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ABSTRACT Federated learning (FL) is an emerging machine learning (ML) paradigm used to train models
across multiple nodes (i.e., clients) holding local data sets, without explicitly exchanging the data. It has
attracted a growing interest in recent years due to its advantages in terms of privacy considerations, and
communication resources. In FL, selected clients train their local models and send a function of the models to
the server, which consumes a random processing and transmission time. The server updates the global model
and broadcasts it back to the clients. The client selection problem in FL is to schedule a subset of the clients
for training and transmission at each given time so as to optimize the learning performance. In this paper,
we present a novel multi-armed bandit (MAB)-based approach for client selection to minimize the training
latency without harming the ability of the model to generalize, that is, to provide reliable predictions for new
observations. We develop a novel algorithm to achieve this goal, dubbed Bandit Scheduling for FL (BSFL).
We analyze BSFL theoretically, and show that it achieves a logarithmic regret, defined as the loss of BSFL
as compared to a genie that has complete knowledge about the latency means of all clients. We conducted
evaluations under both i.i.d. and non-i.i.d. scenarios using a synthetic dataset with a linear regression model
and two well-known datasets, Fashion-MNIST and CIFAR-10 with CNN-based classification models. The
results demonstrate that BSFL outperforms existing methods.

INDEX TERMS Federated learning (FL), client selection, client scheduling, multi-armed bandit (MAB),
generalization in machine learning.

I. INTRODUCTION
The increasing demand for ML tasks in wireless networks
consisting of a large number of clients (i.e., users or edge
devices) has led to the rise of a new ML framework, called
federated learning (FL) [2], [3], [4]. FL enables training ML
models without extracting the data directly from the edge
devices. In the beginning of the FL procedure, the ML model
is being initialized. Next, the FL training scheme is done
by repeated iterations between the clients that implement
local training and the parameter server that aggregates
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functions of the local trained models. This allows to train
the global model without explicitly exchanging the data,
which is advantageous in terms of privacy considerations
and communication resources. The bandwidth constraint
dictates the total number of clients that can be scheduled
for transmissions, which can be implemented by traditional
digital communications over orthogonal channels [3], [4],
[5] or coherent analog transmissions over multiple access
channels [6], [7], [8], [9], [10]. To simplify the presentation,
we focus here on traditional digital communications.

We consider an FL system with K clients sharing m
orthogonal channels at each iteration (e.g., OFDMA), where
m → K . Since the bandwidth is limited by m channels
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and the number of clients K is typically high, only a small
fraction of the clients can be scheduled for transmission at
each iteration [11]. The selection of a subset of m clients
among K clients has been studied in the context of
scheduling and spectrum access problems in traditional
communication schemes (see e.g., [5], [12], [13], [14], [15],
[16]). However, solving the problem in FL systems adds new
challenges resulting in fundamentally different algorithms
and analysis [4]. Each iteration in the FL system includes
selecting a subset ofm clients, distributing themodel from the
server to the selected clients, training locally the model by the
selected clients, uploading the trainedmodels from the clients
to the server (i.e., sharing m orthogonal uplink channels
using OFDMA), and finally aggregating the received models
at the server to update the global model. An illustration is
presented in Fig. 1. Emerging challenges in the FL framework
are described below [4], [17], [18]. The first challenge is
the heterogeneous data between the clients [9], [18]. The
local data is usually subjective to the client, and therefore
is likely to be biased and imbalanced. Another challenge
is balancing the total latency affected by different clients
with different computational and communication resources,
as well as different channel states. This is a key challenge
in FL systems since each scheduled client experiences a
different random latency, and the iteration ends when the
server receives the trained models from all clients. In this
paper, we tackle these challenges and develop a novel client
selection algorithmwhich is superior to existingmethods, and
achieves strong performance in terms of reducing the training
latency, while not harming the generalization of the model.

FIGURE 1. An illustration of the FL communications scheme.

A. CLIENT SELECTION METHODS IN FEDERATED
LEARNING
Previous studies have shown that client selection has a great
impact on the model’s performance and the training latency.
The standard client selection method is to choose the clients
randomly with probability proportional to the amount of data
each client contains [2], [19]. The clients can differ from each
other in several factors such as the size of their database, the
amount of available resources, their channel state, the energy
they can invest, and the value of their local loss function. Each
iteration in FL systems ends when the last scheduled client

uploads its updated model. Thus, variability among clients
might lead to poor performance with the standard random
selection method. As a result, more recent methods used
observations of one or more of the aforementioned factors
to infer the iteration latency of each client and subsequently
select the appropriate group that leads to efficient training
latency [20], [21], [22], [23], [24], [25], [26], [27]. In [20],
[21], [22], [23], [25], and [27] the focus was on the effect
of client sampling on the learning performance. In [24]
and [26] the problem is investigated under the assumption
that parameters related to the communication link and
latency are known (e.g., channel state, transmission latency).
As a result, the optimization problem in those studies is
deterministic with respect to the client selection strategy.
However, in many scenarios, client latencies are affected
by other random factors as discussed earlier (e.g., client
energy state, available computational resources, random
transmission rate), and are unknown at the time of the
client selection. Therefore, recent studies (including this
paper) tackle the problem using a fundamentally different
approach by treating clients’ latencies as unknown random
variables drawn from unknown distributions, which leads to
a stochastic optimization problem that raises the well-known
exploration versus exploitation dilemma. On one hand, it is
necessary to explore different actions (i.e., client selection
sets) to explore the system state. On the other hand, it is
imperative to exploit the information gathered so far to
converge to the optimal selection strategy. This approach
involves modeling and analyzing the problem as a MAB
problem by treating the iteration latency or the local loss
function of each client as a reward taken from an unknown
distribution and given to the server (modeled as the gambler
in MAB) [28], [29], [30], [31], [32]. In [28], the authors
developed a MAB method as in the classic i.i.d. MAB that
converges to a strategy that selects a small subset of the
quickest clients (i.e., with the smallest expected latency).
This method, however, suffers from overfitting to the quickest
clients’ data when used for scheduling in FL systems. In [29],
[30], and [31], the focus was on reducing the loss, but the
generalization issue remained open.

Unlike traditional client selection methods in federated
learning, which often rely on fixed or heuristic-based
strategies, our proposed BSFL algorithm introduces a novel
multi-armed bandit (MAB) formulation. This formulation
specifically addresses the exploration-exploitation dilemma
by allowing for dynamic adjustment based on client perfor-
mance and contributions to generalization (which can depend
on data quality, data variability, sensor quality, etc.). Existing
methods, such as those employingMAB formulations, do not
adequately balance the trade-offs between training latency
and model generalization. Our BSFL algorithm optimizes
this balance by leveraging a time-varying reward function
that considers both client latency and their contribution to
the model’s generalization. Furthermore, the BSFL algorithm
incorporates a rigorous theoretical framework that guarantees
logarithmic regret. This ensures that our method not only
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improves training efficiency but also enhances the robustness
and accuracy of the resulting global model. Non-stochastic
client selection methods face a critical limitation due to
the substantial overhead they impose. These methods rely
heavily on gathering detailed context information from
each client—such as computing power, channel quality,
and energy levels—prior to each iteration. While this can
enhance selection accuracy, it also introduces significant
communication and computational costs. As the number of
clients increases, the process of collecting and processing this
metadata becomes a bottleneck, severely limiting scalability
and reducing overall training efficiency. In contrast, BSFL
operates without relying on context information, making it
inherently more scalable. This enables BSFL tomaintain effi-
cient and robust performance, even in large-scale federated
learning scenarios.

