimited data, we were allowed to search for best estimates for all models’
parameters. The resulting fitting routine may still be ill-posed, given that the data consisted
of discrete (daily) datasets that varied among the infected mice, rather than the unlimited
data required by the structural identifiability theory. Therefore, we performed practical
identifiability for Models 14 under the discrete subject data in [28]. We used the Profile
Likelihood practical identifiability method [23, 25-27], which has the advantage of not only
determining whether a parameter is practically identifiable, but also of determining a 90%
confidence interval for the parameter space where practical identifiability occurs.

When using the empirical population mean virus titer data in [5] for Model 1, we found
that B is practically identifiable with 90% confidence interval CIC [1.64 x 107°, 2.94
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x 1073] and 7 is practically identifiable with 90% confidence interval C/C [0.31, 3.18],
respectively. On the other hand, both § and c are not practically identifiable, with identical
90% confidence intervals C7C [0.87, o] (see Figure 3A). Adding high frequency data

and rerunning the profile likelihood analysis resulted in practical identifiability of all four
parameters, consistent with the structural identifiability results for Model 1 (see Figure 3B).

Similar to Model 1, when using the empirical population mean virus titer data in [5] for
Model 2, we found that &, K, and m are practically identifiable with 90% confidence
intervals C/C [1.41 x 10°, 2.06 x 10°], CIC [1.74 x 104, 4.19 x 10°], and CIC [0.44,
5.24], respectively. On the other hand, both B and c are not practically identifiable, with 90%
confidence intervals C7C [6.62 x 1076, 00] and CIC [3.98, 0], respectively (see Figure
3C). Adding high frequency data and rerunning the profile likelihood analysis resulted in
practical identifiability of all five parameters, consistent with the structural identifiability
results for Model 2 (see Figure 3D).

For Model 3, when using the empirical population mean virus titer data in [5], we found
that B3, 6, K, and r are practically identifiable with 90% confidence intervals CTC [2.17 X
1073, 1.60 x 1074], CIC [1.47 x 10°,2.03 x 10°], CIC [1.59 x 10°,4.32 x 103], and CI
C[1.07, 4.49], respectively. On the other hand, both ¢ and & are not practically identifiable,
with 90% confidence intervals C7C [3.98, o] and CI C [co, 00], respectively (see Figure
3E). Adding high frequency data and rerunning the profile likelihood analysis did not result
in practical identifiability of all six parameters (see Figure 3F). However, if we additionally
relaxed constraints on parameters ¢ and & to range in the [0, 1000] and [0, 50] intervals,
compared to the constraints chosen in Table 2, we observed practical identifiability of all
five parameters, consistent with the structural identifiability results for Model 3 (see Figure
4).

For Model 4, when using the discrete empirical population mean virus titer data and the
empirical population mean effector cell data in [5] simultaneously, we found that = and £
are practically identifiable with 90% confidence intervals C7C [0.29, 2.49] and CI C [66,
5.41 x 107#]. Parameters &, A, and K are not practically identifiable with the same 90%
confidence interval C/ C [—00, oo]. Parameters B, 6., K;, , and ¢ are also not practically
identifiable with 90% confidence intervals C7C [8.00 x 1076, 0o], CIC [1.10, 0], CIC
[42.98, 00], CIC [5.37 x 1078, 00], and CIC [3.89, 00], respectively. Lastly, parameters
8, dg, and t are not practically identifiable on the positive domain with an undefined lower
bound (ULB) for the 90% confidence interval and a finite upper bound. In particular, C/
C[ULB,0.63], CIC[ULB, 3.20], CIC [ULB, 6.99], for 6, dg, and t/, respectively

(see Figure 5A). Adding high frequency data and rerunning the profile likelihood analysis
resulted in practical identifiability of all thirteen parameters, consistent with the structural
identifiability results for Model 4 (see Figure 5B).

