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ABSTRACT Identifying the location of faults, anomalies, and failures is a long-standing but critical
challenge in power system networks. The implementation of smart meters and advanced sensor measurement
technologies in recent years has allowed power systems operators to more accurately identify fault locations,
quickly resolve problems, and improve the overall reliability of power networks. However, the presence of
complex topology changes, penetration of renewable energy resources, stochastic propagation of anomalies
in the network, and missing data require the use of new approaches that are sensitive to these issues. This
article introduces an innovative method that uses a graph convolutional network (GCN) combined with a
modified probability propagation matrix and dual graphs to identify and locate node/line anomalies using
network sensors installed on both nodes and lines. Also, an optimization model was developed to find the
most likely sources of anomalies across all nodes and edges of the network. The proposed method, which was
evaluated on the IEEE 118-bus system and a set of simulated data, demonstrated outstanding performance
in handling complex topologies and missing data. Although the proposed model is designed for power
networks, its flexible characteristics make it applicable to many sensor-intensive networks or graph structures
(e.g., transportation and social networks) where anomaly detection at nodes and/or edges is critical.

INDEX TERMS Anomaly detection, graph convolutional networks, node and line sensors, smart power
networks.

I. INTRODUCTION

Power networks have undergone significant transformation in
recent years, driven by advances in smart sensing technolo-
gies and communication infrastructures. Traditional power
systems have evolved into smart grids through the integration
of smart sensors, controllers, and real-time data transmission
capabilities [1]. Despite these innovations, modern power
networks remain vulnerable to a variety of anomalies that
can cause temporary disruptions or extended outages. These
anomalies generally fall into two categories: cyber-attacks
targeting the digital infrastructure and physical anomalies
caused by environmental factors or equipment failures, such
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as lightning strikes, storms, or hardware degradation. Accu-
rate and timely fault identification is crucial to minimizing
downtime and maintaining system reliability. However, locat-
ing faults in real time remains a major challenge due to the
inherent complexity of power systems, the limited availability
of high-resolution measurement devices, and the need for fast
and low-latency communication [2]. The growing integra-
tion of distributed energy resources, particularly renewable
sources, further complicates this task. Distributed generators
(DG) introduce dynamic and bidirectional power flows that
alter the operating state of the network, making anomaly
detection and localization more difficult [3], [4].

Smart sensors such as Phasor Measurement Units (PMUs)
and smart meters have significantly enhanced the accuracy of
anomaly detection. However, the high cost of PMUs requires
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strategic and sparse deployment to balance coverage and
economic feasibility [5]. In this context, the rise of deep
learning provides promising tools to leverage the increasing
volume of sensor data, particularly from affordable, widely
deployed devices, while reducing dependence on expensive
infrastructure. To fully exploit the potential of data-driven
methods, it is crucial to integrate sensor observations with
the structural and topological properties of the power grid.
Power networks naturally form graph-structured systems,
where measurements are distributed across nodes and edges.
Therefore, models capable of jointly learning from multi-
variate sensor data and the underlying network topology
are essential. As power systems continue to scale in com-
plexity, the need for intelligent frameworks that combine
sensor data with graph-based modeling becomes increas-
ingly urgent for accurate, interpretable, and real-time fault
detection.

Graph Convolutional Networks (GCNs) offer a compelling
solution to the challenges of fault detection and localization
in modern power networks. By naturally aligning with the
graph-structured topology of these systems—where buses
and substations are represented as nodes and transmission
lines as edges—GCNs are well-suited for capturing the
spatial and relational dynamics of fault propagation. Lever-
aging a propagation matrix that encodes how anomalies
travel through the network, GCNs enhance the precision
and interpretability of anomaly detection compared to tra-
ditional machine learning models, which often operate as
non-interpretable. This paper proposes a novel GCN-based
framework that utilizes both node- and edge-level sensor
data to detect and isolate anomalies in power networks.
Beyond identifying anomalous components, the framework
integrates GCN outputs into an optimization model to refine
the localization of faults and assess their broader impact.
By combining structural information with data-driven learn-
ing, this approach addresses the critical need for accurate,
scalable, and interpretable solutions in increasingly complex
grid environments. To our knowledge, this is the first frame-
work to simultaneously use edge sensor and node sensor data
within a GCN architecture to locate anomalous components
and trace the origin of faults in the network.

The remainder of this paper is organized as follows:
Section II provides a review and discussion of previous
research on network anomaly detection. Section III intro-
duces the proposed anomaly detection model, covering the
necessary background information, problem formulation,
and identification of anomaly sources. Section IV offers
a detailed analysis of numerical experiments and results.
Finally, Section V concludes the paper and outlines directions
for future work.

II. LITERATURE REVIEW

Several methods exist for anomaly detection and isola-
tion in power system networks, ranging from traditional
transmission line modeling techniques to modern machine
learning approaches that enhance accuracy (e.g., [6], [7]).
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Chen et al. [7] provides a comprehensive review of fault
detection, classification, and location techniques for trans-
mission and distribution systems. In the following sub-
sections, we review the key literature in both categories
and discuss their limitations, which motivate our proposed
approach.

A. TRADITIONAL MODELS FOR POWER SYSTEMS
ANOMALY DETECTION AND ISOLATION

Traditional fault detection methods in power systems, such
as overcurrent protection, distance protection, and differen-
tial protection, rely on deterministic models based on fixed
thresholds, physical laws, and well-established equations.
These techniques are simple, interpretable, and effective
under predictable conditions, but struggle with the complex-
ity and variability of modern large-scale networks. Among
these, transmission line modeling stands out as a more flex-
ible traditional approach. It uses impedance-based calcula-
tions, traveling wave analysis, distributed parameter models,
and advanced numerical techniques to detect and localize
faults. However, these methods require high-precision, syn-
chronized data to maintain accuracy in dynamic network
environments. Takagi et al. [8] introduced a method using
only one-terminal voltage and current data, pioneering the
use of microprocessor-based fault location by accounting for
load flow, fault resistance, and mutual coupling. Signal pro-
cessing techniques, particularly wavelet transforms, have also
shown promise in transient-based fault detection, offering
higher precision and robustness to fault resistance and system
variations [9]. Other notable advances include Galijasevic
and Abur’s [10] use of voltage sags and fuzzy logic for low-
cost, accurate fault location, and Brahma and Girgis’s [11]
technique employing synchronized voltage measurements
to mitigate current transformer (CT) errors. Liu et al. [12]
extended fault location methods to multi-terminal lines using
PMUs, significantly reducing error rates. Further improve-
ments were introduced by [13], who refined synchronized
sampling techniques by accounting for series losses and solv-
ing the Telegrapher’s Equations in the time domain. While
accurate, this approach requires detailed line parameters, lim-
iting its practicality in complex networks. The integration
of PMUs represents a major step forward, enabling real-
time, system-wide monitoring. Jiang et al. [14] demonstrated
how PMU-based synchronization can overcome limitations
of conventional methods. Similarly, Trindade et al. [15] pro-
posed a low-cost approach for distribution networks using
smart feeder meters.

In summary, traditional methods for anomaly detection
and isolation in power systems, particularly those based on
transmission line modeling, exhibit several critical shortcom-
ings. These include their inability to effectively handle the
complexity of modern large-scale network topologies, the
challenge of acquiring precise and synchronized data across
distributed systems, and the difficulty of accurately modeling
dynamic system behavior under diverse and unpredictable
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fault conditions. Furthermore, achieving a balance between
accuracy and computational efficiency becomes increasingly
problematic as the size, heterogeneity, and variability of the
power system increases. Traditional approaches often lack the
adaptability required to address evolving fault scenarios and
are heavily reliant on detailed physical models, which can
be impractical to develop and maintain. In contrast, machine
learning techniques provide a more robust, flexible, and data-
driven alternative, capable of learning complex patterns from
historical and real-time data, thus reducing dependence on
intricate physical modeling and improving adaptability to
dynamic power system environments.