B. COLLECTIVE OBJECTIVE AS OPPOSED TO CONCEPT OF
FAIRNESS
To enable generalization by sampling a large number
of clients, the concept of fairness was utilized in [28]
and [32]. This heuristic approach spreads the sampling
among the clients by incorporating a fairness constraint to
ensure that each client is selected in a certain proportion
of the communication rounds. It is important to notice
that the concept of a fairness constraint holds relevance
in contexts where each client pursues individual goals,
as in routine data transmissions in communication systems.
However, in FL, the objective is not personalized but rather
focuses on training the best generalized model collectively.
Consequently, the identity of the client responsible for
model training becomes inconsequential. For instance, if a
client’s contribution to the training process is minimal,
it is actually more advantageous for that client to be
excluded. Moreover, even in the scenario characterized by
i.i.d. data, employing the fairness-based method leads to
convergence towards the group of fastest clients, with occa-
sional selection of slower clients mandated by the fairness
constraint. Consequently, incorporating a fairness constraint
fails to accurately capture the optimization problem of client
selection in FL. Instead, the primary goal is to train a model
utilizing clients that offer the greatest contributions to its
generalization.

Therefore, in this paper, we propose a fundamentally
different approach. Here, we develop a novel MAB formula-
tion for the client selection problem, incorporating a reward
function that captures the generalization of the ML task.
The MAB process rewards the actions (i.e., client selection
decisions) based on the system parameters and the history
of the process, aiming to directly select clients to optimize
the collective objective. Specifically, the MAB strategy no
longer converges to a specific subset of clients but rather
to time-varying subsets aimed at optimizing the collective
objective. This enables us to rigorously solve the client
selection optimization problem in FL.

C. MAIN CONTRIBUTIONS
To solve the client selection problem in FL, one must address
an online learning problem with the well-known exploration
versus exploitation dilemma. On the one hand, the player
(i.e., the server) should explore all arms (i.e., clients) in order
to learn their state (i.e., latency distribution, generalization
ability) which affects the overall training time of the FL
task. On the other hand, it should exploit the information
gathered so far to select the most rewarding subset of arms
at each given time. In this paper, we developed a rigorous
MAB formulation to model this problem, along with a novel
learning algorithm to solve it.We provide rigorous theoretical
analysis of the algorithm, as well as extensive numerical
analysis. Below, we summarize the main contributions of our
work in detail.

1) A NOVEL MAB FORMULATION FOR THE CLIENT
SELECTION PROBLEM
We present a new MAB formulation that trades-off between
the training latency and the generalization of the model in FL
by client selection. This trade-off raises new challenges in the
learning design. On the one hand, it is desired to reduce the
training process time of the model, and on the other hand,
it is desired to increase the ability of the model to generalize
by avoiding over-fitting. The novel MAB formulation tackles
this trade-off by selecting clients based on a time-varying
reward influenced by the history of previous selections.

2) ALGORITHM DEVELOPMENT
We develop a novel upper confidence bound (UCB)-based
algorithm to solve the problem, dubbed Bandit Scheduling
for FL (BSFL). BSFL presents a fundamentally different
approach to selecting clients, as the reward function updates
the contributions of each client to the FL task based on
the history of previous selections. As a result, BSFL does
not aim to converge to selecting a fixed subset of clients,
but rather aims to increase the ability of the model to
generalize. Furthermore, we provide concrete examples of
the use of BSFL in both cases where the data is i.i.d.
and balanced across clients, and where the data is non-
i.i.d. and imbalanced. Since the UCB optimization in BSFL
requires to solve a combinatorial problem to select the
most rewarding subset of clients at each given time, the
time complexity increases exponentially with the number
of clients, which might be infeasible for a large number
of clients. Hence, we utilize the optimization problem’s
structure to devise a low-complexity algorithm, named
accelerated lightweight simulated annealing (ALSA), which
relies on a newly proposed accelerated lightweight simulated
annealing technique that we develop for BSFL. Specifically,
we show analytically that ALSA reduces the degree-order in
the simulated annealing graph from O(K 2) to O(K ) (where
K is the number of clients), and still keeps the convergence
property. This results in a significant accelerated convergence
time requires to solve the UCB optimization in BSFL.
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3) PERFORMANCE ANALYSIS
We analyze the performance of BSFL theoretically and
numerically. In terms of theoretical analysis, as commonly
done in the MAB literature, we evaluate the performance by
regret, defined as the loss of BSFL as compared to a genie
that has complete knowledge about the latency means of all
clients. We analyze the performance of BSFL rigorously, and
show that it achieves a logarithmic regret with time. In terms
of numerical analysis, we present extensive simulations using
synthetic and real datasets. All simulations demonstrate that
BSFL is superior to existing methods in the regret, prediction
accuracy and efficiency.

The BSFL algorithm is well-suited for applications where
balancing latency and model generalization is desired to
achieve real-time performance and reliability. Examples
include IoT networks, autonomous driving systems, smart
cities, and next-generation wireless networks, where efficient
client selection optimizes data-driven decision-making and
supports seamless operation. These applications rely on
robust algorithms to manage latency, bandwidth, and model
generalization in real-time scenarios. Our proposed MAB-
based approach significantly improves the efficiency of
training processes by minimizing latency while maintaining
model generalization. This advancement is especially sig-
nificant in real-world applications that require timely and
accurate model updates. By optimizing client selection, our
method ensures that FL systems can be more effectively
deployed in practical scenarios, leading to better performance
and faster training process.

II. SYSTEM MODEL
We consider a common FL systemwith star topology. The FL
system consists of a setK of clients with cardinality |K| = K ,
where the clients communicate directly with the server via m
orthogonal channels (e.g., OFDMA), where m → K . Since
the bandwidth is limited by m channels and the number of
clients K is typically high, only a small fraction of the clients
can be scheduled for transmission at each iteration [11].
Due to operation or communication constraints, the server
interacts with a set At ↑ K of clients which are available
to participate in the FL task at iteration t . The number of
available clients |At | is assumed to be much higher than the
number of channels m. At each iteration, the server selects
m clients from the set At of clients to participate in the
FL task, each client is assigned to a dedicated orthogonal
channel. We denote the set of all possible client selections
by H (K) = {S ↓ K : |S| = m}, and the set of all possible
client selections at iteration t by H (At ), i.e., H (At ) = {S ↓

At : |S| = m} ↑ H (K).
Each client k ↔ K holds a local database Xk . The local

data is not being shared in FL systems due to privacy or
communication constraints, and only the output model of a
local training procedure is transmitted to the server. The FL
task by the server is to minimize the global loss function

denoted by:

L(W ,X ) =

∑

k↔K

|Xk |
|X |

· L(W ,Xk ) (1)

with respect to the model’s parameters denoted as W , where
X = ↗k↔KXk and L(W ,Xk ) is the local loss of client k . The
server’s action at iteration t is defined by the selection of
the participating set of clients. We denote this action in the
algorithm that we aim to develop by At ↑ H (At ). We also
denote the history of all previous client selections by the
server before iteration t byHt = {A1,A2, . . . ,At↘1}.
Each iteration consumes a random processing time

depending on the participating clients due to distributing the
model to the clients, local training and updating the model
at each client, and transmitting each local model back to
the server for global aggregation. We denote ωk,t as the total
random latency consumed by client k at iteration t . At each
iteration t , the FL process proceeds to the next iteration after
receiving all the trained models from all the selected clients.
Therefore, the total iteration time ωt is dictated by the slowest
client, i.e.

ωt = maxk↔At ωk,t . (2)

III. MAB-BASED FORMULATION FOR THE CLIENT
SELECTION PROBLEM
In this section, we present a novel MAB formulation
for the client selection problem in order to minimize the
training latency without harming the ability of the model
to generalize, i.e., to provide reliable predictions for new
observations.

