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ABSTRACT Identifying the location of faults, anomalies, and failures is a long-standing but critical

challenge in power system networks. The implementation of smart meters and advanced sensor measurement

technologies in recent years has allowed power systems operators to more accurately identify fault locations,

quickly resolve problems, and improve the overall reliability of power networks. However, the presence of

complex topology changes, penetration of renewable energy resources, stochastic propagation of anomalies

in the network, and missing data require the use of new approaches that are sensitive to these issues. This

article introduces an innovative method that uses a graph convolutional network (GCN) combined with a

modified probability propagation matrix and dual graphs to identify and locate node/line anomalies using

network sensors installed on both nodes and lines. Also, an optimization model was developed to find the

most likely sources of anomalies across all nodes and edges of the network. The proposedmethod, which was

evaluated on the IEEE 118-bus system and a set of simulated data, demonstrated outstanding performance

in handling complex topologies and missing data. Although the proposed model is designed for power

networks, its flexible characteristics make it applicable tomany sensor-intensive networks or graph structures

(e.g., transportation and social networks) where anomaly detection at nodes and/or edges is critical.

INDEX TERMS Anomaly detection, graph convolutional networks, node and line sensors, smart power

networks.

I. INTRODUCTION

Power networks have undergone significant transformation in

recent years, driven by advances in smart sensing technolo-

gies and communication infrastructures. Traditional power

systems have evolved into smart grids through the integration

of smart sensors, controllers, and real-time data transmission

capabilities [1]. Despite these innovations, modern power

networks remain vulnerable to a variety of anomalies that

can cause temporary disruptions or extended outages. These

anomalies generally fall into two categories: cyber-attacks

targeting the digital infrastructure and physical anomalies

caused by environmental factors or equipment failures, such
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as lightning strikes, storms, or hardware degradation. Accu-

rate and timely fault identification is crucial to minimizing

downtime andmaintaining system reliability. However, locat-

ing faults in real time remains a major challenge due to the

inherent complexity of power systems, the limited availability

of high-resolution measurement devices, and the need for fast

and low-latency communication [2]. The growing integra-

tion of distributed energy resources, particularly renewable

sources, further complicates this task. Distributed generators

(DG) introduce dynamic and bidirectional power flows that

alter the operating state of the network, making anomaly

detection and localization more difficult [3], [4].

Smart sensors such as Phasor Measurement Units (PMUs)

and smart meters have significantly enhanced the accuracy of

anomaly detection. However, the high cost of PMUs requires
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strategic and sparse deployment to balance coverage and

economic feasibility [5]. In this context, the rise of deep

learning provides promising tools to leverage the increasing

volume of sensor data, particularly from affordable, widely

deployed devices, while reducing dependence on expensive

infrastructure. To fully exploit the potential of data-driven

methods, it is crucial to integrate sensor observations with

the structural and topological properties of the power grid.

Power networks naturally form graph-structured systems,

where measurements are distributed across nodes and edges.

Therefore, models capable of jointly learning from multi-

variate sensor data and the underlying network topology

are essential. As power systems continue to scale in com-

plexity, the need for intelligent frameworks that combine

sensor data with graph-based modeling becomes increas-

ingly urgent for accurate, interpretable, and real-time fault

detection.

Graph Convolutional Networks (GCNs) offer a compelling

solution to the challenges of fault detection and localization

in modern power networks. By naturally aligning with the

graph-structured topology of these systems—where buses

and substations are represented as nodes and transmission

lines as edges—GCNs are well-suited for capturing the

spatial and relational dynamics of fault propagation. Lever-

aging a propagation matrix that encodes how anomalies

travel through the network, GCNs enhance the precision

and interpretability of anomaly detection compared to tra-

ditional machine learning models, which often operate as

non-interpretable. This paper proposes a novel GCN-based

framework that utilizes both node- and edge-level sensor

data to detect and isolate anomalies in power networks.

Beyond identifying anomalous components, the framework

integrates GCN outputs into an optimization model to refine

the localization of faults and assess their broader impact.

By combining structural information with data-driven learn-

ing, this approach addresses the critical need for accurate,

scalable, and interpretable solutions in increasingly complex

grid environments. To our knowledge, this is the first frame-

work to simultaneously use edge sensor and node sensor data

within a GCN architecture to locate anomalous components

and trace the origin of faults in the network.

The remainder of this paper is organized as follows:

Section II provides a review and discussion of previous

research on network anomaly detection. Section III intro-

duces the proposed anomaly detection model, covering the

necessary background information, problem formulation,

and identification of anomaly sources. Section IV offers

a detailed analysis of numerical experiments and results.

Finally, Section V concludes the paper and outlines directions

for future work.

II. LITERATURE REVIEW

Several methods exist for anomaly detection and isola-

tion in power system networks, ranging from traditional

transmission line modeling techniques to modern machine

learning approaches that enhance accuracy (e.g., [6], [7]).

Chen et al. [7] provides a comprehensive review of fault

detection, classification, and location techniques for trans-

mission and distribution systems. In the following sub-

sections, we review the key literature in both categories

and discuss their limitations, which motivate our proposed

approach.

A. TRADITIONAL MODELS FOR POWER SYSTEMS

ANOMALY DETECTION AND ISOLATION

Traditional fault detection methods in power systems, such

as overcurrent protection, distance protection, and differen-

tial protection, rely on deterministic models based on fixed

thresholds, physical laws, and well-established equations.

These techniques are simple, interpretable, and effective

under predictable conditions, but struggle with the complex-

ity and variability of modern large-scale networks. Among

these, transmission line modeling stands out as a more flex-

ible traditional approach. It uses impedance-based calcula-

tions, traveling wave analysis, distributed parameter models,

and advanced numerical techniques to detect and localize

faults. However, these methods require high-precision, syn-

chronized data to maintain accuracy in dynamic network

environments. Takagi et al. [8] introduced a method using

only one-terminal voltage and current data, pioneering the

use of microprocessor-based fault location by accounting for

load flow, fault resistance, and mutual coupling. Signal pro-

cessing techniques, particularly wavelet transforms, have also

shown promise in transient-based fault detection, offering

higher precision and robustness to fault resistance and system

variations [9]. Other notable advances include Galijasevic

and Abur’s [10] use of voltage sags and fuzzy logic for low-

cost, accurate fault location, and Brahma and Girgis’s [11]

technique employing synchronized voltage measurements

to mitigate current transformer (CT) errors. Liu et al. [12]

extended fault location methods to multi-terminal lines using

PMUs, significantly reducing error rates. Further improve-

ments were introduced by [13], who refined synchronized

sampling techniques by accounting for series losses and solv-

ing the Telegrapher’s Equations in the time domain. While

accurate, this approach requires detailed line parameters, lim-

iting its practicality in complex networks. The integration

of PMUs represents a major step forward, enabling real-

time, system-wide monitoring. Jiang et al. [14] demonstrated

how PMU-based synchronization can overcome limitations

of conventional methods. Similarly, Trindade et al. [15] pro-

posed a low-cost approach for distribution networks using

smart feeder meters.

In summary, traditional methods for anomaly detection

and isolation in power systems, particularly those based on

transmission line modeling, exhibit several critical shortcom-

ings. These include their inability to effectively handle the

complexity of modern large-scale network topologies, the

challenge of acquiring precise and synchronized data across

distributed systems, and the difficulty of accurately modeling

dynamic system behavior under diverse and unpredictable
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fault conditions. Furthermore, achieving a balance between

accuracy and computational efficiency becomes increasingly

problematic as the size, heterogeneity, and variability of the

power system increases. Traditional approaches often lack the

adaptability required to address evolving fault scenarios and

are heavily reliant on detailed physical models, which can

be impractical to develop and maintain. In contrast, machine

learning techniques provide a more robust, flexible, and data-

driven alternative, capable of learning complex patterns from

historical and real-time data, thus reducing dependence on

intricate physical modeling and improving adaptability to

dynamic power system environments.