B. MACHINE LEARNING MODELS FOR POWER SYSTEMS
ANOMALY DETECTION AND ISOLATION
In recent years, machine learning (ML) models—especially
neural network-based approaches—have gained significant
traction for fault detection and isolation in power sys-
tems. These models offer robust alternatives to traditional
techniques by addressing challenges related to system com-
plexity, measurement variability, and adaptability. Yadav and
Dash [21] provided a comprehensive review of artificial
neural networks (ANNs) for transmission line protection,
highlighting their adaptability to changing system condi-
tions and fast response times. Similarly, [20] emphasized
the effectiveness of neural models in overcoming limita-
tions in measurement collection at substations. Unsupervised
learning has also emerged as a cost-effective solution. For
example, [22] proposed a hierarchical anomaly detection
and multimodal classification approach for photovoltaic (PV)
systems, enabling more accurate fault diagnosis without
requiring additional hardware. Their model addresses super-
visory system limitations in handling complex abnormalities.
In the context of smart grids, Chen et al. [23] introduced
a GraphSAGE-based method for anomaly detection, which
leverages temporal similarities in node features to iden-
tify hidden false data. This graph-based learning approach
significantly improves key security metrics. A broader eval-
uation by Gholami and Srivastava [24] surveyed existing
ML methods for anomaly detection, classification, and local-
ization in distribution systems. The study identifies critical
challenges, including the need for large labeled datasets, non-
stationary operating conditions, and the demand for real-time
processing. The authors advocate for integrating ML with
domain knowledge and advanced data processing techniques
to improve system reliability and efficiency. Furthermore,
advanced deep learning architectures—such as recurrent neu-
ral networks (RNNs), convolutional neural networks (CNNs),
generative adversarial networks (GANs), and autoencoders—
have enabled more sophisticated applications in time-series
prediction, fault diagnosis, and control. These models excel
at extracting latent features from complex data, driving sig-
nificant progress in intelligent power system monitoring and
management [25].

Although many machine learning models have been
widely employed for anomaly detection and isolation in
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power systems, they face notable challenges. Their non-
interpretable nature leads to limited interpretability and
higher-than-expected false positive rates, making them diffi-
cult to apply in practice. Additionally, their performance often
depends heavily on the network topology, reducing its robust-
ness. To address these limitations, graph-based approaches—
such as Graph Neural Networks (GNNs)—offer a more
structured and topology-aware solution, better aligned with
the complex and interconnected nature of power grids. Liao
et al. [26] provide a concise overview of GNN applications in
power systems, including fault analysis, time series predic-
tion, and power flow estimation. Takiddin et al. [27] employ
Chebyshev-based GNNs to identify system status and local-
ize risks, showing improved detection rates over traditional
methods. Vincent et al. [28] demonstrate the effectiveness of
GCNes in detecting False Data Injection (FDI) attacks, signif-
icantly enhancing smart grid cybersecurity. Chen et al. [29]
propose a GCN framework for fault localization in distribu-
tion networks, outperforming conventional ML methods in
accuracy, noise resistance, and robustness on the IEEE 123-
bus benchmark. An extension by Chen et al. [23] improves
the GraphSAGE model by incorporating temporal corre-
lations, further enhancing anomaly detection performance.
Recent research also explores advanced GNN-based models
for anomaly detection in attributed networks. These include
ANOGAT-Sparse-TL for class imbalance handling [30], dual
variational autoencoders with GANS for sparsity and nonlin-
earity [31], residual-based GCNs with hypersphere mapping
for better anomaly separation [32], and sparse canonical cor-
relation analysis for high-dimensional data alignment [33].
While promising, these methods are largely developed for
social networks and do not yet incorporate physical con-
straints or the operational characteristics of power systems.

C. LITERATURE SUMMARY AND CONTRIBUTIONS OF THE
PAPER

While numerous studies have addressed fault and anomaly
detection in power systems, most fall short in three key areas:
handling complex and dynamic network topologies, integrat-
ing both node and line sensor data, and providing flexible
models that do not rely on predefined anomaly distributions.
Existing methods often assume specific fault distributions
and focus solely on node- or line-level anomalies, limiting
their applicability in real-world scenarios. In contrast, our
approach introduces a Graph Convolutional Network (GCN)-
based framework that jointly utilizes bus and line sensor
data, encoded as node and edge features via a dual-graph
representation. We construct the network adjacency matrix
using a transformation matrix, which is then updated using
a learned fault propagation matrix. This enables accurate
fault localization at both node and line levels, even under
changing topologies or incomplete data. A key contribution
of our work is the modeling of anomaly propagation as a
stochastic process rather than a deterministic one, which
better reflects real-world conditions in power systems. Fac-
tors such as fluctuating loads, varying line impedances,
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and intermittent renewable generation cause anomalies to
propagate in uncertain and non-uniform ways. Our model
captures these dynamics by learning probabilistic influence
patterns throughout the network. Additionally, we address
a critical operational challenge: guiding system operators
in dispatching maintenance teams across large, renewable-
integrated grids. By improving fault localization accuracy and
system interpretability, our method can enhance the resilience
and reliability of modern power systems. We selected GCN
over other graph-based learning models (e.g., GAT, Graph-
SAGE) due to its computational efficiency, simplicity, and
scalability for fixed-topology networks, while still capturing
attention-like behavior through a learned propagation matrix
that models node influence.

lll. THE PROPOSED FRAMEWORK

A. PRELIMINARIES

In this section, we introduce the foundational elements of
power system equations and graph neural networks.

1) POWER SYSTEM MODELING

First, we review the mathematical models that govern elec-
trical power systems, including the equations for electricity
flow within the network. Power flow analysis examines
power networks, focusing on currents, voltages, and power
distribution at each bus in the system. The main objective
is to identify voltage levels, power flows, and associ-
ated losses in the network during steady-state operations.
Although elements of the power network, such as lines
and transformers, have constant parameters, suggesting a
linear system, the power flow problem is inherently nonlin-
ear. This nonlinearity arises from the complex relationships
between voltage, current, and power at each bus. Power
flow calculations, which involve solving nonlinear equations,
are essential to understand how an electrical transmission
system responds to specific loads and generator output.
These calculations are critical for power system operations
and planning. For a network with n independent buses,
we typically formulate a system of equations. This system
defines the relationships between voltages and currents at
each bus using the bus admittance matrix, as shown in
Equation (1):

Yu Yo - Y || W L
Yor Yo oo Y || W2 14}
: : . : S I @
Ynl Yn2 te Y, nn Vn In
or, more concisely shows in Equation (2),
YxV=I (2

where I denotes the vector of current injections and V repre-
sents the vector of voltages at each bus. The term Y, known as
the bus admittance matrix, plays a crucial role. The diagonal
entries, Yj;, represent the self-admittance at bus i. This is cal-
culated as the sum of all admittances for branches connected
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to bus i. Additionally, the bus current can be expressed in
terms of bus voltage and power as follows:

— ﬂ SG,‘ - SDI' — (PG,' - PD,') _j(QG,’ - QD,')

I =
V,' Vi Vi

3

Here, S represents the complex power injection vector. Pg;
and Qg, are the real and reactive power outputs of the gen-
erator at bus i, while Pp, and Qp, represent the real and
reactive power loads at bus i. Equation (3) simplifies the
relationship between voltage, power injections, and current at
each bus. By integrating this into the bus admittance equation,
we obtain the following:

n
(PG, — Pp,) —j(Qc, — Qp)Vi= D YV, i=1,....n.
j=1

“

In power flow analysis, when load demands are known,
we define the following bus power injections:

Pi=PG,'_PD,' (5)
Qi = QGi - QD,' (6)

Substituting these values into the power flow equation gives
the general form:

n
Pi—jQiVi=> YiVi, i=12...n (D
=1

Equations (4)- (7) highlight the core components of the net-
work’s power flow equations. By decomposing them into real
and imaginary parts, we can formulate two equations per
bus, involving four variables: real power P, reactive power Q,
voltage V, and angle 6. To solve the power flow equations,
two of these variables must be known for each bus. Several
constraints must be taken into account when solving power
flow equations, such as generator limitations, voltage limits,
and transmission line capacities. These constraints introduce
non-linearity into the equations, making them more difficult
to solve.

In this paper, we use the Pandapower library in Python
to test the system under various fault conditions. Its robust
capabilities help manage the complexities of non-linear
power system optimization. This enables us to calculate the
optimal power flow and obtain comprehensive line data.
This includes active and reactive power flowing through
the lines, as well as detailed bus data, such as voltage
angle, amplitude, and active and reactive power injection at
each bus. In anomaly detection frameworks, it is essential
to thoroughly understand the normal operating behavior of
the power system. Anomalies often appear as unexpected
deviations in system parameters. These deviations can be
caused by faults, equipment failures, cyber-attacks, or other
disruptions. These deviations can lead to irregularities in
voltage levels, current flows, and power injections at various
buses, potentially compromising system stability. Power flow
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analysis plays a critical role in establishing baseline condi-
tions for voltages, currents, and power flows during normal
operations.