A. TRADING-OFF BETWEEN THE GENERALIZATION AND
ITERATION TIME VIA MAB FORMULATION
MAB problems are often illustrated with the example
of a player or gambler facing a row of slot machines,
selecting arms to pull at each time and obtaining rewards
accordingly. In our context, the server acts as the player,
and the clients act as the arms. At each iteration, the server
selects a subset of clients, which contribute to the learning
process rate accordingly. Solving the MAB problem, and
specifically the client selection problem in this paper, requires
addressing the well-known exploration versus exploitation
dilemma in online learning. To better illustrate the trade-off
between exploration and exploitation in theMAB framework,
consider a scenario where a server selects clients with
unknown latencies for model training. In the early stages,
the server may explore by selecting different clients to
gather information about their latencies. The server might
initially choose each client multiple times to estimate their
upper confidence bound. As more observations gathered,
the server shifts towards exploitation, selecting the client
group that provides the best balance between low latency and
contribution to model generalization.
The exploration versus exploitation dilemma has been

rigorously addressed in MAB optimization [33]. As a result,
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recent studies have modeled and analyzed the client selection
problem in FL as a MAB problem, treating the iteration
latency or local loss function of each client as a reward
obtained from an unknown distribution and given to the
server [28], [29], [30], [31], [32], as discussed in Section I.a.
However, all these methods converge to selecting the fastest
clients (except for the times of selecting slower clients due
to the fairness constraint in [32]). Consequently, they suffer
from overfitting to the data of the quickest clients when
applied to scheduling in FL systems, leading to reduced
generalization ability and prediction accuracy.

In this paper, we overcome this limitation by developing
a novel MAB formulation for the client selection problem
consisting of a time-varying reward function that captures
both the client latency as well as the client ability to contribute
to the generalization of the ML task. It should be noted
that previous work on rotting bandits [34] considered a
reward function that decreases with the activation rate of
selected arms. However, the model here is fundamentally
different, since the time-varying reward function depends
on the overall subset selections of correlated clients in
the systems. This leads to a novel combinatorial MAB
(CMAB) formulation [35], in which the design and analysis
is fundamentally different from rotting bandits. Specifically,
our formulation trades-off rigorously between the general-
ization and latency, as each client in FL systems might
have different characteristics such as computing power, task
operations, channel states, etc. This results in different latency
distributions in training and transmitting the local models
across clients in the FL system [4]. On the one hand, to reduce
the total iteration time at each iteration, it is desired to select
clients with small latencies at each iteration. On the other
hand, it is desired to select as many clients as possible during
the training process (even slower clients) for the model to
be robust and generalized for both i.i.d. balanced data and
non-i.i.d. imbalanced data [32], [36], [37], [38]. In the next
subsection we describe the generalization function used in the
CMAB formulation.

B. THE GENERALIZATION FUNCTION
For simplicity and maintaining generality, we denote by ε

all system constant parameters that contribute to the reward
(which will be described later with examples). The level
of contribution of client k to the generalization ability and
robustness of the model is evaluated by a generalization
function gk,ε : Ht ≃ [↘1, 1]. It gives at each iteration t
a value that represents the contribution of client k to the
generalization of the global model, depending on the model
constant parameters ε and the selection history before
time t ,Ht . We next present concrete examples of the function
gk,ε in both cases of i.i.d. and balanced data, and non-i.i.d.
and imbalanced data across clients.

We start by considering the case of i.i.d. balanced data.
We use the selection history to extract a counter ck,t
for each client that counts the number of iterations that

client k was selected until the beginning of iteration t , i.e.,
ck,t =

∑t↘1
i=1 {k↔Ai}. In order to achieve high generalization

in this case, it is important that each client is selected an equal
number of times [19], [32], [36], [37], [38]. In this case, we let
ε store the number of clients and the number of channels, i.e.,
ε = {K ,m}. Then, an effective design of the function gk,ε
is given by:

gk,ε(Ht ) = gk,ε
(ck,t
t

)
=

∣∣∣∣
m
K

↘
ck,t
t

∣∣∣∣
ϑ

· sgn
(
m
K

↘
ck,t
t

)
,

(3)

where ϑ is a tuning parameter (natural number), and sgn(·) is
the sign function that returns ±1. An illustration is presented
in Fig. 2.
The key idea behind the design is that the more the

ML model is trained with new data points or alternatively
with data that was used too little, the more its ability to
generalize increases [36], [38]. It is thus desired to select
clients uniformly with rate m/K over time. Therefore, the
generalization function gk,ε is designed to be monotonically
decreasing so that it provides incentive (i.e., positive value
in terms of contributing to generalization) to select clients
that were selected too little (i.e., ck,t

t < m/K ), and returns
zero when the client’s counter reaches the desired selection
rate (i.e., ck,t

t = m/K ). Clients that were selected too
frequently are given negative values in terms of contributing
to generalization.

FIGURE 2. The value of gk,ω as a function of
ck,t

t with different values
of ε.

In the second scenario, consider non-i.i.d. and imbalanced
data, where the data quality varies between clients. In this
case, it is desired to take into account the participation rate
of each client, as well as the quantity and quality of the
data, when selecting clients for transmission. The quantity
of each client’s data (i.e., its database size |Xk |) is useful
for the generalization, as it more likely to represent the
true distribution of data [39]. The second aspect stems from
the desire to train the model on reliable, high-quality, and
meaningful data [40], [41], [42], [43]. Generally, in ML, and

VOLUME 13, 2025 33701



D. B. Ami et al.: Client Selection for Generalization in Accelerated Federated Learning

particularly FL, the data for each client might have different
quality due to several factors such as device heterogeneity,
environment heterogeneity, etc. We define the client’s data
quality by qk ↔ [0, 1], where 1 stands for the best quality, and
thus the generalization function gk,ε is designed to prioritize
clients with higher data quality. Since the quality for each
client (say client k) is aggregated over all its data points Xk ,
we denote the overall significance of client k by dk = qk ·|Xk |.
Therefore. the model parameters in this case is given by
ε =

{
K ,m, {(|Xk |, qk ) : k ↔ K}

}
, and the generalization

function is given by:

gk,ε(ck,t ) =

∣∣∣∣
mdk∑
k↔K dk

↘
ck,t
t

∣∣∣∣
ϑ

· sgn
(

mdk∑
k↔K dk

↘
ck,t
t

)
.

(4)

The operation of the generalization function can be
illustrated through different data scenarios. In the case of
i.i.d. data, where each client has a balanced dataset, the
generalization function ensures that clients are selected
uniformly over time. For example, if the system has four
clients with similar data distributions, the generalization
function will aim to select each client roughly 25% of the
time, thus ensuring a fair representation of all data in the
global model. In contrast, with non-i.i.d. data, where clients
have skewed data distributions, the generalization function
prioritizes clients with more diverse or underrepresented
data. In realistic scenarios involving unbalanced and non-
i.i.d. data, the generalization function can utilize various
metadata attributes and data distribution of the clients. For
example, in the case of the training digits-classifier task
(such as MNIST), the generalization function would assign
a higher value to clients with a larger dataset, those that have
participated less frequently, those with uniformly distributed
samples across all 10 digits, and those with higher quality
cameras. The generalization function quantifies the attributes
mentioned above, allowing BSFL to balance them against the
client’s training time within the MAB framework.

In the next subsection we present the CMAB formulation
for the client selection problem. In the empirical study in this
paper, we used the forms of gk,ε as detailed above, which
demonstrated very good performance. It should be noted,
however, that the CMAB formulation is general. It does
not depend on a specific form of gk,ε, and other forms
can be used. For example, it is possible to define gk,ε to
be dependent on the local loss value of each client, which
is advantageous in improving the convergence in the long
term [44].

