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Abstract
How can we identify malicious hackers participating in different online platforms using their usernames only? Establishing 
the identity of a user across online platforms (e.g. security forums, GitHub, YouTube) is an essential capability for trac-
ing malicious hackers. Although a hacker could pick arbitrary names, they often use the same or similar usernames as this 
helps them establish an online “brand”. We propose GeekMAN, a systematic human-inspired approach to identify similar 
usernames across online platforms focusing on technogeek platforms. The key novelty consists of the development and 
integration of three capabilities: (a) decomposing usernames into meaningful chunks, (b) de-obfuscating technical and slang 
conventions, and (c) considering all the different outcomes of the two previous functions exhaustively when calculating the 
similarity. We conduct a study using 1.8M usernames from three different types of forums: (a) security forums, (b) malware 
authors from GitHub, and (c) mainstream social media platforms, which we use as reference. First, our method outperforms 
previous methods with a Precision of 81–86% on technogeek datasets. Second, we find 6327 forum users that match malware 
authors on GitHub with a high similarity score (≥ 0.7). Finally, we provide a translation dictionary for slang terms with 5.8K 
entries, and create GeekMAN platform to facilitate further studies https://​geekm​an.​strea​mlit.​app.

Keywords  Username matching · Hacking · GitHub · Cybersecurity · Online forum analysis · Social network

1  Introduction

How can we identify malicious hackers across different 
platforms? This is the question that motivates our work. 
First, hackers with visible online personas often lead major 
cyber-criminal activities (Samtani and Chen 2016). Second, 
these hackers are active and visible on many online plat-
forms including specialized security forums and popular 
platforms like GitHub (Islam et al. 2021a). In fact, some 
of these platforms harbor malicious activities to the point 
that they are forced to shut down (Gharibshah et al. 2018). 
One thing is clear: these hackers create a brand around 
their online names. As a result, hackers: (a) adopt unusual 
names, and (b) use them fairly consistently with only minor 
changes across different platforms. For example, a username 

of interest could be w33dgod, which we may want to match 
with godweed (both are real usernames).

The problem we address here is the following: given 
two usernames, how can we determine if they are likely 
to belong to the same user? As our focus is tracing hacker 
activity, we focus on technogeek usernames, which we 
define as usernames with: (a) technical jargon, (b) slang and 
unconventional use of letters and characters, and (c) multiple 
parts. These types of usernames seem to be used by mali-
cious hackers, but also by tech-enthusiasts, gamers etc. For 
example, IAmBlackHacker on GitHub and B14CKH4K3R 
on Facebook.1 We refer to this kind of obfuscation using 
letters and digits in unusual ways as slangification. Many 
of their usernames have multiple parts, which we refer to as 
chunks. Traditional string matching and edit distance tech-
niques have difficulty matching these types of usernames. 
Here, we impose an additional challenge: we do not use 
other types of information, such as demographic attributes, 
context, or social connections, which could help refine the 
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1  All examples here are real usernames. The GitHub malware author 
IAmBlackHacker refers to https://​www.​faceb​ook.​com/​B14CK​H4K3R 
as her blog in the profile information. The Facebook page claims 
Varanasi, India as its location, so we suspect that black must refer to 
black hat hacking.
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matching accuracy. Our framing of the problem can be seen 
as an essential building block of a broader solution. Thus, 
our goal is to push the username level matching to its limit: 
how far can we go with just usernames?

There has been relatively little work on the problem as 
we define it here. In particular, we find that most of the 
previous works: (a) focus on the popular social media user-
names, (b) rely on training data, and (c) use string match-
ing without following a human-like interpretation, such as 
decomposing the username into meaningful chunks. Specifi-
cally, many methods treat the username as a string, and use 
features such as the frequency of bi-grams and tri-grams. 
Overall, we can group the previous efforts in three large 
families depending on their primary focus on: (a) concen-
trating on username similarity (Perito et al. 2011; Zafarani 
and Liu 2013; Wang et al. 2016; Li et al. 2019), (b) leverag-
ing user profile attributes, such as demographic informa-
tion (e.g. gender, education, job title)  (Vosecky et al. 2009; 
Goga et al. 2013; Zhang et al. 2014; Mu et al. 2016), and (c) 
combining multiple dimensions of information, such as the 
user-generated content, including topics and linguistic style, 
and in-platform social connections  (Liu et al. 2013, 2016; 
Zhang et al. 2018). As we explain later, we compare our 
approach against a set of state-of-the-art username similarity 
algorithms  (Wang et al. 2016; Li et al. 2019). We discuss 
previous works in Sect. 7.