2) GRAPH CONVOLUTIONAL NETWORKS (GCN's)

Graph theory is a powerful tool for detecting anomalies in
power systems. This is because power systems naturally
exhibit graph-like structures. In this representation, buses in
the power system are modeled as nodes, while power lines are
represented as edges connecting the nodes. This framework
allows us to apply graph-theoretical methods to identify and
analyze anomalies in the network. To handle the complexities
of these structures, we use Graph Convolutional Networks
(GCNs), which are specifically designed for graph-structured
data. Traditional neural networks face limitations when deal-
ing with data characterized by complex relationships, such
as those found in social, biological, and communication net-
works. Their reliance on fixed-size input structures inhibits
the effective processing of relational information embedded
within graph topologies. GCNs overcome this limitation by
performing a specialized convolution operation on the graph.
Each node’s features are updated based on its own charac-
teristics and those of its neighboring nodes. This enables the
GCN to capture and analyze the underlying topology of the
power network, making it effective for anomaly detection.
The convolution operation in a GCN is represented mathe-
matically as follows:

XD = BXOWD). (8)

The variable XV represents the feature matrix for all nodes
at layer /, and X© is the input feature matrix. The weight
matrix W contains the trainable parameters for layer /.
The symbol o represents a non-linear activation function,
such as ReLU (Rectified Linear Unit). Equation (8) shows
the fundamental operation of a GCN. The features of each
node are updated using both its own features and those of
its neighbors. The normalization of the adjacency matrix,
as shown below, is critical for handling varying node degrees
and maintaining numerical stability:

B=D 2AD 3. )

The adjacency matrix A represents the graph, where A;; indi-
cates the presence of an edge from node i to node j. Typically,
Aj; is zero unless self-loops are included. The degree matrix
D is diagonal, with each element D;; representing the sum
of the weights of all edges connected to node i, known as
the degree of node i. Equation (9) shows how the adjacency
matrix is normalized to prevent nodes with high degrees
from disproportionately influencing the feature aggregation
process.

As shown in Equation (8), the propagation rule is the
mechanism by which the GCN updates the features of each
node in each layer. The features are transformed by multi-
plying with the weight matrix and then processed through a
non-linear activation function. As a result, the GCN leverages
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both feature information and the graph structure. This allows
it to learn comprehensive representations of nodes based
on their attributes and interconnections within the graph.
GCNs are versatile and extend beyond anomaly detection.
They are suitable for tasks like node binary classification,
where the goal is to assign each node to one of two cat-
egories. In node binary classification, the GCN learns to
distinguish between two classes by analyzing node features
and the relationships between nodes in the graph. GCNs
can also be used for tasks like multi-class classification,
link prediction, and clustering. They take advantage of the
graph’s structure to enhance predictive accuracy and provide
valuable insights. This capability makes GCNs particularly
useful for complex systems, like power systems, where the
interconnections between buses significantly affect the sys-
tem’s overall behavior. By using GCNs for these tasks,
the model leverages the graph topology, ensuring that clas-
sifications and predictions are informed by the network’
connections.

The output layer for node binary classification, using a
sigmoid activation function, is mathematically represented as
follows:

F=0r. il =0 (XEWS +60), 10)

Here, y is the [N| x 1 vector containing the predicted prob-
abilities for each of the n nodes. XI) is the |N| x dy. matrix of
node features from the final layer L, where dy, is the number
of features in layer L. WL isthe dy x 1 weight matrix, which,
when multiplied by X, results in a | N | x 1 vector. b is the
IN| x 1 bias vector, typically broadcast to match the number
of nodes n. This ensures that the output Yisa IN| x 1 vector,
where each entry y; represents the predicted probability that
node i is anomalous.

B. PROPOSED METHOD

1) PROBLEM SETUP

Power networks are naturally represented as attributed
graphs. In this representation, nodes correspond to buses,
switches, or substations, while edges represent the trans-
mission lines connecting them. This graph-based modeling
allows us to apply GCNs, which are specifically designed to
handle data with complex topological structures. The input
to our GCN model consists of a modified adjacency matrix
that captures the connectivity of the network. It includes both
node and line connections, along with sensor data. These
sensors collect data on various electrical parameters, pro-
viding rich features for both nodes (e.g., voltage, current)
and edges (e.g., power flow). By constructing a dual graph,
we integrate both the node and edge features within the GCN
model. This provides a comprehensive view of the state of the
network.

The adjacency matrix is used to create the propagation
matrix in our model. This matrix governs how information is
distributed across the network during convolution operations.
The convolution layers aggregate information from a node’s
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FIGURE 1. An overview of the proposed model. In (c), the edges are
converted to nodes (shown in red) and all new edges are shown with
dashed lines. The red nodes and edges in (f) and (g) represent the
detected anomalous nodes and edges. The optimization model results in
the removal of unconnected detected anomalous nodes and edges.

neighbors and connected edges. This effectively captures
the complex relationships and dependencies inherent in the
power network. This process enables the GCN to model how
local anomalies can influence distant parts of the network
due to the interconnected nature of power systems. A key
enhancement in our approach is the dynamic update of the
adjacency matrix. This updated matrix incorporates proba-
bilistic weights that represent the likelihood of nonphysical
connections between nodes and lines. This effectively cap-
tures the potential impact of faults at specific locations across
the network. This probabilistic adjustment allows the model
to adapt to network abnormalities and structural changes
caused by failures, improving its response to anomalies. After
the convolution and activation processes, the resulting feature
maps are passed through fully connected layers. This leads to
the final output layer. This layer provides the probabilities of
faults occurring at all nodes and lines in the network. In addi-
tion, we propose a mathematical formulation that uses the
output layer and the propagation matrix to accurately deter-
mine the sources of anomalies. This formulation enhances the
model’s ability to pinpoint the exact location of faults within
the network by considering both the learned features and the
network’s topology.

The model detects and locates faults in a smart power grid
by leveraging the structure and data of the power system in
the form of a graph. The smart power system continuously
provides data that is used to build a graph representation of
the network. A Graph Convolutional Network (GCN) pro-
cesses this graph, considering both the node/edge features and
connectivity, to predict where faults are likely to occur. The
final step uses these predictions to optimize fault localiza-
tion, making the deployment of maintenance resources more
efficient. This approach is particularly powerful because it
not only uses sensor data (e.g., voltage, current), but also
considers the relationships between different parts of the
network. This makes it more effective in identifying complex
fault patterns that might be missed by traditional methods.
An overview of the proposed structure is shown in Fig. 1,
including the workflow of a Graph Convolutional Network
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(GCN) model designed to predict fault locations in an elec-
trical grid using dual graph representation. In the remainder
of this section, we discuss each element of this model in
detail.

2) CONSTRUCTION OF THE DUAL GRAPH AND AUGMENTED
ADJACENCY MATRIX

The power network is represented as a graph G(NV, E), where
N denotes the set of nodes (buses) and E denotes the set of
lines (edges). Each node and line is equipped with sensors
that provide crucial measurements for network monitoring
and fault detection. Sensor data is organized into two feature
matrices:

a: - NODE ATTRIBUTE/FEATURE MATRIX

Xy € RIWIXSN where Sy is the number of sensors per node.
This matrix contains sensor readings for each node in the
network.

b: - LINE ATTRIBUTE/FEATURE MATRIX
Xg € RIEIXSE where Sg is the number of sensors per line.
This matrix contains sensor readings for each line.

To model the physical connectivity of the network, we use
the original adjacency matrix A € RINI*I¥I which captures
the direct connections between nodes based on the physical
layout of the power grid. To incorporate both node and line
information into a unified framework, we construct a dual
graph G'(L, E’). In this dual graph, the lines E of the origi-
nal graph G are treated as nodes, and their connections are
established based on shared nodes in G. This transforma-
tion is facilitated by the incidence matrix B € RIVI*IEl
which maps lines to their corresponding nodes in G. The
adjacency matrix A’ € RIEIXIEl of the dual graph captures
the connectivity between lines. Now, to fully integrate node-
node, line-line, and node-line connections, we construct an
augmented adjacency matrix A” as follows:

A B
A// = (BT A/)

« A represents the adjacency between nodes (node-node
connections) in the original graph.

o A’ represents the adjacency between lines (line-line con-
nections) in the dual graph.

o Band BT represent the incidence relationships between
nodes and lines (node-line connections).