C. CMAB-BASED FORMULATION WITH
HISTORY-DEPENDENT REWARD
We now formulate the client selection problem as a CMAB
problem with history-dependent reward. At each iteration t ,
the server (i.e., the player) selects a subset of clients At ↔

H (At ) (i.e., arms), and at the end of the iteration observes
the clients’ iteration latencies. The reward given at the end of

iteration t is defined by:

r(t) = min
k↔At

{
ωmin

ωk,t
} +

ϖ

m

∑

k↔At

gk,ε(Ht ), (5)

where ϖ is a hyper-parameter of the generalization, balancing
between the amount of the generalization and the iteration
time. ωmin denotes the shortest conceivable latency for an
iteration, encompassing the duration to transmit and retrieve
a model, presuming no training time for the client. This is
primarily utilized to normalize the iteration speed expression
in the reward definition for eliminating the effects of any
potential high rewards that may harm the learning process
of the algorithm and for analytical considerations, which
can be found in the appendix. For purposes of analysis,
we further assume that the reward given at the end of each
iteration is quantized and the smallest difference between two
different rewards is denoted by ϱmin, as commonly assumed
in analyzingMAB-based problems. Since the iteration time is
determined by the maximal latency under the selected subset
of clients At , the first term on the RHS of (5) represents
the reward due to the iteration time, and the second term
represents the reward due to the generalization. The smaller
the value of ϖ, the higher priority to select faster clients.
On the one hand, this reduces the iteration time. On the other
hand, it tends to select the same faster clients at each iteration,
which reduces the generalization, and increases the total
number of iterations needed to achieve reliable predictions.
An important insight from the CMAB formulation is

that if a slow client is given high priority based on the
reward function and is selected for transmission at the current
iteration, then since the iteration time is determined by the
slowest client, there is no motivation to choose fast clients at
the same iteration. Instead, clients with high rewards in terms
of generalization, even if they are slow, should be prioritized.
Note that the formulation of our CMAB problem is

fundamentally different from the classical CMAB problem.
Specifically, here the reward does not depend on the new
observations solely (as in classic CMAB), but also on the
selection history up to the current iteration. Thus, optimizing
the reward in classic MAB leads to a fixed selection of arms,
while in our problem the optimal selection is time-varying
depending on the selection history, as will be detailed in the
next subsection.

D. THE OBJECTIVE
We aim to find the best selection policy ς = {A1,A2, . . .}

(where At stands for the selection at iteration t) which
minimizes the training process time while preserving the
ability of the model to perform the generalization. The
performance of online learning algorithms is commonly
evaluated by the regret, defined as the loss of an algorithm
as compared to a genie with side information on the system.
Here, to measure the performance of our proposed policy we
define the regret as follows. We denote the maximal mean
reward at iteration t that can be obtained by genie that has
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complete knowledge about the latency means of all clients
by r⇐(t), where genie’s selection at time t is given by:

Gt = argmax
S↔H (A)

{
min
k↔S

µk +
ϖ

m

∑

k↔S

gk,ε
(
Ht

)}
, (6)

where µk stands for the speed mean of client k
(i.e., µk = E

[ ωmin
ωk

]
).

The regret of the policy (say ς) at time n is defined by the
accumulated loss by time n between the reward obtained by
genie and the expected reward obtained by ς:

R(n) = Eς

 n∑

t=1

r⇐(t) ↘ r(t)

. (7)

The objective is thus to find a policy ς that minimizes the
regret order with time.

IV. THE PROPOSED BSFL ALGORITHM
In this section we start by presenting the BSFL algorithm
to solve the objective. Then, we analyze the regret (7)
analytically.

A. DESCRIPTION OF THE ALGORITHM
The BSFL algorithm is based on a novel UCB-type design
for client selection in FL. The pseudocode for the BSFL
algorithm is provided in Algorithm 1. We now discuss the
steps of the BSFL algorithm in detail.

BSFL observes realizations of the random speed of the
selected clients (i.e., ωmin

ωk,t
) and estimates its mean accordingly.

Let

µk,t =
1
ck,t

t↘1∑

i=1

ωmin

ωk,i
· {k↔Ai} (8)

be the sample-mean speed of client k after t iterations.
We design the UCB function of client k’s speed after
t iterations by:

ucb(k, t) = µk,t +


(m+ 1) ln t

ck,t
. (9)

To maintain an updated µk,t and ucb(k, t) for each client,
each time a client is selected to participate in the FL iteration,
the algorithm observes its speed ωmin

ωk,t
and updates its counter

and the speed’s sample-mean as follows:

ck,t ⇒ ck,t↘1 + 1, (10)

µk,t ⇒

µk,t↘1 · ck,t↘1 +
ωmin
ωk,t

ck,t
. (11)

Then, for each client k ↔ K, the UCB function is updated as
follows:

ucb(k, t) ⇒ µk,t +


(m+ 1) ln t

ck,t
. (12)

At the initialization step, for each client k ↔ K, ck,0 and
µk,0 are set to 0, and ucb(k, 0) is set to infinity. Later, in the

main loop, the algorithm selects clients at each iteration
according to:

At = argmax
S↔H (A)

{
min
k↔S

ucb(k, t ↘ 1) +
ϖ

m

∑

k↔S

gk,ε
(
Ht

)}
.

(13)

Afterwards, for each client k ↔ At , the algorithm observes
ωk,t and updates ck,t , µk,t using (10), (11). At the end of
every iteration, gk,ε(Ht+1) and ucb(k, t) for all client k ↔ K
are updated using (12). Note that two different trade-off
mechanisms are manifested during the algorithms. The first is
between exploration and exploitation of the client latencies,
while the second is between the iteration latency and the
generalization ability.

Algorithm 1 BSFL Algorithm
Input: Set of client indices K
Initialization:

1: ⇑k ↔ K : ck,0 ⇒ 0, ucb(k, 0) ⇒ ⇓, µk,0 ⇒ 0
Main loop:

2: for iterations t = 1, 2, . . . do:
3: Select a set of m clients using (13) (ties are broken

arbitrarily)
4: Execute FL iteration
5: For each client k ↔ At observe ωk,t and update ck,t ,

µk,t using
(10), (11).

6: For each client k ↔ K update gk,ε(Ht+1) accordingly,
and
ucb(k, t) using (12)

7: until convergence

B. REGRET ANALYSIS
In this subsection, we analyze the regret (7) achieved by
BSFL analytically, and show that it has a logarithmic order
with time. To evaluate the regret of BSFL, we define r(S,Ht )
as the reward that could have been obtained at the end of
iteration t , given the selection history Ht , if selection S had
been made. Let ϱmax be the maximum difference between
the expected reward obtained by Gt and by any selection S,
given any selection history, i.e.,

ϱmax = max
S↔H (K),Ht↓H (K),t↔N

E
[
r(Gt ,Ht ) ↘ r(S,Ht )

]
.

(14)

Note that ϱmax is bounded by:

ϱmax → 2ϖ + µmax ↘ µmin,

where µmax and µmin are the expected speeds of the fastest
and slowest clients, respectively.
Theorem 1: At each iteration n, the regret of BSFL is upper

bounded by:

ϱmax · K ·

(
4(m+ 1) ln n

ϱ2
min

+ 1 +
ϕ2

3

)
. (15)
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Here, ϱmin, as stated earlier, represents the smallest possi-
ble difference between two rewards based on quantization.

The proof can be found in Appendix A.
To offer some intuition behind the regret bound in the

theorem, note that it captures the impact of the client selection
process (characterized by the number of clients K and chan-
nels m) and the difference in client speeds (µmax ↘ µmin) on
the overall regret. The logarithmic growth ensures that, even
as the system scales or client diversity increases, the BSFL
algorithm maintains robust efficiency over a large number
of iterations. Figures 5 and 6, along with an explanation
in Section VI, clearly illustrate the exploration-exploitation
tradeoff in relation to the algorithm parameters.

Theorem 1 implies that BSFL achieves a logarithmic regret
order with time O(ln n).

It is worth noting that the selection policy of Algorithm 1,
i.e., finding the maximum value in the update rule stated
in (13), can be computationally infeasible due to its
exponential complexity. Therefore, in the following section,
we will develop a practical solution to solve the maximization
problem.