As our key contribution, we propose GeekMAN, a sys-
tematic approach for linking technogeek users across plat-
forms. Our approach is inspired by human cognition: it 
attempts to emulate how a human will try to disambiguate 
this type of username, such as IAmBlackHacker and B14CK-
H4K3R, which we mentioned above. The key novelty of our 
work consists of the development and integration of three 
capabilities: (a) deslangification, which de-obfuscates slang 
and geeky naming conventions, (b) chunkification, which 
decomposes usernames into meaningful chunks, which leads 
to one or more lists of chunks, and (c) comparison, which 
considers all the lists of chunks to calculate the similarity 
between two given usernames. We introduce our metric of 
Similarity Score, SimScore , and we use the Similarity Score 
Threshold, SimT, to select username pairs that are a likely 
match.

We deploy our approach on 1.8M usernames from three 
different types of online platforms: (a) five popular hacker-
rich security forum users, (b) 7.3K malware authors from 
GitHub, and (c) three mainstream social media platform 
users, which we use as reference. The key results are sum-
marized below.

a. Technogeek usernames use slang and chunks exten-
sively. To quantify the use of slang, we compare usernames 
that have multiple digits or symbols in between characters. 
We find that technogeek forums have 1.5-6 times more 
such usernames compared to social media platforms (see 

Sect. 3). Quantifying the prevalence of chunks, we find that 
60-70% of the usernames could be decomposed into at least 
four chunks, while roughly 20% of them have more than 6 
chunks!

b. GeekMAN outperforms prior approaches esp. on 
technogeek usernames Focusing on technogeek usernames, 
we find that our approach identifies matches with 86.0% Pre-
cision and 72.6% Relative F1-score (which we define later). 
By contrast, two prior approaches exhibit 76.0% and 47.4% 
Precision with 42.9% and 57.1% Relative F1-score, respec-
tively. Our approach outperforms prior methods even with 
usernames of common social networks.

c. GeekMAN finds 6327 forum users who likely own 
malicious repositories on GitHub! As an indicative use 
of our approach, we match security forum users to mali-
cious GitHub authors (Rokon et al. 2020). We find 6327 such 
matches with a similarity score threshold of SimT = 0.7 . 
Manual investigation to a set of randomly selected matched 
users shows that often the forum users proudly point to 
their own GitHub profile or repositories, which validates 
the match.

d. GeekMAN allows for balancing the Precision 
- Recall trade off.  Depending on the need of the study, 
our approach can be easily tuned to favor higher Precision 
or higher Recall. The 6327 likely matches between forum 
and GitHub users for SimT = 0.7 become 1958 matches for 
Similarity Score Threshold SimT = 0.9 . Note that only 260 
matches correspond to identical strings: our method adds 
value beyond the obvious matches. We find that 57.7% of 
these 1958 matches use digits/symbols in their usernames 
as opposed to only 16.2% of among the 260 exact matches.

e. An online platform, datasets, and a “deslangifica-
tion dictionary". To facilitate further research, we provide: 
(a) an online tool, as shown in Fig. 1, (b) our datasets, (c) 
our groundtruth, and (d) a slang-translation dictionary. We 
are off to a great start: with 1.8M usernames, three different 

Fig. 1   GeekMAN Platform: Matching usernames Anon-Exploiter and 
An0n3xpl0it3r 
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username-matching algorithms, and manually verified 
ground-truth. Currently, our slang-translation dictionary 
has 5.8K entries consisting of slang words and their coun-
terparts. We have shared our source code in GitHub  (Geek-
MAN 2023).