7. Discussion

In this study, we investigated the conditions needed to ensure model identifiability in four
models of influenza A virus dynamics in infected mice. To apply the same methodology
and software, all considered models were either modeled by systems of ODEs (Models 1-3
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given by equations Eqs (2.1)—(2.3)) or approximated by a system of ODEs (Model 4 given
by Eq (2.7)). The considered models differ in the number of equations (corresponding to the
number of variables) from three in Models 1 and 2, to four in Model 3 to eight in Model

4. Consequently, the number of unknown parameters is a maximum of four in Model 1, a
maximum of five in Model 2, a maximum of six in Model 3, and a maximum of thirteen

in Model 4. Lastly, the terms of interaction include only mass-action and linear terms for
Model 1 and mass-action, linear terms, and density dependence terms for Models 2—4.

We found that the increased complexity needed to capture biological realism comes with

a cost. It resulted in increased uncertainty in parameter estimates not only when discrete

and noisy virus and immune cell empirical data is used for validation but also when we
assumed (hypothetically) that unlimited data is available. This means that data fitting should
not be conducted until it is established that parameters can be revealed from unlimited data
under the considered model structure. In other words, the first step in the model validation is
determining whether all unknown parameters are structurally identifiable (see Figure 6).

When it comes to investigating the structural identifiability of systems of ODEs several
software platforms are available. Here, we compared results from three of them: DAISY
[32], COMBOS [33], and Structuralldentifiability.jl in JULIA [34]. For Models 1-3 and
unlimited virus titer data, we found the same classification for the structurally identifiable
parameters and the same (or equivalent) correlations between the nonstructurally identifiable
parameters, regardless of the software used (Table 1). For the more complex Model 4 and
unlimited virus titer and effector CD8" T cell data, however, only Structuralldentifiability.jl
in JULIA found that the model is structurally identifiable under known (with the exception
of initial effector population, £p) initial conditions (Table 1). When initial conditions

are unknown, we found identical classification for structurally identifiable parameters

and equivalent correlations between the nonstructurally identifiable parameters among
Structuralldentifiability.jl in JULIA and DAISY (Table 1). COMBOS cannot handle the
structural stability analyses for Model 4, regardless of whether initial conditions are known
or not (Table 1). While increased difficulty in analyzing the structural identifiability of
Model 4 is not surprising given its increased dimensionality (eight equations), multiple
parameters (thirteen), and complex terms of interaction, this model is validated with two
datasets (virus titer load and effector CD8" T cells). Our analysis showed that the addition of
data for another model variable did not compensate for the size of the model and number of
unknown parameters.

Interestingly, we found that all parameters (for all models) are structurally identifiable under
known (with the exception of initial effector population, £j) initial conditions. Given that
this is an inoculation study, the assumption of known viral inoculum (set by the experiment)
and of known initial target cell population (approximated based on the animal body weight)
is not unreasonable. When Models 14 are used to model natural infection, however, such
initial conditions would be unknown due to differences in individual routes of infection,
heterogeneity in individual immune responses, and variability in patient susceptibility.
Under such unknowns, Models 1-4 would become structurally unidentifiable. Hence, it
would be impossible to estimate all parameters even in the presence of unlimited data. A
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reduction of the unknown parameter space (based on the reported parameter correlations)
would be needed before model validation can be attempted.

We next validated Models 1-3 with discrete (daily) virus titer data (for the first nine days)
and validated Model 4 with discrete (daily) virus titer data (for the first nine days) and
discrete (daily) CD8" T cell data (for the first twelve days). Model selection (based on AIC,)
favored Model 4 as the best model (Table 3). Interestingly, Model 1 was the second best
model, even though it had the largest 90% error region around the predicted mean virus fit
(Figure 2, gray shaded regions). All models perform the worst during the contraction interval
(Figure 2, gray and blue shaded regions), suggesting uncertainty in death rates estimates (for
the virus and infected cells).