V. COMPLEXITY REDUCTION USING A NOVEL
ACCELERATED LIGHTWEIGHT SIMULATED ANNEALING
The most computationally challenging aspect of the BSFL
algorithm is selecting clients at the beginning of each itera-
tion, as indicated by line 3 of the pseudocode. Specifically,
the server needs to find the client selection that maximizes
the expression in the update rule (13). Classic deterministic
methods for finding this selection have a time complexity of
O

(
|At |
m

)
, which is computationally infeasible when the number

of channels (m) is large. Therefore, heuristic methods are
often used to find good approximate solutions to optimization
problems in a finite amount of time. In particular, simulated
annealing (SA) is a heuristic optimization algorithm that
has strong theoretical properties of convergence guarantee
as the number of time steps increases. In the subsequent
sections, we present a new SA-type algorithm that leverages
the unique structure of the MAB-based FL scheduling
problem to accelerate the stochastic optimization process
through the design of a lightweight search space. The
proposed SA-type method demonstrates significantly faster
convergence compared to the classical method while still
preserving the strong theoretical convergence guarantee
property as the number of time steps used to execute line 3
of the pseudocode increases.

A. THE STOCHASTIC OPTIMIZATION FLOW
To implement SA-type algorithm to solve (13), we need
to define a multi-state environment, in which each state s
has neighboring states denoted as Ns. Each state also has
an associated energy, represented by E(s). The objective
of the algorithm is to find the state with the highest
energy (or, alternatively, the lowest energy, depending on
the problem formulation). To facilitate movement between
states, a temperature parameter Ti for time step i is introduced.

This temperature affects the probability of transitioning from
the current state to a state with lower energy. The algorithm
begins by randomly selecting an initial state s0. It then
proceeds through a series of time steps, during which the
temperature is updated and a neighboring state u ↔ Nsi
is chosen at random. The next state si+1 is then updated
according to:

si+1 ⇒






u, if E(u) ⇔ E(si),

u, w.p., e
E(u)↘E(si)

Ti if E(u) < E(si),
si, otherwise.

(16)

In our MAB-based FL scheduling setting, each client
selection determines a state, which means that in each FL
round t , the number of states of the stochastic optimization
problem would be

(
|At |
m

)
. The energy of each state would be:

E(S) = min
k↔S

{
ucb(k, t) +

ϖ

m

∑

k↔S

gk,ε
(
Ht

)}
. (17)

As previously mentioned, the SA dynamics requires that
each state has neighboring states. A direct implementation of
the classic SA method results in a structure where any two
client selections (which represent two states),S andU , will be
considered neighboring selections only if they differ in only
one client. Formally,

S ↔ NU , U ↔ NS ↖
∣∣S ↙ U

∣∣ = m↘ 1, (18)

where m is the number of channels, same as before. It can
be seen that through this construction, the neighborhood is
symmetrical between the selections (states) and that for each
selection there are m(K ↘ m) neighbors. From [45], setting
the temperature at each time step to Ti =

ϱmax
log (i+1) guarantees

convergence to the selection with the maximum energy as the
number of time steps in the SA algorithm approaches infinity,
where ϱmax is defined in (14). Despite the strong theoretical
convergence guarantee, a recognized disadvantage of the SA
method is its rate of convergence which can be quite slow.
Thus, in the subsequent section, we present a novel SA-type
algorithm that addresses this issue while still maintaining the
theoretical convergence guarantee.

B. THE PROPOSED ACCELERATED LIGHTWEIGHT
SIMULATED ANNEALING (ALSA) ALGORITHM
Building on the concept of SA-type dynamics, we present
a novel accelerated SA-type method that capitalizes on the
specific structure of the MAB-based FL scheduling problem.
Our proposed method accelerates the optimization process
by designing a lightweight search space, resulting in faster
convergence compared to the classic SA technique. This is
achieved by taking into account the unique features of the
MAB-based FL scheduling problem.
When applying the classic SA method to our problem,

the number of neighbors for each state is m(K ↘ m), which
becomes O(K 2) when m = O(K ). In our proposed ALSA
method, we exploit the characteristics of the multi-armed

33704 VOLUME 13, 2025



D. B. Ami et al.: Client Selection for Generalization in Accelerated Federated Learning

FIGURE 3. An illustration of the sub-graphs of states resulting by ALSA and SA. For clarity, only sub-graphs
of the complete graphs are shown.

bandit optimization to reduce the number of connections
between states and create a lightweight state graph for the
search space. This modification allows for faster convergence
while still maintaining the theoretical convergence guarantee
of the SA method (which will be shown later). Specifically,
we define a new neighborhood rule that only allows for
client selections that differ by a single client from the current
selection, and requires that this client has the lowest ucb value
or the lowest gk,ε value in one of the selections. Formally,

S ↔ NU , U ↔ NS

↖

(∣∣S ↙ U
∣∣ = m↘ 1

)
and

(
S\U ↓


argmin
k↔S

ucb(k, t), argmin
k↔S

gk,ε(Ht )

or

U\S ↓


argmin
k↔U

ucb(k, t), argmin
k↔U

gk,ε(Ht )
)

. (19)

It is important to note that each selection S has at most
2(K ↘ m) other selections that differ by only one client k
which is in the set


argmink↔S ucb(k, t), argmink↔S gk,ε(Ht )


.

The neighborhoods in this formulation are symmetrical, and
the average number of neighbors for each selection is no
more than 4(K ↘ m), resulting in a total of O(K ) neighbors
regardless of the value of m.

Denote the state with the global maximum energy as s⇐.
The theoretical convergence of ALSA is shown next.
Theorem 2: Implementing ALSA with temperature

Ti =
ϱmax

log (i+1) at time step i yields:

lim
i≃⇓

E(si) = E(s⇐). (20)

The proof can be found in Appendix B.
Theorem 2 implies that as the number of time steps for

running ALSA increases, the result of executing ALSA will
converge to the optimal solution of (13). By using ALSA,
the execution of line 3 in the BSFL algorithm (Algorithm 1)
becomes efficient.

C. A COMPARISON OF SA AND ALSA FOR SELECTING
CLIENTS
The classic SA method, when applied to our problem,
results in a graph structure in which each state has O(K 2)
neighbors. However, by exploiting the characteristics of the
MAB-based optimization, our proposed ALSA method is
able to reduce the number of connections between states
to create a lightweight graph for the search space, while
still maintaining the theoretical convergence guarantee as
previously demonstrated. This construction results in a graph
structure in which each state has O(K ) neighbors.
To demonstrate the effectiveness of our proposed method,

we conducted thousands of runs with varying numbers of
clients and selection sizes. In the vast majority of runs
(98.3%), ALSA reached a state with a higher energy within
the fixed time period compared to the classic SA method.
Furthermore, we observed that the majority of the additional
edges in the classic SAmethod are between low-energy states
or states with similar energy, which do not contribute to the
convergence to the global maximum state and instead cause
the algorithm to wander for a longer time between these low-
energy states. This is illustrated in Figure 3, which shows a
comparison between the graph structures created by ALSA
and SA for a simulation of selecting 4 clients out of 8 with
drawn ucb(k, t) and gk values. As can be observed in Fig. 4,
the judicious removal of excess edges in the graph created by
ALSA leads to a significantly faster rate of convergence to
high-energy states compared to SA.

VI. SIMULATION RESULTS
We begin by illustrating the influence of the alpha and
beta parameters on the selection algorithm. To this end,
we conducted an experiment using a scenario where the data
is i.i.d. across clients. The clients were divided into 10 groups,
each containing 50 clients with a uniform average iteration
time within the group. The average iteration times for the
groups ranged from 0.1 to 1.0 in increments of 0.1. The
selection algorithm was then executed using four different
parameter settings. Every 500 iterations, we calculated the
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FIGURE 4. The energy of the current state as a function of the time step
of ALSA and SA runs is depicted in this figure. The simulation in this
figure is based on the selection of 25 clients out of 500, for which it is
computationally infeasible to directly solve(3) (→ 2139 different
selections).