Our work in perspective. Our approach is a fundamental 
building block for tracing users across different platforms 
with an emphasis on technogeek usernames. We revisit its 
practical impact and limitations in Sect. 6. In the same sec-
tion, we also discuss the issue that a matching pair of user-
names does not necessarily mean that they belong to the 
same user.

2 � Background and data

In this section, we provide some background, explain the 
motivation of our approach, and discuss the dataset in detail.

2.1 � Malicious hackers use technogeek in usernames

Hackers and other malicious users often participate in 
various public platforms, including specialized discus-
sion forums, technical forums, and software platforms 
like GitHub. Their main goals seem to be: (a) establish-
ing an online brand, and (b) boasting of their accomplish-
ments (Islam et al. 2021a, b). For example, we have seen 
posts by hackers to advertise their services, claim the credit 
of successful hacking activities, and create communities of 
like minded people (Islam et al. 2022).

Often they use the same username consistently across 
platforms, but sometimes they vary the spelling or structure 
of the name or the order of the parts of their names. They 
sometimes choose different username spelling via transfor-
mation of their original alias in order to establish a branding 
or hide their own persona in the forum. We refer to this user-
name spelling transformation as slangification. As a note-
worthy example, an FBI most wanted cybercriminal, having 
alias ha0r3n, was found to have a GitHub profile named 
wo4haoren. In 2020, FBI listed another most wanted hacker 
named Behzad Mohammadzadeh, with alias Mrb3hz4d, who 
was charged for defacing a number of websites (FBI 2020).

2.2 � Datasets

Our dataset contains nine different online platforms span-
ning across three broad categories: security forums, open-
source software plaforms, and social networks. Table 1 dis-
plays a summary of them.

2.2.1 � Security forums

This category comprises f ive secur ity forums: 
Garage4Hackers(GH), Offensive Community(OC), 
RaidForums(RF), Multiplayer Game Hacking(MP), and 
Hackforums(HF)   (Garage4Hackers 2021; Community 
2021; RaidForums 2021; Hacking 2021; Hackforums 
2021). The data of this category contains posts and threads 
of 1.2M users ranging between 2005 and 2021. The data 
comes from two main sources, our automated crawler and 
Cambridge Cybercrime Centre (cambridgecybercrime 
2022), who kindly shared their data with us.

2.2.2 � The GitHub software platform

Interestingly, hackers share malware source code in public 
platforms, such as GitHub. We consider 7389 GitHub (GT) 
authors, who were identified to have at least one repository 
with malware source code (Rokon et al. 2020; Source-
Finder 2022).

2.2.3 � Social media

We also consider 639K usernames   (Goga et al. 2015) 
from three popular social networks: Facebook(FB), 
Twitter(TW), and Google+(GP) (the popularity of 
Google+ did not last). Among them there are 49K pairs 
of usernames that belong to the same user, which we use 
later in our evaluation. We use this dataset to compare the 
username patterns in typical social networks against the 
patterns in our technogeek platforms, and to evaluate the 
performance of GeekMAN in regular usernames. For the 
rest of the paper, we use the term technogeek to refer to the 
first two categories: security forums and GitHub.

Table 1   Summary of datasets: forums, GitHub, and social media

Category Platform Abbr. Users

Security forums Garage4Hackers GH 865
Offensive Community OC 11371
RaidForums RF 44107
Multiplayer Game Hacking MP 507945
Hack Forums HF 659672

Software platforms GitHub GT 7389
Social media Facebook FB 163037

Twitter TW 196534
Google+ GP 280318
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2.3 � Validation and groundtruth

Note that the social media dataset consists of verified 
accounts owned by the same users. So we use this to partly 
evaluate our algorithms. However, given our focus on tech-
nogeek forums, we describe our validation approach in 
Sect. 5.

3 � Quantifying technogeek usernames

In this section, we study the usernames in technogeek 
forums, which are likely to be visited by hackers. The goal 
is to understand the username selection patterns and con-
ventions in order to inform our approach. Overall, we find 
that the usernames in technogeek forums are different from 
those in general purpose platforms, such as social media.