We used the best parameter estimates obtained through data fitting for Models 1-4 to further
investigate their practical identifiablity. Knowing that data used for validation was collected
daily and that there was variability among the subjects at each time point, we wanted to
determine whether there is uncertainty in estimated parameters. When it comes to practical
identifiability, several methods are available, such as the Monte Carlo simulations [18-20],
the Fisher information matrix or correlation matrix [16, 21-23], and Bayesian methods [24].
In this study, we used the profile likelihood method[25, 38] for two main reasons. First,

it allowed us to not just classify the models as practically or non-practically identifiable,

but to determine a 90% confidence interval for each practically identifiable parameter.
Second, it allowed us to determine the required assumptions needed to improve practical
identifiability, while maintaining biological realism (for example, by imposing positivity for
all parameters).

We found that none of the models are practically identifiable for the daily empirical data
collected in [28] and the parameter range restrictions imposed in Table 2 (see Figures
3A,C,E, and 5A). While Model 1, Model 2, and Model 4 become practically identifiable
if we assume data is collected every fourteen minutes (see Figures 3A,D, and 5B), Model
3 does not (see Figure 3F). For this model, we can achieve practical identifiability only
when we assume that the viral clearance rate can reach values as high as ¢= 500 per day
(corresponding to a life-span for the influenza virus of 2.9 minutes), and that the epithelial
cells spend 1/k= 1.2 hours in the eclipse phase before they become productively infected
(see Figure 4). While large influenza clearance rates have been reported before [28], the
eclipse phase 1/kis assumed to be conserved in a tight interval of 4—6 hours in most
respiratory infections [6, 11, 28]. Therefore, this parameter is not practically identifiable
from Model 3 even when data is collected at high frequency. This is a situation where

a parameter should be removed from the data fitting routine in order to improve the
uncertainty in the estimates of the remaining parameters (see Figure 6).

Our study has several limitations. First, Model 4 was originally expressed as a five order
system of DDEs. Given the lack of methods that can be used to determine the structural
identifiability of DDEs, we approximated it with an eight order system of ODEs. More
work is needed to determine whether we maintain (or improve) the practical identifiability
results when the DDE system is used in the place of the ODE system. Second, we assumed
that all model parameters are unknown. It is feasible that the practical identifiability will
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be improved if certain parameters (such as the eclipse phase) were assumed known. Lastly,
all our practical identifiability results come in the context of daily data collection. It would
be interesting to see how data collected with random frequency (especially unavailability
of data measurements before peak viral load) changes the results. In conclusion, we
investigated the structural and practical identifiability of four nested ODE models of
influenza A virus infection in mice. We determined the tradeoff between model complexity
(defined as combined system dimension, number of unknown parameters, nonlinearity in
model interactions), data availability, and our ability to reliably estimate model parameters.
We presented solutions for improving model identifiability. While our results dependent on
the structure of the models considered the available data, the methods are generalizable and
their use is needed to improve reliability and reproducibility of parameter estimates in other
systems of ODEs applied to discrete biological data.

Identifiability analysis has critical implications for experimental design, particularly when
it comes to ensuring that the data obtained in these experiments will provide accurate
estimation of parameters. For instance, if a model is not structurally identifiable even with
noise-free unlimited data, then no experimental design will allow for estimation of certain
parameters. Furthermore, structural identifiability analysis informs us which variables need
to be measured in order to obtain reliable parameter estimates. Therefore, these experiments
can be designed with some structurally identifiable models in mind. On the other hand,
practical identifiability reveals the optimal data sampling frequency, where the data is more
informative for certain parameters. These results will refine the experimental design to
obtain data at those times and reduce the uncertainty in parameter estimates.

Acknowledgments

SMC and NHB acknowledge partial support from National Science Foundation grant No. 2051820 and

NIH NIGMS 1R01GM152743-01. This research was enabled in part through the Virginia Tech Center for
the Mathematics of Biosystems (VTCMB-033500). NT acknowledges partial support from National Science
Foundation grant DMS 1951626. NT and YRL acknowledge support from NIH NIGMS 1R01GM152743-01.