B. MACHINE LEARNING MODELS FOR POWER SYSTEMS

ANOMALY DETECTION AND ISOLATION

In recent years, machine learning (ML) models—especially

neural network-based approaches—have gained significant

traction for fault detection and isolation in power sys-

tems. These models offer robust alternatives to traditional

techniques by addressing challenges related to system com-

plexity, measurement variability, and adaptability. Yadav and

Dash [21] provided a comprehensive review of artificial

neural networks (ANNs) for transmission line protection,

highlighting their adaptability to changing system condi-

tions and fast response times. Similarly, [20] emphasized

the effectiveness of neural models in overcoming limita-

tions in measurement collection at substations. Unsupervised

learning has also emerged as a cost-effective solution. For

example, [22] proposed a hierarchical anomaly detection

and multimodal classification approach for photovoltaic (PV)

systems, enabling more accurate fault diagnosis without

requiring additional hardware. Their model addresses super-

visory system limitations in handling complex abnormalities.

In the context of smart grids, Chen et al. [23] introduced

a GraphSAGE-based method for anomaly detection, which

leverages temporal similarities in node features to iden-

tify hidden false data. This graph-based learning approach

significantly improves key security metrics. A broader eval-

uation by Gholami and Srivastava [24] surveyed existing

ML methods for anomaly detection, classification, and local-

ization in distribution systems. The study identifies critical

challenges, including the need for large labeled datasets, non-

stationary operating conditions, and the demand for real-time

processing. The authors advocate for integrating ML with

domain knowledge and advanced data processing techniques

to improve system reliability and efficiency. Furthermore,

advanced deep learning architectures—such as recurrent neu-

ral networks (RNNs), convolutional neural networks (CNNs),

generative adversarial networks (GANs), and autoencoders—

have enabled more sophisticated applications in time-series

prediction, fault diagnosis, and control. These models excel

at extracting latent features from complex data, driving sig-

nificant progress in intelligent power system monitoring and

management [25].

Although many machine learning models have been

widely employed for anomaly detection and isolation in

power systems, they face notable challenges. Their non-

interpretable nature leads to limited interpretability and

higher-than-expected false positive rates, making them diffi-

cult to apply in practice. Additionally, their performance often

depends heavily on the network topology, reducing its robust-

ness. To address these limitations, graph-based approaches—

such as Graph Neural Networks (GNNs)—offer a more

structured and topology-aware solution, better aligned with

the complex and interconnected nature of power grids. Liao

et al. [26] provide a concise overview of GNN applications in

power systems, including fault analysis, time series predic-

tion, and power flow estimation. Takiddin et al. [27] employ

Chebyshev-based GNNs to identify system status and local-

ize risks, showing improved detection rates over traditional

methods. Vincent et al. [28] demonstrate the effectiveness of

GCNs in detecting False Data Injection (FDI) attacks, signif-

icantly enhancing smart grid cybersecurity. Chen et al. [29]

propose a GCN framework for fault localization in distribu-

tion networks, outperforming conventional ML methods in

accuracy, noise resistance, and robustness on the IEEE 123-

bus benchmark. An extension by Chen et al. [23] improves

the GraphSAGE model by incorporating temporal corre-

lations, further enhancing anomaly detection performance.

Recent research also explores advanced GNN-based models

for anomaly detection in attributed networks. These include

ANOGAT-Sparse-TL for class imbalance handling [30], dual

variational autoencoders with GANs for sparsity and nonlin-

earity [31], residual-based GCNs with hypersphere mapping

for better anomaly separation [32], and sparse canonical cor-

relation analysis for high-dimensional data alignment [33].

While promising, these methods are largely developed for

social networks and do not yet incorporate physical con-

straints or the operational characteristics of power systems.

C. LITERATURE SUMMARY AND CONTRIBUTIONS OF THE

PAPER

While numerous studies have addressed fault and anomaly

detection in power systems, most fall short in three key areas:

handling complex and dynamic network topologies, integrat-

ing both node and line sensor data, and providing flexible

models that do not rely on predefined anomaly distributions.

Existing methods often assume specific fault distributions

and focus solely on node- or line-level anomalies, limiting

their applicability in real-world scenarios. In contrast, our

approach introduces a Graph Convolutional Network (GCN)-

based framework that jointly utilizes bus and line sensor

data, encoded as node and edge features via a dual-graph

representation. We construct the network adjacency matrix

using a transformation matrix, which is then updated using

a learned fault propagation matrix. This enables accurate

fault localization at both node and line levels, even under

changing topologies or incomplete data. A key contribution

of our work is the modeling of anomaly propagation as a

stochastic process rather than a deterministic one, which

better reflects real-world conditions in power systems. Fac-

tors such as fluctuating loads, varying line impedances,
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and intermittent renewable generation cause anomalies to

propagate in uncertain and non-uniform ways. Our model

captures these dynamics by learning probabilistic influence

patterns throughout the network. Additionally, we address

a critical operational challenge: guiding system operators

in dispatching maintenance teams across large, renewable-

integrated grids. By improving fault localization accuracy and

system interpretability, our method can enhance the resilience

and reliability of modern power systems. We selected GCN

over other graph-based learning models (e.g., GAT, Graph-

SAGE) due to its computational efficiency, simplicity, and

scalability for fixed-topology networks, while still capturing

attention-like behavior through a learned propagation matrix

that models node influence.

III. THE PROPOSED FRAMEWORK

A. PRELIMINARIES

In this section, we introduce the foundational elements of

power system equations and graph neural networks.

1) POWER SYSTEM MODELING

First, we review the mathematical models that govern elec-

trical power systems, including the equations for electricity

flow within the network. Power flow analysis examines

power networks, focusing on currents, voltages, and power

distribution at each bus in the system. The main objective

is to identify voltage levels, power flows, and associ-

ated losses in the network during steady-state operations.

Although elements of the power network, such as lines

and transformers, have constant parameters, suggesting a

linear system, the power flow problem is inherently nonlin-

ear. This nonlinearity arises from the complex relationships

between voltage, current, and power at each bus. Power

flow calculations, which involve solving nonlinear equations,

are essential to understand how an electrical transmission

system responds to specific loads and generator output.

These calculations are critical for power system operations

and planning. For a network with n independent buses,

we typically formulate a system of equations. This system

defines the relationships between voltages and currents at

each bus using the bus admittance matrix, as shown in

Equation (1):










Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n
...

...
. . .

...

Yn1 Yn2 · · · Ynn





















V1
V2
...

Vn











=











I1
I2
...

In











, (1)

or, more concisely shows in Equation (2),

Y× V = I, (2)

where I denotes the vector of current injections and V repre-

sents the vector of voltages at each bus. The termY, known as

the bus admittance matrix, plays a crucial role. The diagonal

entries, Yii, represent the self-admittance at bus i. This is cal-

culated as the sum of all admittances for branches connected

to bus i. Additionally, the bus current can be expressed in

terms of bus voltage and power as follows:

Ii =
Si

Vi
=
SGi − SDi

Vi
=

(PGi − PDi )− j(QGi − QDi )

Vi
, (3)

Here, S represents the complex power injection vector. PGi
and QGi are the real and reactive power outputs of the gen-

erator at bus i, while PDi and QDi represent the real and

reactive power loads at bus i. Equation (3) simplifies the

relationship between voltage, power injections, and current at

each bus. By integrating this into the bus admittance equation,

we obtain the following:

(PGi − PDi )− j(QGi − QDi )Vi =

n
∑

j=1

YijVj, i = 1, . . . , n.

(4)

In power flow analysis, when load demands are known,

we define the following bus power injections:

Pi = PGi − PDi (5)

Qi = QGi − QDi (6)

Substituting these values into the power flow equation gives

the general form:

Pi − jQiVi =

n
∑

j=1

YijVj, i = 1, 2, . . . , n. (7)

Equations (4)- (7) highlight the core components of the net-

work’s power flow equations. By decomposing them into real

and imaginary parts, we can formulate two equations per

bus, involving four variables: real power P, reactive powerQ,

voltage V , and angle θ . To solve the power flow equations,

two of these variables must be known for each bus. Several

constraints must be taken into account when solving power

flow equations, such as generator limitations, voltage limits,

and transmission line capacities. These constraints introduce

non-linearity into the equations, making them more difficult

to solve.