3.1 � Technogeek forum users use symbols and digits 
more frequently than social media users

We measure the number of usernames that contain symbols 
and digits to test our intuition that technogeek usernames 
contain these characters more frequently and in more unu-
sual ways compared to social media usernames. We plot 
the distribution of the users in different platforms who use 
digits in between two alphabetical characters in their user-
names in Fig. 2. We see that around 17∼37% of technogeek 
forum usernames have multiple digits in between letters 
of their usernames, which is at least 1.5-6 times compared 
to social media users. This indicates that the technogeek 
users are more likely to use this type of usernames. For 

example: n1nj4sec and z3r0d4y contain two and three digits 
in between letters, instead of ninjasec and zeroday. Further-
more, we find that 22% of the GitHub users in our dataset, 
indicated as GT in the plot, also demonstrate this type of 
behavior. Recall that our GitHub users have been identi-
fied as malware producing authors, so this percentage will 
most likely differ if we consider GitHub users at large. By 
contrast, this behavior is much less pronounced in social 
media platforms, such as Facebook. We find similar trends 
for using symbols during the investigation.

3.2 � We find 60‑70% of usernames with multiple 
chunks

We want to quantify how frequently usernames consist of 
multiple parts, which we refer to as chunks. We use the 
Chunkification method that we describe in the next section 
on all the online platforms in our dataset. For each username, 
we consider a list of all possible chunks, which we could 
find from different chunkification approaches. In Fig. 3, we 
plot the CCDF (Complementary Cumulative Distribution 
Function) curve of the total number of chunks found per 
username. We find that approximately 60-70% of the users 
on each of the online platforms contain 4 or more chunks in 
their usernames, irrespective of technogeek and social media 
platforms. We also notice that the number of chunks per 
username seems consistent across all platforms, although the 
frequency of more than 5 chunks is slightly higher among 
the technogeek forums.

In an effort to get a deeper understanding, we also inves-
tigated the username chunks. We find that general users 
prefer proper English words and names in their chunks. By 

Fig. 2   Distribution of percentage of population who use digit in 
between letters multiple times. An example username containing two 
digits in between letters: g3ntl3man 

Fig. 3   The CCDF of total number of chunks found per username 
across different types of online platforms. An example username: 
sniper7kills having three chunks {sniper, 7, kills} 
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contrast, technogeek forum users transform the spelling of 
English words in their usernames by replacing one or more 
letters with digits/symbols. Our analysis concludes that the 
percentage of technogeek users who use slangification is 
2–8 times higher compared to social media users. We illus-
trate the most commonly slangified English words used by 
technogeek forum users via a word cloud shown in Fig. 4.

4 � Proposed method

The goal of our method is to determine the similarity score 
of two given usernames. The inspiration behind GeekMAN 
is the emulation of a human interpreter. The key idea is to 
de-obfuscate the usernames (if possible), decompose them 
into several possible lists of chunks, and finally compare the 
lists of chunks to calculate the similarity score.

Our approach consists of three main modules: (a) 
Deslangification, (b) Chunkification, and (c) Comparison. 
We provide a conceptual overview in Fig. 5 and demonstrate 
its operation for usernames z3r0c00l and COOL_zERO in 
Fig. 6.

4.1 � Deslangification module

This module aims to deslangify a given username by: (a) 
identifying likely use of slang, and (b) translating the slang 
into regular words. One such example is: z3r0c00l which 
most likely refers to zerocool.

4.2 � Chunkification module

This module takes a username and produces one or more 
lists of chunk s. We use the term L to refer to each such list 
and the term Bag to refer to all the lists of chunks for a user-
name. Table 2 provides a list of our terminology. Note that in 
its most general case, the Chunkification module can provide 
more than one possible ways to chunkify the username. E.g. 

mr-satan1 can be decomposed into: {mr, -, satan, 1}, and 
{mr, -, satan1}, since Satani2 could be a slangified version 
of someone’s last name. In fact, we want to generate as many 
as possible plausible lists of chunks to ensure the highest 
possible similarity.

4.3 � Comparison module

This module takes as input two Bags with lists of chunk s, 
one for each username, and returns the highest similarity 
score among all possible pairs of lists. In more detail, it 
consists of functions that calculate the similarity at different 
granularity: (a) between two chunk s, (b) between two lists of 
chunk s, and (c) between two Bags of lists of chunks.