References

1. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS, Modeling plasma virus concentration
during primary HIV infection, J. Theor. Biol, 203 (2000), 285-301. 10.1006/jtb1.2000.1076
[PubMed: 10716909]

2. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD, HIV-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
10.1126/science.271.5255.1582 [PubMed: 8599114]

3. Ciupe SM, Ribeiro RM, Nelson PW, Perelson AS, Modeling the mechanisms of acute hepatitis B
virus infection, J. Theor. Biol, 247 (2007), 23-35. 10.1016/}.jtbi.2007.02.017 [PubMed: 17428501]

4. Ciupe SM, Dahari H, Ploss A, Mathematical models of early hepatitis B virus dynamics
in humanized mice, Bull. Math. Biol, 86 (2024), 53. 10.1007/s11538-024-01284-2 [PubMed:
38594319]

5. Myers MA, Smith AP, Lane LC, Moquin DJ, Aogo R, Woolard S, et al. , Dynamically linking
influenza virus infection kinetics, lung injury, inflammation, and disease severity, eLife, 10 (2021),
e68864. 10.7554/¢Life.68864 [PubMed: 34282728]

6. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS, Kinetics of influenza A virus
infection in humans, J. Virol, 80 (2006), 7590-7599. 10.1128/jvi.01623-05 [PubMed: 16840338]

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Liyanage et al.

Page 21

7. Ben-Shachar R, Koelle K, Minimal within-host dengue models highlight the specific roles of the
immune response in primary and secondary dengue infections, J. R. Soc. Interface, 12 (2015),
20140886. 10.1098/rsif.2014.0886 [PubMed: 25519990]

8. Nikin-Beers R, Ciupe SM, Modelling original antigenic sin in dengue viral infection, Math. Med.
Biol, 35 (2018), 257-272. 10.1093/imammb/dqx002 [PubMed: 28339786]

9. Nikin-Beers R, Ciupe SM, The role of antibody in enhancing dengue virus infection, Math. Biosci,
263 (2015), 83-92. 10.1016/j.mbs.2015.02.004 [PubMed: 25707916]

10. Best K, Gued;j J, Madelain V, de Lamballerie X, Lim S, Osuna CE, et al. , Zika plasma viral
dynamics in nonhuman primates provides insights into early infection and antiviral strategies,
Proc. Natl. Acad. Sci, 114 (2017), 8847-8852. 10.1073/pnas.1704011114 [PubMed: 28765371]

11. Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS, In vivo kinetics of SARS-CoV-2
infection and its relationship with a person’s infectiousness, Proc. Natl. Acad. Sci, 118 (2021),
€2111477118.10.1073/pnas.2111477118 [PubMed: 34857628]

12. Heitzman-Breen N, Ciupe SM, Modeling within-host and aerosol dynamics of SARS-CoV-2:
The relationship with infectiousness, PLoS Comput. Biol, 18 (2022), €1009997. 10.1371/
journal.pcbi. 1009997 [PubMed: 35913988]

13. Ciupe SM, Heffernan JM, In-host modeling, Infect. Dis. Model, 2 (2017), 188-202. 10.1016/
j-idm.2017.04.002 [PubMed: 29928736]

14. Ciupe SM, Conway JM, Incorporating intracellular processes in virus dynamics models,
Microorganisms, 12 (2024), 900. 10.3390/microorganisms12050900 [PubMed: 38792730]

15. Chung M, Binois M, Gramacy RB, Bardsley JM, Moquin DJ, Smith AP, et al. , Parameter and
uncertainty estimation for dynamical systems using surrogate stochastic processes, SIAM J. Sci.
Comput, 41 (2019), A2212-A2238. 10.1137/18M1213403 [PubMed: 31749599]

16. Miao H, Dykes C, Demeter LM, Cavenaugh J, Park SY, Perelson AS, et al. , Modeling
and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-
based growth competition experiments, Bull. Math. Biol, 70 (2008), 1749-1771. 10.1007/
s11538-008-9323-4 [PubMed: 18648886]

