Maximizing Entanglement Rates
via Efficient Memory Management in Flexible
Quantum Switches

Panagiotis Promponas, Victor Valls, Saikat Guha, Leandros Tassiulas

Abstract—We study the problem of operating a quantum
switch with memory constraints. In particular, the switch has
to allocate quantum memories to clients to generate link-level
entanglements (LLEs), and then use these to serve end-to-end
entanglements requests. The paper’s main contributions are (i) to
characterize the switch’s capacity region and study how it scales
with respect to the number of quantum memories and probability
of successful LLEs and (ii) to propose a memory allocation
policy that is throughput optimal. In addition, when the requests
are bipartite and the LLE attempts are always successful, we
show that the proposed policy has polynomial time complexity.
We evaluate the proposed policy numerically and illustrate its
performance depending on the requests arrivals characteristics
and the time available to obtain a memory allocation.

I. INTRODUCTION

Quantum computing will transform the world by solving
problems that are too complex for classical computers [2] (e.g.,
Shor’s algorithm [3]). However, we are still nowhere near that
day. Quantum programs of meaningful size require quantum
computers with thousands of qubits [4], which is far from what
quantum computers currently have [5], [6].

One way to increase the number of qubits of a quantum
computer is to connect multiple quantum processors [7], [8],
[9] with a quantum switch. A quantum switch is analogous
to a classic packet switch, but its task is to create end-to-end
entanglements with the clients it is connected. Figure 1 shows
an example of how such a switch operates. The switch first al-
locates the limited quantum memories to clients/processors to
generate link-level entanglements (LLEs)! with them (Figures
la & b), and then it uses those to create end-to-end entan-
glements (Figures 1c & d).> The end-to-end entanglements
are used by the quantum applications to, for example, teleport

The research work was supported by the Army Research Office under the
project number W911NF2110325 and by the National Science Foundation
under project numbers EEC-1941583 CQN ERC and CNS 1955744. A partial
and preliminary version of this paper appeared in 2023 IFIP Networking
Conference (IFIP Networking) [1].

P. Promponas and L. Tassiulas are with the Department of Elec-
trical Engineering, Yale University, New Haven, CT, USA (email:
{panagiotis.promponas, leandros.tassiulas} @yale.edu).

V. Valls is with IBM Research Europe -
tor.valls@ibm.com).

S. Guha is with the Wyant College of Optical Sciences, The University of
Arizona, Tucson, AZ, USA (email: saikat@arizona.edu).

! Also known as EPR pairs. A LLE or EPR pair consists of two entangled
qubits [10]. One qubit at the switch and the other qubits at the client.

2An end-to-end entanglement is created by performing a measurement
(BSM or GHZ) on the qubits at the switch [11]. The process is also known
as entanglement swapping when the requests are bipartite [12], [13].

Dublin (email: vic-

qubits or carry out distributed quantum operations (via non-
local CNOT gates [10]).

Quantum networking is in its infancy since single-hop com-
munications are still challenging [13]. However, the building
blocks of how quantum networks will operate already exist,
prompting researchers to start designing the algorithms that
will run the networks when the hardware becomes available
[14], [15], [16], [17]. Regarding quantum switches, previ-
ous work has studied their operation under a variety of
settings [18], [19], [20], [21], [22]. In brief, [18] and [19]
study an idealized switch with bipartite and tripartite end-
to-end entanglements requests when the request arrivals are
symmetric and decoherence [11] is negligible. The work in
[20] studies a quantum switch with bipartite requests when
there is no memory decoherence and LLE attempts succeed
probabilistically. The contributions of [20] are to characterize
the switch capacity region and to propose on-demand policies
that are throughput optimal. Similarly, the recent work in
[21] extends the setting in [20] to capture that LLEs expire
(i.e., “decohere”) after some time in practical systems. In
[22] the authors consider a quantum switch constrained by
quantum memory limitations, assuming that while clients do
not explicitly request end-to-end entanglements, they con-
stantly require such. Moreover, in contrast to our work, they
assume that the quantum memories are dedicated to clients.
This setting differs from our work, where we propose that a
quantum switch with limited memory can enhance its capacity
by dynamically reallocating memory in response to network
needs. To the best of our knowledge, this work is the first
to study the capacity of a quantum switch that operates with
limited memory and is capable of redistributing the memories
to different channels/clients at each time interval.

In summary, in this paper we study the problem of operating
a quantum switch when it can store a limited number of qubits.
In particular, the switch has a limited number of quantum
memories and it can decide how to allocate quantum memories
to generate LLEs. Studying this problem is important because
memory is a scarce resource in practical quantum systems. To
this end, this paper makes the following contributions:

o We present the first physical and mathematical model
of a quantum switch that has to operate with a limited
amount of quantum memories which are capable of being
redistributed at the start of each time interval (Section
II). Our model allows LLEs to decohere and end-to-end
entanglement requests to be multipartite.

e We characterize the capacity region of the quantum

ﬁ.\ _ = S~ . s’ﬁ ﬁ.\ s’ﬁ #.\ Wﬁ
ve DXk "0 |Entanglement Vel End-to-end
/, :\ ;’ g swap[;ing § ,. . entanglement
@ W g wd Wwd m
(a) (b (©) (d)

Figure 1. Illustrating the operation of a quantum switch with three quantum
memories and four clients, each equipped with a single quantum memory. (a)
The quantum memory registers should be allocated to the clients for the LLE
attempts (b) LLEs are created between the switch and the clients with assigned
memories. (¢) The switch performs an entanglement swapping operation. (d)
An end-to-end entanglement is created as a result. An entanglement swapping
operation consists of performing a joint BSM measurement with the qubits
at the switch.

switch with memory constraints (Section III-A), i.e., the
set of arrival rate of requests for end-to-end entangle-
ments for which there exists a scheduling policy that
stabilizes the switch.

o We study how the capacity region depends on the number
of quantum memories and the probability of successful
LLEs (e.g. by increasing the quality of the quantum hard-
ware used). This analysis is necessary when designing a
quantum switch (e.g. we know the traffic the switch needs
to satisfy and we have to decide upon how many quantum
memory registers the switch has to possess).

e« We propose a memory allocation policy (MEW) that
stabilizes the switch when (i) the LLEs last one time
slot and (ii) the arrivals of requests are in the interior of
the capacity region (Section IV-A). Finding a throughput
optimal policy in this setting is challenging because the
admissible scheduling decisions depend on the memory
allocation. Therefore, the connectivity of the switch in
every time slot is not determined by an i.i.d random
variable as it is the case in classical networking problems
[23] (see discussion after Theorem 1).

o We present MEW?2, a variant of MEW tailored to the case
where end-to-end entanglements are bipartite and LLE
attempts are always successful. This case is important
since multipartite requests can be divided into multiple
bipartite requests (universality of two-qubit gates [11])
and because, by appropriately extending the duration of a
time slot to perform entanglement distillation and retrials,
we can generate LLEs almost surely [24]. MEW?2 finds
a memory allocation by finding a special matching in the
N-complete graph. Finding such matching has polyno-
mial time complexity. When the assumptions under which
MEW?2 is optimal are violated, this policy suggests a
heuristic variant of MEW (see Section VII-D).

Finally, in Section VII, we evaluate the proposed policy
numerically and illustrate its performance depending on the
requests arrivals and the time available to obtain a memory
allocation.

II. QUANTUM SWITCH MODEL & OPERATION

In this section, we demonstrate how a quantum switch
operates in the physical layer and we abstract this model
mathematically enabling its study and operation. The first

subsection (Section II-A) describes the physical model of the
quantum switch and motivates our mathematical framework.
In fact, we abstract this physical model in the next subsections
(Sections II-B and II-C) to make it more suitable for the
application of control and optimization techniques.

A. Quantum switch physical model

The actual hardware that is going to be employed for large
scale quantum networks is yet unknown. However, the solid-
state quantum emitters have recently emerged as promising
candidates [25]. They have a number of advantageous proper-
ties, including electronic spin qubits with long coherence times
[26], [25], fast gates, access to nuclear qubit registers, de-
terministic qubit fabrication, and operating temperatures [25].
The most daunting obstacle in scaling quantum information
processing is generating high-fidelity entanglement between
spatially separated defects. Entanglement mediated by photons
stands out as a unique mechanism for long distance entan-
glement even across room-temperature environments [27]. In
the following we describe how a quantum switch can be
implemented by using solid-state quantum emitters [25].

A qubit is an abstract concept that has different ways in
which one can store and process it. Three examples that offer
different properties are nuclear-spin qubits, photon qubits and
electron spin qubits (atomic). A quantum memory consists of
an electron spin qubit centered around neighboring nuclear-
spin qubits. We can excite the electron spin qubit to generate
a photonic qubit entangled with it. A nuclear-spin qubit can
hold a qubit state for more time than an electron spin qubit.
Figure 2 illustrates the physical prossess and implementation
of a quantum switch using solid-state quantum emmiters and
photonic qubits for the distribution of the entanglement.