This augmented matrix A” € RUNTEDXUNFED effectively
combines adjacency information from both the original graph
and the dual graph, allowing us to treat edge features
as node features within a comprehensive graph structure.
In addition to the physical connections captured by A”,
we introduce an attention (propagation) matrix P = [p;;] €
RUNHEDX(INTED ' \which captures the probabilistic impact of
anomalies propagating from one element (node or line) to
another. Here, p;; denotes the probability that an anomaly

where
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in element i will affect element j. To model both the physi-
cal topology and the probabilistic propagation of anomalies,
we update the augmented adjacency matrix A” by integrating
the attention matrix P:

A = max(4”, P).

4
updated
This updated matrix Aﬂpdated incorporates both direct physi-
cal connections and indirect probabilistic influences between
nodes and lines, increasing our ability to analyze the behavior
of the network under fault conditions. We use the max func-
tion to calculate A” in order to capture the strongest influence,
whether it arises from physical adjacency or probabilistic
propagation, between any two elements. This ensures that the
final matrix reflects the most important connection, which is
critical in scenarios where a probabilistic anomaly may have a
stronger effect than a direct physical link. Moreover, using the
max function avoids diluting strong propagation paths that
could occur with averaging, especially when the propagation
matrix P reveals latent but impactful interactions not captured
in the physical topology.

c: - FEATURE MATRIX AUGMENTATION
We also augment the feature matrices to align with the

structure of A”
Xy
= (%)

updated:
where X € RINTEDXS combines the node and line features
into a single matrix, with S = max(Sy, Sg).

3) GRAPH CONVOLUTIONAL NETWORK IMPLEMENTATION
Using the updated adjacency matrix A(l/pdated and the aug-
mented feature matrix X, we employ a graph convolutional
network (GCN) to process the graph. The GCN leverages
the enhanced graph structure to learn representations that
capture both physical and probabilistic interactions within the
network. This approach improves the accuracy of the location
and prediction of the fault by considering the full spectrum
of available data. The GCN operates by iteratively updating
the feature representations of nodes and lines through layers
that aggregate information from their neighbors, as defined
by Agpdated:

XD = o (D247 DX VW), (11)

Eq. (11) describes how the features of the nodes and lines
are updated and aggregated from the neighboring nodes and
edges in each layer of the GCN. The convolution utilizes the
normalized adjacency matrix A”, the degree matrix D, and the
weight matrix W to apply the nonlinear activation function
0. WithX©® = X, the augmented feature matrix that includes
the node and edge features, where D,-l- => j A ij- The weight
vector W is learned during the training process. The final
output layer of the GCN uses a sigmoid activation function to
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map the learned features to the anomaly probabilities:
g=o (X(L)W(L)) ,

where ¢ = [q1, 92, ..., qn+E|] is the vector of estimated
anomaly probabilities for all nodes and lines. Each element g;
represents the estimated probability that an anomaly occurs at
node or line i. By analyzing g, we can identify and localize
faults within the network using two common approaches:

1) Thresholding: Set a predefined threshold t (e.g., T =
0.5). If g; > 7, node or line i is considered anomalous;
otherwise, it is considered normal.

2) Ranking: Rank all nodes and lines based on their
anomaly probabilities g;. Nodes or lines with higher
gi values are deemed more likely to be anomalous.
This method is particularly useful when the number of
anomalies is unknown or when prioritizing resources
for further investigation.

Using these methods, g effectively facilitates the detection
and localization of anomalies within the network.

C. LOCATING THE SOURCES OF ANOMALIES: AN
OPTIMIZATION APPROACH

Using the anomaly probability vector g through thresholding
and ranking is a foundational approach for anomaly detec-
tion. However, these methods face significant challenges.
Selecting appropriate thresholds is non-trivial and can greatly
affect detection accuracy. An improperly chosen threshold
may result in numerous false positives or negatives. The
potential for detecting widespread anomalies can overwhelm
resources and obscure meaningful insights. The model might
predict a high probability of anomalies across many nodes
and lines without a clear justification. In addition, the lack
of contextual and relational information hampers the ability
to understand and justify detected anomalies. The model
does not connect anomalies based on network topology or
the relationships between nodes and lines. Scalability and
adaptability issues also arise in large or dynamic networks.
Computational demands and evolving conditions can affect
performance. Addressing these challenges may require inte-
grating additional information, such as network topology,
using adaptive thresholds, enhancing the interpretability of
the model, and designing algorithms that consider intercon-
nections between nodes and lines. This would provide a more
cohesive and justifiable anomaly detection strategy. In this
section, we propose an optimization model that addresses
some of these challenges in an interpretable manner by incor-
porating topological information about the network.

Given the probability p;; of the propagation of the anomaly
from node i to node j, a system of equations can be formulated
to identify the sources of the anomalies. This system incorpo-
rates a balancing parameter « and is expressed as follows:

IN+E|

gi=oxi+ (=) > xpjii€{l.....IN+E|). (12)
=1
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The equation for balancing, as depicted in Eq. (12), demon-
strates the adjustment of probability by considering both
direct effects and propagation influences within the network.
The variables x; represent the likelihood that node i is the
cause of anomalies. The parameter « is a weighting factor
that changes the model’s emphasis on the inherent anomaly
generation capabilities of each node and the impacts exerted
on each node by other nodes. When the value of « is set
to 1, the model only takes into account the inherent prob-
abilities x and fully disregards the influence of propagation
from other nodes. This scenario operates on the assumption
that the nodes produce anomalies in a manner that is not
influenced by each other. When the value of « is set to 0,
the model assigns the observed anomalies entirely to the
effects of other nodes, as defined by the propagation matrix P,
without considering any inherent characteristics of the nodes
themselves. The values of « ranging from O to 1 enable the
model to consider both inherent and transmitted influences,
effectively balancing these aspects based on the magnitude of
o. A higher value of « increases the importance of the node’s
own likelihood of generating anomalies, whereas a lower
value of « highlights the relevance of interactions between
nodes. In basic network layouts, such as radial distribution
networks, nodes generally function with significant indepen-
dence. In this context, positioning « around 1 is beneficial,
highlighting the intrinsic anomaly production capacities of
individual nodes. In contrast, in intricate or interconnected
network architectures, where node interactions substantially
affect operational dynamics, an « value between 0 and 1 is
ideal. This enables the model to detect both anomalies pro-
duced by the nodes and those transmitted through network
interactions.

Selecting the appropriate value of « is essential to accu-
rately represent the behavior of the network. To optimize this
parameter, it is necessary to have an extensive understanding
of the network dynamics and potentially perform an iterative
calibration using real-world data. This equilibrium aids in
discerning the most probable origins of anomalies by taking
into account both the potential independent generation of
anomalies by nodes and their potential impact on, or sensitiv-
ity to, the network’s structure. Given that x;s are probability
values for the dual network with both nodes and edges as
nodes, we need to ensure the following is satisfied:

IN+E|
D> xi=1 and 0<x <1 (13)
i=1

To rewrite Eqgs. (13)-(14) in matrix form, we define the vec-
tors and matrices as follows:

q1 X1
q2 X2 P11 * P1N+E|
qg=| . |,x=| . |.P=] - : : (14)
: PN1 *  DPN|N+E|
4qN XN
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The system of equations in Eq. (10) can be rewritten in
vector-matrix form as:

g=oax+(1— oz)PTx,

where P” denotes the transpose of the matrix P. Rearranging
the equation, we get:

g=U~+1—a)P ).
To solve for x, we need to isolate it as
d+1—-a)Px=gq.

Given that I + (1 — «)PT is invertible (because all its eigen-
values are positive, ensuring that its determinant is nonzero),
we can multiply both sides by the inverse of I 4 (1 — «)P”:

x=0U+1-a)P"H) g

In light of the limitations outlined in Eq. (13)), it is impera-
tive to verify that the solution vector x complies with these
requirements. These constraints can be effectively addressed
by employing numerical optimization approaches. An exam-
ple of a method is the constrained optimization strategy in
which we solve the following linear problem:

minimize ||(/ + (1 —a)PT)x — ¢
IN+E|
subject to z xi=1,
i=1

0<x; <1, Vi={1,2,...,IN+E|}.