17. Eisenberg MC, Robertson SL, Tien JH, Identifiability and estimation of multiple transmission
pathways in Cholera and waterborne disease, J. Theor. Biol, 324 (2013), 84—102. 10.1016/
jjtbi.2012.12.021 [PubMed: 23333764]

18. Tuncer N, Martcheva M, Determining reliable parameter estimates for within-host and within-
vector models of Zika virus, J. Biol. Dyn, 15 (2021), 430-454. 10.1080/17513758.2021.1970261
[PubMed: 34463605]

19. Tuncer N, Gulbudak H, Cannataro VL, Martcheva M, Structural and practical identifiability issues
of immuno-epidemiological vector—host models with application to rift valley fever, Bull. Math.
Biol, 78 (2016), 1796-1827. 10.1007/s11538-016-0200-2 [PubMed: 27651156]

20. Heitzman-Breen N, Liyanage YR, Duggal N, Tuncer N, Ciupe SM, The effect of model structure
and data availability on Usutu virus dynamics at three biological scales, Royal Society Open
Science, 11 (2024), 231146. 10.1098/rs0s.231146 [PubMed: 38328567]

21. Tuncer N, Le TT, Structural and practical identifiability analysis of outbreak models, Math. Biosci,
299 (2018), 1-18. 10.1016/j.mbs.2018.02.004 [PubMed: 29477671]

22. Das P, Igoe M, Lacy A, Farthing T, Timsina A, Lanzas C, et al. , Modeling county level COVID-19
transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when
fitting mechanistic models to time-varying processes, Math. Biosci, 371 (2024), 109181. 10.1016/
j-mbs.2024.109181 [PubMed: 38537734]

23. Kao Y, Eisenberg MC, Practical unidentifiability of a simple vector-borne disease model:
Implications for parameter estimation and intervention assessment, Epidemics, 25 (2018), 89—-100.
10.1016/j.epidem.2018.05.010 [PubMed: 29903539]

24. Ciupe SM, Tuncer N, Identifiability of parameters in mathematical models of SARS-CoV-2
infections in humans, Sci. Rep, 12 (2022), 14637. 10.1038/s41598-022-18683-x [PubMed:
36030320]

25. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmiiller U, et al. , Structural and
practical identifiability analysis of partially observed dynamical models by exploiting the profile

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Liyanage et al.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Page 22

likelihood, Bioinformatics, 25 (2009), 1923—1929. 10.1093/bioinformatics/btp358 [PubMed:
19505944]

Boianelli A, Nguyen VK, Ebensen T, Schulze K, Wilk E, Sharma N, et al. , Modeling influenza
virus infection: A roadmap for influenza research, Viruses, 7 (2015), 5274-5304. 10.3390/
v7102875 [PubMed: 26473911]

Simpson MJ, Browning AP, Warne DJ, Maclaren OJ, Baker RE, Parameter identifiability and
model selection for sigmoid population growth models, J. Theor. Biol, 535 (2022), 110998.
10.1016/}.jtbi.2021.110998 [PubMed: 34973274]

Smith AP, Moquin DJ, Bernhauerova V, Smith AM, Influenza virus infection model with

density dependence supports biphasic viral decay, Front. Microbiol, 9 (2018), 1554. 10.3389/
fmicb.2018.01554 [PubMed: 30042759]

Sedmak JJ, Grossberg SE, Interferon bioassay: Reduction in yield of myxovirus neuraminidases, J.
Gen. Virol, 21 (1973), 1-7. 10.1099/0022-1317-21-1-1 [PubMed: 4357373]

Sun Y, Jusko W1J, Transit compartments versus gamma distribution function to model signal
transduction processes in pharmacodynamics, J. Pharm. Sci, 87 (1998), 732-737. 10.1021/
js970414z [PubMed: 9607951]

Perelson AS, Nelson PW, Modeling viral infections, in Proceedings of Symposia in Applied
Mathematics, 59 (2002), 139-172.