We consider that the time is slotted, and each time slot
has a duration of 7 seconds. In the rest of this section we
describe the operation of the quantum switch, in every time
slot on the physical level, describing Figure 2. We denote
A to be a tuning parameter that affects the duration of a
time slot, i.e, 7. Specifically, A denotes the time that the
switch starts the BSMs in order to satisfy clients’ requests for
end-to-end entanglement. The time from the start of the time
slot until A, the switch tries to establish a successful LLE.
Each LLE succeeds with a certain probability that depends on
the protocols used to establish the entanglement between the
switch and the client. We abstract our model to be independent
of the actual procedures used to generate the LLE and thus we
only care about the probability for the LLE being successful.

Let the fidelity of a successful LLE be Fj. After its genera-
tion, the LLE’s fidelity degrades until its final consumption
at time 7 = 7T whereas it also degrades because of the
noise induced by the BSM/GHZ projection that occurs at time
7 = A. Let the fidelity of the end-to-end entanglement after
the BSM/GHZ projection be F " < F,. For now, we assume
that the fidelity F’ suffices for the application that requested
the end-to-end entanglement. However, as will be discussed
later in Section VI, when more than one memory is associated
with a client and the client possesses more than one memory, a
switch might decide to perform entanglement distillation to its

@--» Photonic qubit entangled with the electron spin qubit

Emit photons

' RN

1 : ‘\

' '
Quantum memory > i Lo @:

I \

! : \ I'

1) \ ,

- == N

Channel oflengthL Quantum Switch

Two entangled nuclear-spin qubits

T =

@ Electron spin qubit

Nuclear-spin qubit

First LLE Connectivity

® @

--=-- N

g

T=A T=
Time needed for BSM —1

C

Figure 2. Operation of a quantum switch on the physical level in a time slot of duration 7. In the figure, L denotes the length of the channel between the
client and the switch, ¢ denotes the speed of light and A refers to the time that the switch determines which BSMs to execute based on the available LLEs.

LLEs. In that way, the LLEs that have not been destroyed or
consumed by the distillation process and thus will be available
at time 7 = A, will have greater fidelity.

Before analyzing a time slot, we discuss some assumptions
that are made for the rest of the paper.

Assumption 1. There is one channel per client and we can
assign one memory to each channel.

This assumption goes without loss of generality since we
can modify the model appropriately to include multiple chan-
nels. In fact, our model can be modified to optimally allocate
memories to clients even if we can allocate more than one
memory to each and more than one memory to a specific
channel. Assumption 1 implies that we can allocate at most
1 quantum memory to each client. A detailed discussion on
how Assumption 1 can be relaxed follows in Section VI.

Assumption 2. Successful LLEs can be used during the time
slot they are created.

This assumption is relevant to the decoherence time of
an entanglement and is frequently used in prior research
(e.g., [21]). Essentially, we assume that after one time slot
from their creation, the entangled qubits should be discarded
since due to loss of fidelity they are useless to the end user
applications. This assumption facilitates the synchronization of
the duration for which a quantum entanglement is maintained
with the operational intervals at which a quantum switch
administers quantum memory allocations and addresses re-
quests. While this paper presents a model based on the fact
that entanglements do not survive beyond a single round, it
also acknowledges the potential for a more generalized model
where entanglements are available for several rounds. In such
a framework, the policies developed herein could be adapted
as heuristics. Within this heuristic application, our scheduling
policies would still assume that unused LLEs would expire
in the next time slot. However, the decision-making process
of our memory allocation framework for the subsequent time
slot could account for increased probability of generating a
successful LLE should the corresponding memory stay in the
same link with an alive qubit.

Below we analyze a time slot from its beginning until
the end (0 < 7 < 7). Our model is abstract enough to
be independent of the implemented physical protocols that
perform the error correction and entanglement distillation. This
level of abstraction is motivated by the classical networking

counterpart where the network scheduling and routing deci-
sions are unaware of the actual physical procedures, rather
they depend on some parameters that indicate the quality of
the link, the probability of successful packet transmission and
more. Note that the following discussion regarding Figure 2
assumes control decisions that have already been made, i.e.,
assigned quantum memory to the client as shown and BSM
operation to be executed in A < 7 < 7. The optimization of
such control variables is the main goal in the rest of the paper.

Start (7 = 0): The first step is to excite an electron spin
qubit to generate a photonic qubit entangled with it. Although
there are multiple ways to achieve that, in this paper we do not
need to assume a specific one. As the photonic qubit travels
through the link, it goes through loss. This loss can be heralded
and therefore translated into a probability that a LLE succeeds.

Around every electron spin qubit is a collection of nuclear-
spin qubits that can store the qubit for longer than an electron
spin qubit. The moment we initialize an electron spin qubit, we
perform a swap gate between this and a neighboring nuclear-
spin qubit in order to store the entanglement to the more
coherence nuclear-spin qubit.

Shooting photonic qubits (0 < 7 < L/c): The photonic
qubit will reach the switch after L/c seconds, i.e., the photon
passes the channel of length L at the speed of light. Since
we can excite the electron spin qubit more than once in that
time, each client can periodically send photons that are initially
entangled with the electron spin qubit and use blind distillation
in the nuclear-spin qubit [28]. In that way, we can increase the
fidelity of the LLE when such succeeds.

Arrival of first photon (7 = L/c): At 7 = L/c, the first
photonic qubit reaches the switch and gets stored in a nuclear-
spin qubit in an assigned dedicated quantum memory. At that
point, a classical bit is transmitted back to the client to confirm
the success or failure of the entanglement.

Entanglement Distillation or retrial (2L/c < 7 < A):
A is a tuning parameter that defines at what time the switch
performs the BSMs/GHZ projections to satisfy requests be-
tween clients. Note that A should be greater or equal than
2L /c even if the switch does not perform distillation, since the
classical bit should reach back to the client. Therefore, from
2L/c <7 < A, aclient can either retry the generation of LLE
in case it did not succeed, or perform entanglement distillation
in case it succeeded. Although depending on the protocol
we can retry when a LLE fails, we define the probability of
successful LLE to be the probability of having a successful

entanglement (with sufficient fidelity) at time T = A.

Bell state measurements (or GHZ projections)
(A < 7 < T): In this time period, the switch performs the
Bell state measurements to satisfy requests for end-to-end
entaglements. At 7 = T, nuclear qubits of served clients are
entangled with each other. The entanglements that were not
used until 7 decohere and are not available for the next time
slot (Assumption 2).

In our model we assume limited quantum memory and that
we can rearrange the memories inside the switch to increase its
capacity. However, a question that might arise is whether by
this rearrangement we waste entangled photonic qubits that
the clients can send to the switch and therefore end up to
inefficient results. However, to see that this is not the case
we distinguish between two cases: a quantum memory in a
client (a) was or (b) was not able to generate a LLE. In the
first case, the client cannot use that nuclear-spin since it is
occupied. In the latter case, the client can retry to generate a
LLE not only until 7 < A but also during the slot A < 7 < 7T.
Note that the latter time interval is not negligible. Essentially,
such client can utilize the corresponding channel by sending
entangled photonic qubits to achieve a LLE with the switch
during the next time slot. Our model, is expressive enough to
include these retrials by assuming an increased probability of
successful LLE in the next time slot in case the memory stays
associated with the same client/channel. As it will become
apparent during the mathematical analysis in the rest of the
paper, this increase in the probability in case the previous
attempt was unsuccessful is permitted in our model since it
does not depend on the control actions.

Our initial model’s depiction of entanglement generation,
which featured qubit transmission from one client to the
switch, is one example within a broader range of entangle-
ment generation schemes our mathematical framework can
accommodate. In particular, emission based schemes where
photons from two different nodes are brought to interference
at a halfway point to create entanglement [27], can be seam-
lessly integrated into the abstract mathematical model that
will be described in the paper. Our model does not require
granular details of the photonic interactions but instead uses
the probability of successful LLEs as a pivotal parameter.
This approach allows us to focus on what is essential for the
optimization layer—the likelihood of achieving functional en-
tanglement within each time slot—irrespective of the physical
implementation. This level of abstraction allows our model to
be applicable to diverse scenarios in quantum communication
without the need for reconfiguration to fit specific entangle-
ment generation methods.

B. Switch model abstraction and operation overview

In this section, we abstract the previous physical model
into a mathematical formulation, more suitable for describing
optimization techniques and algorithms.