4.4 � Our approach in detail

We now describe our method in more detail by discussing 
our algorithmic choices and the related challenges. For con-
venience, we list key terms and functions in Table 2.

Fig. 4   The word-cloud that shows popular slangified words used at 
least 10 times as usernames or as parts of usernames in technogeek 
forums (200 words) than social media (6 words only)

Fig. 5   GeekMAN calculates the similarity score for a pair of user-
names focusing on technogeek users. Our approach tries to emu-
late human interpretation by combining the: a Chunkification, b 
Deslangification and c Comparison modules

2  According to Wikipedia, Satani is the name of a Vaishnavite com-
munity and caste in India, and also a community in Northern Ghana.
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4.4.1 � Maximizing the likelihood of a match

The task of reverse engineering the naming habits of users 
is a challenging problem. The overarching goal is to ensure 
that we find a possible match, even in the face of obfusca-
tion. The two modules of deslangification and chunkification 
can be used synergistically and in conjunction. To have the 
broadest possible coverage, we can consider the following 
approaches: 

1.	 We do deslangification and then chunkification
2.	 We do chunkification and then deslangification
3.	 We keep the initial username as is as a one-chunk list
4.	 We keep the deslangified username as one-chunk list
5.	 We filter out unlikely lists of chunks (optional)

6.	 We apply chunkification iteratively on chunks

Note that the best results are derived from the first sequence 
in our study as we explain in Sect. 5.

4.4.2 � Deslangification module

In this module, we try to de-obfuscate the username to 
identify any available slangified chunk . First, we create 
slangCharMap() , a function that maps a potential slang 
character to a letter following the common technogeek con-
ventions based on our observations and commonly reported 
usage  (Wikipedia 2023). Then, we search for potential slang 
characters in the username, and if any are found, we replace 
them with the corresponding letter character found from 

Fig. 6   An example of how the modules of our approach will handle a pair of usernames: z3r0c00l and COOL_zERO 

Table 2   Definition of 
terminology for GeekMAN 
approach

Terms Definitions

alpha A lowercase or uppercase English letter.
num A numerical character.
sym A non-alphanumeric character.
char A character: alpha , num , or sym.
chunk A string of chars.
L A list of chunks.
Bag (u) A set of L generated from username u.
slangChar A single num or sym which is known to be used in place of an alpha.
slangCharMap() A function that maps a potential slangChar to alpha characters. E.g. 

“3" to “e" and “3" to “s".
TokenDict A dictionary of English word/name phrases.
ChunkSim() A function that returns the similarity between two chunks.
ListSim() A function that returns the similarity between two L.
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slangCharMap() . As an example, username th3m4lw4r3 
can turn into themalware and username z3r0s4mur41 into 
zerosamurai. We notice that digit 4 can be translated as both 
a and r. In addition, digit 4 does not necessarily have to 
transform into a letter. Thus, we obtain a plethora of poten-
tial deslangified versions from one username along with the 
original username string.

4.4.3 � Chunkification module

We perform chunkification on a given username based on 
different criteria and create a Bag which is a set of lists of 
chunk s. We consider four different chunkification criteria 
emulating four different aspects of username naming behav-
ior. The algorithmic challenge is to strike the following 
balance. On the one hand, we want to extract as many as 
possible reasonable lists of chunk s to maximize the pos-
sibility of similarity. On the other hand, doing all possible 
chunkifications without any semantic cues would create a 
combinatorial explosion of lists. We address this problem 
with the following methods.

a. Symbol-based chunkification: Some symbols are 
used as delimiters to chunkify usernames. Typically delim-
iter symbols are the underscore, the space and the dot. In 
Section 3, we discussed the idea of using symbols in user-
names. We create L, a list of chunk s using the symbols pre-
sent in the username. An example is COOL_zERO which we 
can split into {COOL, zERO}. Note that we could of course 
keep delimiter symbols as chunks in the list, but we consider 
that they would rather impede than help matching accuracy.