In this paper, we use the Pandapower library in Python

to test the system under various fault conditions. Its robust

capabilities help manage the complexities of non-linear

power system optimization. This enables us to calculate the

optimal power flow and obtain comprehensive line data.

This includes active and reactive power flowing through

the lines, as well as detailed bus data, such as voltage

angle, amplitude, and active and reactive power injection at

each bus. In anomaly detection frameworks, it is essential

to thoroughly understand the normal operating behavior of

the power system. Anomalies often appear as unexpected

deviations in system parameters. These deviations can be

caused by faults, equipment failures, cyber-attacks, or other

disruptions. These deviations can lead to irregularities in

voltage levels, current flows, and power injections at various

buses, potentially compromising system stability. Power flow
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analysis plays a critical role in establishing baseline condi-

tions for voltages, currents, and power flows during normal

operations.

2) GRAPH CONVOLUTIONAL NETWORKS (GCNs)

Graph theory is a powerful tool for detecting anomalies in

power systems. This is because power systems naturally

exhibit graph-like structures. In this representation, buses in

the power system are modeled as nodes, while power lines are

represented as edges connecting the nodes. This framework

allows us to apply graph-theoretical methods to identify and

analyze anomalies in the network. To handle the complexities

of these structures, we use Graph Convolutional Networks

(GCNs), which are specifically designed for graph-structured

data. Traditional neural networks face limitations when deal-

ing with data characterized by complex relationships, such

as those found in social, biological, and communication net-

works. Their reliance on fixed-size input structures inhibits

the effective processing of relational information embedded

within graph topologies. GCNs overcome this limitation by

performing a specialized convolution operation on the graph.

Each node’s features are updated based on its own charac-

teristics and those of its neighboring nodes. This enables the

GCN to capture and analyze the underlying topology of the

power network, making it effective for anomaly detection.

The convolution operation in a GCN is represented mathe-

matically as follows:

X (l+1) = σ (BX (l)W (l)). (8)

The variable X (l) represents the feature matrix for all nodes

at layer l, and X (0) is the input feature matrix. The weight

matrix W (l) contains the trainable parameters for layer l.

The symbol σ represents a non-linear activation function,

such as ReLU (Rectified Linear Unit). Equation (8) shows

the fundamental operation of a GCN. The features of each

node are updated using both its own features and those of

its neighbors. The normalization of the adjacency matrix,

as shown below, is critical for handling varying node degrees

and maintaining numerical stability:

B = D−
1
2AD−

1
2 . (9)

The adjacency matrix A represents the graph, where Aij indi-

cates the presence of an edge from node i to node j. Typically,

Aii is zero unless self-loops are included. The degree matrix

D is diagonal, with each element Dii representing the sum

of the weights of all edges connected to node i, known as

the degree of node i. Equation (9) shows how the adjacency

matrix is normalized to prevent nodes with high degrees

from disproportionately influencing the feature aggregation

process.

As shown in Equation (8), the propagation rule is the

mechanism by which the GCN updates the features of each

node in each layer. The features are transformed by multi-

plying with the weight matrix and then processed through a

non-linear activation function. As a result, the GCN leverages

both feature information and the graph structure. This allows

it to learn comprehensive representations of nodes based

on their attributes and interconnections within the graph.

GCNs are versatile and extend beyond anomaly detection.

They are suitable for tasks like node binary classification,

where the goal is to assign each node to one of two cat-

egories. In node binary classification, the GCN learns to

distinguish between two classes by analyzing node features

and the relationships between nodes in the graph. GCNs

can also be used for tasks like multi-class classification,

link prediction, and clustering. They take advantage of the

graph’s structure to enhance predictive accuracy and provide

valuable insights. This capability makes GCNs particularly

useful for complex systems, like power systems, where the

interconnections between buses significantly affect the sys-

tem’s overall behavior. By using GCNs for these tasks,

the model leverages the graph topology, ensuring that clas-

sifications and predictions are informed by the network’

connections.

The output layer for node binary classification, using a

sigmoid activation function, is mathematically represented as

follows:

ŷ = [ŷ1, . . . , ŷ|N |] = σ

(

X (L)W (L) + b(L)
)

, (10)

Here, ŷ is the |N |×1 vector containing the predicted prob-

abilities for each of the n nodes. X (L) is the |N |×dL matrix of

node features from the final layer L, where dL is the number

of features in layer L.W (L) is the dL×1weight matrix, which,

when multiplied by X (L), results in a |N |×1 vector. b(L) is the

|N | × 1 bias vector, typically broadcast to match the number

of nodes n. This ensures that the output Ŷ is a |N | × 1 vector,

where each entry ŷi represents the predicted probability that

node i is anomalous.

B. PROPOSED METHOD

1) PROBLEM SETUP

Power networks are naturally represented as attributed

graphs. In this representation, nodes correspond to buses,

switches, or substations, while edges represent the trans-

mission lines connecting them. This graph-based modeling

allows us to apply GCNs, which are specifically designed to

handle data with complex topological structures. The input

to our GCN model consists of a modified adjacency matrix

that captures the connectivity of the network. It includes both

node and line connections, along with sensor data. These

sensors collect data on various electrical parameters, pro-

viding rich features for both nodes (e.g., voltage, current)

and edges (e.g., power flow). By constructing a dual graph,

we integrate both the node and edge features within the GCN

model. This provides a comprehensive view of the state of the

network.

The adjacency matrix is used to create the propagation

matrix in our model. This matrix governs how information is

distributed across the network during convolution operations.

The convolution layers aggregate information from a node’s
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FIGURE 1. An overview of the proposed model. In (c), the edges are
converted to nodes (shown in red) and all new edges are shown with
dashed lines. The red nodes and edges in (f) and (g) represent the
detected anomalous nodes and edges. The optimization model results in
the removal of unconnected detected anomalous nodes and edges.

neighbors and connected edges. This effectively captures

the complex relationships and dependencies inherent in the

power network. This process enables the GCN to model how

local anomalies can influence distant parts of the network

due to the interconnected nature of power systems. A key

enhancement in our approach is the dynamic update of the

adjacency matrix. This updated matrix incorporates proba-

bilistic weights that represent the likelihood of nonphysical

connections between nodes and lines. This effectively cap-

tures the potential impact of faults at specific locations across

the network. This probabilistic adjustment allows the model

to adapt to network abnormalities and structural changes

caused by failures, improving its response to anomalies. After

the convolution and activation processes, the resulting feature

maps are passed through fully connected layers. This leads to

the final output layer. This layer provides the probabilities of

faults occurring at all nodes and lines in the network. In addi-

tion, we propose a mathematical formulation that uses the

output layer and the propagation matrix to accurately deter-

mine the sources of anomalies. This formulation enhances the

model’s ability to pinpoint the exact location of faults within

the network by considering both the learned features and the

network’s topology.

The model detects and locates faults in a smart power grid

by leveraging the structure and data of the power system in

the form of a graph. The smart power system continuously

provides data that is used to build a graph representation of

the network. A Graph Convolutional Network (GCN) pro-

cesses this graph, considering both the node/edge features and

connectivity, to predict where faults are likely to occur. The

final step uses these predictions to optimize fault localiza-

tion, making the deployment of maintenance resources more

efficient. This approach is particularly powerful because it

not only uses sensor data (e.g., voltage, current), but also

considers the relationships between different parts of the

network. This makes it more effective in identifying complex

fault patterns that might be missed by traditional methods.

An overview of the proposed structure is shown in Fig. 1,

including the workflow of a Graph Convolutional Network

(GCN) model designed to predict fault locations in an elec-

trical grid using dual graph representation. In the remainder

of this section, we discuss each element of this model in

detail.

2) CONSTRUCTION OF THE DUAL GRAPH AND AUGMENTED

ADJACENCY MATRIX

The power network is represented as a graph G(N ,E), where

N denotes the set of nodes (buses) and E denotes the set of

lines (edges). Each node and line is equipped with sensors

that provide crucial measurements for network monitoring

and fault detection. Sensor data is organized into two feature

matrices:

a: - NODE ATTRIBUTE/FEATURE MATRIX

XN ∈ R
|N |×SN , where SN is the number of sensors per node.