We consider a quantum switch with M quantum memory
registers® and N clients that operates in slotted time. In each

3 As described in section II-A they consist of an electron spin qubit centered
around multiple nuclear-spin qubits.

-leeel .,
A (t) —> —> 0 Q
) @ @
r=2 m by(t) r
As(t) —> —> o e
© ©
0 o

bs(t)
—>

r:3
>[I

As(t) —>

Figure 3. Example of a quantum switch with three types of requests. The
switch is connected to three users, which only allows it to serve requests of
type 2 and 3.

time slot ¢ = 1,2,3,..., the switch receives a vector of
requests A(t) = (A1(t),..., Agr(t)), where A,.(t) € {0,1}
for all » € {1,...,R}. The type of request, r, explicitly
determines the subset of clients involved in a given request
A, (t). Specifically, a request A, (t) involves connecting two
or more clients (i.e., it is multipartite), and we use set
Q(r) € {1,...,N} to denote the clients that participate in
a request. For example, Q(r) = {1, 2} if a request of type r
connects clients 1 and 2.

Upon arrival, the requests are stored in separate queues
Qi) = (Q1(t),...,Qr(t)) to await service. The queues
evolve as Q(t + 1) = [Q(t) — b(t)]" + A(t) where []* :=
max{0, -} and b(t) = (b1(t),...,br(t)) indicates the requests
served in time slot ¢. In particular, b,.(t) = 1 if a request
r € {1,..., R} is served, and b,(t) = 0 otherwise.

The switch’s task is to serve as many requests as possible
subject to operational constraints. In particular, the switch can
only serve a request if all the clients that participate in it have
an active LLE. Figure 3 shows an example of a switch with
four clients and three types of requests r € {1,2,3}. Observe
that the switch can serve requests of type 2 and 3, but not of
type 1 as one of the clients is not connected with the switch.

In the next section, we describe how the switch allocates
quantum memories to clients and how that affects the switch
connectivity and the set of admissible service vectors.*

C. Switch operation and decision variables

In each time slot, the quantum switch performs three types
of actions. It (i) allocates quantum memories to clients; (ii)
generates LLEs; and (iii) serves multipartite requests using
the LLEs. A LLE can be used to serve one request as this is
consumed to generate end-to-end entanglement [19]. Next, we
describe the control variables that the switch selects in each
time slot.

1) Quantum memory allocation: Since M < N (Assump-
tion 1), the switch has to decide how to allocate memories to
clients. We use m,,(t) to denote whether the switch assigns
a quantum memory to a node n € {1,..., N} in time slot ¢,

“4i.e., the requests that can be served given a switch connectivity.

SR

LLEs
generation

Memory .
allocation

:
/:®

° :
@ ©

Figure 4. Illustrating how the quantum memory allocation results in different
possible connectivities in a quantum switch with M = 3 and N = 4. Observe
from the figure that different memory allocations can result in the same switch
connectivity.

and collect these in vector m(t) = (mq(t),...,mpn(t)). The
set of eligible memory allocations M is given by

./\/l={(ml,...,mN):mnG{O,l}Vne{l,...,N}

N
with Y " m, < M}.
n=1

2) LLEs generation and switch connectivity: After the
memory allocation, the switch has to generate LLEs with the
clients that are connected to a memory. The switch attempts to
create LLEs by sending entangled qubits (e.g., photons) over a
fiber-optical channel, but only a fraction of the LLE attempts
are successful due to interference (see section II-A). Also,
LLEs last for a limited amount of time due to a phenomenon
known as decoherence [29] (Assumption 2).

We model the switch connectivity in a time slot as follows.
Let p, € [0,1], n € {1,..., N} be the probability that a LLE
attempt succeeds. Vector k(t) = (k1(t),...,kn(t)) with

0, ma(t) =0,
mup(t) =1 wp. 1—p,, (1)
1, mu(t)=1 wp. p,

denotes the collection of successful LLEs in a time slot, i.e.,
the switch’s connectivity. We use set K(m(t)) C {0,1}
to capture all the possible switch connectivities for a given
memory allocation m(t) € M. Note that a memory allocation
has a total of |K(m)| = 2™ possible switch connectivites if
all the memories are used.> We assume that in every time slot
all the memories are used since there is no cost associated
with the allocation of a memory to a client. Figure 4 shows
how the switch connectivity depends on different memory
allocations and the successful LLEs. Also, observe from the
figure that different memory allocations can result in the same
connectivity due to some LLE attempts failing.

3) End-to-end entanglement requests service: The switch
connectivity in a time slot affects the set of available service
vectors. Let k(t) € K(m(t)) with m(t) € M(t) be the

. . R . .
50therwise, the switch has 25 r=1 mr(t) possible connectivities.

switch connectivity at time slot ¢. The set of admissible service
vectors is given by:®

B(m(t), k(t)) = {br e {0,1},r€{1,...,R}:

there exists a matrix S € {0, 1}7*V

s.t. $qp = 1 for all n € Q(r) iff b, =1,

R
and Y s, < kn(t) Vn € {1,...,N}}.
r=1

That is, B(m(t), k(t)) contains a collection of binary vectors,
where the 7’th entry of a vector is equal to one if and only
if (i) all the clients involved in a request of type r have an
active LLE with the switch, and (ii) a LLE is used to serve
one request.

III. CAPACITY REGION AND THE EFFECT OF QUANTUM
MEMORY AND LINK QUALITY

In this section, we characterize the capacity region of
the quantum switch (Section III-A), and study the effect of
memory and link quality in the switch’s capacity (Section
1II-B).

A. Capacity region

Before designing an algorithm, we need to characterize the
set of arrival rates that the switch can support. To start, let
A= limyo0 7 Ethl A(t) be the long-term arrival rate of
requests at the quantum switch. We say an arrival vector X is
admissible (or, it can be supported) if there exists a policy 7
that can generate a sequence of service rate vectors {b” (¢) }52,
such that

T
A < fT = Tlijnm;;bf(t) vre{l,...,R}. (2
That is, for a given vector A, the switch must be able to
generate a long-term service vector f™ that is equal to or larger
than A component-wise.

To define the switch capacity region, we decouple the
decision variables from the time slot index ¢ and express
them as the fraction of time they can occur. In short, let 6,,
denote the fraction of time a memory allocation m € M is
used, and P(k;m) the probability that a switch connectivity
k € K(m) occurs for a given a memory allocation m € M.
Similarly, let 55 "™ be the fraction of time that each service
vector b € B(m, k) is used for a given switch connectivity
and memory allocation. We have the following proposition.

6 Although the set B(m(t), k(t)) depends only on the network connectivity,
k(t), we parameterize it with m(¢t) as well to emphasize that the service
vectors are picked after the memory allocation.

Proposition 1 (Quantum switch capacity region). The capac-
ity region of the quantum switch is:

A;{f”:f’r DY

Om >0, 6" >0,

P(k;m) > 6",

meM keK(m) beB(m,k)
)DESETHD SRR S
meM beB(m,k)

for all b € B(m, k), k € K(m), m € M} 3)

Proof sketch: The full proof is omitted due to space
constraints. However, it follows the same methodology as in
[23], [30]: writing the fraction of time that the service vectors
can be generated—depending on the memory allocations and
switch connectivities in our case. [|

Note that if A € A (i.e., the long-term average of requests
arrivals is in the capacity region), then there exists a vector
f7 that satisfies (2). Having A € A is usually known as the
necessary condition for having stable queues [23].

B. Effect of Memory and Link Quality in the Switch Capacity

This section investigates how the number of quantum mem-
ories in the switch and the probability of successful LLE for
each channel influence the overall throughput. Such analysis
facilitates the optimal design of future quantum hardware used
for the implementation of quantum switches.

We distinguish the capacity region of a quantum switch with
M available memories as A™)_ Similarly, we define as M (M)
the possible memory allocations when we have M memories
available. For simplicity, in this section we focus only on
bipartite requests and when the probability for LLEs being
successful in every link are equal to p.

Let P(k) and Y(k) be the set of matchings and perfect
matchings of the complete graph that results from the clients
n € {1,...,N} for which k, = 1, i.e., the clients that
successfully generated a LLE. Also, let co(+) define the convex
hull of a set.

Under the bipartite requests assumption, the capacity bound-
ary can be rewritten as:

AM) . { Z 0,, Zplkl Ikl gmak
meMM) kek(m
Z em = 1, em > Oa ™ E CO(y(k'))
meM
for all k € K(m), m € M(M)}. “4)

Where |k| represents the number of LLEs that were successful
out of the M at connectivity k. Note that instead of co(P(k))
we use co()(k)) for the domain of z™* in A(M) to consider
the points in the boundary of the capacity region where the
rate vectors cannot be increased in any component and still be
in the capacity region.