Now, we can use the mode of the optimized vector x to
identify the most probable origins of faults in the network.
The objective function is quadratic because it relies on the
metric norm, which is common in least squares problems.
Quadratic objective functions are convex when the Hessian
matrix is positive semi-definite. Since the objective function
is quadratic and the constraints are linear, we can conclude
that the optimization problem is convex. Convex optimization
problems have the advantage that any local minimum is
also a global minimum, making it easier to find the solu-
tion. Overall, the optimization problem, with its quadratic
objective function and linear constraints, is well-suited for
convex optimization methods, which can solve it effectively.
The complexity of the problem is typically expressed as a
polynomial function of the number of variables. This means
that it can be effectively managed for moderately large prob-
lems. This allows network analysis and anomaly detection
to be applied in practical settings, even with a large number
of nodes and variables. The vector x = [x1,...,xn+E(],
obtained from the optimization model in Section III-C, rep-
resents the likelihood that each node or line in the network
is the source of an anomaly. The most likely fault source is
identified as the element with the highest value in x, which
is labeled as faulty in the network status. The probability
vector x also influences the status of other nodes and lines.
If a node or line is connected to others with a high proba-
bility of fault, it is more likely to be marked as faulty. This
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Algorithm 1 Update Network Status Based on Optimal
Anomaly Source Probabilities
1: Input:
- Initial labels: y = {J1, 32, . ... In+E|}
- Source probabilities: x = {x1, x2, ..., Xny+E|}
- Augmented propagation matrix: Pr(n-+E)x(N-+El)
2: Qutput:
Updated labels y = {31, 32, . ..

JYIN+E|)

: Step 1: Identify Most Likely Anomaly Source
: I* < arg max; x;
: 5)1* ~1

* I
: ' <« one-hot vector for i*

AN W AW

~

: Step 2: Compute Influence Scores
8: fori=1to ]\2+E|do

9% fi < Z}:T el pi

10: end for

11: Step 3: Update Labels
12: fori=1to [N + E| do
13: 3 < y; - sign(fy)

14: end for

15: Return: Updated label vector y

approach ensures that the network status reflects both the
direct identification of faults and their ripple effects through-
out the network. Any nodes or lines previously estimated to
be anomalous but not stochastically connected to the detected
source should be labeled as normal. This approach aims
to remove false positives—elements that were mistakenly
identified as anomalous. In Algorithm 1, we present all the
steps in a matrix form, providing a scalable method to update
the estimated status of the network once the results of the
optimization model are obtained.

IV. NUMERICAL EXPERIMENTS

In this article, we used the IEEE 118-bus test system [34].
This system is commonly used in power system research
to evaluate new methodologies for fault analysis, stability
evaluation, and grid optimization techniques. This system
presents a challenging environment that closely resembles the
operational characteristics and constraints of real large-scale
power networks. The complexity of fault analysis in this
system arises from its sophisticated network topology. The
IEEE 118-bus test system is complex due to its interconnected
loops and paths. These complexities make it difficult to accu-
rately determine the location of faults. This is because it is
challenging to determine the effect of faults based solely on
voltage and current readings. Furthermore, the presence of
several loops and pathways adds complexity in calculating
changes in network characteristics caused by faults. The net-
work configuration includes 12 interconnection lines across
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FIGURE 2. Total generation (MW) at selected buses.

three zones: 7 lines connect Zone 2 to Zone 1, and 4 lines
link Zone 2 to Zone 3. Each of these lines is equipped with a
switch, allowing the operator to disconnect them as needed or
according to changes in the operational plan. We thoroughly
evaluated the performance of the proposed model and com-
pared it with benchmark models in three distinct sections. The
power system in our study operates continuously for 24 hours
and consists of 22 solar generators distributed in three zones.
Zone 1 has 10 solar generators, each capable of produc-
ing 30 MW. Zone 2 has 4 generators, each generating 25 MW.
Zone 3 consists of 8 generators, each with a capacity of 2 MW.
Fig. 2 shows the total electricity generation from buses 20,
21, 22, and 23, including the contribution from solar power.
We analyze various scenarios, including line and bus out-
ages, over a 24-hour period. We simulated 118 anomaly
scenarios, one for each bus outage, and 173 anomaly sce-
narios, one for each line outage, on the IEEE 118-bus
system.

The network uses a configuration of six sensors: four for
nodes (buses) and two for lines. The sensors deployed at the
nodes measure active power, reactive power, voltage ampli-
tude, and the node’s angle. These measurements are crucial
for monitoring and controlling the power system’s state.
Meanwhile, the sensors on the power lines monitor the active
and reactive power flow. These smart meters help achieve
highly reliable load forecasts. In addition, we used these
predictions as input for Monte Carlo simulations, treating
them as mean load values with a variance of 0.5. The system
simulation was conducted within the Jupyter environment,
using the Pandapower library for power system modeling.
We assume that the available sensors at the nodes and buses
can be used for fault detection. In addition, we studied the
impact of partial sensor availability in the network to make
the analysis more realistic (see Section 4.3.3). -Summary
of Power Flow Simulation: We used Pandapower to simu-
late our network, running the simulation for each time step
(one hour). Pandapower can simulate the load profile on the
IEEE 118-bus system by leveraging its time series simulation

VOLUME 13, 2025



M. Zarif, R. Moghaddass: Advanced Anomaly Detection in Smart Grids Using GCNs

IEEE Access

FIGURE 3. Graph of IEEE 118 - Buses on the same zone have the same
shape.

capabilities. Initially, the standard IEEE 118-bus network is
loaded, providing the system topology and parameters. A load
profile representing the variation of loads over 24 hours is
defined according to the IEEE 118-bus system, typically
using scaling factors to reflect peak and off-peak demand
periods throughout the day. To achieve more accurate estima-
tions, we use Monte Carlo simulations for the load modeling
of each bus. These scaling factors are applied to adjust the
loads on the network at each time step. Subsequently, for each
bus containing renewable energy, we account for specific
time periods during which electricity output is available.
We assumed a fixed value for the solar panel output rather
than using a probabilistic approach. Pandapower runs power
flow calculations for each hour, updating the loads according
to the defined profile. This process enables the analysis of
the performance of the system under varying load conditions
throughout the day. It allows the assessment of voltage pro-
files, line loads, and other operational parameters without
having to refer to specific code implementations.

-Graph Topology: The graph topology of the IEEE 118-bus
system is shown in Figs. 3 and 4. Fig. 3 presents the graph of
the IEEE 118-bus system, illustrating its complexity. Fig. 4
illustrates the IEEE 118-bus test system, where blue-colored
buses indicate power generation sources, such as generators
and solar panels. The system is divided into three zones,
with various connections and switches (S1, S2, etc.), which
are typically closed to manage the flow of power throughout
the network. As observed, the network is complex, which
leads some references to divide it into three distinct zones.
These zones are interconnected, which means that a fault or
interruption in one zone can affect the power flow and stabil-
ity of other zones. Managing the power flow between these
zones requires sophisticated control mechanisms to maintain

VOLUME 13, 2025

TABLE 1. Model hyperparameters.

Hyperparameter

Number of GCN layers 2 Activation functions ~ ReLU (hidden), Sigmoid (output)
Input feature size 6 (4 nodes; 2 edges)  Epochs 100

Loss function Binary Cross-Entropy

Learning rate 0.001

Value / Description  Hyperparameter Value / Description

Hidden layer sizes 16, 32
Optimizer Adam

FIGURE 4. Single diagram of IEEE 118-bus test system (blue-colored
buses indicate the presence of power generation sources).

voltage levels, frequency, and system stability. In particular,
the power system exhibits numerous rings or cycles within the
graph topology of each zone. These cycles add complexity to
the analysis, particularly in the context of anomaly detection.
The proposed framework includes several hyperparameters
and model setup variables, which we tuned using a limited
grid search over a small, representative subset of data. The
final selection reflects empirically optimal values within this
scope. A summary of the key hyperparameters and model
configuration is provided in Table 1.

A. SIMULATING ANOMALIES AND THEIR PROPAGATION
Fault detection in the IEEE 118-bus system is particularly
challenging due to its size and complexity. The intercon-
nected nature of the system means that a fault in one part of
the network can propagate and impact other areas, making it
difficult to isolate the fault quickly. Furthermore, the presence
of multiple zones adds to the complexity, as each zone could
have different operating conditions and sensitivities to faults.
To conduct a comprehensive analysis, we assumed numerous
scenarios for outages, considering anomalies at all nodes and
lines.

