
Maximizing Entanglement Rates

via Efficient Memory Management in Flexible

Quantum Switches
Panagiotis Promponas, Vı́ctor Valls, Saikat Guha, Leandros Tassiulas

Abstract—We study the problem of operating a quantum
switch with memory constraints. In particular, the switch has
to allocate quantum memories to clients to generate link-level
entanglements (LLEs), and then use these to serve end-to-end
entanglements requests. The paper’s main contributions are (i) to
characterize the switch’s capacity region and study how it scales
with respect to the number of quantum memories and probability
of successful LLEs and (ii) to propose a memory allocation
policy that is throughput optimal. In addition, when the requests
are bipartite and the LLE attempts are always successful, we
show that the proposed policy has polynomial time complexity.
We evaluate the proposed policy numerically and illustrate its
performance depending on the requests arrivals characteristics
and the time available to obtain a memory allocation.

I. INTRODUCTION

Quantum computing will transform the world by solving

problems that are too complex for classical computers [2] (e.g.,

Shor’s algorithm [3]). However, we are still nowhere near that

day. Quantum programs of meaningful size require quantum

computers with thousands of qubits [4], which is far from what

quantum computers currently have [5], [6].

One way to increase the number of qubits of a quantum

computer is to connect multiple quantum processors [7], [8],

[9] with a quantum switch. A quantum switch is analogous

to a classic packet switch, but its task is to create end-to-end

entanglements with the clients it is connected. Figure 1 shows

an example of how such a switch operates. The switch first al-

locates the limited quantum memories to clients/processors to

generate link-level entanglements (LLEs)1 with them (Figures

1a & b), and then it uses those to create end-to-end entan-

glements (Figures 1c & d).2 The end-to-end entanglements

are used by the quantum applications to, for example, teleport

The research work was supported by the Army Research Office under the
project number W911NF2110325 and by the National Science Foundation
under project numbers EEC-1941583 CQN ERC and CNS 1955744. A partial
and preliminary version of this paper appeared in 2023 IFIP Networking
Conference (IFIP Networking) [1].

P. Promponas and L. Tassiulas are with the Department of Elec-
trical Engineering, Yale University, New Haven, CT, USA (email:
{panagiotis.promponas, leandros.tassiulas}@yale.edu).

V. Valls is with IBM Research Europe – Dublin (email: vic-
tor.valls@ibm.com).

S. Guha is with the Wyant College of Optical Sciences, The University of
Arizona, Tucson, AZ, USA (email: saikat@arizona.edu).

1Also known as EPR pairs. A LLE or EPR pair consists of two entangled
qubits [10]. One qubit at the switch and the other qubits at the client.

2An end-to-end entanglement is created by performing a measurement
(BSM or GHZ) on the qubits at the switch [11]. The process is also known
as entanglement swapping when the requests are bipartite [12], [13].

qubits or carry out distributed quantum operations (via non-

local CNOT gates [10]).

Quantum networking is in its infancy since single-hop com-

munications are still challenging [13]. However, the building

blocks of how quantum networks will operate already exist,

prompting researchers to start designing the algorithms that

will run the networks when the hardware becomes available

[14], [15], [16], [17]. Regarding quantum switches, previ-

ous work has studied their operation under a variety of

settings [18], [19], [20], [21], [22]. In brief, [18] and [19]

study an idealized switch with bipartite and tripartite end-

to-end entanglements requests when the request arrivals are

symmetric and decoherence [11] is negligible. The work in

[20] studies a quantum switch with bipartite requests when

there is no memory decoherence and LLE attempts succeed

probabilistically. The contributions of [20] are to characterize

the switch capacity region and to propose on-demand policies

that are throughput optimal. Similarly, the recent work in

[21] extends the setting in [20] to capture that LLEs expire

(i.e., “decohere”) after some time in practical systems. In

[22] the authors consider a quantum switch constrained by

quantum memory limitations, assuming that while clients do

not explicitly request end-to-end entanglements, they con-

stantly require such. Moreover, in contrast to our work, they

assume that the quantum memories are dedicated to clients.

This setting differs from our work, where we propose that a

quantum switch with limited memory can enhance its capacity

by dynamically reallocating memory in response to network

needs. To the best of our knowledge, this work is the first

to study the capacity of a quantum switch that operates with

limited memory and is capable of redistributing the memories

to different channels/clients at each time interval.

In summary, in this paper we study the problem of operating

a quantum switch when it can store a limited number of qubits.

In particular, the switch has a limited number of quantum

memories and it can decide how to allocate quantum memories

to generate LLEs. Studying this problem is important because

memory is a scarce resource in practical quantum systems. To

this end, this paper makes the following contributions:

• We present the first physical and mathematical model

of a quantum switch that has to operate with a limited

amount of quantum memories which are capable of being

redistributed at the start of each time interval (Section

II). Our model allows LLEs to decohere and end-to-end

entanglement requests to be multipartite.

• We characterize the capacity region of the quantum

(a) (b) (c) (d)

Entanglement

swapping

End-to-end

entanglement

LLE

Figure 1. Illustrating the operation of a quantum switch with three quantum
memories and four clients, each equipped with a single quantum memory. (a)
The quantum memory registers should be allocated to the clients for the LLE
attempts (b) LLEs are created between the switch and the clients with assigned
memories. (c) The switch performs an entanglement swapping operation. (d)
An end-to-end entanglement is created as a result. An entanglement swapping
operation consists of performing a joint BSM measurement with the qubits
at the switch.

switch with memory constraints (Section III-A), i.e., the

set of arrival rate of requests for end-to-end entangle-

ments for which there exists a scheduling policy that

stabilizes the switch.

• We study how the capacity region depends on the number

of quantum memories and the probability of successful

LLEs (e.g. by increasing the quality of the quantum hard-

ware used). This analysis is necessary when designing a

quantum switch (e.g. we know the traffic the switch needs

to satisfy and we have to decide upon how many quantum

memory registers the switch has to possess).

• We propose a memory allocation policy (MEW) that

stabilizes the switch when (i) the LLEs last one time

slot and (ii) the arrivals of requests are in the interior of

the capacity region (Section IV-A). Finding a throughput

optimal policy in this setting is challenging because the

admissible scheduling decisions depend on the memory

allocation. Therefore, the connectivity of the switch in

every time slot is not determined by an i.i.d random

variable as it is the case in classical networking problems

[23] (see discussion after Theorem 1).

• We present MEW2, a variant of MEW tailored to the case

where end-to-end entanglements are bipartite and LLE

attempts are always successful. This case is important

since multipartite requests can be divided into multiple

bipartite requests (universality of two-qubit gates [11])

and because, by appropriately extending the duration of a

time slot to perform entanglement distillation and retrials,

we can generate LLEs almost surely [24]. MEW2 finds

a memory allocation by finding a special matching in the

N -complete graph. Finding such matching has polyno-

mial time complexity. When the assumptions under which

MEW2 is optimal are violated, this policy suggests a

heuristic variant of MEW (see Section VII-D).

Finally, in Section VII, we evaluate the proposed policy

numerically and illustrate its performance depending on the

requests arrivals and the time available to obtain a memory

allocation.

II. QUANTUM SWITCH MODEL & OPERATION

In this section, we demonstrate how a quantum switch

operates in the physical layer and we abstract this model

mathematically enabling its study and operation. The first

subsection (Section II-A) describes the physical model of the

quantum switch and motivates our mathematical framework.

In fact, we abstract this physical model in the next subsections

(Sections II-B and II-C) to make it more suitable for the

application of control and optimization techniques.

A. Quantum switch physical model

The actual hardware that is going to be employed for large

scale quantum networks is yet unknown. However, the solid-

state quantum emitters have recently emerged as promising

candidates [25]. They have a number of advantageous proper-

ties, including electronic spin qubits with long coherence times

[26], [25], fast gates, access to nuclear qubit registers, de-

terministic qubit fabrication, and operating temperatures [25].

The most daunting obstacle in scaling quantum information

processing is generating high-fidelity entanglement between

spatially separated defects. Entanglement mediated by photons

stands out as a unique mechanism for long distance entan-

glement even across room-temperature environments [27]. In

the following we describe how a quantum switch can be

implemented by using solid-state quantum emitters [25].

A qubit is an abstract concept that has different ways in

which one can store and process it. Three examples that offer

different properties are nuclear-spin qubits, photon qubits and

electron spin qubits (atomic). A quantum memory consists of

an electron spin qubit centered around neighboring nuclear-

spin qubits. We can excite the electron spin qubit to generate

a photonic qubit entangled with it. A nuclear-spin qubit can

hold a qubit state for more time than an electron spin qubit.

Figure 2 illustrates the physical prossess and implementation

of a quantum switch using solid-state quantum emmiters and

photonic qubits for the distribution of the entanglement.

We consider that the time is slotted, and each time slot

has a duration of T seconds. In the rest of this section we

describe the operation of the quantum switch, in every time

slot on the physical level, describing Figure 2. We denote

∆ to be a tuning parameter that affects the duration of a

time slot, i.e, T . Specifically, ∆ denotes the time that the

switch starts the BSMs in order to satisfy clients’ requests for

end-to-end entanglement. The time from the start of the time

slot until ∆, the switch tries to establish a successful LLE.