Note that in the calculation of the capacity in (4), we
utilized the fact that B(m, k) = Y(k). This principle is based

(b)

’
Figure 5. Tllustrating the capacity regions A) and AM) with M’ and M
number of quantum memories respectively. In the figure, the vectors s and
A, illustrate (a) two co-linear rate vectors i.e., A, » = adp for a > 1,
and (b) two arbitrary rate vectors on the capacity regions. We are interested
in how “longer” the rate vector on the “larger” capacity region is.

on the premise of bipartite requests and Assumption 1. It’s
crucial to recognize that, although Assumption 1 is without
loss of generality for the rest of the paper as discussed in
Section VI, the specific conclusions drawn in this section are
fundamentally reliant on the concept that potential service
vectors correspond to matchings in a complete graph.

Since the capacity region of a quantum switch is a convex
polytope in a possibly high dimensional space, it is challenging
in general to compare A) and AM) for M # M.
However, as we will show in Lemma 1, in our setting the
comparison is possible since every vector in the boundary of
the capacity region yields the same ¢; norm. Hence, given
a specific number of quantum memories and a probability
for successful LLEs, the total throughput maintainable by the
switch does not depend on the ratio of the requests’ average
arrivals. Therefore, one can optimize the total throughput
without worrying what the actual arrival rate would be.

A vector Ay in RN corresponds to a target rate vector, i.e.,
the r’th component of \j; corresponds to the target serv1ge
rate of the request . Thereby, it is intuitive to compare A)
and A according to vectors \,,» and Ay that lie on them.
In that way, we can quantify how much we can extend an
arrival rate vector when we increase the number of quantum
memories in the switch. For such a comparison, we use the
£1 norm, which captures the total throughput.

Figure 5 illustrates the capacity regions AGD and A
with M and M > M number of quantum memories respec-
tively. In Figure 5a, we illustrate two co-linear rate vectors i.e.,
Ay = aXp for a > 1, whereas in Figure 5b we show two
arbitrary rate vectors on the capacity regions. In the former, we
can quantify how much we can extend an arrival rate vector
when we increase the number of quantum memories in the
switch. We are interested in how “longer” the rate vector on
the “larger” capacity region is.

For the statement of the main results of this section we
present the following facts.

Fact 1. ||z||, = [51| va € Y(k), VK € K.
Fact 2. ||lz|; = | | va € co(V(k)), VK € K.

Based on Facts 1 and 2, we present the next lemma that
calculates the ¢; norm of an arbitrary vector on the boundary

of the capacity region. See Section IX-A for the proof.

Lemma 1. Let Ay € AT, Then ||y ||, = M2 — =020

The above lemma, proves that the vectors on the boundary
of the capacity region A have constant ¢; norm that
depends (solely) on the values of M and p. For the comparison
of the capacities with respect to the total throughput achieved
when we increase the number of quantum memories, we
introduce the capacity gain as follows.

Definition 1 (Capacity Gain). Fix some rate vectors Ay, €

AM) and X\pr € AM). We define the capacity gain of adding
M — M memories in a quantum switch with M memories as:

||/\M’ ||1
[Anr 1

Remark 1. Due to Lemma 1 the capacity gain is inde-
pendent of the rate vectors that we pick in the boundaries
of the capacity regions and it depends only on the number
of memories, M /,M, and the probability p. For co-linear
vectors ie., Ny = adly for o > 1 (Figure 5(a)), note
also that the choice of norm does not affect the definition

of the capacity gain since for every norm it holds that
Ay,

sl el
Al [[Anr]]-

Remark 2. For probability of successful LLEs one, i.e., p = 1
and for even M and M , it holds that 1) gar—pr+1 = 1, and

Iv—mM =

= =0gp M

_ M
2) 9ym’ = 31

Therefore, in case the probability of LLE being success-
ful is one there is not any point on having odd number
of memories when requests are bipartite. From the second
statement of Remark 2, we observe that when the LLEs always
succeed, we get diminishing returns from adding memories,
e.g, M—M+t2 = % This ratio indicates a linear increase
of the “length” of the rate vector with respect to M.

In Figure 6a, we plot the capacity gain for various values
of p with varying M, when we add one memory. As indicated
from Remark 2, for high probability p there is not much
incentives to have odd number of memories and, in general,
we get diminishing returns from adding quantum memories
for fixed p. That is, the gain converges to one for large M:s.

Figure 6b studies the ¢; norm of an arbitrary rate vector
Ay € A given in Lemma 1. As indicated in Remark 2, for
p =1, the /1 norm increases linearly with even M. However,
even for arbitrary values for p and M, the growth with respect
to M is almost linear, since the non-linear term in Lemma 1
initially oscillates between 0 and 0.5 and for p < 1 it converges
to 0. The closer p is to 0.5 the closer this term is to zero. For
large M, the linear term in the /; norm dominates the non-
linear one, giving it the linear behavior shown in Figure 6b.

Figure 6c studies the ¢; norm of an arbitrary rate vector
Ay € A given in Lemma 1 for varying probabilities p.
Note, that the ¢; norm increases linearly with respect to p
but the slope of the line depends on M. Therefore, since the
dominating part (for large M) of the formula given in Lemma
1 is given by Mp/2, to increase the capacity of the switch
we have to jointly increase the number of memories and the

Algorithm 1 (MEW)
1: Set: t =0
2: while switch is operating do
3: t+—t+1
4: (S1) Quantum memory allocation: Select the memory
allocation

R
m(t) € argmax »_ Q- (t)ur(m, Q(t), (5)
meM T

where

nm, Q) = 3 Phuw(k,Q®) (6
kek(m)
R
w(k, Q(t)) € argmax » Qu(t)ur. (7)
weEB(m,k) r—1
5: (S2) LLEs generation: The switch attempts to create
LLEs with the clients that have a memory connected.
The successful LLEs determine the switch connectivity
k(t) and the action set B(m(t), k(t)).
6: (S3) Requests service: Select a service vector b(t) €
R
argmax y. " Qp(t)u,
ueB(m(t),k(t))
7 (S4) Queue update: Q(t+ 1) = [Q(t) — b(t)]T + A(t)
8: end while

probability of successfull LLEs. Figures 6b and 6c indicates
that solely increasing M or p provides diminishing returns.

Conclusions: We prove that as we increase the number of
memories in the switch the #; norm of the rate vectors that we
can achieve increases almost linearly with a slope that depends
on the probability of successfull LLEs, p. Therefore, in order
to increase the capacity of the switch we have to jointly
increase the number of memories and the probability of suc-
cessfull LLEs (quality of the quantum hardware/entanglement
distillation). Solely increasing the number of memories or the
quality of the links provides diminishing returns.

IV. MEW: A THROUGHPUT OPTIMAL POLICY

In this section we present a memory allocation policy that is
throughput optimal. In Section IV-B, we discuss the scalability
of the proposed policy.

A. MEW: A max-weight algorithm for allocating quantum
memory and serving requests

We present Maximum Expected Weight (MEW), an algo-
rithm that stabilizes the queues when the arrival rate of
requests is in the interior of the capacity region. MEW (Al-
gorithm 1) consists of three steps. The first step (S1) allocates
the quantum memories to clients using (5), which consists of
maximizing the sum of the expected service in each queue (i.e.,
1) multiplied by the queue occupancies (i.e., (J,-). This update
can be regarded as an “expected” max-weight maximization,
where the updates in (6) and (7) are intermediate steps to com-

pute (m, Q(t) = (11 (m, Q1)) ..., sr(m, Q(£))) used in
(5). The second step (S2) generates the LLEs with the clients

7'— p=0.5

2.0 _— p=05] 6'
1.8/ \ pmo7 5
: — p=0.9 =
<16 A p=1.0 =4
J1.4 \ =3
Szl I :
. uh“‘____ 1
1.0 BAASARESaaa— 0] :
0 10 20 30 40 50 2 4 6
M
(a)

(b)

10 12 14

Figure 6. (a) The capacity gain, gps— ar41, for varying number of quantum memories, M. (b) The ¢1 norm of any arbitrary rate vector Ay € A for
varying M. (c) The ¢1 norm of any arbitrary rate vector Ap; € AM) for varying probability of LLE, p.

that have a memory connected. Only some LLE attempts
succeed, which affects the network connectivity and the set of
admissible requests service vectors, i.e., set B(m(t), k(t)). The
third step (S3) consists of finding the service vector b(t) that
maximizes the dot product with the vector of queues Q(t). We
have the following theorem. See Section IX-B for the proof.