In this study, we simulated faults in both nodes and lines
of the power system network, assuming a complete outage
for each affected line or node. Based on this assumption,
we modeled the power system’s response to these faults. After
each simulation, all sensor data was collected and analyzed
to assess the impact of the faults on the entire network,
providing insights into fault detection and system stability
under different fault conditions. Within the power network
simulation, we established fault indicators by setting precise
thresholds for active and reactive power, phase angle, and
voltage levels. These indicators serve to detect abnormal
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conditions and expected problems. We assumed that a 30%
increase or decrease in active or reactive power on the trans-
mission lines implies a significant departure from typical
operational circumstances, potentially indicating faults such
as short circuits, uneven loads, or equipment breakdowns.
In addition, we considered a power angle deviation exceed-
ing 45 degrees or falling below 30 degrees as an additional
indication of instability. These angles imply a deviation from
stable power flow, potentially caused by synchronization
problems or disturbances in the system. Regarding voltage
levels, we employed a threshold of surpassing 1.05 per unit
or falling below 0.95 per unit. This threshold represents the
boundaries at which voltage conditions could compromise
both the reliability of the system and the quality of power,
potentially prompting the activation of preventative mea-
sures. These criteria collectively function as fault indicators
to aid in the detection and diagnosis of faults, hence assuring
the stability and safety of the network. For line outages, there
are 173 x 24 instances. For bus outages, there are 118 x
24 instances. After each outage simulation, our predefined
indicators allow us to determine the impact of each fault
on specific lines and nodes, depending on the timing and
location of the fault occurrence. Using this data, we can
calculate the probability of a fault impacting each particular
line or node over the 24-hour period. This result helps us
to update the adjacency matrix of the network. Given this
realistic preparation of scenarios, anomalies are propagated
according to the current load of the system, the topology of
the network, and other relevant factors, making the model
highly dynamic and realistically simulated for anomalies.
To construct the anomaly propagation matrix, we simulated
anomalies 50 times for each node and line, recording the fre-
quency with which anomalies propagated from node i to node
Jj- This resulted in an empirical probability matrix capturing
the likelihood of anomaly spread across the network. The
choice of 50 simulations was based on preliminary observa-
tions indicating that the propagation probabilities stabilized
around this point, offering a practical balance between sta-
tistical reliability and computational efficiency. It should be
pointed out that although generating the propagation matrix
P requires a large number of simulations (e.g., 15,000 for
the IEEE 118-bus system), this process is performed entirely
offline and does not impact the model’s real-time perfor-
mance. Additionally, because each simulation is independent,
the process is highly parallelizable and well-suited for dis-
tributed computing, making it scalable to larger networks.

It is important to note that if an anomaly occurs at a node
or line in the IEEE 118 system, it does not always impact the
same downstream nodes. The impact depends on the system
topology, the type of anomaly, and the effectiveness of the
protection and control mechanisms. In meshed systems such
as IEEE 118, power can be rerouted and the system can
adjust to anomalies, potentially minimizing or even prevent-
ing impacts on downstream nodes. In summary, anomalies
were introduced for each line and bus within the power
system, with the assumption that these anomalies directly
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result in an outage of the affected line or bus. A 24-hour
simulation was performed during which a node/line outage
was assumed to occur at each time step. Sensor data was col-
lected from 173 lines and 118 buses throughout this period.
Similarly, a bus failure was simulated at each time interval
over a 24-hour duration, with sensor data collected again from
173 lines and 118 buses.

B. GRAPH CONSTRUCTION AND INITIAL FEATURE
TRANSFORMATION

In the proposed model, we employ a Graph Convolutional
Network (GCN) to predict fault locations within an electrical
grid comprising 118 buses and 173 lines. The architecture is
uniquely designed to handle dual graph representations —
one representing the buses and another for the lines. Each
bus node is characterized by data from four sensors, resulting
in a node feature matrix with dimensions 118 x 4. Similarly,
each line, represented as an edge in the graph, is characterized
by data from two sensors, forming an edge feature matrix of
size 173 x 2. For the initial graph construction, we create two
adjacency matrices: Apode for the nodes (buses), and Aeqge for
the edges (lines), sized 118 x 118 and 173 x 173 respectively.
These matrices are instrumental in defining the connectiv-
ity and relationship between the various components of the
grid. The input features are normalized to standardize the
data range between different sensors. To effectively utilize
edge features within our GCN model, we employ a dual
graph representation. This approach involves treating lines as
nodes in a secondary graph, allowing us to directly incorpo-
rate line-specific sensor data into the graph-based learning
framework. Using a transfer function, we construct a com-
prehensive adjacency matrix that encapsulates both node and
edge features. This matrix serves as the foundational structure
for the GCN, enabling the propagation of features across the
graph according to the defined relationships.

- Output Layer and Model Training: The final output layer
of GCN applies a sigmoid activation function to map the
features to probabilities, resulting in a 291 x 1 matrix. Each
element of this matrix represents the probability of a fault at
the corresponding node or edge, which is vital to identify
potential problems throughout the grid. The model uses a
binary cross-entropy loss function, which is well-suited for
the binary nature of fault prediction. We employ the Adam
optimizer, known for its effective handling of sparse gradients
and adaptive learning rate capabilities, making it particularly
suitable for training deep graph-based neural networks. This
architecture not only facilitates effective feature learning and
transformation specific to the topology and dynamics of elec-
trical grids, but also enhances the ability to accurately predict
and localize faults by leveraging both node- and edge-level
data.

C. ANOMALY DETECTION RESULTS

We evaluated the effectiveness of our model in detect-
ing anomalies in a binary setting for all nodes and lines,
where label 1 indicates an anomaly and label O indicates
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FIGURE 5. Histogram of load on buses 76 and 90.

normal. The performance metric used are accuracy, preci-
sion, Fl-score, coverage, and recall, each providing unique
insights into the model’s ability to detect anomalies. Accu-
racy measures the overall proportion of correctly identified
instances, both anomalies and normal cases, but can be mis-
leading in imbalanced datasets where one class dominates.
Precision focuses on the model’s ability to correctly iden-
tify anomalies among all instances it predicts as anomalies,
indicating a low false positive rate when high; however,
overly emphasizing precision may cause the model to miss
actual anomalies if it becomes too conservative. Recall, also
known as sensitivity, assesses the model’s capacity to detect
all actual anomalies, minimizing false negatives, but opti-
mizing for recall alone might increase false positives. The
F1-Score balances precision and recall by calculating their
harmonic mean, offering a more comprehensive metric that
considers both false positives and false negatives, which is
particularly useful in cases with uneven class distribution or
differing costs of errors. Coverage evaluates the proportion
of true anomalies detected out of all instances, reflecting
the model’s efficiency in detecting anomalies throughout the
dataset. Collectively, these metrics provide a thorough assess-
ment of the model’s strengths and weaknesses in anomaly
identification, allowing for a nuanced understanding of its
performance. Our benchmark models include GCN (Graph
Convolutional Network), GNN (Graph Neural Network),
GAT (Graph Attention Network), NN (Neural Network), and
SVM (Support Vector Machine), all of which are used to
detect anomalous nodes in a supervised manner.

1) POWER OF THE MODEL IN DETECTING ANOMALOUS
NODES AND REGIONS

In this section, we assume that the switches on the commu-
nication lines are closed and that the data from the line and
bus sensors have been collected completely by the opera-
tor. Under these conditions, we conducted simulations using
both the standard GCN and the proposed method, which
employs the propagation matrix with a threshold setting of
0.25, applied separately to lines and nodes. The performance
results of these experiments are detailed in Table 2 and the
accumulated results for the lines and nodes are summarized
in Table 3. In both tables, the results based on benchmark
models are also reported. Using a dataset of 50 samples x
118 buses x 24 hours for nodes and 50 samples x 173 lines x
24 hours for lines, this simulation assesses the effectiveness
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of several techniques. We evaluated the performance of our
model by comparing it with an SVM with a sigmoid kernel
y = 0.0l and C = 100, a GNN with a 2-layer archi-
tecture (582 and 291 units), and a Neural Network (NN)
with 291 input neurons and two hidden layers consisting
of 150 and 75 neurons, respectively. The nodes and edge
features and anomaly labels are utilized as inputs to train
these models. The proposed approach consistently surpasses
previous models, achieving the highest accuracy (97.83% for
nodes and 98.95% for lines) and superior precision (96.12%
for nodes and 98.48% for lines). The F1 score (97.95% for
nodes and 99.19% for lines) and recall (99.85% for nodes
and 99.91% for lines) substantially exceed the standards,
demonstrating better detection of true positives. Further-
more, it has exceptional coverage (95.98% for nodes and
98.40% for lines), highlighting its efficiency in identifying
anomalies throughout the network. Table 3 illustrates the
overall performance of the proposed technique of combining
nodes and lines. The proposed strategy significantly improves
the alternative methods, achieving the highest scores in all
parameters. It achieves the highest accuracy (98.50%), pre-
cision (97.63%), F1 score (98.75%), coverage (97.52%), and
recall (99.89%). These results highlight the effectiveness and
reliability of the proposed approach in accurately detecting
faults, making it the most robust strategy compared to the
alternative models evaluated.