TABLE 1. Results for varying Alpha in the i.i.d. scenario on CIFAR10.

average frequency of selection for clients within each group,
referred to as the average mean observations. The results of
this experiment are depicted in Figures 5 and 6, showing the
effects of varying the alpha and beta parameters, respectively.
In the upper left bar chart in figure 5, where alpha is set to 0,
the exploration-exploitation trade off is clearly illustrated.
During the first 500 iterations, the algorithm selects clients
from all groups almost equally, emphasizing exploration.
However, as the iterations progress, the algorithm increas-
ingly favors the faster group (with the 0.1 iteration time)
(exploitation), while continuing to explore clients from
slower groups to some extent. Additionally, as the alpha value
increases (in the bottom graphs), the algorithm selects more
clients from slower groups to enhance model generalization
and prevent overfitting on the data from the fastest group.
Similarly, in figure 6 as the beta parameter decreases, the
generalization function differentiates more sharply between
the contributions of different clients, leading the algorithm
to favor clients that have been selected less frequently, thus,
the algorithm promotes greater equality in the frequency with
which each client is selected. We also performed a sensitivity
test of the alpha and beta hyperparameters on performance.
The tables 1, 2 demonstrate how varying hyperparameters,
such as alpha and beta, affects the algorithm’s performance
in the i.i.d. data scenario on the CIFAR10 dataset using the
ResNet18 CNN model. The columns in the tables represent
the test set results obtained by retraining the model with the
specified hyperparameter values from Table 3, except for the
hyperparameter that is varied in the corresponding table.

Next, we present the results of our simulations, which
include two types of datasets and models. The first is
synthetic data for linear regression and the second is image

TABLE 2. Results for varying Beta in the i.i.d. scenario on CIFAR10.

data from two well-known datasets, Fashion-MNIST and
CIFAR-10, for a convolutional neural network (CNN) model.
We consider two scenarios for each simulation. In the

first scenario, the data (images or synthetic data) is divided
i.i.d. between the clients, and for the image databases each
client has an equal number of images from each class. In the
second and more challenging scenario, each client has a
different amount of data and, in the image datasets, a different
distribution of images among the ten classes.
To evaluate the effectiveness of the proposed BSFL

algorithm in selecting clients that enable rapid model conver-
gence without compromising generalization, we conducted
simulations comparing our approach to several state-of-
the-art (SOTA) client selection algorithms: (i) CS-UCB:
Proposed in [28], this algorithm applies the MAB framework
to the i.i.d. scenario for improved training efficiency but
does not address generalization as BSFL does; (ii) CS-UCB-
Q: Also introduced in [28], this algorithm extends CS-UCB
to the non-i.i.d. scenario using the MAB framework;
(iii) RBCS-F: Proposed in [32], this algorithm utilizes a con-
textual MAB approach, where clients report their available
computing power as context to optimize iteration time. It also
incorporates a fairness mechanism to avoid consistently
excluding slower clients; (iv) Power-of-Choice [46]: This
method selects clients with the highest loss in their previous
local training iteration; (v) Random Selection: In the i.i.d.
scenario, clients are selected uniformly at random. In the non-
i.i.d. scenario, the selection is weighted based on the data
volume of each client [19]. Table 3 presents the details of all
the training experiments. In all our simulations, we utilized
the StepLR scheduler to adjust the learning rate during
training, promoting better convergence.
In the methods comparison, we start by comparing the

regret between the algorithms. To compare the regret, we first
had to search through all

(K
m

)
client selections in each

iteration and determine which selection truly maximized (6),
i.e., find the selection Gt . Therefore, in order to compare
the regret, we chose a relatively small number of clients
(namely, 20) and a selection size of 5. As shown in Figure 7
(left), BSFL achieves a logarithmic regret compared to the
other algorithms, which reached a linear regret. Additionally,
Figure 7 (right) illustrates that BSFL achieves the smallest
loss values among the algorithms.
In addition, while still operating within the i.i.d. case,

we conducted simulations on real data using a ResNet-18
model with 500 clients and a selection size of 25. The
ResNet-18 model features a residual architecture comprising
convolutional layers and skip connections to facilitate
efficient learning. In Figures 8, 9, we present the results of
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FIGURE 5. Training experiments conducted with four different alpha values. Each experiment involved 10,000 iterations, and the results are displayed as
bar charts showing the mean number of observations for each group during the training process, evaluated every 500 iterations. Each bar represents a
group of 50 clients with the same iteration time. The colors within each bar indicate the mean number of times clients in the group were selected
(‘‘mean observations counter’’) during the last 500 training iterations leading up to the corresponding iteration.

TABLE 3. Dataset Configurations and Training Details for BSFL Evaluation.

our simulations for each of the algorithms. The simulation
results demonstrate the performance of the global model on
test data throughout the training process. The figures show
that BSFL significantly outperforms the other algorithms
in terms of both loss and accuracy percentage on the test
data.

In the non-i.i.d. scenario, as before, to evaluate the regret,
we divided the synthetic dataset into a small number of

clients, and compared the regret of each algorithm. As shown
in Figure 10 (left), even in the non-i.i.d. scenario, BSFL
achieves a logarithmic regret order, in contrast to the other
algorithms which achieve a linear regret order. Furthermore,
Figure 10 (right) illustrates how these results in terms
of regret lead to faster convergence in terms of the loss
calculated on the test data, indicating superior generalization
of the model trained using BSFL.
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FIGURE 6. Training experiments conducted with four different beta values. Each experiment involved 10,000 iterations, and the results are displayed as
bar charts showing the mean number of observations for each group during the training process, evaluated every 500 iterations. Each bar represents a
group of 50 clients with the same iteration time. The colors within each bar indicate the mean number of times clients in the group were selected
(‘‘mean observations counter’’) during the last 500 training iterations leading up to the corresponding iteration.

FIGURE 7. Linear regression model with synthetic data in the i.i.d.
scenario. Figure (left): Regret as a function of iterations. Figure (right):
Test loss as a function of latency.

We conducted a similar experiment using real datasets
and divided the data into a larger set of 500 clients, with a
selection size of 25 clients per iteration. Each client contained
a different number of images and varying amounts of images
from each class. As shown in Figures 11 and 12, in this

FIGURE 8. CNN model with Fashion-MNIST data in the i.i.d. scenario.
Figure (left): Test accuracy as a function of latency. Figure (right): Test loss
as a function of latency.

scenario as well, BSFL leads to faster convergence in terms
of both loss and accuracy on the test data. All evaluations
of the global model’s performance, depicted in graphs, were
conducted using test data that was not utilized for training and
was not accessible to any of the clients.
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FIGURE 9. Resnet18 model with CIFAR10 data in the i.i.d. scenario.
Figure (left): Test accuracy as a function of latency. Figure (right): Test loss
as a function of latency.

FIGURE 10. Linear regression model with synthetic data in the non-i.i.d.
scenario. Figure (left): Regret as a function of iterations. Figure (right):
Test loss as a function of latency.

FIGURE 11. CNN model with Fashion-MNIST data in the non-i.i.d.
scenario. Figure (left): Test accuracy as a function of latency.
Figure (right): Test loss as a function of latency.

FIGURE 12. CNN model with CIFAR10 data in the non-i.i.d. scenario.
Figure (left): Test accuracy as a function of latency. Figure (right): Test loss
as a function of latency.