Theorem 1. Consider the quantum switch model in Section
11, and suppose that the long-term arrival rate of requests X is
in the interior of the capacity region A. That is, there exists a
vector b € A such that \, +¢ < b,,Vr € {1,..., R} for some
€ > 0. Then, MEW (Algorithm 1) ensures that the queues are
strongly stable:

N2

<.
€

I 1
m —
T—oo T

> D EQA(1)]

t=1r=1

Strong stability implies that all the requests that arrive are
eventually served (i.e., (2) is satisfied), but also that the queues
are bounded [31]. The result in Theorem 1 is based on max-
weight techniques widely employed in network scheduling
problems [30], [23], and the novelty of our contribution resides
in the fact that the switch connectivity is random and depends
on how we assign quantum memories to links/clients. The
latter is different from wireless network models with time-
varying connectivity since the allocation of quantum memories
affects the switch’s connections and, therefore, the set of
admissible service vectors. Such coupling is typically not
allowed in max-weight or backpressure approaches where the
set of available actions can vary over time; however, usually
in an ii.d. manner [32]. In our problem, the action sets
{B(m(t), k(t))}s2, are not i.i.d. because they depend on the
memory allocation decisions {m(t) € M}$2,. Our approach
to tackle this problem is to exploit the linearity of (5), (6),
and (7), and evaluate all the possible scheduling decisions for
every connectivity. However, enumerating all the cases can be
computationally expensive sometimes, as we discuss next.

B. MEW scalability

The step with higher computational cost is the allocation
of quantum memories (S1), which involves computing (5),
(6), and (7). In brief, the maximization in (5) is over the
set of all possible memory allocations, which has cardinality

o
(@)
Q O o o
o0
o[®9 | o ©
O (e]

@) @)

Figure 7. Quantum switch with N = 7 clients and M = 6 memories. When
requests for end-to-end entanglements involve only two clients, the update in
(7) reduces to finding a maximum weighted matching in a complete graph.

M| = (}).” Furthermore, we need to compute (6) and
(7) for every memory allocation m € M and network
connectivity k € K(m) respectively. We could compute (7)
only once per switch connectivity since a switch connectivity
can be obtained by different quantum memory allocations
(see example in Figure 4). However, the number of possible
switch connectivities increases exponentially with the number
of memories since |[K(m)| = 2M. In addition, the update in (7)
requires finding a maximum-weighted matching in a complete
hypergraph,® which is known to be an NP-hard problem [33].

In sum, MEW does not scale well with N and M since it
needs to solve, in the worst case, an exponential number of
NP-hard problems for every memory allocation. Nevertheless,
MEW can be used effectively when N, M and R are not
very large. For instance, in Section VII, which includes our
numerical evaluation, we execute MEW for settings with
N=6M=3R=3and N =7M=4R =21.1In
Section VII we study MEW when the update in (5) is carried
out approximately. In particular, when MEW checks only [
memory allocations out of all the (1) possibilities. We refer
to such algorithm as [-Approximate MEW.

In the next section, we focus on a special case where we
can derive a variant of MEW (MEW?2) that has polynomial
complexity.

V. MEW2: EFFICIENT SCHEDULING IN BIPARTITE
REQUESTS AND SUCCESSFUL LLES.

In this section, we study the case where (i) LLE attempts
are always successful (i.e., p, = 1,Vn € {1,..., N}), and (ii)

7 Assuming we allocate all the memories to clients.
8 A hypergraph is a generalization of a graph in which an edge can connect
any number of vertices.

MEW

A o G

jm =\28

MEW?2

Figure 8. Schematic illustration of how MEW compares to MEW2 for a
switch with N = 8 clients and M = 6 quantum memories. MEW has to find

a maximum weighted matching in each of the (2) = 28 different complete

graphs (with 6 nodes each). MEW2 selects a special type of matching with
at most M /2 edges in the 8-complete graph.

requests involve only two clients.” These cases are important
for two reasons. First, we can appropriately extend the duration
of a time slot to perform entanglement distillation and retrials
for the entanglement attempts until we successfully generate
all the LLEs in every time slot (see Section II-A).!® Second,
every multipartite request between clients can be divided into
(multiple) bipartite ones. That is because two-qubit gates are
universal, i.e., every quantum program can be implemented
with two-qubit gates [11].

This case allows us to derive a variant of MEW (MEW2)
that has lower computational cost. Specifically, we can allocate
memories and select which requests to serve by finding a
special type of matching with at most M /2 edges in an N-
complete graph (see Algorithm 2).!!

A. Motivation: Complexity of MEW

When end-to-end entanglement requests involve only two
clients, (7) corresponds to finding a maximum weighted
matching in the complete graph of the clients with an active
LLE (see Figure 7). Finding such matching has polynomial
time complexity [34]. The assumption that LLEs are always
successful is useful to reduce the number of times we call (7).
In particular, we have that a memory allocation is associated
with a single switch connectivity. Hence, |IC(m(t))| = 1 for
all m(t) € M and u(m(t),Q(t)) = w(k(t),Q(t)) since
m(t) = k(t). In sum, we can solve (7) in polynomial time and
only once for every admissible memory allocation. Yet, that
can still be too much in some cases. For example, if N = 16
and M = 8, we need to find a maximum weighted matching
of (¥) = 12870 different graphs to make a single memory
allocation decision.

Without loss of generality we assume that M is even. With bipartite
requests, having an odd M means that there will be an unused memory.

10Note that there is a trade-off between reducing the duration of a time
slot 7 (thus increasing the number of service requests per unit of time), and
increasing the probability of successful LLEs.

"TAn N-complete graph is a graph with N nodes, in which each pair of
vertices is connected with an edge. The edges’ weights are the queue backlogs.

Algorithm 2 (MEW2)
1: Set: t =0
2: while switch is operating do
3 t+t+1
4: (S1b) Quantum memory allocation: Select a matching
with at most M /2 edges in the N-complete graph with
maximum possible weight:

R
I(t) € argmax > Qr(t) uy, (®)

ueO r—1

where O := {u € Py : Zle ur < M/2} and Py
the set of matchings in the N-complete graph. Assign
a memory to every client/node that is connected to an
edge in [(¢), i.e.,

m(t) € {me M:1(t) e P(C(m))}, (9

where C(m) is the complete graph of the clients n €
{1,..., N} with m,, = 1.

5: (S2b) LLE generation: Generate LLEs with the clients
that have a memory connected.

6: (S3b) Requests service: Select b(t) = I(t)

7: (S4b) Queue update: Q(t+1) = [Q(t) —b(¢)]" + A(t)

8: end while

B. Maximum Expected Weight 2 (MEW?2)

We propose Maximum Expected Weight 2 (MEW?2), a policy
that selects a memory allocation by obtaining a special type
of matching in the N-complete graph (Algorithm 2). The
intuition behind MEW2 is shown in Figure 8 for a switch
with N = 8 and M = 6. Recall that (S1) in MEW computes
a maximum weighted matching in (]\J\é) different M -complete
graphs, and picks one with maximum weight. Observe from
the figure that such matching is also a (non-maximal) matching
in the N-complete graph. Thus, we can replace step (S1)
in MEW by directly computing a matching with maximum
weight among the matchings that have at most M /2 edges. We
have the following corollary of Theorem 1 which is proved in
the Appendix (Section IX-C).

Corollary 1 (Theorem 1). Consider the setup of Theorem 1
where the LLE attempts are always successful (i.e., p, =
1,vn € {1,...,N}). Also, suppose that requests involve
connecting two clients and that M is even. Then, MEW?2
ensures that the queues are strongly stable.

Finding the matching described in (8), which characterizes
the complexity of MEW?2, can be done in polynomial time.
In particular, we can find such matching by augmenting the
N-complete graph and then computing a maximum weighted
matching. Specifically, the augmented graph has n — M
virtual nodes connected to the others with edges that have
infinite weight. The solution to (8) corresponds to a maximum
weighted matching of the augmented graph, which can be
found in polynomial time [35], [34].

VI. RELAXATION OF ASSUMPTION 1 - MULTIPLE
MEMORIES & CHANNELS

For ease of exposition of the mathematical model and its
optimization, we assumed that that we have only one channel
per client and we can assign one memory to each channel
(Assumption 1). Nevertheless, our model and algorithms can
be extended accordingly to account for the case of a quantum
switch with multiple memories (M > N) and multiple
channels per client (> 1).

In Figure 9 we focus on the case of one channel per client
and multiple memories associated with it. One can generalize
this to the case of multiple channels per client. What changes
from the case of one memory per client (Section II-A) is that
the client can now emit a photon (say every w seconds) that
is entangled with an electron spin inside a different memory
every time. Therefore, at 7 = 0 one photonic qubit can be
emitted through the channel and at 7 = w a second one. At
time 7 = mw, where m is the number of memories inside
the client, all of the photonic qubits are emitted and no more
can be emitted in case we can utilize only one nuclear-spin
in every memory. At time 7 = L/c, as in (Section II-A) the
first photonic qubit reaches the switch and the switch ”stores”
its state to a nuclear-spin inside a memory allocated to the
client. This procedure might fail but the outcome should be
heralded with a classical bit that arrives at the client at time
7 = 2L/c. However, in this case we have multiple photonic
qubits inside the channel that arrives at the switch in the time
interval 2L/c < 7 < 2L/c+ mw. At 7 = 2L/c + mw every
nuclear-spin qubit might have been entangled with a nuclear-
spin qubit inside the clients’ memories. The switch can then
perform entanglement distillation using the successful LLEs.
For the unused memories, the switch will retry generating
LLEs until 7 = A when the switch performs BSMs to satisfy
the requests for end-to-end entanglement.