Each LLE succeeds with a certain probability that depends on

the protocols used to establish the entanglement between the

switch and the client. We abstract our model to be independent

of the actual procedures used to generate the LLE and thus we

only care about the probability for the LLE being successful.

Let the fidelity of a successful LLE be F0. After its genera-

tion, the LLE’s fidelity degrades until its final consumption

at time τ = T whereas it also degrades because of the

noise induced by the BSM/GHZ projection that occurs at time

τ = ∆. Let the fidelity of the end-to-end entanglement after

the BSM/GHZ projection be F
′

< F0. For now, we assume

that the fidelity F
′

suffices for the application that requested

the end-to-end entanglement. However, as will be discussed

later in Section VI, when more than one memory is associated

with a client and the client possesses more than one memory, a

switch might decide to perform entanglement distillation to its

Nuclear-spin qubit Electron spin qubitPhotonic qubit entangled with the electron spin qubit

Quantum memory

Channel of length L

Client

Quantum Switchel of length Chann ngth ChannChann

Two entangled nuclear-spin qubits

BSMsConnectivityFirst LLEEmit photons

Time needed for BSM

Figure 2. Operation of a quantum switch on the physical level in a time slot of duration T . In the figure, L denotes the length of the channel between the
client and the switch, c denotes the speed of light and ∆ refers to the time that the switch determines which BSMs to execute based on the available LLEs.

LLEs. In that way, the LLEs that have not been destroyed or

consumed by the distillation process and thus will be available

at time τ = ∆, will have greater fidelity.

Before analyzing a time slot, we discuss some assumptions

that are made for the rest of the paper.

Assumption 1. There is one channel per client and we can

assign one memory to each channel.

This assumption goes without loss of generality since we

can modify the model appropriately to include multiple chan-

nels. In fact, our model can be modified to optimally allocate

memories to clients even if we can allocate more than one

memory to each and more than one memory to a specific

channel. Assumption 1 implies that we can allocate at most

1 quantum memory to each client. A detailed discussion on

how Assumption 1 can be relaxed follows in Section VI.

Assumption 2. Successful LLEs can be used during the time

slot they are created.

This assumption is relevant to the decoherence time of

an entanglement and is frequently used in prior research

(e.g., [21]). Essentially, we assume that after one time slot

from their creation, the entangled qubits should be discarded

since due to loss of fidelity they are useless to the end user

applications. This assumption facilitates the synchronization of

the duration for which a quantum entanglement is maintained

with the operational intervals at which a quantum switch

administers quantum memory allocations and addresses re-

quests. While this paper presents a model based on the fact

that entanglements do not survive beyond a single round, it

also acknowledges the potential for a more generalized model

where entanglements are available for several rounds. In such

a framework, the policies developed herein could be adapted

as heuristics. Within this heuristic application, our scheduling

policies would still assume that unused LLEs would expire

in the next time slot. However, the decision-making process

of our memory allocation framework for the subsequent time

slot could account for increased probability of generating a

successful LLE should the corresponding memory stay in the

same link with an alive qubit.

Below we analyze a time slot from its beginning until

the end (0 ≤ τ ≤ T). Our model is abstract enough to

be independent of the implemented physical protocols that

perform the error correction and entanglement distillation. This

level of abstraction is motivated by the classical networking

counterpart where the network scheduling and routing deci-

sions are unaware of the actual physical procedures, rather

they depend on some parameters that indicate the quality of

the link, the probability of successful packet transmission and

more. Note that the following discussion regarding Figure 2

assumes control decisions that have already been made, i.e.,

assigned quantum memory to the client as shown and BSM

operation to be executed in ∆ ≤ τ ≤ T . The optimization of

such control variables is the main goal in the rest of the paper.

Start (τ = 0): The first step is to excite an electron spin

qubit to generate a photonic qubit entangled with it. Although

there are multiple ways to achieve that, in this paper we do not

need to assume a specific one. As the photonic qubit travels

through the link, it goes through loss. This loss can be heralded

and therefore translated into a probability that a LLE succeeds.

Around every electron spin qubit is a collection of nuclear-

spin qubits that can store the qubit for longer than an electron

spin qubit. The moment we initialize an electron spin qubit, we

perform a swap gate between this and a neighboring nuclear-

spin qubit in order to store the entanglement to the more

coherence nuclear-spin qubit.

Shooting photonic qubits (0 ≤ τ ≤ L/c): The photonic

qubit will reach the switch after L/c seconds, i.e., the photon

passes the channel of length L at the speed of light. Since

we can excite the electron spin qubit more than once in that

time, each client can periodically send photons that are initially

entangled with the electron spin qubit and use blind distillation

in the nuclear-spin qubit [28]. In that way, we can increase the

fidelity of the LLE when such succeeds.

Arrival of first photon (τ = L/c): At τ = L/c, the first

photonic qubit reaches the switch and gets stored in a nuclear-

spin qubit in an assigned dedicated quantum memory. At that

point, a classical bit is transmitted back to the client to confirm

the success or failure of the entanglement.

Entanglement Distillation or retrial (2L/c ≤ τ ≤ ∆):

∆ is a tuning parameter that defines at what time the switch

performs the BSMs/GHZ projections to satisfy requests be-

tween clients. Note that ∆ should be greater or equal than

2L/c even if the switch does not perform distillation, since the

classical bit should reach back to the client. Therefore, from

2L/c ≤ τ ≤ ∆, a client can either retry the generation of LLE

in case it did not succeed, or perform entanglement distillation

in case it succeeded. Although depending on the protocol

we can retry when a LLE fails, we define the probability of

successful LLE to be the probability of having a successful

entanglement (with sufficient fidelity) at time τ = ∆.

Bell state measurements (or GHZ projections)

(∆ ≤ τ ≤ T): In this time period, the switch performs the

Bell state measurements to satisfy requests for end-to-end

entaglements. At τ = T , nuclear qubits of served clients are

entangled with each other. The entanglements that were not

used until T decohere and are not available for the next time

slot (Assumption 2).

In our model we assume limited quantum memory and that

we can rearrange the memories inside the switch to increase its

capacity. However, a question that might arise is whether by

this rearrangement we waste entangled photonic qubits that

the clients can send to the switch and therefore end up to

inefficient results. However, to see that this is not the case

we distinguish between two cases: a quantum memory in a

client (a) was or (b) was not able to generate a LLE. In the

first case, the client cannot use that nuclear-spin since it is

occupied. In the latter case, the client can retry to generate a

LLE not only until τ < ∆ but also during the slot ∆ ≤ τ ≤ T .

Note that the latter time interval is not negligible. Essentially,

such client can utilize the corresponding channel by sending

entangled photonic qubits to achieve a LLE with the switch

during the next time slot. Our model, is expressive enough to

include these retrials by assuming an increased probability of

successful LLE in the next time slot in case the memory stays

associated with the same client/channel. As it will become

apparent during the mathematical analysis in the rest of the

paper, this increase in the probability in case the previous

attempt was unsuccessful is permitted in our model since it

does not depend on the control actions.

Our initial model’s depiction of entanglement generation,

which featured qubit transmission from one client to the

switch, is one example within a broader range of entangle-

ment generation schemes our mathematical framework can

accommodate. In particular, emission based schemes where

photons from two different nodes are brought to interference

at a halfway point to create entanglement [27], can be seam-

lessly integrated into the abstract mathematical model that

will be described in the paper. Our model does not require

granular details of the photonic interactions but instead uses

the probability of successful LLEs as a pivotal parameter.

This approach allows us to focus on what is essential for the

optimization layer—the likelihood of achieving functional en-

tanglement within each time slot—irrespective of the physical

implementation. This level of abstraction allows our model to

be applicable to diverse scenarios in quantum communication

without the need for reconfiguration to fit specific entangle-

ment generation methods.

B. Switch model abstraction and operation overview

In this section, we abstract the previous physical model

into a mathematical formulation, more suitable for describing

optimization techniques and algorithms.

We consider a quantum switch with M quantum memory

registers3 and N clients that operates in slotted time. In each

3As described in section II-A they consist of an electron spin qubit centered
around multiple nuclear-spin qubits.

Figure 3. Example of a quantum switch with three types of requests. The
switch is connected to three users, which only allows it to serve requests of
type 2 and 3.

time slot t = 1, 2, 3, . . . , the switch receives a vector of

requests A(t) = (A1(t), . . . , AR(t)), where Ar(t) ∈ {0, 1}
for all r ∈ {1, . . . , R}. The type of request, r, explicitly

determines the subset of clients involved in a given request

Ar(t). Specifically, a request Ar(t) involves connecting two

or more clients (i.e., it is multipartite), and we use set

Ω(r) ⊆ {1, . . . , N} to denote the clients that participate in

a request. For example, Ω(r) = {1, 2} if a request of type r
connects clients 1 and 2.

Upon arrival, the requests are stored in separate queues

Q(t) = (Q1(t), . . . , QR(t)) to await service. The queues

evolve as Q(t + 1) = [Q(t) − b(t)]+ + A(t) where [·]+ :=
max{0, ·} and b(t) = (b1(t), . . . , bR(t)) indicates the requests

served in time slot t. In particular, br(t) = 1 if a request

r ∈ {1, . . . , R} is served, and br(t) = 0 otherwise.