These simulation results demonstrate the strong perfor-
mance of BSFL for client selection in federated learning
compared to existing methods. The superior performance
of the BSFL algorithm is due to several key factors. First,
in terms of client data distribution, BSFL excels at managing
both i.i.d. and non-i.i.d. data distributions. In i.i.d. scenarios,
it prioritizes clients based on their speed while ensuring the
model trains on data from all clients to support generalization.
In non-i.i.d. cases, it prioritizes clients with diverse or
underrepresented data, improving the model’s generalization

capabilities. This adaptability helps BSFL avoid overfit-
ting and maintain robust performance across varying data
distributions, a common limitation of traditional methods.
Second, in terms of computing efficiency and speed, BSFL
incorporates an adaptive exploration-exploitation strategy
that optimizes client selection by considering both latency
and the client’s contribution to overall model generalization.
This enables BSFL to balance the computational load
and efficiently select clients contributing to the global
model. Moreover, leveraging the ALSA algorithm to solve a
combinatorial optimization problem improves computational
efficiency and strategically selects clients with similar speeds.
This approach minimizes iteration time by reducing the
waiting period for slower clients, thereby accelerating the
training process, a significant advantage over other methods
that may suffer delays from including slower clients in the
same iteration as faster ones. Third, in terms of resilience
to data imbalance, BSFL demonstrates strong robustness in
handling imbalances where clients vary in data volume or
quality. By integrating both latency and generalization into
its reward function, BSFL ensures the global model remains
accurate and robust even when faced with skewed or biased
data distributions, an area where other methods often struggle
to maintain performance.

VII. CONCLUSION
We developed a novel MAB-based approach for client
selection in FL systems, aimed at minimizing training
latency while preserving the model’s ability to generalize.
We developed a novel algorithm to achieve this goal, dubbed
Bandit Scheduling for FL (BSFL). BSFL was shown to
achieve a logarithmic regret, defined as the difference in loss
between BSFL and a genie with complete knowledge of all
clients’ latency means. Simulation results demonstrated that
BSFL is superior to existing methods. As federated learning
systems scale to accommodate a large number of clients,
challenges arise in managing computational overhead and
ensuring efficient communication and computation across
diverse participants. The BSFL algorithm demonstrates
strong scalability, enabled by the ALSA method, which
reduces the complexity of the client selection process
and facilitates the management of extensive networks. Our
simulations included FL tasks with networks of up to
500 clients, consistently showing BSFL’s superior perfor-
mance over alternative methods, underscoring its ability to
handle large-scale networks effectively. This makes BSFL a
robust choice for real-world scenarios with extensive client
participation.While the BSFL algorithm is highly effective in
many scenarios, its reliance on the MAB framework, which
assumes a stochastic process for the learning process and
focuses on asymptotic regret analysis, may face challenges
in systems with rapidly changing and highly dynamic envi-
ronments. In such cases, reinforcement learning approaches
that adapt more quickly to changes by approximating value
functions could serve as complementary strategies. Future
work could explore integrating such approaches with BSFL
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to enhance adaptability while preserving its strengths in
optimizing client selection.

APPENDIX A
PROOF OF THEOREM 1
In this appendix we provide the proof for Theorem 1. The
regret of BSFL (7) can be written as:

R(n) = Eς

 n∑

t=1

r⇐(t) ↘ r(t)


= E
 n∑

t=1

r(Gt ,Ht ) ↘ r(At ,Ht )


= E
 n∑

t=1

ϱt · 1

(r(Gt ,Ht ) ∝= r(At ,Ht ))



→ ϱmax · E
 ∑

S↔H (K)

NS (n)

, (21)

where ϱt is the difference between the reward achieved
by the algorithm to the highest reward that could have
been achieved at iteration t (i.e., ϱt = r(Gt ,Ht ) ↘ r(At ,

Ht ) ⇔ 0), and NS (n) is the number of iterations up until the
nth iteration in which selection S ↔ H (K) was selected and
the reward given from it was strictly less than the reward that
would have been received by genie’s selection in the same
iteration. In addition, we define a K -dimensional counter
vector N(n) = (N1(n),N2(n), . . . ,NK (n)), corresponding to
the K clients as follows. For each iteration, in which the
selection At ↔ H (At ) achieves a lower reward than the
reward of genie’s selection, i.e., r(At ,Ht ) < r(Gt ,Ht ), then
the counter of the client that has been selected the fewest
number of times up to this iteration among all the selected
clients that were selected in this iteration is incremented by 1.
Formally, for each client (say i) let Ti(n) denote the set of
time indices up to time n that satisfy the following conditions:
(i) Client i was selected, i.e., i ↔ At for all t ↔ Ti(n);
(ii) the counter ci,t of client i is theminimal among all selected
clients, i.e., i = argmink↔At

ck,t , for all t ↔ Ti(n); and (iii) the
selection At ↔ H (At ) achieves a lower reward than genie’s
selection, i.e., r(At ,Ht ) < r(Gt ,Ht ) for all t ↔ Ti(n). Then,

Ni(n) = |Ti(n)|. (22)

Next, we aim at upper bounding NS (n) for each S ↔

H (K). Note that based on the definition of N(n), for every
iteration in which the selection At has a lower reward than
genie’s selection, one of the coordinates in the vector N(n) is
incremented by 1. Therefore,

∑

S↔H (K)

NS (n) =

K∑

k=1

Nk (n), (23)

which implies

E
 ∑

S↔H (K)

NS (n)


=

K∑

k=1

E

Nk (n)


. (24)

Let Ik (t) be the indicator for the event that Nk (t) is
incremented by 1 at iteration t . Hence, we obtain

Ni(n) =

n∑

t=1

1

(Ii(t) = 1)



→ 1 +

n∑

t=′
K
m ∞+1

1

(Ii(t) = 1)



→ l +
n∑

t=′
K
m ∞+1

1

(Ii(t) = 1,Ni(t) ⇔ l)



→ l +
n∑

t=′
K
m ∞+1

1

(min
k↔Gt

ucb(k, t) +
ϖ

m

∑

k↔Gt

gk,ε(Ht )

< min
k↔At

ucb(k, t) +
ϖ

m

∑

k↔At

gk,ε(Ht ),Ni(t) ⇔ l)

,

(25)

where the last inequality follows since the algorithm chooses
action At ∝= Gt that solves (13) although the reward is
maximized by Gt . Note that according to the definition of N,
for all k ↔ At we have: Ni(t) → ck,t . Therefore, since in the
indicator function there is an intersection with the event that
Ni(t) ⇔ l we have for all k ↔ At that: l → Ni(t) → ck,t in (25).
Denote hck,t =


(m+1) ln t

ck,t
, and µck denotes the sampled

mean of the ωmin
ωk

of client k after ck observations. Using these
notations, we can upper bound Ni(n) by:

Ni(n)

→ l +
n∑

t=′
K
m ∞+1

1

{
min
k↔Gt

{µk,t + hck,t } +
ϖ

m

∑

k↔Gt

gk,ε(Ht )

< min
k↔At

{µk,t + hck,t } +
ϖ

m

∑

k↔At

gk,ε(Ht ),Ni(t) ⇔ l
}

→ l +
n∑

t=′
K
m ∞+1

1

{
min

0→ck̂1,t
,ck̂2,t

,...,ck̂m,t
→t

{
min

j↔{1,...,m}
{µck̂j,t

+ hck̂j,t
} +

ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )
}

< max
l→ck̃1,t ,ck̃2,t ,...,ck̃m,t

→t

{
min

j↔{1,...,m}
{µck̃j,t

+ hck̃j,t }

+
ϖ

m

m∑

j=1

gk̃j,t ,ε(Ht )
}}

→ l +
n∑

t=′
K
m ∞+1

t∑

ck̂1,t
=1

· · ·

t∑

ck̂m,t
=1

t∑

ck̃1,t=l

· · ·

t∑

ck̃m,t
=l

· 1

{
min

j↔{1,...,m}
{µck̂j,t

+ hck̂j,t
} +

ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )

< min
j↔{1,...,m}

{µck̃j,t
+ hck̃j,t } +

ϖ

m

m∑

j=1

gk̃j,t ,ε(Ht )
}
, (26)
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where {k̂j,t : 1 → j → m} and {k̃j,t : 1 → j → m} are
the clients in genie’s selection and the server’s selection at
iteration t , respectively. Let k̂ ∈

t , k̃
∈
t , respectively, be the clients

in genie’s selection and the server’s selection at iteration t that
minimizes the expression in the upper bound we derived, i.e.,

k̂ ∈
t = argmin

k̂j↔{k̂1,...,k̂m}

{µck̂j,t
+ hck̂j,t

}, (27)

k̃ ∈
t = argmin

k̃j↔{k̃1,...,k̃m}

{µck̃j,t
+ hck̃j,t }. (28)