Bellu G, Saccomani MP, Audoly S, D’Angio L, DAISY: A new software tool to test global
identifiability of biological and physiological systems, Comput. Methods Programs Biomed, 88
(2007), 52-61. 10.1016/j.cmpb.2007.07.002 [PubMed: 17707944]

Meshkat N, Kuo CE, DiStefano III J, On finding and using identifiable parameter combinations
in nonlinear dynamic systems biology models and COMBOS: A novel web implementation, PLoS
One, 9 (2014), €110261. 10.1371/journal.pone.0110261 [PubMed: 25350289]

Dong R, Goodbrake C, Harrington H, Pogudin G, Differential elimination for dynamical models
via projections with applications to structural identifiability, SIAM J. Appl. Algebra Geom, 7
(2023), 194-235. 10.1137/22M 1469067

Hong H, Ovchinnikov A, Pogudin G, Yap C, SIAN: Software for structural identifiability
analysis of ODE models, Bioinformatics, 35 (2019), 2873-2874. 10.1093/bioinformatics/bty 1069
[PubMed: 30601937]

Barreiro XR, Villaverde AF, Benchmarking tools for a priori identifiability analysis,
Bioinformatics, 39 (2023), btad065. 10.1093/bioinformatics/btad065 [PubMed: 36721336]
Banks HT, Hu S, Thompson WC, Modeling and Inverse Problems in the Presence of Uncertainty,
Chapman and Hall/CRC, 2014. 10.1201/b16760

Murphy SA, Van der Vaart AW, On profile likelihood, J. Am. Stat. Assoc, 95 (2000), 449—465.
10.1080/01621459.2000.10474219

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.



1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Liyanage et al.

Page 23

Model 1 BV Model 2 V%
target cells infected cells target cells infected cells
7\ 7\ Kz +1
T(t) ’ I(e) ——— T(t) ’ I(t) ——
N death N death
[ '
1 1
1 1
\ m, \ ,
\ viral shedding \ viral shedding
\ \
c c
~—  V(t) ~— V(¥
clearance clearance
virus virus
Model 3 BV Model 4 BV
target cells exposed cells target cells exposed cells
2 2
T(t) #% I, (t) T(t) #7 Iy (t)
’ ’
’ ’
D, S
/I II Kg+ A
1 k | eclipse 1 eclipse | k& & =}
1 1 P
! ) ! v
: Ks+ 1 . S
5 2 i
|| Io(t) ll I (8) expansion | 7
death

— — ve
clearance n infected cells

viral shedding
virus

Figure 1.
Flow charts for Models 1-4.

death

— = V@) .
clearance & infected cells.,

viral shedding .
virus SpE

clearence l dp

effector cells

Math Biosci Eng. Author manuscript; available in PMC 2025 June 21.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Liyanage et al.

A.

Iogm Virus (TCIDSO)

log, , Virus (TGID, )

Page 24
B.
8 : : : 8 . : : : : : : :
7r .
L3
[
~ 8 :
o ° ® o
8 °
=
24 °
> .
23r " |
(@]
o
2 -
1k \
0 ; i ; i j i . . 0 . . . : \ : . .
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
days post infection (dpi) days post infection (dpi)
T T T T T T T T D. 8 T T T T T
7r . 1 7r o 1
[ 3
L o H H ° R 7y
[ ] ' ° =% o
(] ° 4 o O
L 1 [
o 2
) L_/ 8
I 1 3 5
> 8
I ] =57
g 2
r 1 -
o
o 1 2 3 4 5 6 7 8 9 0 ; ' : ALY

0 2 4 6 8 10 12

days post infection (dpi) days post infection (dpi)

Figure 2.
Model predictions (solid lines) and 95% model confidence regions (dashed areas) obtained

by fitting V() (black lines) given by A: Model 1, B: Model 2, C: Model 3 to virus load data
(black circles) and by fitting V() (black line) and £{(¢) (blue line) given by D: Model 4 to

o virus load data (black circles) and CD8" T cell data (blue circles). Model parameters are
given in Table 3.
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Table 3 and the dashed lines represent a threshold equivalent to 90% confidence level in the
parameter estimate.
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90% confidence level in the parameter estimate.
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Flow chart of performing identifiability theory to ODE models.
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Table 1.