The switch’s task is to serve as many requests as possible

subject to operational constraints. In particular, the switch can

only serve a request if all the clients that participate in it have

an active LLE. Figure 3 shows an example of a switch with

four clients and three types of requests r ∈ {1, 2, 3}. Observe

that the switch can serve requests of type 2 and 3, but not of

type 1 as one of the clients is not connected with the switch.

In the next section, we describe how the switch allocates

quantum memories to clients and how that affects the switch

connectivity and the set of admissible service vectors.4

C. Switch operation and decision variables

In each time slot, the quantum switch performs three types

of actions. It (i) allocates quantum memories to clients; (ii)

generates LLEs; and (iii) serves multipartite requests using

the LLEs. A LLE can be used to serve one request as this is

consumed to generate end-to-end entanglement [19]. Next, we

describe the control variables that the switch selects in each

time slot.

1) Quantum memory allocation: Since M < N (Assump-

tion 1), the switch has to decide how to allocate memories to

clients. We use mn(t) to denote whether the switch assigns

a quantum memory to a node n ∈ {1, . . . , N} in time slot t,

4i.e., the requests that can be served given a switch connectivity.

. . .

. . .

. . .

Memory

allocation

LLEs

generation

Figure 4. Illustrating how the quantum memory allocation results in different
possible connectivities in a quantum switch with M = 3 and N = 4. Observe
from the figure that different memory allocations can result in the same switch
connectivity.

and collect these in vector m(t) = (m1(t), . . . ,mN (t)). The

set of eligible memory allocations M is given by

M =

{

(m1, . . . ,mN) : mn ∈ {0, 1} ∀n ∈ {1, . . . , N}

with

N
∑

n=1

mn ≤M

}

.

2) LLEs generation and switch connectivity: After the

memory allocation, the switch has to generate LLEs with the

clients that are connected to a memory. The switch attempts to

create LLEs by sending entangled qubits (e.g., photons) over a

fiber-optical channel, but only a fraction of the LLE attempts

are successful due to interference (see section II-A). Also,

LLEs last for a limited amount of time due to a phenomenon

known as decoherence [29] (Assumption 2).

We model the switch connectivity in a time slot as follows.

Let pn ∈ [0, 1], n ∈ {1, . . . , N} be the probability that a LLE

attempt succeeds. Vector k(t) = (k1(t), . . . , kN (t)) with

kn(t) =











0, mn(t) = 0,

0, mn(t) = 1 w.p. 1− pn,

1, mn(t) = 1 w.p. pn

(1)

denotes the collection of successful LLEs in a time slot, i.e.,

the switch’s connectivity. We use set K(m(t)) ⊆ {0, 1}N

to capture all the possible switch connectivities for a given

memory allocation m(t) ∈M. Note that a memory allocation

has a total of |K(m)| = 2M possible switch connectivites if

all the memories are used.5 We assume that in every time slot

all the memories are used since there is no cost associated

with the allocation of a memory to a client. Figure 4 shows

how the switch connectivity depends on different memory

allocations and the successful LLEs. Also, observe from the

figure that different memory allocations can result in the same

connectivity due to some LLE attempts failing.

3) End-to-end entanglement requests service: The switch

connectivity in a time slot affects the set of available service

vectors. Let k(t) ∈ K(m(t)) with m(t) ∈ M(t) be the

5Otherwise, the switch has 2
∑

R

r=1 mr(t) possible connectivities.

switch connectivity at time slot t. The set of admissible service

vectors is given by:6

B(m(t), k(t)) =

{

br ∈ {0, 1}, r ∈ {1, . . . , R} :

there exists a matrix S ∈ {0, 1}R×N

s.t. srn = 1 for all n ∈ Ω(r) iff br = 1,

and

R
∑

r=1

srn ≤ kn(t) ∀n ∈ {1, . . . , N}

}

.

That is, B(m(t), k(t)) contains a collection of binary vectors,

where the r’th entry of a vector is equal to one if and only

if (i) all the clients involved in a request of type r have an

active LLE with the switch, and (ii) a LLE is used to serve

one request.

III. CAPACITY REGION AND THE EFFECT OF QUANTUM

MEMORY AND LINK QUALITY

In this section, we characterize the capacity region of

the quantum switch (Section III-A), and study the effect of

memory and link quality in the switch’s capacity (Section

III-B).

A. Capacity region

Before designing an algorithm, we need to characterize the

set of arrival rates that the switch can support. To start, let

λ := limT→∞
1
T

∑T

t=1 A(t) be the long-term arrival rate of

requests at the quantum switch. We say an arrival vector λ is

admissible (or, it can be supported) if there exists a policy π
that can generate a sequence of service rate vectors {bπ(t)}∞t=1

such that

λr ≤ fπ
r := lim

T→∞

1

T

T
∑

t=1

bπr (t) ∀r ∈ {1, . . . , R}. (2)

That is, for a given vector λ, the switch must be able to

generate a long-term service vector fπ that is equal to or larger

than λ component-wise.

To define the switch capacity region, we decouple the

decision variables from the time slot index t and express

them as the fraction of time they can occur. In short, let θm
denote the fraction of time a memory allocation m ∈ M is

used, and P(k;m) the probability that a switch connectivity

k ∈ K(m) occurs for a given a memory allocation m ∈ M.

Similarly, let δk,mb be the fraction of time that each service

vector b ∈ B(m, k) is used for a given switch connectivity

and memory allocation. We have the following proposition.

6Although the set B(m(t), k(t)) depends only on the network connectivity,
k(t), we parameterize it with m(t) as well to emphasize that the service
vectors are picked after the memory allocation.

Proposition 1 (Quantum switch capacity region). The capac-

ity region of the quantum switch is:

Λ :=

{

fπ : fπ =
∑

m∈M

θm
∑

k∈K(m)

P(k;m)
∑

b∈B(m,k)

δm,k
b b,

∑

m∈M

θm = 1,
∑

b∈B(m,k)

δm,k
b = 1,

θm ≥ 0, δm,k
b ≥ 0,

for all b ∈ B(m, k), k ∈ K(m), m ∈M

}

. (3)

Proof sketch: The full proof is omitted due to space

constraints. However, it follows the same methodology as in

[23], [30]: writing the fraction of time that the service vectors

can be generated—depending on the memory allocations and

switch connectivities in our case.

Note that if λ ∈ Λ (i.e., the long-term average of requests

arrivals is in the capacity region), then there exists a vector

fπ that satisfies (2). Having λ ∈ Λ is usually known as the

necessary condition for having stable queues [23].

B. Effect of Memory and Link Quality in the Switch Capacity

This section investigates how the number of quantum mem-

ories in the switch and the probability of successful LLE for

each channel influence the overall throughput. Such analysis

facilitates the optimal design of future quantum hardware used

for the implementation of quantum switches.

We distinguish the capacity region of a quantum switch with

M available memories as Λ(M). Similarly, we define asM(M)

the possible memory allocations when we have M memories

available. For simplicity, in this section we focus only on

bipartite requests and when the probability for LLEs being

successful in every link are equal to p.

Let P(k) and Y(k) be the set of matchings and perfect

matchings of the complete graph that results from the clients

n ∈ {1, . . . , N} for which kn = 1, i.e., the clients that

successfully generated a LLE. Also, let co(·) define the convex

hull of a set.

Under the bipartite requests assumption, the capacity bound-

ary can be rewritten as:

Λ(M) :=

{

fπ : fπ =
∑

m∈M(M)

θm
∑

k∈K(m)

p|k|(1− p)M−|k|xm,k,

∑

m∈M

θm = 1, θm ≥ 0, xm,k ∈ co(Y(k))

for all k ∈ K(m), m ∈M(M)

}

. (4)

Where |k| represents the number of LLEs that were successful

out of the M at connectivity k. Note that instead of co(P(k))
we use co(Y(k)) for the domain of xm,k in Λ(M) to consider

the points in the boundary of the capacity region where the

rate vectors cannot be increased in any component and still be

in the capacity region.

Note that in the calculation of the capacity in (4), we

utilized the fact that B(m, k) = Y(k). This principle is based

(a) (b)

Figure 5. Illustrating the capacity regions Λ(M
′

) and Λ(M) with M
′

and M
number of quantum memories respectively. In the figure, the vectors λM and
λ
M

′ illustrate (a) two co-linear rate vectors i.e., λ
M

′ = αλM for α > 1,
and (b) two arbitrary rate vectors on the capacity regions. We are interested
in how ”longer” the rate vector on the ”larger” capacity region is.

on the premise of bipartite requests and Assumption 1. It’s

crucial to recognize that, although Assumption 1 is without

loss of generality for the rest of the paper as discussed in

Section VI, the specific conclusions drawn in this section are

fundamentally reliant on the concept that potential service

vectors correspond to matchings in a complete graph.

Since the capacity region of a quantum switch is a convex

polytope in a possibly high dimensional space, it is challenging

in general to compare Λ(M) and Λ(M
′

) for M ̸= M
′

.

However, as we will show in Lemma 1, in our setting the

comparison is possible since every vector in the boundary of

the capacity region yields the same ℓ1 norm. Hence, given

a specific number of quantum memories and a probability

for successful LLEs, the total throughput maintainable by the

switch does not depend on the ratio of the requests’ average

arrivals. Therefore, one can optimize the total throughput

without worrying what the actual arrival rate would be.