In our experiments on the IEEE 118-bus system, the infer-
ence time of the trained model was on the order of seconds,
suggesting a strong potential for real-time or near-real-time
deployment. Moreover, the offline training phase—although
more resource-intensive—is a one-time cost, while the for-
ward pass and the optimization model used in real-time
operation remains lightweight. For larger networks, scalabil-
ity can be further enhanced through batching, model pruning,
or deployment on parallel computing platforms. These char-
acteristics position our approach as a promising candidate for
practical integration into real-time grid control systems.

D. ADDITIONAL INSIGHTS FOR SELECTED NODES AND
LINES

Tables 4 and 5 present the precision and accuracy of a selected
set of important lines and nodes. Line 42 is a crucial transmis-
sion line that handles significant power transfers, but it has
the lowest precision compared to all other lines. Line 42’s
lower precision and accuracy are due to its high and variable
power flow. Although other methods might still face this chal-
lenge, the proposed method demonstrates higher precision
in predicting anomalies for this line compared to alternative
approaches. Node 76, located in the third zone, is essential
for the integration of solar energy into the network. However,
it shows the lowest accuracy compared to all other nodes. The
lower precision and accuracy at this location are likely caused
by variations in both load and generation. Our examination of
the load and production patterns in this region shows signif-
icant fluctuations in both load and generation. The existence
of these variations at node 76 is likely to be the fundamental
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TABLE 2. Comparison with benchmark models - separated by node and line levels.

Accuracy (%)  Precision (%)  F1 Score (%) Coverage (%) Recall (%)

Proposed 97.83 96.12 97.95 95.98 99.85

GCN 86.30 84.87 87.17 77.25 89.59

Node Anomalies GAT 87.00 89.54 89.95 95.26 90.01

(50 x 118 x 24) GNN 74.66 79.19 75.37 60.47 71.89

NN 69.29 60.42 70.82 54.82 85.54

SVM 76.72 77.27 78.10 64.07 78.94

Proposed 98.95 98.48 99.19 98.40 99.91

GCN 89.50 89.68 90.92 83.35 92.19

Line Anomalies GAT 87.15 §89.00 89.68 95.16 90.25

(50 x 173 x 24) GNN 85.20 87.56 86.90 76.84 86.25

NN 70.71 79.13 72.98 57.46 67.72

SVM 78.11 91.13 79.17 65.52 69.98

TABLE 3. Comparison with benchmark models - combined for node and line levels.
Method Accuracy (%) Precision (%) F1Score (%) Coverage (%) Recall (%)

Proposed Method 98.50 97.63 98.75 97.52 99.89
GCN 88.20 87.81 89.47 80.94 91.19
GAT 87.07 89.27 89.81 95.21 90.13
GNN 80.93 84.44 82.48 70.19 80.62
NN 70.13 70.58 72.12 56.40 73.73
SVM 77.55 84.96 78.73 64.92 73.35

TABLE 4. Performance metrics for selected lines: proposed method and GCN.

Line 64 (45-49)  Line 36 (17-31)

Line 132 (92-93)

Line 42 (33-18)  Line 107 (75-69)

Proposed Method

Accuracy (%) 98.23 99.43 96.65 93.12 94.76
Precision (%) 97.12 96.34 95.19 92.20 94.45
F1 Score (%) 98.64 96.12 97.65 90.34 93.56
Coverage (%) 95.76 96.45 95.17 89.94 94.87
Recall (%) 96.23 97.43 96.76 92.67 95.76
GCN

Accuracy (%) 85.65 89.10 74.26 83.69 86.59
Precision (%) 83.56 87.85 73.36 80.30 85.26
F1 Score (%) 84.25 86.21 74.15 81.20 84.25
Coverage (%) 83.12 87.12 74.87 80.12 85.13
Recall (%) 82.35 87.54 74.12 79.25 84.96

TABLE 5. Performance metrics for selected nodes: Proposed method and
GCN.

Metric Node 17 Node69 Node76 Node 90
Proposed Method

Accuracy (%) 97.25 96.36 94.98 98.89
Precision (%) 95.46 94.36 92.50 95.63
F1 Score (%) 97.87 97.52 94.52 97.62
Coverage (%) 94.52 94.52 91.85 96.23
Recall (%) 94.12 93.89 93.65 95.89
GCN

Accuracy (%) 90.89 86.98 87.69 87.79
Precision (%) 86.62 89.74 85.21 88.84
F1 Score (%) 91.25 87.24 86.57 87.96
Coverage (%) 85.96 89.32 84.99 88.54
Recall (%) 84.62 89.76 83.26 87.96

cause of the reduced accuracy and precision reported. With
a 35 MW solar panel and a demand of 68 MW at node 76,
the solar plant produces more than 50% of the total power,
especially when considering the operational hours of the solar
panels from 9 AM to 4 PM. The precision and accuracy of this
node are affected by the significant variance in load and the
oscillations in generation due to the uncertain nature of solar
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power. The histogram in Fig. 5 illustrates the load distribution
at node 76, showing significant fluctuations. However, the
load distribution of node 90, shown in Fig. 5, demonstrates
lower fluctuations and a smaller variation. This comparison
reveals that node 90 exhibits more stable load patterns, result-
ing in higher precision and accuracy for anomaly detection.
In contrast, node 76 exhibits worse precision due to its sig-
nificant load and generation fluctuations.

1) POWER OF THE PROPOSED MODEL TO LOCATE THE
SOURCE OF ANOMALIES

As discussed earlier, one important aspect of the proposed
model is its ability to detect the sources of anomalies. To show
the effectiveness of our model in locating anomalies using the
optimization approach described in Section III, we visualized
our simulation results for Line 99 in Fig. 6. Panel A high-
lights the neighborhood affected when a fault occurs on this
line. Panel B displays the estimated anomaly locations, while
panels C and D compare the selected nodes/lines without
and with the application of the optimization model, respec-
tively. Similarly, Fig. 7 presents the simulation results for
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FIGURE 6. A. Anomaly on line 99 and its impact on the network; B.
Estimated anomalous nodes and edges.

Line 19, which show a comparable outcome to Line 99.
In both examples, the sources of anomalies can be accurately
identified using the optimization model. By applying the
optimization model, we calculated the accuracy for different
values of the parameter alpha. As shown in Fig. 8, the highest
accuracy, 98.55%, is achieved at « = 0.65. In contrast,
the maximum accuracy of fault detection without using the
optimization algorithm is only 87%. This clearly demon-
strates that our proposed method significantly improves fault
detection accuracy. In general, the optimization approach
consistently produces more precise and reliable results for
fault localization.

The sensitivity analysis of the propagation threshold,
as depicted in the Fig. 9, indicates a distinct trend across mul-
tiple performance indicators. As the propagation threshold
diminishes, the model’s performance—assessed by accu-
racy, precision, F1 score, coverage, and recall—considerably
enhances, especially within the threshold interval of around
0.25 to 0.5. This suggests that reduced threshold values
improve the model’s capacity to detect sophisticated propa-
gation patterns of anomalies in the network.

The results in Fig. 10 further validate the effectiveness
of the Proposed Method in detecting the true sources of
anomalies. illustrates the performance of an anomaly detec-
tion model in identifying the exact sources of anomalies
in a power network. It compares the total number of cases
to the number of true matches for three categories: Line,
Node, and Line and Node. The model successfully detected
approximately 64.19% of Line anomalies, 51.63% of Node
anomalies, and 59.10% of combined Line and Node anoma-
lies. In addition to the 59.1% exact match rate (hop = 0),
our proximity-based evaluation shows that the model iden-
tifies the true source within 1-hop in approximately 85% of
cases, within 2-hops in about 91%, and within 3-hops in over
95%. These results underscore the model’s strong operational
value, even when strict exact matches are not achieved.

This indicates that the model is more effective at detect-
ing Line-related anomalies compared to Node-related ones,
with the combined category falling in between. Although the
model does not always detect the exact source of an anomaly,
it often identifies sources that are in close proximity, often
adjacent to the true source. From an operational standpoint,
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D. Fault Location With Optimization

A. Outage on Line19 and impact on Network B. Fault Estimated

FIGURE 7. A. Anomaly on line 19 and its impact on the network; B.
Estimated anomalous nodes and edges.
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FIGURE 8. Accuracy versus different values of « in the optimization
model.

this level of accuracy is highly beneficial for the maintenance
team. However, in terms of our strict performance metrics,
itis still considered a “‘no match.” This distinction highlights
that the practical performance of our model is stronger than
the raw metrics suggest. Furthermore, MOST existing bench-
mark models are still unable to pinpoint anomaly sources
as accurately as our model. Additionally, our model has the
capability to filter out many false positives based on the
propagation matrix once the sources are identified, providing
more precise and actionable results for power system man-
agement.