This matrix contains sensor readings for each node in the

network.

b: - LINE ATTRIBUTE/FEATURE MATRIX

XE ∈ R
|E|×SE , where SE is the number of sensors per line.

This matrix contains sensor readings for each line.

To model the physical connectivity of the network, we use

the original adjacency matrix A ∈ R
|N |×|N |, which captures

the direct connections between nodes based on the physical

layout of the power grid. To incorporate both node and line

information into a unified framework, we construct a dual

graph G′(L,E ′). In this dual graph, the lines E of the origi-

nal graph G are treated as nodes, and their connections are

established based on shared nodes in G. This transforma-

tion is facilitated by the incidence matrix B ∈ R
|N |×|E|,

which maps lines to their corresponding nodes in G. The

adjacency matrix A′ ∈ R
|E|×|E| of the dual graph captures

the connectivity between lines. Now, to fully integrate node-

node, line-line, and node-line connections, we construct an

augmented adjacency matrix A′′ as follows:

A′′ =

(

A B

B⊤ A′

)

where

• A represents the adjacency between nodes (node-node

connections) in the original graph.

• A′ represents the adjacency between lines (line-line con-

nections) in the dual graph.

• B and B⊤ represent the incidence relationships between

nodes and lines (node-line connections).

This augmented matrix A′′ ∈ R
(|N+E|)×(|N+E|) effectively

combines adjacency information from both the original graph

and the dual graph, allowing us to treat edge features

as node features within a comprehensive graph structure.

In addition to the physical connections captured by A′′,

we introduce an attention (propagation) matrix P = [pij] ∈

R
(|N+E|)×(|N+E|), which captures the probabilistic impact of

anomalies propagating from one element (node or line) to

another. Here, pij denotes the probability that an anomaly
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in element i will affect element j. To model both the physi-

cal topology and the probabilistic propagation of anomalies,

we update the augmented adjacency matrix A′′ by integrating

the attention matrix P:

A′′updated = max(A′′,P).

This updated matrix A′′updated incorporates both direct physi-

cal connections and indirect probabilistic influences between

nodes and lines, increasing our ability to analyze the behavior

of the network under fault conditions. We use the max func-

tion to calculate A′′ in order to capture the strongest influence,

whether it arises from physical adjacency or probabilistic

propagation, between any two elements. This ensures that the

final matrix reflects the most important connection, which is

critical in scenarios where a probabilistic anomalymay have a

stronger effect than a direct physical link.Moreover, using the

max function avoids diluting strong propagation paths that

could occur with averaging, especially when the propagation

matrix P reveals latent but impactful interactions not captured

in the physical topology.

c: - FEATURE MATRIX AUGMENTATION

We also augment the feature matrices to align with the

structure of A′′updated:

X =

(

XN
XE

)

,

where X ∈ R
(|N+E|)×S combines the node and line features

into a single matrix, with S = max(SN , SE ).

3) GRAPH CONVOLUTIONAL NETWORK IMPLEMENTATION

Using the updated adjacency matrix A′′updated and the aug-

mented feature matrix X , we employ a graph convolutional

network (GCN) to process the graph. The GCN leverages

the enhanced graph structure to learn representations that

capture both physical and probabilistic interactions within the

network. This approach improves the accuracy of the location

and prediction of the fault by considering the full spectrum

of available data. The GCN operates by iteratively updating

the feature representations of nodes and lines through layers

that aggregate information from their neighbors, as defined

by A′′updated:

X (l+1) = σ

(

D̂−
1
2 Â′′D̂−

1
2X (l)W (l)

)

, (11)

Eq. (11) describes how the features of the nodes and lines

are updated and aggregated from the neighboring nodes and

edges in each layer of the GCN. The convolution utilizes the

normalized adjacencymatrix Â′′, the degree matrix D̂, and the

weight matrixW (l) to apply the nonlinear activation function

σ . With X (0) = X , the augmented feature matrix that includes

the node and edge features, where D̂ii =
∑

j Â
′′
ij. The weight

vector W (l) is learned during the training process. The final

output layer of the GCN uses a sigmoid activation function to

map the learned features to the anomaly probabilities:

q = σ

(

X (L)W (L)
)

,

where q = [q1, q2, . . . , q|N+E|] is the vector of estimated

anomaly probabilities for all nodes and lines. Each element qi
represents the estimated probability that an anomaly occurs at

node or line i. By analyzing q, we can identify and localize

faults within the network using two common approaches:

1) Thresholding: Set a predefined threshold τ (e.g., τ =

0.5). If qi ≥ τ , node or line i is considered anomalous;

otherwise, it is considered normal.

2) Ranking: Rank all nodes and lines based on their

anomaly probabilities qi. Nodes or lines with higher

qi values are deemed more likely to be anomalous.

This method is particularly useful when the number of

anomalies is unknown or when prioritizing resources

for further investigation.

Using these methods, q effectively facilitates the detection

and localization of anomalies within the network.

C. LOCATING THE SOURCES OF ANOMALIES: AN

OPTIMIZATION APPROACH

Using the anomaly probability vector q through thresholding

and ranking is a foundational approach for anomaly detec-

tion. However, these methods face significant challenges.

Selecting appropriate thresholds is non-trivial and can greatly

affect detection accuracy. An improperly chosen threshold

may result in numerous false positives or negatives. The

potential for detecting widespread anomalies can overwhelm

resources and obscure meaningful insights. The model might

predict a high probability of anomalies across many nodes

and lines without a clear justification. In addition, the lack

of contextual and relational information hampers the ability

to understand and justify detected anomalies. The model

does not connect anomalies based on network topology or

the relationships between nodes and lines. Scalability and

adaptability issues also arise in large or dynamic networks.

Computational demands and evolving conditions can affect

performance. Addressing these challenges may require inte-

grating additional information, such as network topology,

using adaptive thresholds, enhancing the interpretability of

the model, and designing algorithms that consider intercon-

nections between nodes and lines. This would provide a more

cohesive and justifiable anomaly detection strategy. In this

section, we propose an optimization model that addresses

some of these challenges in an interpretable manner by incor-

porating topological information about the network.

Given the probability pij of the propagation of the anomaly

from node i to node j, a system of equations can be formulated

to identify the sources of the anomalies. This system incorpo-

rates a balancing parameter α and is expressed as follows:

qi = αxi + (1− α)

|N+E|
∑

j=1

xjpji, i ∈ {1, . . . , |N + E|}. (12)
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The equation for balancing, as depicted in Eq. (12), demon-

strates the adjustment of probability by considering both

direct effects and propagation influences within the network.

The variables xi represent the likelihood that node i is the

cause of anomalies. The parameter α is a weighting factor

that changes the model’s emphasis on the inherent anomaly

generation capabilities of each node and the impacts exerted

on each node by other nodes. When the value of α is set

to 1, the model only takes into account the inherent prob-

abilities x and fully disregards the influence of propagation

from other nodes. This scenario operates on the assumption

that the nodes produce anomalies in a manner that is not

influenced by each other. When the value of α is set to 0,

the model assigns the observed anomalies entirely to the

effects of other nodes, as defined by the propagationmatrixP,

without considering any inherent characteristics of the nodes

themselves. The values of α ranging from 0 to 1 enable the

model to consider both inherent and transmitted influences,

effectively balancing these aspects based on the magnitude of

α. A higher value of α increases the importance of the node’s

own likelihood of generating anomalies, whereas a lower

value of α highlights the relevance of interactions between

nodes. In basic network layouts, such as radial distribution

networks, nodes generally function with significant indepen-

dence. In this context, positioning α around 1 is beneficial,

highlighting the intrinsic anomaly production capacities of

individual nodes. In contrast, in intricate or interconnected

network architectures, where node interactions substantially

affect operational dynamics, an α value between 0 and 1 is

ideal. This enables the model to detect both anomalies pro-

duced by the nodes and those transmitted through network

interactions.