A vector λM in R
N2

corresponds to a target rate vector, i.e.,

the r’th component of λM corresponds to the target service

rate of the request r. Thereby, it is intuitive to compare Λ(M
′

)

and Λ(M) according to vectors λM
′ and λM that lie on them.

In that way, we can quantify how much we can extend an

arrival rate vector when we increase the number of quantum

memories in the switch. For such a comparison, we use the

ℓ1 norm, which captures the total throughput.

Figure 5 illustrates the capacity regions Λ(M) and Λ(M
′

)

with M and M
′

> M number of quantum memories respec-

tively. In Figure 5a, we illustrate two co-linear rate vectors i.e.,

λM
′ = αλM for α > 1, whereas in Figure 5b we show two

arbitrary rate vectors on the capacity regions. In the former, we

can quantify how much we can extend an arrival rate vector

when we increase the number of quantum memories in the

switch. We are interested in how ”longer” the rate vector on

the ”larger” capacity region is.

For the statement of the main results of this section we

present the following facts.

Fact 1. ∥x∥1 = ⌊ |k|2 ⌋, ∀x ∈ Y(k), ∀k ∈ K.

Fact 2. ∥x∥1 = ⌊ |k|2 ⌋, ∀x ∈ co(Y(k)), ∀k ∈ K.

Based on Facts 1 and 2, we present the next lemma that

calculates the ℓ1 norm of an arbitrary vector on the boundary

of the capacity region. See Section IX-A for the proof.

Lemma 1. Let λM ∈ Λ(M). Then ∥λM∥1 = Mp

2 −
1−(1−2p)M

4 .

The above lemma, proves that the vectors on the boundary

of the capacity region Λ(M) have constant ℓ1 norm that

depends (solely) on the values of M and p. For the comparison

of the capacities with respect to the total throughput achieved

when we increase the number of quantum memories, we

introduce the capacity gain as follows.

Definition 1 (Capacity Gain). Fix some rate vectors λM
′ ∈

Λ(M
′

) and λM ∈ Λ(M). We define the capacity gain of adding

M
′

−M memories in a quantum switch with M memories as:

gM→M
′ =
∥λM

′ ∥1
∥λM∥1

.

Remark 1. Due to Lemma 1 the capacity gain is inde-

pendent of the rate vectors that we pick in the boundaries

of the capacity regions and it depends only on the number

of memories, M
′

,M , and the probability p. For co-linear

vectors i.e., λM
′ = αλM for α > 1 (Figure 5(a)), note

also that the choice of norm does not affect the definition

of the capacity gain since for every norm it holds that
∥λ

M
′ ∥·

∥λM∥·

= ∥αλM∥·

∥λM∥·

= α = gM→M
′ .

Remark 2. For probability of successful LLEs one, i.e., p = 1
and for even M and M

′

, it holds that 1) gM→M+1 = 1, and

2) gM→M
′ = M

′

M
.

Therefore, in case the probability of LLE being success-

ful is one there is not any point on having odd number

of memories when requests are bipartite. From the second

statement of Remark 2, we observe that when the LLEs always

succeed, we get diminishing returns from adding memories,

e.g., gM→M+2 = M+2
M

. This ratio indicates a linear increase

of the “length” of the rate vector with respect to M .

In Figure 6a, we plot the capacity gain for various values

of p with varying M , when we add one memory. As indicated

from Remark 2, for high probability p there is not much

incentives to have odd number of memories and, in general,

we get diminishing returns from adding quantum memories

for fixed p. That is, the gain converges to one for large Ms.

Figure 6b studies the ℓ1 norm of an arbitrary rate vector

λM ∈ Λ(M) given in Lemma 1. As indicated in Remark 2, for

p = 1, the ℓ1 norm increases linearly with even M . However,

even for arbitrary values for p and M , the growth with respect

to M is almost linear, since the non-linear term in Lemma 1

initially oscillates between 0 and 0.5 and for p < 1 it converges

to 0. The closer p is to 0.5 the closer this term is to zero. For

large M , the linear term in the ℓ1 norm dominates the non-

linear one, giving it the linear behavior shown in Figure 6b.

Figure 6c studies the ℓ1 norm of an arbitrary rate vector

λM ∈ Λ(M) given in Lemma 1 for varying probabilities p.

Note, that the ℓ1 norm increases linearly with respect to p
but the slope of the line depends on M . Therefore, since the

dominating part (for large M) of the formula given in Lemma

1 is given by Mp/2, to increase the capacity of the switch

we have to jointly increase the number of memories and the

Algorithm 1 (MEW)

1: Set: t = 0
2: while switch is operating do

3: t← t+ 1
4: (S1) Quantum memory allocation: Select the memory

allocation

m(t) ∈ argmax
m∈M

R
∑

r=1

Qr(t)µr(m,Q(t)), (5)

where

µ(m,Q(t)) :=
∑

k∈K(m)

P(k)w(k,Q(t)) (6)

w(k,Q(t)) ∈ argmax
u∈B(m,k)

R
∑

r=1

Qr(t)ur. (7)

5: (S2) LLEs generation: The switch attempts to create

LLEs with the clients that have a memory connected.

The successful LLEs determine the switch connectivity

k(t) and the action set B(m(t), k(t)).
6: (S3) Requests service: Select a service vector b(t) ∈

argmax
u∈B(m(t),k(t))

∑R

r=1 Qr(t)ur

7: (S4) Queue update: Q(t+1) = [Q(t)− b(t)]+ +A(t)
8: end while

probability of successfull LLEs. Figures 6b and 6c indicates

that solely increasing M or p provides diminishing returns.

Conclusions: We prove that as we increase the number of

memories in the switch the ℓ1 norm of the rate vectors that we

can achieve increases almost linearly with a slope that depends

on the probability of successfull LLEs, p. Therefore, in order

to increase the capacity of the switch we have to jointly

increase the number of memories and the probability of suc-

cessfull LLEs (quality of the quantum hardware/entanglement

distillation). Solely increasing the number of memories or the

quality of the links provides diminishing returns.

IV. MEW: A THROUGHPUT OPTIMAL POLICY

In this section we present a memory allocation policy that is

throughput optimal. In Section IV-B, we discuss the scalability

of the proposed policy.

A. MEW: A max-weight algorithm for allocating quantum

memory and serving requests

We present Maximum Expected Weight (MEW), an algo-

rithm that stabilizes the queues when the arrival rate of

requests is in the interior of the capacity region. MEW (Al-

gorithm 1) consists of three steps. The first step (S1) allocates

the quantum memories to clients using (5), which consists of

maximizing the sum of the expected service in each queue (i.e.,

µr) multiplied by the queue occupancies (i.e., Qr). This update

can be regarded as an “expected” max-weight maximization,

where the updates in (6) and (7) are intermediate steps to com-

pute µ(m,Q(t)) = (µ1(m,Q(t)), . . . , µR(m,Q(t))) used in

(5). The second step (S2) generates the LLEs with the clients

0 10 20 30 40 50
M

1.0

1.2

1.4

1.6

1.8

2.0
g M

→
M
+
1

p=0.5
p=0.7
p=0.9
p=1.0

2 4 6 8 10 12 14
M

0
1
2
3
4
5
6
7

||λ
M
|| 1

p=0.5
p=0.7
p=0.9
p=1.0

0.2 0.4 0.6 0.8 1.0
p

0

5

10

15

20

25

||λ
M
|| 1

M = 5
M = 10
M = 20
M = 50

(a) (b) (c)

Figure 6. (a) The capacity gain, gM→M+1, for varying number of quantum memories, M . (b) The ℓ1 norm of any arbitrary rate vector λM ∈ Λ(M) for

varying M . (c) The ℓ1 norm of any arbitrary rate vector λM ∈ Λ(M) for varying probability of LLE, p.

that have a memory connected. Only some LLE attempts

succeed, which affects the network connectivity and the set of

admissible requests service vectors, i.e., set B(m(t), k(t)). The

third step (S3) consists of finding the service vector b(t) that

maximizes the dot product with the vector of queues Q(t). We

have the following theorem. See Section IX-B for the proof.

Theorem 1. Consider the quantum switch model in Section

II, and suppose that the long-term arrival rate of requests λ is

in the interior of the capacity region Λ. That is, there exists a

vector b̂ ∈ Λ such that λr + ϵ ≤ b̂r, ∀r ∈ {1, . . . , R} for some

ϵ > 0. Then, MEW (Algorithm 1) ensures that the queues are

strongly stable:

lim
T→∞

1

T

T
∑

t=1

R
∑

r=1

E[Qr(t)] ≤
N2

ϵ
.

Strong stability implies that all the requests that arrive are

eventually served (i.e., (2) is satisfied), but also that the queues

are bounded [31]. The result in Theorem 1 is based on max-

weight techniques widely employed in network scheduling

problems [30], [23], and the novelty of our contribution resides

in the fact that the switch connectivity is random and depends

on how we assign quantum memories to links/clients. The

latter is different from wireless network models with time-

varying connectivity since the allocation of quantum memories

affects the switch’s connections and, therefore, the set of

admissible service vectors. Such coupling is typically not

allowed in max-weight or backpressure approaches where the

set of available actions can vary over time; however, usually

in an i.i.d. manner [32]. In our problem, the action sets

{B(m(t), k(t))}∞t=1 are not i.i.d. because they depend on the

memory allocation decisions {m(t) ∈ M}∞t=1. Our approach

to tackle this problem is to exploit the linearity of (5), (6),

and (7), and evaluate all the possible scheduling decisions for

every connectivity. However, enumerating all the cases can be

computationally expensive sometimes, as we discuss next.