In this level of abstraction, we do not assume a specific
distillation protocol and we only care about the probability
that each possible connectivity appears at time 7 = A. The
model just needs the probability for successful LLEs (of
sufficient fidelity) for every memory at time 7 = A. Such
a model can express any distillation scheme since depending
on how many entanglements are fused to create one with
greater fidelity, the probabilities of successful LLEs at time
A can be changed accordingly. For example, if we
employ an m to 1 distillation scheme, there is only one
non zero probability of successful LLE at 7 = A for every
m memories. The physical model described in this section
for the case of multiple channels/memories per client, can
be again abstracted by the same mathematical model that
we proposed in this paper by just adding multiple memory
allocation possibilities depending on the setting. Therefore,
we can incorporate multiple memories and multiple channels
per client by appropriately extending the action set.

T =

VII. NUMERICAL EVALUATION

In this section, we illustrate the behavior of MEW and
MEW?2 in different scenarios (e.g., request load, LLEs gen-
eration). Moreover, we study MEW when the update in (5)

is carried out approximately. In particular, when MEW uses
only | memory allocations out of all the (1)) possibilities
(Sections VII-B and VII-C). We refer to such algorithm as
l-Approximate MEW.

A. Simulation 1: Performance of MEW under different arrival
rates

This simulation evaluates the performance of MEW when
the requests arrive with three different intensities: 70%, 99%,
and 120% of the total load that the switch can support.'?
For the simulation, we set N = 6, M = 3, and R = 8,
where all the requests involve connecting three clients (i.e.,
the requests are tripartite). The probability of the LLE attempts
being successful is fixed to p, = 0.9 for all clients and loads.

We run MEW for the three different loads and show
the evolution of the queue occupancies over time in Figure
10. Observe from the figure that when the arrival rates are
in the interior of the capacity region (70% and 99%), the
backlogs remain bounded. However, the “saturation” points
are different, which is in line with the queue stability bound
in Theorem 1. Higher intensity (i.e., smaller ¢ in Theorem
1) implies larger backlogs. Finally, when the request arrival
intensity is equal to 120% (outside of the capacity region), the
queues are not stable since their occupancy increases linearly.

Conclusions: MEW stabilizes the queues when the arrivals
are in the interior of the capacity region. The average queue
occupancies depend on how close the long-term arrival rates
are to the boundary of the switch’s capacity (Theorem 1).

B. Simulation 2: MEW with memory allocation decision dead-
lines

Recall from Section IV-B that MEW needs to solve (7)
multiple times for every memory allocation decision. However,
we may not be able to evaluate all possible memory allocations
since in practice we need to select one within a time deadline.
To capture that, we reduce the search space of problem (5).

As in Section VII-A, we consider N = 6, M = 3, and
that the probability of LLE attempts being successful equals
prn = 0.9 for all clients. However, we now consider all types
of bipartite and tripartite requests (i.e., R = (g) + (g) = 39),
hence the time needed to compute (7) increases.

We run MEW and the {1,10}-Approximate variant for
different arrival rate intensities (70%, 99%, and 120%) and
show the results in Figure 11. Observe from the figure that
MEW stabilizes the queues when the arrivals are in the interior
of the capacity region. However, for the [-approximation, the
stability depends on the value of [and the traffic intensity.
Specifically, the 1-Approximate MEW stabilizes the system
when the traffic intensity is 70% (Figure 11a), but not when
the intensity is equal to 99% (Figure 11b). In contrast, the 10-
Approximation keeps the queues bounded similar to MEW.

Conclusions: The [-Approximate MEW can stabilize the
queues when the value of [is large enough. How large / should
be is related to how close the arrival rates are to the boundary
of the capacity region. As future work, it is interesting to

12 An intensity of 100% is at the boundary of the capacity region.

T=0 T=W

Figure 9. Physical level operation of a quantum switch with multiple qulantum memories dedicated to a client’s channel, during a time slot. With appropriate
changes to MEW and MEW?2, the technical work of this paper can be extended appropriately to include multiple memories and multiple channels per client.

2} T -
8’100 —— 70% Traffic Intensity
¥ 80 —— 99% Traffic Intensity
a —— 120% Traffic Intensity
% 60

£

2 a0

[

g 20

g

32 o0

0 1000 2000 3000 4000 5000
Iteration

Figure 10. Illustrating the simulation in Section VII-A: The evolution of
MEW for a quantum switch with 6 clients and 3 memories for different arrival
rates. LLE attempts succeed with probability 0.9. Each line is the average of
10 different realizations.

n

-

g7 #1000

< 60 S

3 50 2 800

s a0 — MEW a 600

£ 30 1-Approximate MEW °

g —— 10-Approximate MEW § 400

v 20 @

o — MEW

g10 WNMMWW g 200 1-Approximate MEW

2o 2 —— 10-Approximate MEW

< 0 2000 4000 6000 8000 10000 05 10000 20000 30600 40000 50600

Iteration Iteration
(a) 70% Traffic intensity (b) 99% Traffic intensity

Figure 11. Illustrating the simulation in Section VII-B: The evolution of

MEW and {1, 10}-Approximate MEW for a quantum switch with N = 6,
M = 3 and p, = 0.9 for every client n. Each line is the average of 10
different realizations.

investigate how the capacity region scales when the memory
allocation is obtained approximately (e.g., as a function of the
parameter [).

C. Simulation 3: Performance of MEW2

In this simulation, we compare MEW2 to MEW and 1-
Approximate MEW in a switch with N = 7 clients and
M = 4 memories. The traffic intensity is fixed to 99%, and
we assume that the LLE attempts are always successful. We
consider bipartite requests with R = (;) =21

We run the three algorithms and show the results in Figure
12. Observe that MEW?2 can keep the queues stable and that
its behavior is similar to MEW. Nonetheless, recall that MEW
has as higher computational cost than MEW?2 (see discussion
in Section V). Next, observe from Figure 12 that the 1-
Approximate MEW (which has a comparable cost to MEW?2)
cannot stabilize the queues, which is similar to the result in
the previous experiment when the traffic intensity is 99%.
Recall that MEW?2 requires that the LLE attempts are always
successful and that the entanglement requests are bipartite.

Conclusions: The behavior of MEW?2 is similar to MEW
even though its complexity is significantly lower. The 1-

$700

K]

X 600

v

& 500

-

© 400

£ — MEW

3300 — MEW2

9 200 1-Approximate MEW

¢ 100

¢ i T T i g

zZ O

< 0 10000 20000 30000 40000 50000
Iteration

Figure 12. Illustrating the evolution of MEW, MEW2 and 1-Approximate
MEW for a quantum switch with N = 7, M = 4 and bipartite requests. The
traffic intensity is 99% and the LLE attempts succeed with probability 0.9.
Each line is the average of 10 different realizations.

0
1 8200
g’ 00 3200 — wew
{“; 80 x175 — MEW2
@ 8150
s 60 % 125
£ £ 100
3
a 0 a 75
[]
g 2 — MEW o 30
S o — MEW2 § 25
0
< o 2000 4000 6000 8000 10000 < he 500 1000 1500 2000 2500 3000 3500 4000
Iteration Iteration
(a) (b)
Figure 13. Tllustrating the simulation in Section VII-D: The evolution of

MEW?2 and MEW for a quantum switch with N = 7, M = 4, requests
for bipartite end-to-end entanglement and (a) homogeneous probabilities
for successful LLEs, p, = 0.7, and, (b) heterogeneous probabilities for
successful LLEs, (p1,p2,...,p7) = (0.3,0.4,...,0.9). Each line is the
average of 10 different realizations.

Approximate MEW does not keep the queues stable despite
having a similar computational cost to MEW?2.

D. Simulation 4: MEW2 when the LLE attempts are not
always successful

MEW?2 can stabilize the queues when the LLE attempts are
always successful. However, that may not be the case in all
practical systems. In this section, we study the robustness of
MEW?2 when the LLE attempts can fail. Since MEW?2 assumes
that p,, = 1, we allow it to perform one last maximum weight
operation to decide which requests to serve depending on the
switch connectivity (in analogy to step (S3) in MEW).