Structural identifiability results for Models 14 using three software: DAISY, Structuralldentifiability.jl
package in JULIA, and COMBOS.

Page 29

Model Observed states DAISY JULIA COMBOS
p
lobally identifiable
globally identifiable %c, 5}
. {c.6 locally identifiable lobally identifiable
Model 1 unknown initial o locally identifiable T %C s Y
conditions Correlations: nonidentifiable locally identifiable with 2
c+6=c+56, Correlatlo/r\ls: . solutions
5 =708 c+dé6=c+59,
c6=2¢é
{B.c}
{B.c} globally identifiable
Model 2 unknown initial W globally identifiable {7, K6 {B,c, Ksm, 67}
conditions Correlapons: R nonidentifiable globally identifiable
or =67, nK; = 7K, Correlations:
on =6r,nK; = nK;
{B.c. k) {preky
- : globally identifiable
o globally identifiable K. 8
Model 3 unknown initial e Correlations: = » Ko, € I {B,c, Ksm, 67}
conditions 5 5 .. nonidentifiable globally identifiable
=7 7nK; = 7K; Correlations: R
o K on = 57, 7K, = 7K,
{ﬂ’ ¢, dg, 6, k, K, Tl}
(B, c,dp, 6,k, K, 7} globally identifiable
globally identifiable {65 Ks 7, A 7}
Correlations: nonidentifiable
Model 4 unk initial =575 Correlations: o
co?]d?tionl;n nown initia W), E(H o =06 f”i K= K7, identifiability unknown
Kn = Kn, S
A_Aax_z Kid = Ko,
WSra T Ke=ike
Opt = O 5T
Models 1-3
All models known initial 1203] globally identifiable Models 1-4 Models 1-4
conditions except for £, W), K Model 4 globally identifiable identifiability unknown

identifiability unknown
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Upper and lower bounds for parameters estimated by fitting Models 1-3 to influenza A virus titer and by

fitting Model 4 to both influenza A virus titer and effector CD8" T cell data from infected mice.

Parameter Modell Model2 Model3 Model 4
Bx 1075 0.1-10 0.1-10 0.1-10 0.1-10
s 0-25 10%-108  10%-108  0-15

Ks - 103-107  10%-107  10'-10°
T 0-10? 0-102 0-102 0-10%

c 0-25 0-25 0-25 0-25

k - - 4-6 4-6

&g - - - 0-25

nx 107 - - - 1072-100
Ax 10 - - - 1072-10?
dp - - - 0-25
Kpx 100 - - - 0.1-103
7 - - - 0-10

By x 103 - - - 0.1-10
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Table 3.
Parameter estimates found by fitting Model 1, Model 2, and Model 3 to virus titer data and Model 4 to virus

titer and effector CD8* T cell data from mice infected with influenza A virus using finincon routine in
MATLAB.

Parameter Modell Model 2 Model 3 Model 4

1duosnuey Joyiny 1duosnuelp Joyiny

1duosnuely Joyiny

Bx 107 0.48 6.88 6.20 8.39
s 1.47 1.59x 106 1.72x 106 0.196
Ks - 4.69x10* 237x10° 549 x103
T 1.18 0.86 1.69 0.69
c 1.48 6.49 12.34 6.19
& - - 4.82 5.02
oy - - - 14.20
px107 - - - 3.59
A x 103 - - - 1.31
dg; - - - 0.20
Kgx 10° - - - 9.68
7 - - - 1.69
Eyx 103 - - - 1.21
Jw 21.12 2.09 2.39 2.14
AIC, 37.67 40.88 114.1 36.78
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