B. MEW scalability

The step with higher computational cost is the allocation

of quantum memories (S1), which involves computing (5),

(6), and (7). In brief, the maximization in (5) is over the

set of all possible memory allocations, which has cardinality

Figure 7. Quantum switch with N = 7 clients and M = 6 memories. When
requests for end-to-end entanglements involve only two clients, the update in
(7) reduces to finding a maximum weighted matching in a complete graph.

|M| =
(

N

M

)

.7 Furthermore, we need to compute (6) and

(7) for every memory allocation m ∈ M and network

connectivity k ∈ K(m) respectively. We could compute (7)

only once per switch connectivity since a switch connectivity

can be obtained by different quantum memory allocations

(see example in Figure 4). However, the number of possible

switch connectivities increases exponentially with the number

of memories since |K(m)| = 2M . In addition, the update in (7)

requires finding a maximum-weighted matching in a complete

hypergraph,8 which is known to be an NP-hard problem [33].

In sum, MEW does not scale well with N and M since it

needs to solve, in the worst case, an exponential number of

NP-hard problems for every memory allocation. Nevertheless,

MEW can be used effectively when N , M and R are not

very large. For instance, in Section VII, which includes our

numerical evaluation, we execute MEW for settings with

N = 6,M = 3, R = 35 and N = 7,M = 4, R = 21. In

Section VII we study MEW when the update in (5) is carried

out approximately. In particular, when MEW checks only l
memory allocations out of all the

(

N

M

)

possibilities. We refer

to such algorithm as l-Approximate MEW.

In the next section, we focus on a special case where we

can derive a variant of MEW (MEW2) that has polynomial

complexity.

V. MEW2: EFFICIENT SCHEDULING IN BIPARTITE

REQUESTS AND SUCCESSFUL LLES.

In this section, we study the case where (i) LLE attempts

are always successful (i.e., pn = 1, ∀n ∈ {1, . . . , N}), and (ii)

7Assuming we allocate all the memories to clients.
8A hypergraph is a generalization of a graph in which an edge can connect

any number of vertices.

MEW MEW2

. . .

Figure 8. Schematic illustration of how MEW compares to MEW2 for a
switch with N = 8 clients and M = 6 quantum memories. MEW has to find

a maximum weighted matching in each of the
(8
6

)

= 28 different complete
graphs (with 6 nodes each). MEW2 selects a special type of matching with
at most M/2 edges in the 8-complete graph.

requests involve only two clients.9 These cases are important

for two reasons. First, we can appropriately extend the duration

of a time slot to perform entanglement distillation and retrials

for the entanglement attempts until we successfully generate

all the LLEs in every time slot (see Section II-A).10 Second,

every multipartite request between clients can be divided into

(multiple) bipartite ones. That is because two-qubit gates are

universal, i.e., every quantum program can be implemented

with two-qubit gates [11].

This case allows us to derive a variant of MEW (MEW2)

that has lower computational cost. Specifically, we can allocate

memories and select which requests to serve by finding a

special type of matching with at most M/2 edges in an N -

complete graph (see Algorithm 2).11

A. Motivation: Complexity of MEW

When end-to-end entanglement requests involve only two

clients, (7) corresponds to finding a maximum weighted

matching in the complete graph of the clients with an active

LLE (see Figure 7). Finding such matching has polynomial

time complexity [34]. The assumption that LLEs are always

successful is useful to reduce the number of times we call (7).

In particular, we have that a memory allocation is associated

with a single switch connectivity. Hence, |K(m(t))| = 1 for

all m(t) ∈ M and µ(m(t), Q(t)) = w(k(t), Q(t)) since

m(t) = k(t). In sum, we can solve (7) in polynomial time and

only once for every admissible memory allocation. Yet, that

can still be too much in some cases. For example, if N = 16
and M = 8, we need to find a maximum weighted matching

of
(

16
8

)

= 12870 different graphs to make a single memory

allocation decision.

9Without loss of generality we assume that M is even. With bipartite
requests, having an odd M means that there will be an unused memory.

10Note that there is a trade-off between reducing the duration of a time
slot T (thus increasing the number of service requests per unit of time), and
increasing the probability of successful LLEs.

11An N -complete graph is a graph with N nodes, in which each pair of
vertices is connected with an edge. The edges’ weights are the queue backlogs.

Algorithm 2 (MEW2)

1: Set: t = 0
2: while switch is operating do

3: t← t+ 1
4: (S1b) Quantum memory allocation: Select a matching

with at most M/2 edges in the N -complete graph with

maximum possible weight:

l(t) ∈ argmax
u∈O

R
∑

r=1

Qr(t) ur, (8)

where O := {u ∈ PN :
∑R

r=1 ur ≤ M/2} and PN

the set of matchings in the N -complete graph. Assign

a memory to every client/node that is connected to an

edge in l(t), i.e.,

m(t) ∈ {m ∈M : l(t) ∈ P(C(m))}, (9)

where C(m) is the complete graph of the clients n ∈
{1, . . . , N} with mn = 1.

5: (S2b) LLE generation: Generate LLEs with the clients

that have a memory connected.

6: (S3b) Requests service: Select b(t) = l(t)
7: (S4b) Queue update: Q(t+1) = [Q(t)−b(t)]++A(t)
8: end while

B. Maximum Expected Weight 2 (MEW2)

We propose Maximum Expected Weight 2 (MEW2), a policy

that selects a memory allocation by obtaining a special type

of matching in the N -complete graph (Algorithm 2). The

intuition behind MEW2 is shown in Figure 8 for a switch

with N = 8 and M = 6. Recall that (S1) in MEW computes

a maximum weighted matching in
(

N

M

)

different M -complete

graphs, and picks one with maximum weight. Observe from

the figure that such matching is also a (non-maximal) matching

in the N -complete graph. Thus, we can replace step (S1)

in MEW by directly computing a matching with maximum

weight among the matchings that have at most M/2 edges. We

have the following corollary of Theorem 1 which is proved in

the Appendix (Section IX-C).

Corollary 1 (Theorem 1). Consider the setup of Theorem 1

where the LLE attempts are always successful (i.e., pn =
1, ∀n ∈ {1, . . . , N}). Also, suppose that requests involve

connecting two clients and that M is even. Then, MEW2

ensures that the queues are strongly stable.

Finding the matching described in (8), which characterizes

the complexity of MEW2, can be done in polynomial time.

In particular, we can find such matching by augmenting the

N -complete graph and then computing a maximum weighted

matching. Specifically, the augmented graph has n − M
virtual nodes connected to the others with edges that have

infinite weight. The solution to (8) corresponds to a maximum

weighted matching of the augmented graph, which can be

found in polynomial time [35], [34].

VI. RELAXATION OF ASSUMPTION 1 - MULTIPLE

MEMORIES & CHANNELS

For ease of exposition of the mathematical model and its

optimization, we assumed that that we have only one channel

per client and we can assign one memory to each channel

(Assumption 1). Nevertheless, our model and algorithms can

be extended accordingly to account for the case of a quantum

switch with multiple memories (M > N) and multiple

channels per client (> 1).

In Figure 9 we focus on the case of one channel per client

and multiple memories associated with it. One can generalize

this to the case of multiple channels per client. What changes

from the case of one memory per client (Section II-A) is that

the client can now emit a photon (say every ω seconds) that

is entangled with an electron spin inside a different memory

every time. Therefore, at τ = 0 one photonic qubit can be

emitted through the channel and at τ = ω a second one. At

time τ = mω, where m is the number of memories inside

the client, all of the photonic qubits are emitted and no more

can be emitted in case we can utilize only one nuclear-spin

in every memory. At time τ = L/c, as in (Section II-A) the

first photonic qubit reaches the switch and the switch ”stores”

its state to a nuclear-spin inside a memory allocated to the

client. This procedure might fail but the outcome should be

heralded with a classical bit that arrives at the client at time

τ = 2L/c. However, in this case we have multiple photonic

qubits inside the channel that arrives at the switch in the time

interval 2L/c ≤ τ ≤ 2L/c +mω. At τ = 2L/c +mω every

nuclear-spin qubit might have been entangled with a nuclear-

spin qubit inside the clients’ memories. The switch can then

perform entanglement distillation using the successful LLEs.

For the unused memories, the switch will retry generating

LLEs until τ = ∆ when the switch performs BSMs to satisfy

the requests for end-to-end entanglement.

In this level of abstraction, we do not assume a specific

distillation protocol and we only care about the probability

that each possible connectivity appears at time τ = ∆. The

model just needs the probability for successful LLEs (of

sufficient fidelity) for every memory at time τ = ∆. Such

a model can express any distillation scheme since depending

on how many entanglements are fused to create one with

greater fidelity, the probabilities of successful LLEs at time

τ = ∆ can be changed accordingly. For example, if we

employ an m to 1 distillation scheme, there is only one

non zero probability of successful LLE at τ = ∆ for every

m memories. The physical model described in this section

for the case of multiple channels/memories per client, can

be again abstracted by the same mathematical model that

we proposed in this paper by just adding multiple memory

allocation possibilities depending on the setting. Therefore,

we can incorporate multiple memories and multiple channels

per client by appropriately extending the action set.