We consider a switch with N = 7 clients and M = 4
memories, and study the case where the LLE attempts prob-
abilities are (i) homogeneous with p, = 0.7 for all n €
{1,..., N}, and (ii) heterogeneous with (p1,po,...,p7) =
(0.3,0.4,...,0.9). Also, as in the previous section, the re-
quests are bipartite and the traffic intensity is equal to 99%.

We run MEW?2 and show the evolution of the queues over
time in Figure 13. Observe that in the homogeneous case

(Figure 13a), MEW?2 stabilizes the queues even though it does
not know the probabilities with which LLE attempts succeed.
However, when the probabilities are heterogeneous (Figure
13b), MEW?2 is not able to stabilize the queues. We conjecture
that MEW?2 behaves better in the homogeneous case since the
latter is closer to the case where every LLE attempt succeed
with probability one (i.e., the assumption in Corollary 1).

Conclusions: When the probabilities p,, are homogeneous
throughout the clients, we observe that MEW?2 stabilizes the
system even though p,, are unknown.

VIII. CONCLUSIONS

In this paper, we have studied the problem of operating
a quantum switch with memory constraints. The switch has
to allocate a limited number of quantum memories to clients
to generate link-level entanglements (LLEs), and then use
these to serve end-to-end entanglements requests. Our model
is different from existing approaches since we capture that
quantum memory is a scarce resource (in analogy to quantum
computers). The paper’s main contribution is threefold: (i) to
characterize the switch’s capacity region, (ii) to study how
the capacity scales with respect to the number of quantum
memories and probability of LLE success and (iii) to propose
a memory allocation policy (MEW) that is throughput optimal.
In addition, we present MEW?2, a variant of MEW tailored
to the case where end-to-end entanglements are bipartite and
LLE attempts are always successful. MEW?2 finds a memory
allocation by obtaining a special type of matching in the N-
complete graph in polynomial time.

IX. APPENDIX
A. Proof of Lemma 1

The proof is based on expanding the vector Aj; using (4)
as follows:

Al =

(Y

meM M)

2. bm

meM (M)

> o

meM)

> . (A:)p”(l -p)Mr LgJ

Z p\k|(1 _p)M—|k\ xm,k)

ke (m)

ikl K]
S M-t

kek(m)

> (Dra-pre i)

re{l,...,M}

re{l,...,
_ Z (>pn(1_p)M n(ﬂ_l)
ke{l,...,M}:kmod2=1 2
M K M—rhk
s (Mpraseisg
ke{l,...,M}:kmod2=1

ZM} (Ag)p”’(l -p)Mr g

re{l,...,
M 1
K1 — M-k~
<H)p 1=p)""5

-

k€{l,...,M}:kmod2=1

_Mp 1-(-2p)¥

B. Proof of Theorem 1

We prove that the queues are stable by using a quadratic
Lyapunov function, and ultimately showing that the proposed
policy has expected negative drift. That is, the queues at
time slots ¢ and ¢ + 1 satisfy: E[||Q(t + 1)[> — [|Q(®)||?] <
0, where the expectations are w.r.t. the (i) request ar-
rivals; (ii) successful LLEs; and (iii) all possible queue
values at time t To start, observe that |Q(t + 1)||? =

| Q(R —b(t AW = Q@) — b®)]* 1> + |A®)]* +
2ol Qr —b (T AR(E) < 11Q() — b(®)|1” + [IA®) 1> +
227- 1[627«() be(O]TA() = QE)I? + b +

TAWDI2+2 37, 1@ (8) = br ()] T A () =2 -7, Qr(1)by (1),

where the inequality follows since ||[v]T[|? < |[v||* for
any vector v € R™. Also, we have 221& 1 Qr ()b (t) +
2500, [Qr(t) = b(®]TA() < =230, Q(1be(t) +
230,01 Qr(DA(D) = 23070, Qu(t)(Ar(8) — by(1)), where
the inequality follows since —Zle bi(t)A,(t) is non-
positive.

Next, since [|A(t)[|? < N2, ||b(t)||> < N? (by assumption),

and E[A(t)] = X by assumption, we can take expectations
with respect to A,.(t) for a fixed queue Q(¢) to obtain:

1R | Q)]
Ar — bi(2)).

E[Q(t + 1)/ -
R
<2NZ 42 Qr(1)((10)

r=1

We proceed to upper bound the expected value of
—Zf’zl Qr(t)b.(t). Since b(t) is a random vector that
depends on the switch connectivity and memory allo-
cation at time ¢, we have E[— Zle Q)b (t)] =
— S Q) (m(t), Q()), where gy (m(t), Q(t)) s de-
fined in (6). Note that Q(¢) does not depend on the switch
connectivity in time slot ¢. Combining the last equation with
(10), we have

E[lQ(t +DI* - lM®I* | Q)]
R
< 2N? +2 Z Qr(t)(A\r — pr(m(t),

r=1

oy, Y

where the expectation is with respect to the switch connectiv-
ities for a fixed memory allocation.

Next, observe that the memory allocation rule in (5) ensures
that:

R
- Z Q- (t)ﬂr(m
R
SR IL

since p(m(t), Q(t)) maximizes Zle Q- (t)

t),Q(t))

Ym € M.

t)pr(m, Q1)) 12)

pr (m(t), Q(1)).

Now, let 6, > 0 with >, 6,, =1 and observe that

R
- Z Qr(t)ﬂr(m(t)a Q(t))
R
== 3 00 Y Qe On(m(), Q1))
meM r=1
(@) &
S - Z emZQT(t)ﬂr(va(t))7
meM r=1
R
=Y Oy Qu(t) Y Plkim)w(k, Q1))
meM 7=l keK(m)
EEN Y PkaQr (Hw, (K, Q(t)),
meM kek(m)

where (a) follows by (12), (b) by (6), and (c) by rearranging
terms.

Now, recall w(k, Q(t)) maximizes ZT 1 Qr(t)wy(k, Q1))
because how we defined it in (7) and let §," ok > 0 for all

b € B(m, k) with 37 i, 1 5% =1 for every k € K(m)
and m € M. As before, we have

R
- Z Qr(t)wr(ka Q(t))

ke K(m)
r=1
R
== > Y w(k Q)
beB(m,k) r=1
(a) &
<— > Gy Qmp
beB(m,k) r=1
R
==Y "Q) > &b,
r=1 beB(m,k)
where b in inequality (a) holds for any vector
in B(m k). Combining the prev10us equations,
- Zr L QO (m(1), Q1) < =L, Qu(t)by, where
b = ZmeM9 Zkelc m) (k’m)ZbEB(m,k)5 b s

any vector in (Proposmon 1). Hence, from inequality

(1), we have E[|Q(+ DI? — JQM)I* | Q)] <
2N? + 237 Q. (t)(A\, — by(t)). The rest of the
proof follows the usual max-weight arguments. Because

A+ e < ET for some ¢ > 0 by assumption, it holds

E[IQ(+ DII? = QI | Q)] < 2N =231, Q(t)e.
Now, take expectations w.r.t. all the possible values of Q(t)
to obtain

R

IQI?] < 2N =2~ Q(1)e,
r=1

and observe that E[||Q(t + 1)||*> — [|Q(®#)|I?)] < 0 when

25:1 Qr(t) > % That is, the queue drift is negative. Fi-

nally, sum (13) from ¢t = 1,..., T to obtain E[||Q(T+1)||%] -

E[|Q(0)||?] < 2TN? —2¢ 3, 1Zr 1 E[@r (1)) Rearranging

terms and d1V1d1ng by T yields + Zt 1 Z E[Q.(t)] <

N 4+ HQQ(IQZH and taking T' — oo we obtain the stated result.

E[lQ(t+ 1)|I* — (13)

C. Proof of Corollary 1

Let C(m) be the complete graph that results from the clients
n € {1,..., N} for which m,, = 1. Moreover, let P(G) be the
set of matchings of a graph GG, and Py be the set of matchings
of the complete graph with N clients. The proof of Corollary
1 relies on finding a policy that is equivalent to MEW, which
we proved in Theorem 1 that stabilizes the queues.

We can rewrite step (S1) of MEW, in a single line, as
follows:

ZQT Up.

Problem (14) summarizes MEW when LLE attempts are
always successful and the requests are bipartite. That holds
true because (i) its solution picks the memory allocation of
(S1), and (ii) the maximizer of the inner optimization problem
is the final service vector of step (S3).

Let M*(t) be the set of solutions to problem (14) and define
the sets IT := |J,,c oy P(C(m)), O :={u € Py : SE u <
M /2}. Recall that we assume that M is even. Then, step (S3)
in this special case, is equivalent to

m(t) € argmax max (14)

memM uweP(C(m))

b(t) € arg max ZQT (15)
m*eM=(t) uweP(C(m*) —1
(@)
= arg max »(
g m ZQ
@ arg max ZQT (16)

u€O

In the above, equality (a) holds since we augment the search
space of the optimization problem with matchings that do not
maximize the inner product with the queue backlogs. Equality
(b) holds because although II and O contain matchings of
seemingly different graphs, their nodes corresponds to the
switch’s clients and hence O = II. Therefore, step (S3) of
MEW can be carried out by solving the problem (16) (see
step (S1b) in MEW?2).