Selecting the appropriate value of α is essential to accu-

rately represent the behavior of the network. To optimize this

parameter, it is necessary to have an extensive understanding

of the network dynamics and potentially perform an iterative

calibration using real-world data. This equilibrium aids in

discerning the most probable origins of anomalies by taking

into account both the potential independent generation of

anomalies by nodes and their potential impact on, or sensitiv-

ity to, the network’s structure. Given that xis are probability

values for the dual network with both nodes and edges as

nodes, we need to ensure the following is satisfied:

|N+E|
∑

i=1

xi = 1 and 0 ≤ xi ≤ 1 (13)

To rewrite Eqs. (13)-(14) in matrix form, we define the vec-

tors and matrices as follows:

q =











q1
q2
...

qN











, x =











x1
x2
...

xN











,P =





p11 · p1|N+E|
· · ·

pN1 · pN |N+E|



 (14)

The system of equations in Eq. (10) can be rewritten in

vector-matrix form as:

q = αx+ (1− α)PT x,

where PT denotes the transpose of the matrix P. Rearranging

the equation, we get:

q = (I + (1− α)PT )x.

To solve for x, we need to isolate it as

(I + (1− α)PT )x = q.

Given that I + (1− α)PT is invertible (because all its eigen-

values are positive, ensuring that its determinant is nonzero),

we can multiply both sides by the inverse of I + (1− α)PT :

x = (I + (1− α)PT )−1q.

In light of the limitations outlined in Eq. (13)), it is impera-

tive to verify that the solution vector x complies with these

requirements. These constraints can be effectively addressed

by employing numerical optimization approaches. An exam-

ple of a method is the constrained optimization strategy in

which we solve the following linear problem:

minimize ∥(I + (1− α)PT )x− q∥

subject to

|N+E|
∑

i=1

xi = 1,

0 ≤ xi ≤ 1, ∀i = {1, 2, . . . , |N + E|}.

Now, we can use the mode of the optimized vector x to

identify the most probable origins of faults in the network.

The objective function is quadratic because it relies on the

metric norm, which is common in least squares problems.

Quadratic objective functions are convex when the Hessian

matrix is positive semi-definite. Since the objective function

is quadratic and the constraints are linear, we can conclude

that the optimization problem is convex. Convex optimization

problems have the advantage that any local minimum is

also a global minimum, making it easier to find the solu-

tion. Overall, the optimization problem, with its quadratic

objective function and linear constraints, is well-suited for

convex optimization methods, which can solve it effectively.

The complexity of the problem is typically expressed as a

polynomial function of the number of variables. This means

that it can be effectively managed for moderately large prob-

lems. This allows network analysis and anomaly detection

to be applied in practical settings, even with a large number

of nodes and variables. The vector x = [x1, . . . , x|N+E|],

obtained from the optimization model in Section III-C, rep-

resents the likelihood that each node or line in the network

is the source of an anomaly. The most likely fault source is

identified as the element with the highest value in x, which

is labeled as faulty in the network status. The probability

vector x also influences the status of other nodes and lines.

If a node or line is connected to others with a high proba-

bility of fault, it is more likely to be marked as faulty. This
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Algorithm 1 Update Network Status Based on Optimal

Anomaly Source Probabilities

1: Input:

- Initial labels: ŷ = {ŷ1, ŷ2, . . . , ŷ|N+E|}

- Source probabilities: x = {x1, x2, . . . , x|N+E|}

- Augmented propagation matrix: PR(|N+E|)×(|N+E|)

2: Output:

Updated labels ŷ = {ŷ1, ŷ2, . . . , ŷ|N+E|}

3: Step 1: Identify Most Likely Anomaly Source

4: i∗← argmaxj xj
5: ŷi∗ ← 1

6: ei
∗
← one-hot vector for i∗

7: Step 2: Compute Influence Scores

8: for i = 1 to |N + E| do

9: fi←
∑|N+E|

j=1 ei
∗

j · pji
10: end for

11: Step 3: Update Labels

12: for i = 1 to |N + E| do

13: ŷi← ŷi · sign(fi)

14: end for

15: Return: Updated label vector ŷ

approach ensures that the network status reflects both the

direct identification of faults and their ripple effects through-

out the network. Any nodes or lines previously estimated to

be anomalous but not stochastically connected to the detected

source should be labeled as normal. This approach aims

to remove false positives—elements that were mistakenly

identified as anomalous. In Algorithm 1, we present all the

steps in a matrix form, providing a scalable method to update

the estimated status of the network once the results of the

optimization model are obtained.

IV. NUMERICAL EXPERIMENTS

In this article, we used the IEEE 118-bus test system [34].

This system is commonly used in power system research

to evaluate new methodologies for fault analysis, stability

evaluation, and grid optimization techniques. This system

presents a challenging environment that closely resembles the

operational characteristics and constraints of real large-scale

power networks. The complexity of fault analysis in this

system arises from its sophisticated network topology. The

IEEE 118-bus test system is complex due to its interconnected

loops and paths. These complexities make it difficult to accu-

rately determine the location of faults. This is because it is

challenging to determine the effect of faults based solely on

voltage and current readings. Furthermore, the presence of

several loops and pathways adds complexity in calculating

changes in network characteristics caused by faults. The net-

work configuration includes 12 interconnection lines across

FIGURE 2. Total generation (MW) at selected buses.

three zones: 7 lines connect Zone 2 to Zone 1, and 4 lines

link Zone 2 to Zone 3. Each of these lines is equipped with a

switch, allowing the operator to disconnect them as needed or

according to changes in the operational plan. We thoroughly

evaluated the performance of the proposed model and com-

pared it with benchmarkmodels in three distinct sections. The

power system in our study operates continuously for 24 hours

and consists of 22 solar generators distributed in three zones.

Zone 1 has 10 solar generators, each capable of produc-

ing 30MW. Zone 2 has 4 generators, each generating 25MW.

Zone 3 consists of 8 generators, eachwith a capacity of 2MW.

Fig. 2 shows the total electricity generation from buses 20,

21, 22, and 23, including the contribution from solar power.

We analyze various scenarios, including line and bus out-

ages, over a 24-hour period. We simulated 118 anomaly

scenarios, one for each bus outage, and 173 anomaly sce-

narios, one for each line outage, on the IEEE 118-bus

system.

The network uses a configuration of six sensors: four for

nodes (buses) and two for lines. The sensors deployed at the

nodes measure active power, reactive power, voltage ampli-

tude, and the node’s angle. These measurements are crucial

for monitoring and controlling the power system’s state.

Meanwhile, the sensors on the power lines monitor the active

and reactive power flow. These smart meters help achieve

highly reliable load forecasts. In addition, we used these

predictions as input for Monte Carlo simulations, treating

them as mean load values with a variance of 0.5. The system

simulation was conducted within the Jupyter environment,

using the Pandapower library for power system modeling.

We assume that the available sensors at the nodes and buses

can be used for fault detection. In addition, we studied the

impact of partial sensor availability in the network to make

the analysis more realistic (see Section 4.3.3). -Summary

of Power Flow Simulation: We used Pandapower to simu-

late our network, running the simulation for each time step

(one hour). Pandapower can simulate the load profile on the

IEEE 118-bus system by leveraging its time series simulation
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FIGURE 3. Graph of IEEE 118 - Buses on the same zone have the same
shape.

capabilities. Initially, the standard IEEE 118-bus network is

loaded, providing the system topology and parameters. A load

profile representing the variation of loads over 24 hours is

defined according to the IEEE 118-bus system, typically

using scaling factors to reflect peak and off-peak demand

periods throughout the day. To achieve more accurate estima-

tions, we use Monte Carlo simulations for the load modeling

of each bus. These scaling factors are applied to adjust the

loads on the network at each time step. Subsequently, for each

bus containing renewable energy, we account for specific

time periods during which electricity output is available.

We assumed a fixed value for the solar panel output rather

than using a probabilistic approach. Pandapower runs power

flow calculations for each hour, updating the loads according

to the defined profile. This process enables the analysis of

the performance of the system under varying load conditions

throughout the day. It allows the assessment of voltage pro-

files, line loads, and other operational parameters without

having to refer to specific code implementations.