Now, we claim that the event
{
µk̂ ∈

t
+ hck̂∈t

+
ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )

< µk̃ ∈
t
+ hck̃∈t

+
ϖ

m

m∑

j=1

gk̃j,t ,ε(Ht )
}

implies that at least one of the 3 following events must occur:
(i) µk̂ ∈

t
+ hck̂∈t

+
ϖ
m

∑m
j=1 gk̂j,t ,ε(Ht )

→ µk̂ ∈
t
+

ϖ
m

∑m
j=1 gk̂j,t ,ε(Ht );

(ii) µk̃ ∈
t
+

ϖ
m

∑m
j=1 gk̃j,t ,ε(Ht )

⇔ µk̃ ∈
t
+ hck̃∈t

+
ϖ
m

∑m
j=1 gk̃j,t ,ε(Ht );

(iii) µk̂ ∈
t
+

ϖ
m

∑m
j=1 gk̂j,t ,ε(Ht )

< µk̃ ∈
t
+ 2hck̃∈t

+
ϖ
m

∑m
j=1 gk̃j,t ,ε(Ht ).

We next prove this claim by contradiction. Assume that all
three inequalities do not hold. Therefore, it follows that:

µk̂ ∈
t
+ hck̂∈t

+
ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht ) > µk̂ ∈
t
+

ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )

⇔ µk̃ ∈
t
+ 2hck̃∈t

+
ϖ

m

m∑

j=1

gk̃j,t ,ε(Ht )

> µk̃ ∈
t
+ hck̃∈t

+
ϖ

m

m∑

j=1

gk̃j,t ,ε(Ht ), (29)

where the first transition is derived from (i), the second
from (iii), the last from (ii), and all three together contradict
the event. Now, we aim at upper bounding the probabilities
Pr(i), Pr(ii) that events (i) and (ii) will occur:

Pr(i) = Pr
(
µk̂ ∈

t
+ hck̂∈t

+
ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )

→ µk̂ ∈
t
+

ϖ

m

m∑

j=1

gk̂j,t ,ε(Ht )
)

= Pr
(
µk̂ ∈

t
+ hck̂∈t

→ µk̂ ∈
t

)

→ e
↘2c2

k̂∈t
·
(m+1) ln t

ck̂∈t
·

1
ck̂∈t = t↘2(m+1), (30)

where the inequality is due to Hoeffding’s inequality.
Similarly, we can upper bound Pr(ii) by the same upper
bound and obtain:

Pr(ii) → t↘2(m+1). (31)

To ensure that (iii) will not occur we need to put a lower bound
on l (i.e., the minimum number of times a client should be
selected when he has the minimum number of selections so
far among the clients in the current selection):{
µk̂ ∈

t
+

ϖ
m

∑m
j=1 gk̂j,t ,ε(Ht ) <

µk̃ ∈
t
+ 2hck̃∈t

+
ϖ
m

∑m
j=1 gk̃j,t ,ε(Ht )

}
↖

{
µk̂ ∈

t
+

ϖ
m

∑m
j=1 gk̂j,t ,ε(Ht )

↘µk̃ ∈
t
↘

ϖ
m

∑m
j=1 gk̃j,t ,ε(Ht ) > 2hck̃∈t

}
.

Denote the LHS of the last inequality by ϱGt ,At ,ϖ . Then,
for the last inequality to hold, we can demand that for every
At and Gt selections by the algorithm and genie, respectively
(which satisfy r(At ,Ht ) < r(Gt ,Ht )):

ϱGt ,At ,ϖ ⇔ 2


(m+ 1) ln t

ck̃ ∈
t

, (32)

and because we have already shown that ⇑k ↔ At : l → ck,t
and t → n, it is sufficient to demand

ϱGt ,At ,ϖ ⇔ 2


(m+ 1) ln n

l
. (33)

Therefore, for l ⇔
4(m+1) ln n
ϱ2
Gt ,At ,ϖ

for every t , or alternatively,

we can choose l = ′
4(m+1) ln n

ϱ2
min

∞ and obtain that inequality (iii)
will not be met. Hence, only one of the first two inequalities
must occur, and we obtain

E

Ni(n)



→ l +
n∑

t=′
K
m ∞+1

t∑

ck̂1,t
=1

· · ·

t∑

ck̂m,t
=1

t∑

ck̃1,t=l

· · ·

t∑

ck̃m,t
=l

(Pr(i) + Pr(ii))

→


4(m+ 1) ln n

ϱ2
min



+

⇓∑

t=′
K
m ∞+1

t∑

ck̂1,t
=1

· · ·

t∑

ck̂m,t
=1

t∑

ck̃1,t=1

· · ·

t∑

ck̃m,t
=1

2t↘2(m+1)

→
4(m+ 1) ln t

ϱ2
min

+ 1 +
ϕ2

3
. (34)

Finally, we can upper bound the regret by:

R(n) → ϱmaxK ·

(
4(m+ 1) ln n

ϱ2
min

+ 1 +
ϕ2

3

)
.

↭

APPENDIX B
PROOF OF THEOREM 2
In this appendix we provide the proof for Theorem 2.
From [45], the following conditions are sufficient to guaran-
tee the convergence of cooling procedure to the state with the
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lowest energy (or, alternatively, the highest energy, depending
on the problem formulation):

(i) Weak Reversibility: For any energy E and any two states
s1 and s2, s1 is reachable at height energy E from state
s2, i.e., there exists a path from s1 to s2 that goes only
through states with energyE or higher) iff s2 is reachable
from s1 at height E .

(ii) The temperature is set to Ti =
d

log (i+1) , where d is
greater then the difference between the energies of the
highest local maxima and the minimum energy state.

(iii) The Markov chain is irreducible.

Next, we prove that all conditions are met by ALSA.
Condition (i) follows immediately by the definition of the
neighborhoods which is symmetrical, i.e., in a graph with
symmetric neighborhoods, any path from one node to another
can also be in the opposite direction and go through the exact
same states. Regarding condition (ii), since ϱmax is defined
as the largest possible energy difference between any two
states, it is in particular greater than the difference in energies
between any local maximum and the state with the minimum
energy. Therefore, condition (ii) also holds.

Finally, we need to show that condition (iii) holds.
We will show this by proving that in the newly structured
state graph by ALSA, from every possible state there
exists a path that reaches s⇐, and due to the symmetric
neighborhoods, this will complete the proof. Denote s0 as
some arbitrary state (selection). Define the state s1 to be
s1 =

(
s0\{argmink↔S0 ucb(k, t)}

)
↗ {argmink↔S⇐ ucb(k, t)}.

Note that s1 and s0 are neighboring states. For j = 1, 2, 3, . . .
let us define the rest of the path with two phases (P1,P2) as
follows:

(P1) As long as
argmink↔S⇐ ucb(k, t) ∝= argmink↔Sj ucb(k, t):

define sj+1 =
(
sj\{argmink↔Sj ucb(k, t)}

)

↗
{
argmaxk↔S⇐ ucb(k, t)

}
.

(P2) After Phase 1 ends, as long as s⇐ ∝= sj:
define sj+1 =

(
sj\{argmink↔S0 gk,ε

(
Ht

)
}
)

↗{argmaxk↔S⇐ gk,ε
(
Ht

)
}.

Note that each one of the phases lasts a finite amount of
iterations, i.e., ∋n ↔ N : sn = s⇐. Note that for every
j ↔ N the state sj and sj+1 are neighbors, which implies that
P = (s0, s1, . . . , sn = s⇐) defined by the last phases is a path
from s0 to s⇐, which completes the proof. ↭
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