VII. NUMERICAL EVALUATION

In this section, we illustrate the behavior of MEW and

MEW2 in different scenarios (e.g., request load, LLEs gen-

eration). Moreover, we study MEW when the update in (5)

is carried out approximately. In particular, when MEW uses

only l memory allocations out of all the
(

N

M

)

possibilities

(Sections VII-B and VII-C). We refer to such algorithm as

l-Approximate MEW.

A. Simulation 1: Performance of MEW under different arrival

rates

This simulation evaluates the performance of MEW when

the requests arrive with three different intensities: 70%, 99%,

and 120% of the total load that the switch can support.12

For the simulation, we set N = 6, M = 3, and R = 8,

where all the requests involve connecting three clients (i.e.,

the requests are tripartite). The probability of the LLE attempts

being successful is fixed to pn = 0.9 for all clients and loads.

We run MEW for the three different loads and show

the evolution of the queue occupancies over time in Figure

10. Observe from the figure that when the arrival rates are

in the interior of the capacity region (70% and 99%), the

backlogs remain bounded. However, the “saturation” points

are different, which is in line with the queue stability bound

in Theorem 1. Higher intensity (i.e., smaller ϵ in Theorem

1) implies larger backlogs. Finally, when the request arrival

intensity is equal to 120% (outside of the capacity region), the

queues are not stable since their occupancy increases linearly.

Conclusions: MEW stabilizes the queues when the arrivals

are in the interior of the capacity region. The average queue

occupancies depend on how close the long-term arrival rates

are to the boundary of the switch’s capacity (Theorem 1).

B. Simulation 2: MEW with memory allocation decision dead-

lines

Recall from Section IV-B that MEW needs to solve (7)

multiple times for every memory allocation decision. However,

we may not be able to evaluate all possible memory allocations

since in practice we need to select one within a time deadline.

To capture that, we reduce the search space of problem (5).

As in Section VII-A, we consider N = 6, M = 3, and

that the probability of LLE attempts being successful equals

pn = 0.9 for all clients. However, we now consider all types

of bipartite and tripartite requests (i.e., R =
(

6
2

)

+
(

6
3

)

= 35),

hence the time needed to compute (7) increases.

We run MEW and the {1, 10}-Approximate variant for

different arrival rate intensities (70%, 99%, and 120%) and

show the results in Figure 11. Observe from the figure that

MEW stabilizes the queues when the arrivals are in the interior

of the capacity region. However, for the l-approximation, the

stability depends on the value of l and the traffic intensity.

Specifically, the 1-Approximate MEW stabilizes the system

when the traffic intensity is 70% (Figure 11a), but not when

the intensity is equal to 99% (Figure 11b). In contrast, the 10-

Approximation keeps the queues bounded similar to MEW.

Conclusions: The l-Approximate MEW can stabilize the

queues when the value of l is large enough. How large l should

be is related to how close the arrival rates are to the boundary

of the capacity region. As future work, it is interesting to

12An intensity of 100% is at the boundary of the capacity region.

Figure 9. Physical level operation of a quantum switch with multiple quantum memories dedicated to a client’s channel, during a time slot. With appropriate
changes to MEW and MEW2, the technical work of this paper can be extended appropriately to include multiple memories and multiple channels per client.

0 1000 2000 3000 4000 5000
Iteration

0

20

40

60

80

100

Av
er

ag
e

Su
m

 o
f B

ac
kl

og
s

70% Traffic Intensity
99% Traffic Intensity
120% Traffic Intensity

Figure 10. Illustrating the simulation in Section VII-A: The evolution of
MEW for a quantum switch with 6 clients and 3 memories for different arrival
rates. LLE attempts succeed with probability 0.9. Each line is the average of
10 different realizations.

0 2000 4000 6000 8000 10000
Iteration

0
10
20
30
40
50
60
70

Av
er

ag
e

Su
m

 o
f B

ac
kl

og
s

MEW
1-Approximate MEW
10-Approximate MEW

0 10000 20000 30000 40000 50000
Iteration

0

200

400

600

800

1000

Av
er

ag
e

Su
m

 o
f B

ac
kl

og
s

MEW
1-Approximate MEW
10-Approximate MEW

(a) 70% Traffic intensity (b) 99% Traffic intensity

Figure 11. Illustrating the simulation in Section VII-B: The evolution of
MEW and {1, 10}-Approximate MEW for a quantum switch with N = 6,
M = 3 and pn = 0.9 for every client n. Each line is the average of 10
different realizations.

investigate how the capacity region scales when the memory

allocation is obtained approximately (e.g., as a function of the

parameter l).

C. Simulation 3: Performance of MEW2

In this simulation, we compare MEW2 to MEW and 1-

Approximate MEW in a switch with N = 7 clients and

M = 4 memories. The traffic intensity is fixed to 99%, and

we assume that the LLE attempts are always successful. We

consider bipartite requests with R =
(

7
2

)

= 21.

We run the three algorithms and show the results in Figure

12. Observe that MEW2 can keep the queues stable and that

its behavior is similar to MEW. Nonetheless, recall that MEW

has as higher computational cost than MEW2 (see discussion

in Section V). Next, observe from Figure 12 that the 1-

Approximate MEW (which has a comparable cost to MEW2)

cannot stabilize the queues, which is similar to the result in

the previous experiment when the traffic intensity is 99%.

Recall that MEW2 requires that the LLE attempts are always

successful and that the entanglement requests are bipartite.

Conclusions: The behavior of MEW2 is similar to MEW

even though its complexity is significantly lower. The 1-

0 10000 20000 30000 40000 50000
Iteration

0
100
200
300
400
500
600
700

Av
er

ag
e

Su
m

 o
f B

ac
kl

og
s

MEW
MEW2
1-Approximate MEW

Figure 12. Illustrating the evolution of MEW, MEW2 and 1-Approximate
MEW for a quantum switch with N = 7, M = 4 and bipartite requests. The
traffic intensity is 99% and the LLE attempts succeed with probability 0.9.
Each line is the average of 10 different realizations.

0 2000 4000 6000 8000 10000
Iteration

0

20

40

60

80

100
Av

er
ag

e
Su

m
 o

f B
ac

kl
og

s

MEW
MEW2

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

0
25
50
75

100
125
150
175
200

Av
er

ag
e

Su
m

 o
f B

ac
kl

og
s

MEW
MEW2

(a) (b)

Figure 13. Illustrating the simulation in Section VII-D: The evolution of
MEW2 and MEW for a quantum switch with N = 7, M = 4, requests
for bipartite end-to-end entanglement and (a) homogeneous probabilities
for successful LLEs, pn = 0.7, and, (b) heterogeneous probabilities for
successful LLEs, (p1, p2, . . . , p7) = (0.3, 0.4, . . . , 0.9). Each line is the
average of 10 different realizations.

Approximate MEW does not keep the queues stable despite

having a similar computational cost to MEW2.

D. Simulation 4: MEW2 when the LLE attempts are not

always successful

MEW2 can stabilize the queues when the LLE attempts are

always successful. However, that may not be the case in all

practical systems. In this section, we study the robustness of

MEW2 when the LLE attempts can fail. Since MEW2 assumes

that pn = 1, we allow it to perform one last maximum weight

operation to decide which requests to serve depending on the

switch connectivity (in analogy to step (S3) in MEW).

We consider a switch with N = 7 clients and M = 4
memories, and study the case where the LLE attempts prob-

abilities are (i) homogeneous with pn = 0.7 for all n ∈
{1, . . . , N}, and (ii) heterogeneous with (p1, p2, . . . , p7) =
(0.3, 0.4, . . . , 0.9). Also, as in the previous section, the re-

quests are bipartite and the traffic intensity is equal to 99%.

We run MEW2 and show the evolution of the queues over

time in Figure 13. Observe that in the homogeneous case

(Figure 13a), MEW2 stabilizes the queues even though it does

not know the probabilities with which LLE attempts succeed.

However, when the probabilities are heterogeneous (Figure

13b), MEW2 is not able to stabilize the queues. We conjecture

that MEW2 behaves better in the homogeneous case since the

latter is closer to the case where every LLE attempt succeed

with probability one (i.e., the assumption in Corollary 1).

Conclusions: When the probabilities pn are homogeneous

throughout the clients, we observe that MEW2 stabilizes the

system even though pn are unknown.

VIII. CONCLUSIONS

In this paper, we have studied the problem of operating

a quantum switch with memory constraints. The switch has

to allocate a limited number of quantum memories to clients

to generate link-level entanglements (LLEs), and then use

these to serve end-to-end entanglements requests. Our model

is different from existing approaches since we capture that

quantum memory is a scarce resource (in analogy to quantum

computers). The paper’s main contribution is threefold: (i) to

characterize the switch’s capacity region, (ii) to study how

the capacity scales with respect to the number of quantum

memories and probability of LLE success and (iii) to propose

a memory allocation policy (MEW) that is throughput optimal.

In addition, we present MEW2, a variant of MEW tailored

to the case where end-to-end entanglements are bipartite and

LLE attempts are always successful. MEW2 finds a memory

allocation by obtaining a special type of matching in the N -

complete graph in polynomial time.