-Graph Topology: The graph topology of the IEEE 118-bus

system is shown in Figs. 3 and 4. Fig. 3 presents the graph of

the IEEE 118-bus system, illustrating its complexity. Fig. 4

illustrates the IEEE 118-bus test system, where blue-colored

buses indicate power generation sources, such as generators

and solar panels. The system is divided into three zones,

with various connections and switches (S1, S2, etc.), which

are typically closed to manage the flow of power throughout

the network. As observed, the network is complex, which

leads some references to divide it into three distinct zones.

These zones are interconnected, which means that a fault or

interruption in one zone can affect the power flow and stabil-

ity of other zones. Managing the power flow between these

zones requires sophisticated control mechanisms to maintain

TABLE 1. Model hyperparameters.

FIGURE 4. Single diagram of IEEE 118-bus test system (blue-colored
buses indicate the presence of power generation sources).

voltage levels, frequency, and system stability. In particular,

the power system exhibits numerous rings or cycles within the

graph topology of each zone. These cycles add complexity to

the analysis, particularly in the context of anomaly detection.

The proposed framework includes several hyperparameters

and model setup variables, which we tuned using a limited

grid search over a small, representative subset of data. The

final selection reflects empirically optimal values within this

scope. A summary of the key hyperparameters and model

configuration is provided in Table 1.

A. SIMULATING ANOMALIES AND THEIR PROPAGATION

Fault detection in the IEEE 118-bus system is particularly

challenging due to its size and complexity. The intercon-

nected nature of the system means that a fault in one part of

the network can propagate and impact other areas, making it

difficult to isolate the fault quickly. Furthermore, the presence

of multiple zones adds to the complexity, as each zone could

have different operating conditions and sensitivities to faults.

To conduct a comprehensive analysis, we assumed numerous

scenarios for outages, considering anomalies at all nodes and

lines.

In this study, we simulated faults in both nodes and lines

of the power system network, assuming a complete outage

for each affected line or node. Based on this assumption,

wemodeled the power system’s response to these faults. After

each simulation, all sensor data was collected and analyzed

to assess the impact of the faults on the entire network,

providing insights into fault detection and system stability

under different fault conditions. Within the power network

simulation, we established fault indicators by setting precise

thresholds for active and reactive power, phase angle, and

voltage levels. These indicators serve to detect abnormal
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conditions and expected problems. We assumed that a 30%

increase or decrease in active or reactive power on the trans-

mission lines implies a significant departure from typical

operational circumstances, potentially indicating faults such

as short circuits, uneven loads, or equipment breakdowns.

In addition, we considered a power angle deviation exceed-

ing 45 degrees or falling below 30 degrees as an additional

indication of instability. These angles imply a deviation from

stable power flow, potentially caused by synchronization

problems or disturbances in the system. Regarding voltage

levels, we employed a threshold of surpassing 1.05 per unit

or falling below 0.95 per unit. This threshold represents the

boundaries at which voltage conditions could compromise

both the reliability of the system and the quality of power,

potentially prompting the activation of preventative mea-

sures. These criteria collectively function as fault indicators

to aid in the detection and diagnosis of faults, hence assuring

the stability and safety of the network. For line outages, there

are 173 × 24 instances. For bus outages, there are 118 ×

24 instances. After each outage simulation, our predefined

indicators allow us to determine the impact of each fault

on specific lines and nodes, depending on the timing and

location of the fault occurrence. Using this data, we can

calculate the probability of a fault impacting each particular

line or node over the 24-hour period. This result helps us

to update the adjacency matrix of the network. Given this

realistic preparation of scenarios, anomalies are propagated

according to the current load of the system, the topology of

the network, and other relevant factors, making the model

highly dynamic and realistically simulated for anomalies.

To construct the anomaly propagation matrix, we simulated

anomalies 50 times for each node and line, recording the fre-

quency with which anomalies propagated from node i to node

j. This resulted in an empirical probability matrix capturing

the likelihood of anomaly spread across the network. The

choice of 50 simulations was based on preliminary observa-

tions indicating that the propagation probabilities stabilized

around this point, offering a practical balance between sta-

tistical reliability and computational efficiency. It should be

pointed out that although generating the propagation matrix

P requires a large number of simulations (e.g., 15,000 for

the IEEE 118-bus system), this process is performed entirely

offline and does not impact the model’s real-time perfor-

mance. Additionally, because each simulation is independent,

the process is highly parallelizable and well-suited for dis-

tributed computing, making it scalable to larger networks.

It is important to note that if an anomaly occurs at a node

or line in the IEEE 118 system, it does not always impact the

same downstream nodes. The impact depends on the system

topology, the type of anomaly, and the effectiveness of the

protection and control mechanisms. In meshed systems such

as IEEE 118, power can be rerouted and the system can

adjust to anomalies, potentially minimizing or even prevent-

ing impacts on downstream nodes. In summary, anomalies

were introduced for each line and bus within the power

system, with the assumption that these anomalies directly

result in an outage of the affected line or bus. A 24-hour

simulation was performed during which a node/line outage

was assumed to occur at each time step. Sensor data was col-

lected from 173 lines and 118 buses throughout this period.

Similarly, a bus failure was simulated at each time interval

over a 24-hour duration, with sensor data collected again from

173 lines and 118 buses.

B. GRAPH CONSTRUCTION AND INITIAL FEATURE

TRANSFORMATION

In the proposed model, we employ a Graph Convolutional

Network (GCN) to predict fault locations within an electrical

grid comprising 118 buses and 173 lines. The architecture is

uniquely designed to handle dual graph representations —

one representing the buses and another for the lines. Each

bus node is characterized by data from four sensors, resulting

in a node feature matrix with dimensions 118× 4. Similarly,

each line, represented as an edge in the graph, is characterized

by data from two sensors, forming an edge feature matrix of

size 173×2. For the initial graph construction, we create two

adjacency matrices: Anode for the nodes (buses), and Aedge for

the edges (lines), sized 118×118 and 173×173 respectively.

These matrices are instrumental in defining the connectiv-

ity and relationship between the various components of the

grid. The input features are normalized to standardize the

data range between different sensors. To effectively utilize

edge features within our GCN model, we employ a dual

graph representation. This approach involves treating lines as

nodes in a secondary graph, allowing us to directly incorpo-

rate line-specific sensor data into the graph-based learning

framework. Using a transfer function, we construct a com-

prehensive adjacency matrix that encapsulates both node and

edge features. This matrix serves as the foundational structure

for the GCN, enabling the propagation of features across the

graph according to the defined relationships.

- Output Layer and Model Training: The final output layer

of GCN applies a sigmoid activation function to map the

features to probabilities, resulting in a 291 × 1 matrix. Each

element of this matrix represents the probability of a fault at

the corresponding node or edge, which is vital to identify

potential problems throughout the grid. The model uses a

binary cross-entropy loss function, which is well-suited for

the binary nature of fault prediction. We employ the Adam

optimizer, known for its effective handling of sparse gradients

and adaptive learning rate capabilities, making it particularly

suitable for training deep graph-based neural networks. This

architecture not only facilitates effective feature learning and

transformation specific to the topology and dynamics of elec-

trical grids, but also enhances the ability to accurately predict

and localize faults by leveraging both node- and edge-level

data.

C. ANOMALY DETECTION RESULTS

We evaluated the effectiveness of our model in detect-

ing anomalies in a binary setting for all nodes and lines,

where label 1 indicates an anomaly and label 0 indicates
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FIGURE 5. Histogram of load on buses 76 and 90.

normal. The performance metric used are accuracy, preci-

sion, F1-score, coverage, and recall, each providing unique

insights into the model’s ability to detect anomalies. Accu-

racy measures the overall proportion of correctly identified

instances, both anomalies and normal cases, but can be mis-

leading in imbalanced datasets where one class dominates.