2) MODEL PERFORMANCE ACROSS VARIOUS NETWORK
TOPOLOGIES

The power system studied in this article consists of 11 inter-
connection lines, which we consider as switches used by the
Independent System Operator (ISO) to change the system’s
configuration. As a result, there are a total of 2048 @
possible states. We used these switches to assess the sys-
tem’s performance across 11 randomly selected topologies.
Changing a switch in the power system results in alterations
in topology, adjacency matrix, and power flow.

Initially, we conducted tests using the same training data
as before, meaning that we did not modify the adjacency
matrix or power flow data used to train the proposed Graph
Convolutional Network (GCN). However, changing a switch
generates a new adjacency matrix and affects the power flow.
To improve performance, we retrained the system based on
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FIGURE 10. Performance of the model in source detection - There are
349,200 total cases (50 runs x 24 hours x 118 nodes + 50 runs x
24 hours x 173 lines).

each topology and conducted subsequent tests under modi-
fied circumstances. After retraining, we applied the proposed
method to the new data, referring to this approach as the
Proposed Method-TR. We then investigated the performance
of the GCN and the proposed approach under different con-
ditions by changing the switches. Performance measures are
presented in Fig. 11. It should be pointed out that we used
a fixed value of @ = 0.65 across all topologies without
individual tuning. However, « is sensitive to the network
topology, and topology-specific tuning is a potential avenue
for further improvement.

As indicated in Fig. 11, the model exhibits resilience in
the face of these modifications. The improved efficiency
of the retrained model, which uses the propagation matrix
to update the adjacency matrix, is clearly visible compared
to the basic model. The fault detection accuracy is lowest
when there is a topological change between areas 1 and 2,
particularly on line 41. Analysis of this connection revealed
that it provides the most effective transmission of power
between these regions. Modifying the network topology in
this manner requires increasing the production capacity in
area 1 to meet consumer demands, which results in notable
changes in power distribution between lines and buses in
that region. Consequently, these significant adjustments lead
to a decrease of approximately 20% in the probability of
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FIGURE 11. Performance comparison across graph topologies.

detecting faults in the improved model before retraining.
To optimize system performance, as explained in the previous
section, we reprocessed the required data for training and
testing. This adjustment significantly improved the accuracy
rate, increasing it from 75.34% to 95.76%. In addition, the
proposed approach demonstrates reliability and robustness in
the face of changing topology, allowing for accurate fault
location prediction. This resilience is crucial for network
operators, considering the high likelihood of operational
strategy adjustments within the network for various reasons.
Given the numerous configurations possible in complex net-
works, it is essential that the proposed model remains robust
against changes. Since the status of the switches (whether
they are on or off) is known to the operator in practice, the
operator can determine the current network topology based
on the active switches. This knowledge allows the operator to
select and run the trained model corresponding to the specific
switch configuration. By applying the appropriate model,
the operator can effectively detect any anomalies in the net-
work, ensuring accurate fault localization despite changes
in the network topology. This practical approach enhances
the robustness of the proposed method as it leverages the
operator’s knowledge of the switch states to maintain high
detection accuracy across different configurations.

3) MISSING SENSOR DATA

In previous sections, we evaluated the model under the
assumption of complete sensor data from all bus and line
measurements. In this section, we assess the model’s per-
formance when some measurement data is missing from the
network. To achieve this, we randomly reduced the available
measurements in three distinct scenarios to test both the
proposed and the benchmark models. Table 6 shows that the
proposed model is highly effective in locating faults even in
the presence of missing measurement data. The table also
highlights the resilience of the proposed method compared
to the Graph Convolutional Network (GCN) across varying
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TABLE 6. Performance metrics (in %) for GCN and proposed method with
different missing sensor rates.

Method Missing Rate  Accuracy Precision F1Score (%) Coverage Recall
0 88.20 87.81 89.47 80.94 91.19
GCN 25 82.35 81.50 83.49 75.12 84.85
55 75.87 74.62 76.46 72.19 79.23
65 70.96 68.50 71.65 65.78 72.00
0 98.50 97.63 98.75 97.52 99.89
25 92.63 91.76 92.19 91.50 95.32
Proposed Method 55 85.26 84.69 85.56 8459 8848
65 80.35 80.23 81.14 80.50 82.45

levels of sensor data loss. We should note that only GCN
is used as a benchmark because it consistently provides the
best solutions compared to other models. Specifically, the
proposed method maintains a high level of accuracy even
when a significant portion of the sensors are unavailable. The
robustness of the proposed method is primarily due to its use
of the propagation matrix to update the adjacency matrix,
which enhances the model’s ability to leverage information
from nodes or buses that are distant from the anomaly origin.
By propagating information across the network, the proposed
method effectively integrates data from non-adjacent nodes
and lines that are correlated with the anomaly.

This integration significantly improves its ability to detect
anomalies, even when direct measurements are lacking. As a
result, the proposed method is able to maintain high per-
formance and accurate anomaly detection, ensuring network
observability despite substantial data loss.

4) CYBERSECURITY CONCERNS

It is essential to emphasize that a substantial amount of data
unavailability, especially from sensor inputs, may signify
cybersecurity threats. Our approach is designed to maintain
strong performance even when sensor data are inadequate
or potentially hacked, often indicating security breaches.
Although our existing techniques guarantee operating effi-
ciency regardless of these problems, we now lack the ability
to determine whether the disruptions are attributable to
cyber attacks. We intend to improve our system to detect
abnormalities and accurately ascertain whether they originate
from cybersecurity threats. This advancement will enable
us to more precisely identify the origins of data anomalies,
thus enhancing the security and dependability of smart grid
operations.

V. CONCLUDING REMARKS AND FUTURE WORK

Anomaly detection and isolation continue to be critical
challenges in power system networks. The introduction of
smart meters and advanced measurement technologies has
allowed power system operators to more accurately pinpoint
fault locations, quickly address anomalies, and improve the
overall reliability of power networks. However, complexi-
ties such as topology changes, the integration of renewable
energy sources, stochastic propagation of anomalies, and
missing data require approaches that are sensitive to these
evolving conditions. In this study, we presented an innova-
tive method that combines a Graph Convolutional Network
(GCN) with a modified probability propagation matrix and
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augmented dual graphs to detect anomalies using network
sensors placed on both nodes and lines. Also, we developed
an optimization model that not only identifies the sources
of anomalies, but also provides the probability that each
node and line is the source of faults or impacted by them.
We also propose a filtering strategy to further remove false
positives based on the detected source of anomalies. This
optimization model effectively locates the most probable
fault sources and considers fault propagation throughout
the network, improving the interpretability and accuracy of
the results. The proposed method was tested on the IEEE
118-bus system, with simulation results demonstrating that it
achieves reasonable performance and significantly improves
the network’s resilience to topology changes and missing
data. By incorporating the optimization model, our approach
provides more precise and consistent anomaly location per-
formance, offering probabilities that help operators prioritize
responses based on the likelihood that nodes or lines are
faulty. Although the model is specifically designed for power
networks, its adaptable features make it suitable for other
sensor-intensive networks or graph structures, such as trans-
portation or social networks, where anomaly detection at
nodes and edges is essential. In future work, we plan to extend
and validate the proposed model on other benchmark datasets
from different domains to demonstrate its generalizability
and broader applicability. The optimization framework can
be applied to these domains to identify sources of anomalies
and understand their propagation throughout the network.
In future work, we will explore dynamic scenarios in which
the network topology changes over time and consider the
presence of noise in the sensor data. The proposed model
paves the way for further research in developing customized
GCN models that better understand the unique characteristics
of the networks under study, making them more adaptable and
interpretable. For future work, incorporating spatiotemporal
elements into our GCN framework is a promising direction.
This enhancement would allow the model not only to imme-
diately locate faults, but also to anticipate potential problems
based on historical and real-time data trends. Developing a
hybrid model that combines the strengths of both GCN and
spatiotemporal graph neural networks could cover a broader
spectrum of needs, from rapid response to anticipatory fault
management. This approach would significantly advance our
capabilities in fault detection and contribute to more robust
and resilient power system operations. Future work also
includes improving model efficiency, particularly through
vectorization and parallelization, to ensure the model remains
feasible for large-scale deployment.
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