IX. APPENDIX

A. Proof of Lemma 1

The proof is based on expanding the vector λM using (4)

as follows:

∥λM∥1 =

= 1T
(

∑

m∈M(M)

θm
∑

k∈K(m)

p|k|(1− p)M−|k| xm,k
)

=
∑

m∈M(M)

θm
∑

k∈K(m)

p|k|(1− p)M−|k| ⌊
|k|

2
⌋

=
∑

m∈M(M)

θm
∑

κ∈{1,...,M}

(

M

κ

)

pκ(1− p)M−κ ⌊
κ

2
⌋

=
∑

κ∈{1,...,M}

(

M

κ

)

pκ(1− p)M−κ ⌊
κ

2
⌋

=
∑

κ∈{1,...,M}:kmod2=1

(

M

κ

)

pκ(1− p)M−κ (κ− 1)

2

+
∑

κ∈{1,...,M}:kmod2=1

(

M

κ

)

pκ(1− p)M−κκ

2

=
∑

κ∈{1,...,M}

(

M

κ

)

pκ(1− p)M−κ κ

2

−
∑

κ∈{1,...,M}:kmod2=1

(

M

κ

)

pκ(1− p)M−κ 1

2

=
Mp

2
−

1− (1− 2p)M

4
.

B. Proof of Theorem 1

We prove that the queues are stable by using a quadratic

Lyapunov function, and ultimately showing that the proposed

policy has expected negative drift. That is, the queues at

time slots t and t + 1 satisfy: E[∥Q(t + 1)∥2 − ∥Q(t)∥2] <
0, where the expectations are w.r.t. the (i) request ar-

rivals; (ii) successful LLEs; and (iii) all possible queue

values at time t. To start, observe that ∥Q(t + 1)∥2 =
∥[Q(t) − b(t)]+ + A(t)∥2 = ∥[Q(t) − b(t)]+∥2 + ∥A(t)∥2 +
2
∑R

r=1[Qr(t)− br(t)]
+Ar(t) ≤ ∥Q(t)− b(t)∥2 + ∥A(t)∥2 +

2
∑R

r=1[Qr(t) − br(t)]
+Ar(t) = ∥Q(t)∥2 + ∥b(t)∥2 +

∥A(t)∥2+2
∑R

r=1[Qr(t)−br(t)]
+Ar(t)−2

∑R

r=1 Qr(t)br(t),
where the inequality follows since ∥[v]+∥2 ≤ ∥v∥2 for

any vector v ∈ R
n. Also, we have −2

∑R

r=1 Qr(t)br(t) +

2
∑R

r=1[Qr(t) − br(t)]
+Ar(t) ≤ −2

∑R

r=1 Qr(t)br(t) +

2
∑R

r=1 Qr(t)Ar(t) = 2
∑R

r=1 Qr(t)(Ar(t) − br(t)), where

the inequality follows since −
∑R

r=1 bt(t)Ar(t) is non-

positive.

Next, since ∥A(t)∥2 ≤ N2, ∥b(t)∥2 ≤ N2 (by assumption),

and E[A(t)] = λ by assumption, we can take expectations

with respect to Ar(t) for a fixed queue Q(t) to obtain:

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 + 2

R
∑

r=1

Qr(t)(λr − br(t)). (10)

We proceed to upper bound the expected value of

−
∑R

r=1 Qr(t)br(t). Since b(t) is a random vector that

depends on the switch connectivity and memory allo-

cation at time t, we have E[−
∑R

r=1 Qr(t)br(t)] =

−
∑R

r=1 Qr(t)µr(m(t), Q(t)), where µr(m(t), Q(t)) is de-

fined in (6). Note that Q(t) does not depend on the switch

connectivity in time slot t. Combining the last equation with

(10), we have

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2 | Q(t)]

≤ 2N2 + 2

R
∑

r=1

Qr(t)(λr − µr(m(t), Q(t))),
(11)

where the expectation is with respect to the switch connectiv-

ities for a fixed memory allocation.

Next, observe that the memory allocation rule in (5) ensures

that:

−

R
∑

r=1

Qr(t)µr(m(t), Q(t))

≤ −
R
∑

r=1

Qr(t)µr(m,Q(t)) ∀m ∈M. (12)

since µ(m(t), Q(t)) maximizes
∑R

r=1 Qr(t)µr(m(t), Q(t)).

Now, let θm ≥ 0 with
∑

m∈M θm = 1 and observe that

−
R
∑

r=1

Qr(t)µr(m(t), Q(t))

= −
∑

m∈M

θm

R
∑

r=1

Qr(t)µr(m(t), Q(t))

(a)

≤ −
∑

m∈M

θm

R
∑

r=1

Qr(t)µr(m,Q(t)),

(b)
= −

∑

m∈M

θm

R
∑

r=1

Qr(t)
∑

k∈K(m)

P(k;m)wr(k,Q(t))

(c)
= −

∑

m∈M

θm
∑

k∈K(m)

P(k;m)

R
∑

r=1

Qr(t)wr(k,Q(t)),

where (a) follows by (12), (b) by (6), and (c) by rearranging

terms.

Now, recall w(k,Q(t)) maximizes
∑R

r=1 Qr(t)wr(k,Q(t))

because how we defined it in (7), and let δm,k
b ≥ 0 for all

b ∈ B(m, k) with
∑

b∈B(m,k) δ
m,k
b = 1 for every k ∈ K(m)

and m ∈M. As before, we have

−

R
∑

r=1

Qr(t)wr(k,Q(t)) k ∈ K(m)

= −
∑

b∈B(m,k)

δm,k
b

R
∑

r=1

Qr(t)wr(k,Q(t))

(a)

≤ −
∑

b∈B(m,k)

δm,k
b

R
∑

r=1

Qr(t)br

= −
R
∑

r=1

Qr(t)
∑

b∈B(m,k)

δm,k
b br,

where b in inequality (a) holds for any vector

in B(m, k). Combining the previous equations,

−
∑R

r=1 Qr(t)µr(m(t), Q(t)) ≤ −
∑R

r=1 Qr(t)b̂r, where

b̂ =
∑

m∈M θm
∑

k∈K(m) P(k;m)
∑

b∈B(m,k) δ
m,k
b b is

any vector in Λ (Proposition 1). Hence, from inequality

(11), we have E[∥Q(t + 1)∥2 − ∥Q(t)∥2 | Q(t)] ≤
2N2 + 2

∑R

r=1 Qr(t)(λr − b̂r(t)). The rest of the

proof follows the usual max-weight arguments. Because

λr + ϵ ≤ b̂r for some ϵ > 0 by assumption, it holds

E[∥Q(t + 1)∥2 − ∥Q(t)∥2 | Q(t)] ≤ 2N2 − 2
∑R

r=1 Qr(t)ϵ.
Now, take expectations w.r.t. all the possible values of Q(t)
to obtain

E[∥Q(t+ 1)∥2 − ∥Q(t)∥2] ≤ 2N2 − 2
R
∑

r=1

Qr(t)ϵ, (13)

and observe that E[∥Q(t + 1)∥2 − ∥Q(t)∥2] < 0 when
∑R

r=1 Qr(t) > 2N2

2ϵ . That is, the queue drift is negative. Fi-

nally, sum (13) from t = 1, . . . , T to obtain E[∥Q(T +1)∥2]−
E[∥Q(0)∥2] ≤ 2TN2− 2ϵ

∑T

t=1

∑R

r=1 E[Qr(t)]. Rearranging

terms and dividing by T yields 1
T

∑T

t=1

∑R

r=1 E[Qr(t)] ≤
N2

ϵ
+ ∥Q(0)∥2

2Tϵ
, and taking T →∞ we obtain the stated result.

C. Proof of Corollary 1

Let C(m) be the complete graph that results from the clients

n ∈ {1, . . . , N} for which mn = 1. Moreover, let P(G) be the

set of matchings of a graph G, and PN be the set of matchings

of the complete graph with N clients. The proof of Corollary

1 relies on finding a policy that is equivalent to MEW, which

we proved in Theorem 1 that stabilizes the queues.

We can rewrite step (S1) of MEW, in a single line, as

follows:

m(t) ∈ argmax
m∈M

max
u∈P(C(m))

R
∑

r=1

Qr(t) ur. (14)

Problem (14) summarizes MEW when LLE attempts are

always successful and the requests are bipartite. That holds

true because (i) its solution picks the memory allocation of

(S1), and (ii) the maximizer of the inner optimization problem

is the final service vector of step (S3).

Let M∗(t) be the set of solutions to problem (14) and define

the sets Π :=
⋃

m∈M P(C(m)), O := {u ∈ PN :
∑R

r=1 ur ≤
M/2}. Recall that we assume that M is even. Then, step (S3)

in this special case, is equivalent to

b(t) ∈
⋃

m∗∈M∗(t)

argmax
u∈P(C(m∗))

R
∑

r=1

Qr(t)ur (15)

(a)
= argmax

u∈Π

R
∑

r=1

Qr(t)ur

(b)
= argmax

u∈O

R
∑

r=1

Qr(t)ur. (16)

In the above, equality (a) holds since we augment the search

space of the optimization problem with matchings that do not

maximize the inner product with the queue backlogs. Equality

(b) holds because although Π and O contain matchings of

seemingly different graphs, their nodes corresponds to the

switch’s clients and hence O = Π. Therefore, step (S3) of

MEW can be carried out by solving the problem (16) (see

step (S1b) in MEW2).