Precision focuses on the model’s ability to correctly iden-

tify anomalies among all instances it predicts as anomalies,

indicating a low false positive rate when high; however,

overly emphasizing precision may cause the model to miss

actual anomalies if it becomes too conservative. Recall, also

known as sensitivity, assesses the model’s capacity to detect

all actual anomalies, minimizing false negatives, but opti-

mizing for recall alone might increase false positives. The

F1-Score balances precision and recall by calculating their

harmonic mean, offering a more comprehensive metric that

considers both false positives and false negatives, which is

particularly useful in cases with uneven class distribution or

differing costs of errors. Coverage evaluates the proportion

of true anomalies detected out of all instances, reflecting

the model’s efficiency in detecting anomalies throughout the

dataset. Collectively, these metrics provide a thorough assess-

ment of the model’s strengths and weaknesses in anomaly

identification, allowing for a nuanced understanding of its

performance. Our benchmark models include GCN (Graph

Convolutional Network), GNN (Graph Neural Network),

GAT (Graph Attention Network), NN (Neural Network), and

SVM (Support Vector Machine), all of which are used to

detect anomalous nodes in a supervised manner.

1) POWER OF THE MODEL IN DETECTING ANOMALOUS

NODES AND REGIONS

In this section, we assume that the switches on the commu-

nication lines are closed and that the data from the line and

bus sensors have been collected completely by the opera-

tor. Under these conditions, we conducted simulations using

both the standard GCN and the proposed method, which

employs the propagation matrix with a threshold setting of

0.25, applied separately to lines and nodes. The performance

results of these experiments are detailed in Table 2 and the

accumulated results for the lines and nodes are summarized

in Table 3. In both tables, the results based on benchmark

models are also reported. Using a dataset of 50 samples ×

118 buses× 24 hours for nodes and 50 samples× 173 lines×

24 hours for lines, this simulation assesses the effectiveness

of several techniques. We evaluated the performance of our

model by comparing it with an SVM with a sigmoid kernel

γ = 0.01 and C = 100, a GNN with a 2-layer archi-

tecture (582 and 291 units), and a Neural Network (NN)

with 291 input neurons and two hidden layers consisting

of 150 and 75 neurons, respectively. The nodes and edge

features and anomaly labels are utilized as inputs to train

these models. The proposed approach consistently surpasses

previous models, achieving the highest accuracy (97.83% for

nodes and 98.95% for lines) and superior precision (96.12%

for nodes and 98.48% for lines). The F1 score (97.95% for

nodes and 99.19% for lines) and recall (99.85% for nodes

and 99.91% for lines) substantially exceed the standards,

demonstrating better detection of true positives. Further-

more, it has exceptional coverage (95.98% for nodes and

98.40% for lines), highlighting its efficiency in identifying

anomalies throughout the network. Table 3 illustrates the

overall performance of the proposed technique of combining

nodes and lines. The proposed strategy significantly improves

the alternative methods, achieving the highest scores in all

parameters. It achieves the highest accuracy (98.50%), pre-

cision (97.63%), F1 score (98.75%), coverage (97.52%), and

recall (99.89%). These results highlight the effectiveness and

reliability of the proposed approach in accurately detecting

faults, making it the most robust strategy compared to the

alternative models evaluated.

In our experiments on the IEEE 118-bus system, the infer-

ence time of the trained model was on the order of seconds,

suggesting a strong potential for real-time or near-real-time

deployment. Moreover, the offline training phase—although

more resource-intensive—is a one-time cost, while the for-

ward pass and the optimization model used in real-time

operation remains lightweight. For larger networks, scalabil-

ity can be further enhanced through batching, model pruning,

or deployment on parallel computing platforms. These char-

acteristics position our approach as a promising candidate for

practical integration into real-time grid control systems.

D. ADDITIONAL INSIGHTS FOR SELECTED NODES AND

LINES

Tables 4 and 5 present the precision and accuracy of a selected

set of important lines and nodes. Line 42 is a crucial transmis-

sion line that handles significant power transfers, but it has

the lowest precision compared to all other lines. Line 42’s

lower precision and accuracy are due to its high and variable

power flow. Although other methodsmight still face this chal-

lenge, the proposed method demonstrates higher precision

in predicting anomalies for this line compared to alternative

approaches. Node 76, located in the third zone, is essential

for the integration of solar energy into the network. However,

it shows the lowest accuracy compared to all other nodes. The

lower precision and accuracy at this location are likely caused

by variations in both load and generation. Our examination of

the load and production patterns in this region shows signif-

icant fluctuations in both load and generation. The existence

of these variations at node 76 is likely to be the fundamental
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TABLE 2. Comparison with benchmark models - separated by node and line levels.

TABLE 3. Comparison with benchmark models - combined for node and line levels.

TABLE 4. Performance metrics for selected lines: proposed method and GCN.

TABLE 5. Performance metrics for selected nodes: Proposed method and
GCN.

cause of the reduced accuracy and precision reported. With

a 35 MW solar panel and a demand of 68 MW at node 76,

the solar plant produces more than 50% of the total power,

especially when considering the operational hours of the solar

panels from 9AM to 4 PM. The precision and accuracy of this

node are affected by the significant variance in load and the

oscillations in generation due to the uncertain nature of solar

power. The histogram in Fig. 5 illustrates the load distribution

at node 76, showing significant fluctuations. However, the

load distribution of node 90, shown in Fig. 5, demonstrates

lower fluctuations and a smaller variation. This comparison

reveals that node 90 exhibits more stable load patterns, result-

ing in higher precision and accuracy for anomaly detection.

In contrast, node 76 exhibits worse precision due to its sig-

nificant load and generation fluctuations.

1) POWER OF THE PROPOSED MODEL TO LOCATE THE

SOURCE OF ANOMALIES

As discussed earlier, one important aspect of the proposed

model is its ability to detect the sources of anomalies. To show

the effectiveness of our model in locating anomalies using the

optimization approach described in Section III, we visualized

our simulation results for Line 99 in Fig. 6. Panel A high-

lights the neighborhood affected when a fault occurs on this

line. Panel B displays the estimated anomaly locations, while

panels C and D compare the selected nodes/lines without

and with the application of the optimization model, respec-

tively. Similarly, Fig. 7 presents the simulation results for
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FIGURE 6. A. Anomaly on line 99 and its impact on the network; B.
Estimated anomalous nodes and edges.

Line 19, which show a comparable outcome to Line 99.

In both examples, the sources of anomalies can be accurately

identified using the optimization model. By applying the

optimization model, we calculated the accuracy for different

values of the parameter alpha. As shown in Fig. 8, the highest

accuracy, 98.55%, is achieved at α = 0.65. In contrast,

the maximum accuracy of fault detection without using the

optimization algorithm is only 87%. This clearly demon-

strates that our proposed method significantly improves fault

detection accuracy. In general, the optimization approach

consistently produces more precise and reliable results for

fault localization.

The sensitivity analysis of the propagation threshold,

as depicted in the Fig. 9, indicates a distinct trend across mul-

tiple performance indicators. As the propagation threshold

diminishes, the model’s performance—assessed by accu-

racy, precision, F1 score, coverage, and recall—considerably

enhances, especially within the threshold interval of around

0.25 to 0.5. This suggests that reduced threshold values

improve the model’s capacity to detect sophisticated propa-

gation patterns of anomalies in the network.

The results in Fig. 10 further validate the effectiveness

of the Proposed Method in detecting the true sources of

anomalies. illustrates the performance of an anomaly detec-

tion model in identifying the exact sources of anomalies

in a power network. It compares the total number of cases

to the number of true matches for three categories: Line,

Node, and Line and Node. The model successfully detected

approximately 64.19% of Line anomalies, 51.63% of Node

anomalies, and 59.10% of combined Line and Node anoma-

lies. In addition to the 59.1% exact match rate (hop = 0),

our proximity-based evaluation shows that the model iden-

tifies the true source within 1-hop in approximately 85% of

cases, within 2-hops in about 91%, and within 3-hops in over

95%. These results underscore the model’s strong operational

value, even when strict exact matches are not achieved.

This indicates that the model is more effective at detect-

ing Line-related anomalies compared to Node-related ones,

with the combined category falling in between. Although the

model does not always detect the exact source of an anomaly,

it often identifies sources that are in close proximity, often

adjacent to the true source. From an operational standpoint,

FIGURE 7. A. Anomaly on line 19 and its impact on the network; B.
Estimated anomalous nodes and edges.