Panagiotis Promponas (Graduate Student Mem-
ber, IEEE) received his Diploma in Electrical and
Computer Engineering (ECE) from the National
Technical University of Athens (NTUA), Greece, in
2019. He is currently a Ph.D. student in the Depart-
ment of Electrical Engineering at Yale University.
His primary scientific interests include resource allo-
cation in constrained interdependent systems and the
optimization of algorithms. Specifically, he focuses
on the optimization and modeling of quantum net-
works and wireless networking systems. He is also
the recipient (co-author) of the Best Paper Award at the 12th IFIP WMNC
2019.

Victor Valls graduated with a degree in electrical
engineering from Universitat Pompeu Fabra in 2011
and obtained his MSc from the same university
in 2013. In 2017, he completed his Ph.D. in ap-
plied mathematics at Trinity College Dublin, Ireland.
From 2019 to 2022, he was as a postdoctoral re-
search fellow at Yale University (USA) supported by
a Marie Sktodowska-Curie fellowship. Currently, he
is a Staff Research Scientist at IBM Research Europe
— Dublin. His research interests are in optimization,
networks, and quantum computing.

Saikat Guha (Senior Member, IEEE) received
the B.Tech. degree in electrical engineering in 2002
from the Indian Institute of Technology Kanpur,
Kanpur, India, and the S.M. and Ph.D. degrees in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2004 and 2008, respectively. He is cur-
rently the Peyghambarian Endowed Chair Professor
of Optical Sciences with the University of Arizona,
Tucson, AZ, USA, and the Director of the Center
for Quantum Networks, an Engineering Research
Center awarded by the NSF in 2020. He was previously a Lead Scientist with
the Quantum Information Processing Group, Raytheon BBN Technologies,
Cambridge. His research interests include quantum optics and information
theory, with applications to quantum limits to optical communication and
sensing, photonic quantum computing, and network information theory. In
1998, he was a Member of the first Indian Team with the International Physics
Olympiad, where he was awarded the European Physical Society Award for
the experimental component.

Leandros Tassiulas (Fellow, IEEE) is the John
C. Malone Professor of Electrical Engineering at
Yale University, where he served as department
head 2016-2022. His current research is on intel-
ligent services and architectures at the edge of next
generation networks including Internet of Things,
sensing actuation in terrestrial and non terrestrial
environments and quantum networks. He worked in
the field of computer and communication networks
with emphasis on fundamental mathematical models
and algorithms of complex networks, wireless sys-
tems and sensor networks. His most notable contributions include the max-
weight scheduling algorithm and the back-pressure network control policy,
opportunistic scheduling in wireless, the maximum lifetime approach for
wireless network energy management, and the consideration of joint access
control and antenna transmission management in multiple antenna wireless
systems. Dr. Tassiulas is a Fellow of IEEE (2007) and of ACM (2020) as
well as a member of Academia Europaea (2023). His research has been rec-
ognized by several awards including the IEEE Koji Kobayashi computer and
communications award (2016), the ACM SIGMETRICS achievement award
2020, the inaugural INFOCOM 2007 Achievement Award “for fundamental
contributions to resource allocation in communication networks,” several best
paper awards including the INFOCOM 1994, 2017 and Mobihoc 2016, a
National Science Foundation (NSF) Research Initiation Award (1992), an
NSF CAREER Award (1995), an Office of Naval Research Young Investigator
Award (1997) and a Bodossaki Foundation award (1999). He holds a Ph.D.
in Electrical Engineering from the University of Maryland, College Park
(1991) and a Diploma of Electrical Engineering from Aristotle University of
Thessaloniki, Greece. He has held faculty positions at Polytechnic University,
New York, University of Maryland, College Park and University of Thessaly,
Greece.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

P. Promponas, V. Valls, and L. Tassiulas, “Full exploitation of limited
memory in quantum entanglement switching,” in 2023 IFIP Networking
Conference (IFIP Networking), 2023, pp. 1-9.

J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303-332, 1999.

Ibm unveils new roadmap to practical quantum computing
era; plans to deliver 4,000+ qubit system. [Online]. Available:
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-
to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-
System

“Ibm unveils breakthrough 127-qubit quantum processor,” Available
at https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-
127-Qubit-Quantum-Processor.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, Barends
et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505-510, 2019.

R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum
computing,” Computer, vol. 49, no. 9, pp. 31-42.

S. Guha and C. Gagatsos, “Cluster-state quantum computing methods
and systems,” Jul. 7 2022, uS Patent App. 17/594,874.

C. Qiao, Y. Zhao, G. Zhao, and H. Xu, “Quantum data networking
for distributed quantum computing: Opportunities and challenges,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications
Workshops. 1EEE, 2022, pp. 1-6.

A. Yimsiriwattana and S. J. Lomonaco Jr, “Generalized ghz states
and distributed quantum computing,” arXiv preprint quant-ph/0402148,
2004.

M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Exper-
imental entanglement swapping: entangling photons that never inter-
acted,” Physical review letters, vol. 80, no. 18, p. 3891, 1998.

R.-B. Jin, M. Takeoka, U. Takagi, R. Shimizu, and M. Sasaki, “Highly
efficient entanglement swapping and teleportation at telecom wave-
length,” Scientific reports, vol. 5, no. 1, pp. 1-7, 2015.

W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.10994

C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp- 2-17, 2021.

L. Le and T. N. Nguyen, “Dqra: Deep quantum routing agent for
entanglement routing in quantum networks,” IEEE Transactions on
Quantum Engineering, vol. 3, pp. 1-12, 2022.

N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, “Opti-
mal entanglement distribution using satellite based quantum networks,”
arXiv preprint arXiv:2205.12354, 2022.

G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the exact
analysis of an idealized quantum switch,” SIGMETRICS Perform.
Eval. Rev., vol. 48, no. 3, pp. 79-80, mar 2021. [Online]. Available:
https://doi.org/10.1145/3453953.3453971

P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “Analysis of a tripartite
entanglement distribution switch,” Queueing Systems, 2022.

W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” 2021.
[Online]. Available: https://arxiv.org/abs/2110.04116

T. Vasantam and D. Towsley, “A throughput optimal scheduling policy
for a quantum switch,” in Quantum Computing, Communication, and
Simulation II, P. R. Hemmer and A. L. Migdall, Eds. SPIE, mar 2022.
G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic
analysis of a quantum entanglement switch,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 47, no. 2, pp. 27-29, 2019.

L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking, 2006, vol. 1, no. 1.

J.-W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement
purification for quantum communication,” Nature, vol. 410, no. 6832,
pp- 1067-1070, 2001.

D. Levonian, R. Riedinger, B. Machielse, E. Knall, M. Bhaskar,
C. Knaut, R. Bekenstein, H. Park, M. Loncar, and M. Lukin, “Optical
entanglement of distinguishable quantum emitters,” Physical Review
Letters, vol. 128, no. 21, p. 213602, 2022.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. M. Tyryshkin, S. Tojo, J. J. Morton, H. Riemann, Abrosimov et al.,
“Electron spin coherence exceeding seconds in high-purity silicon,”
Nature materials, vol. 11, no. 2, pp. 143-147, 2012.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo,
T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress et al.,
“Heralded entanglement between solid-state qubits separated by three
metres,” Nature.

M. Mobayenjarihani, G. Vardoyan, and D. Towsley, “Optimistic en-
tanglement purification with few quantum memories,” in 2021 IEEE
International Conference on Quantum Computing and Engineering
(QOCE). IEEE, 2021, pp. 439-440.

G. Bacciagaluppi, “The Role of Decoherence in Quantum Mechanics,”
in The Stanford Encyclopedia of Philosophy, Fall 2020 ed., E. N. Zalta,
Ed. Metaphysics Research Lab, Stanford University, 2020.

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, 1992.

M. J. Neely, “Stability and capacity regions or discrete time queueing
networks,” arXiv preprint arXiv:1003.3396, 2010.

L. Tassiulas, “Scheduling and performance limits of networks with con-
stantly changing topology,” IEEE Transactions on Information Theory,
vol. 43, no. 3, pp. 1067-1073, 1997.

J. Han and A. Treglown, “The complexity of perfect matchings
and packings in dense hypergraphs,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.06147

A. Schrijver et al., Combinatorial optimization: polyhedra and effi-
ciency. Springer, 2003, vol. 24.

J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, pp. 449-467, 1965.