Panagiotis Promponas (Graduate Student Mem-
ber, IEEE) received his Diploma in Electrical and
Computer Engineering (ECE) from the National
Technical University of Athens (NTUA), Greece, in
2019. He is currently a Ph.D. student in the Depart-
ment of Electrical Engineering at Yale University.
His primary scientific interests include resource allo-
cation in constrained interdependent systems and the
optimization of algorithms. Specifically, he focuses
on the optimization and modeling of quantum net-
works and wireless networking systems. He is also

the recipient (co-author) of the Best Paper Award at the 12th IFIP WMNC
2019.

Vı́ctor Valls graduated with a degree in electrical
engineering from Universitat Pompeu Fabra in 2011
and obtained his MSc from the same university
in 2013. In 2017, he completed his Ph.D. in ap-
plied mathematics at Trinity College Dublin, Ireland.
From 2019 to 2022, he was as a postdoctoral re-
search fellow at Yale University (USA) supported by
a Marie Skłodowska-Curie fellowship. Currently, he
is a Staff Research Scientist at IBM Research Europe
– Dublin. His research interests are in optimization,
networks, and quantum computing.

Saikat Guha (Senior Member, IEEE) received
the B.Tech. degree in electrical engineering in 2002
from the Indian Institute of Technology Kanpur,
Kanpur, India, and the S.M. and Ph.D. degrees in
electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 2004 and 2008, respectively. He is cur-
rently the Peyghambarian Endowed Chair Professor
of Optical Sciences with the University of Arizona,
Tucson, AZ, USA, and the Director of the Center
for Quantum Networks, an Engineering Research

Center awarded by the NSF in 2020. He was previously a Lead Scientist with
the Quantum Information Processing Group, Raytheon BBN Technologies,
Cambridge. His research interests include quantum optics and information
theory, with applications to quantum limits to optical communication and
sensing, photonic quantum computing, and network information theory. In
1998, he was a Member of the first Indian Team with the International Physics
Olympiad, where he was awarded the European Physical Society Award for
the experimental component.

Leandros Tassiulas (Fellow, IEEE) is the John
C. Malone Professor of Electrical Engineering at
Yale University, where he served as department
head 2016-2022. His current research is on intel-
ligent services and architectures at the edge of next
generation networks including Internet of Things,
sensing actuation in terrestrial and non terrestrial
environments and quantum networks. He worked in
the field of computer and communication networks
with emphasis on fundamental mathematical models
and algorithms of complex networks, wireless sys-

tems and sensor networks. His most notable contributions include the max-
weight scheduling algorithm and the back-pressure network control policy,
opportunistic scheduling in wireless, the maximum lifetime approach for
wireless network energy management, and the consideration of joint access
control and antenna transmission management in multiple antenna wireless
systems. Dr. Tassiulas is a Fellow of IEEE (2007) and of ACM (2020) as
well as a member of Academia Europaea (2023). His research has been rec-
ognized by several awards including the IEEE Koji Kobayashi computer and
communications award (2016), the ACM SIGMETRICS achievement award
2020, the inaugural INFOCOM 2007 Achievement Award “for fundamental
contributions to resource allocation in communication networks,” several best
paper awards including the INFOCOM 1994, 2017 and Mobihoc 2016, a
National Science Foundation (NSF) Research Initiation Award (1992), an
NSF CAREER Award (1995), an Office of Naval Research Young Investigator
Award (1997) and a Bodossaki Foundation award (1999). He holds a Ph.D.
in Electrical Engineering from the University of Maryland, College Park
(1991) and a Diploma of Electrical Engineering from Aristotle University of
Thessaloniki, Greece. He has held faculty positions at Polytechnic University,
New York, University of Maryland, College Park and University of Thessaly,
Greece.

REFERENCES

[1] P. Promponas, V. Valls, and L. Tassiulas, “Full exploitation of limited
memory in quantum entanglement switching,” in 2023 IFIP Networking

Conference (IFIP Networking), 2023, pp. 1–9.

[2] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[4] Ibm unveils new roadmap to practical quantum computing
era; plans to deliver 4,000+ qubit system. [Online]. Available:
https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-
to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-
System

[5] “Ibm unveils breakthrough 127-qubit quantum processor,” Available
at https://newsroom.ibm.com/2021-11-16-IBM-Unveils-Breakthrough-
127-Qubit-Quantum-Processor.

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, Barends
et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[7] R. Van Meter and S. J. Devitt, “The path to scalable distributed quantum
computing,” Computer, vol. 49, no. 9, pp. 31–42.

[8] S. Guha and C. Gagatsos, “Cluster-state quantum computing methods
and systems,” Jul. 7 2022, uS Patent App. 17/594,874.

[9] C. Qiao, Y. Zhao, G. Zhao, and H. Xu, “Quantum data networking
for distributed quantum computing: Opportunities and challenges,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications

Workshops. IEEE, 2022, pp. 1–6.

[10] A. Yimsiriwattana and S. J. Lomonaco Jr, “Generalized ghz states
and distributed quantum computing,” arXiv preprint quant-ph/0402148,
2004.

[11] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[12] J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Exper-
imental entanglement swapping: entangling photons that never inter-
acted,” Physical review letters, vol. 80, no. 18, p. 3891, 1998.

[13] R.-B. Jin, M. Takeoka, U. Takagi, R. Shimizu, and M. Sasaki, “Highly
efficient entanglement swapping and teleportation at telecom wave-
length,” Scientific reports, vol. 5, no. 1, pp. 1–7, 2015.

[14] W. Dai and D. Towsley, “Entanglement swapping for repeater
chains with finite memory sizes,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.10994

[15] C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp. 2–17, 2021.

[16] L. Le and T. N. Nguyen, “Dqra: Deep quantum routing agent for
entanglement routing in quantum networks,” IEEE Transactions on

Quantum Engineering, vol. 3, pp. 1–12, 2022.

[17] N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, “Opti-
mal entanglement distribution using satellite based quantum networks,”
arXiv preprint arXiv:2205.12354, 2022.

[18] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the exact
analysis of an idealized quantum switch,” SIGMETRICS Perform.

Eval. Rev., vol. 48, no. 3, pp. 79–80, mar 2021. [Online]. Available:
https://doi.org/10.1145/3453953.3453971

[19] P. Nain, G. Vardoyan, S. Guha, and D. Towsley, “Analysis of a tripartite
entanglement distribution switch,” Queueing Systems, 2022.

[20] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in
quantum switches: Protocol design and stability analysis,” 2021.
[Online]. Available: https://arxiv.org/abs/2110.04116

[21] T. Vasantam and D. Towsley, “A throughput optimal scheduling policy
for a quantum switch,” in Quantum Computing, Communication, and

Simulation II, P. R. Hemmer and A. L. Migdall, Eds. SPIE, mar 2022.

[22] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic
analysis of a quantum entanglement switch,” ACM SIGMETRICS Per-

formance Evaluation Review, vol. 47, no. 2, pp. 27–29, 2019.

[23] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and

Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking, 2006, vol. 1, no. 1.

[24] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement
purification for quantum communication,” Nature, vol. 410, no. 6832,
pp. 1067–1070, 2001.

[25] D. Levonian, R. Riedinger, B. Machielse, E. Knall, M. Bhaskar,
C. Knaut, R. Bekenstein, H. Park, M. Lončar, and M. Lukin, “Optical
entanglement of distinguishable quantum emitters,” Physical Review

Letters, vol. 128, no. 21, p. 213602, 2022.

[26] A. M. Tyryshkin, S. Tojo, J. J. Morton, H. Riemann, Abrosimov et al.,
“Electron spin coherence exceeding seconds in high-purity silicon,”
Nature materials, vol. 11, no. 2, pp. 143–147, 2012.

[27] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo,
T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress et al.,
“Heralded entanglement between solid-state qubits separated by three
metres,” Nature.

[28] M. Mobayenjarihani, G. Vardoyan, and D. Towsley, “Optimistic en-
tanglement purification with few quantum memories,” in 2021 IEEE

International Conference on Quantum Computing and Engineering

(QCE). IEEE, 2021, pp. 439–440.
[29] G. Bacciagaluppi, “The Role of Decoherence in Quantum Mechanics,”

in The Stanford Encyclopedia of Philosophy, Fall 2020 ed., E. N. Zalta,
Ed. Metaphysics Research Lab, Stanford University, 2020.

[30] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[31] M. J. Neely, “Stability and capacity regions or discrete time queueing
networks,” arXiv preprint arXiv:1003.3396, 2010.

[32] L. Tassiulas, “Scheduling and performance limits of networks with con-
stantly changing topology,” IEEE Transactions on Information Theory,
vol. 43, no. 3, pp. 1067–1073, 1997.

[33] J. Han and A. Treglown, “The complexity of perfect matchings
and packings in dense hypergraphs,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.06147

[34] A. Schrijver et al., Combinatorial optimization: polyhedra and effi-

ciency. Springer, 2003, vol. 24.
[35] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-

ics, vol. 17, pp. 449–467, 1965.