FIGURE 8. Accuracy versus different values of α in the optimization
model.

this level of accuracy is highly beneficial for the maintenance

team. However, in terms of our strict performance metrics,

it is still considered a ‘‘no match.’’ This distinction highlights

that the practical performance of our model is stronger than

the rawmetrics suggest. Furthermore, MOST existing bench-

mark models are still unable to pinpoint anomaly sources

as accurately as our model. Additionally, our model has the

capability to filter out many false positives based on the

propagation matrix once the sources are identified, providing

more precise and actionable results for power system man-

agement.

2) MODEL PERFORMANCE ACROSS VARIOUS NETWORK

TOPOLOGIES

The power system studied in this article consists of 11 inter-

connection lines, which we consider as switches used by the

Independent System Operator (ISO) to change the system’s

configuration. As a result, there are a total of 2048 (211)

possible states. We used these switches to assess the sys-

tem’s performance across 11 randomly selected topologies.

Changing a switch in the power system results in alterations

in topology, adjacency matrix, and power flow.

Initially, we conducted tests using the same training data

as before, meaning that we did not modify the adjacency

matrix or power flow data used to train the proposed Graph

Convolutional Network (GCN). However, changing a switch

generates a new adjacency matrix and affects the power flow.

To improve performance, we retrained the system based on
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FIGURE 9. The propagation threshold performance.

FIGURE 10. Performance of the model in source detection - There are
349,200 total cases (50 runs × 24 hours × 118 nodes + 50 runs ×

24 hours × 173 lines).

each topology and conducted subsequent tests under modi-

fied circumstances. After retraining, we applied the proposed

method to the new data, referring to this approach as the

Proposed Method-TR. We then investigated the performance

of the GCN and the proposed approach under different con-

ditions by changing the switches. Performance measures are

presented in Fig. 11. It should be pointed out that we used

a fixed value of α = 0.65 across all topologies without

individual tuning. However, α is sensitive to the network

topology, and topology-specific tuning is a potential avenue

for further improvement.

As indicated in Fig. 11, the model exhibits resilience in

the face of these modifications. The improved efficiency

of the retrained model, which uses the propagation matrix

to update the adjacency matrix, is clearly visible compared

to the basic model. The fault detection accuracy is lowest

when there is a topological change between areas 1 and 2,

particularly on line 41. Analysis of this connection revealed

that it provides the most effective transmission of power

between these regions. Modifying the network topology in

this manner requires increasing the production capacity in

area 1 to meet consumer demands, which results in notable

changes in power distribution between lines and buses in

that region. Consequently, these significant adjustments lead

to a decrease of approximately 20% in the probability of

FIGURE 11. Performance comparison across graph topologies.

detecting faults in the improved model before retraining.

To optimize system performance, as explained in the previous

section, we reprocessed the required data for training and

testing. This adjustment significantly improved the accuracy

rate, increasing it from 75.34% to 95.76%. In addition, the

proposed approach demonstrates reliability and robustness in

the face of changing topology, allowing for accurate fault

location prediction. This resilience is crucial for network

operators, considering the high likelihood of operational

strategy adjustments within the network for various reasons.

Given the numerous configurations possible in complex net-

works, it is essential that the proposed model remains robust

against changes. Since the status of the switches (whether

they are on or off) is known to the operator in practice, the

operator can determine the current network topology based

on the active switches. This knowledge allows the operator to

select and run the trained model corresponding to the specific

switch configuration. By applying the appropriate model,

the operator can effectively detect any anomalies in the net-

work, ensuring accurate fault localization despite changes

in the network topology. This practical approach enhances

the robustness of the proposed method as it leverages the

operator’s knowledge of the switch states to maintain high

detection accuracy across different configurations.

3) MISSING SENSOR DATA

In previous sections, we evaluated the model under the

assumption of complete sensor data from all bus and line

measurements. In this section, we assess the model’s per-

formance when some measurement data is missing from the

network. To achieve this, we randomly reduced the available

measurements in three distinct scenarios to test both the

proposed and the benchmark models. Table 6 shows that the

proposed model is highly effective in locating faults even in

the presence of missing measurement data. The table also

highlights the resilience of the proposed method compared

to the Graph Convolutional Network (GCN) across varying
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TABLE 6. Performance metrics (in %) for GCN and proposed method with
different missing sensor rates.

levels of sensor data loss. We should note that only GCN

is used as a benchmark because it consistently provides the

best solutions compared to other models. Specifically, the

proposed method maintains a high level of accuracy even

when a significant portion of the sensors are unavailable. The

robustness of the proposed method is primarily due to its use

of the propagation matrix to update the adjacency matrix,

which enhances the model’s ability to leverage information

from nodes or buses that are distant from the anomaly origin.

By propagating information across the network, the proposed

method effectively integrates data from non-adjacent nodes

and lines that are correlated with the anomaly.

This integration significantly improves its ability to detect

anomalies, even when direct measurements are lacking. As a

result, the proposed method is able to maintain high per-

formance and accurate anomaly detection, ensuring network

observability despite substantial data loss.

4) CYBERSECURITY CONCERNS

It is essential to emphasize that a substantial amount of data

unavailability, especially from sensor inputs, may signify

cybersecurity threats. Our approach is designed to maintain

strong performance even when sensor data are inadequate

or potentially hacked, often indicating security breaches.

Although our existing techniques guarantee operating effi-

ciency regardless of these problems, we now lack the ability

to determine whether the disruptions are attributable to

cyber attacks. We intend to improve our system to detect

abnormalities and accurately ascertain whether they originate

from cybersecurity threats. This advancement will enable

us to more precisely identify the origins of data anomalies,

thus enhancing the security and dependability of smart grid

operations.

V. CONCLUDING REMARKS AND FUTURE WORK

Anomaly detection and isolation continue to be critical

challenges in power system networks. The introduction of

smart meters and advanced measurement technologies has

allowed power system operators to more accurately pinpoint

fault locations, quickly address anomalies, and improve the

overall reliability of power networks. However, complexi-

ties such as topology changes, the integration of renewable

energy sources, stochastic propagation of anomalies, and

missing data require approaches that are sensitive to these

evolving conditions. In this study, we presented an innova-

tive method that combines a Graph Convolutional Network

(GCN) with a modified probability propagation matrix and

augmented dual graphs to detect anomalies using network

sensors placed on both nodes and lines. Also, we developed

an optimization model that not only identifies the sources

of anomalies, but also provides the probability that each

node and line is the source of faults or impacted by them.

We also propose a filtering strategy to further remove false

positives based on the detected source of anomalies. This

optimization model effectively locates the most probable

fault sources and considers fault propagation throughout

the network, improving the interpretability and accuracy of

the results. The proposed method was tested on the IEEE

118-bus system, with simulation results demonstrating that it

achieves reasonable performance and significantly improves

the network’s resilience to topology changes and missing

data. By incorporating the optimization model, our approach

provides more precise and consistent anomaly location per-

formance, offering probabilities that help operators prioritize

responses based on the likelihood that nodes or lines are

faulty. Although the model is specifically designed for power

networks, its adaptable features make it suitable for other

sensor-intensive networks or graph structures, such as trans-

portation or social networks, where anomaly detection at

nodes and edges is essential. In future work, we plan to extend

and validate the proposed model on other benchmark datasets

from different domains to demonstrate its generalizability

and broader applicability. The optimization framework can

be applied to these domains to identify sources of anomalies

and understand their propagation throughout the network.

In future work, we will explore dynamic scenarios in which

the network topology changes over time and consider the

presence of noise in the sensor data. The proposed model

paves the way for further research in developing customized

GCNmodels that better understand the unique characteristics

of the networks under study,making themmore adaptable and

interpretable. For future work, incorporating spatiotemporal

elements into our GCN framework is a promising direction.

This enhancement would allow the model not only to imme-

diately locate faults, but also to anticipate potential problems

based on historical and real-time data trends. Developing a

hybrid model that combines the strengths of both GCN and

spatiotemporal graph neural networks could cover a broader

spectrum of needs, from rapid response to anticipatory fault

management. This approach would significantly advance our

capabilities in fault detection and contribute to more robust

and resilient power system operations. Future work also

includes improving model efficiency, particularly through

vectorization and parallelization, to ensure the model remains

feasible for large-scale deployment.
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