b. Digit-based chunkification: Numbers are sometimes 
used to separate words, and we use this here as well. Digits 
in a username can be either something telling about the user 
or just a combination of single/ multiple random digits. For 
example, in one case a user may choose to use digits related 
to her personal information, while in another case a user may 
use random digits simply to make her username comply with 
certain platform requirements. We search for numbers in the 
username, and if any are found, we chunkify the username 
accordingly. An example of digit based chunkification can 
be: sniper7kills will be split into {sniper, 7, kills}.

c. Capitalization-based chunkification: Capital letters 
can also provide cues for chunks. Capitalization is often used 
by users to specify multiple parts of their usernames. For 
example, in the username ObscureCoder is reasonable to 
assume that the user has combined Obscure and Coder. In 
a more challenging example, T0x1c V3n0m can be split into 
{T0x1c, V3n0m} which could lead to {Toxic, Venom}. Note 
that in both these examples, we leverage the appearance of 
commonly-used English words, but if users use obscure 
geographical, or regional names, things can become more 
complex.

d. Token-based chunkification: We also propose an 
approach to detect chunks even in the absence of cues. Intui-
tively, we try to find potential words that could be “hiding" 
in the username. As an example, let us consider the follow-
ing username thegreathacker which seems to correspond to 
L = {the, great, hacker}.

3

There are many different ways to identify words in a 
string  (Hall and Dowling 1980). We follow the approach 
below. We start from the end of the string and consider 
letters until we find a word that exists in our TokenDict , 
a dictionary of English word/name phrases. In our exam-
ple that word would be hacker. We then create two parallel 
approaches: (a) we repeat the same process on the string, 
having removed hacker, and (b) we continue to see if the 
word hacker is part of a longer word. At the end of this 
process, we have several lists of chunks.

4.4.4 � Comparison module

Given two Bags with lists of chunks from usernames u1 and 
u2 , we calculate the highest similarity score among all pos-
sible comparisons between the lists of chunk s. We are now 
ready to provide a more formal description of our approach 
while an intuitive visualization is provided in Fig. 6. Given 
usernames u1 and u2 , earlier modules produce two sets of 
lists of chunk s, Bag(u1) and Bag(u2) , respectively with N and 
M, the number of lists in each Bag.

Bag(u1) = [L1
1
, L2

1
, ..., LN

1
]

Bag(u2) = [L1
2
, L2

2
, ..., LM

2
]

We use three similarity functions: (a) ChunkSim(c1 , c2 ) for 
chunk s c1 and c2 , (b) ListSim(L1 , L2 ) for two lists L1 and L2 , 
and (c) SimScore ( Bag1 , Bag2 ) between two bags Bag1 and 
Bag2 . The additional complexity is that at the list and Bag 
level, we need to iteratively calculate many possible poten-
tial matchings. We present a visualization of our approach in 
Fig. 6 using the real usernames: z3r0c00l and COOL_zERO.

a. Similarity of chunks. This is the easiest step in the 
similarity estimation as the similarity between strings is well 
established. There are many string matching algorithms, and 
our approach could use any of them. We select the Leven-
shtein method (Levenshtein et al. 1966) which is widely used 
in text processing (Gharibshah et al. 2020). We use the term 
ChunkSim(c1,c2 ) to refer to this function.

b. Similarity of lists of chunks. Comparing lists of 
chunks is slightly more complex, as we need to identify the 
most likely match between the chunk s of the two lists L1 , 

3  Though unlikely, "Thegreat" could be an unusual non-english 
name. A name analysis website states: "The name Thegreat is ranked 
on the 46,265th position of the most used names. It means that this 
name is rarely used. We estimate that there are at least 3500 persons 
in the world having this name which is around 0.001% of the popula-
tion." Source: themeaningofthename.com.
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L2 (note that for clarity we drop the superscipt in the nota-
tion). We use the term ListSim(L1,L2 ) to refer to this func-
tion. There are many different algorithms that we can use to 
compare similarity of unordered lists that vary in efficiency 
and computational complexity. Our approach could use any 
such function. In our current implementation, we use the 
Monge-Elkan method (Monge et al. 1996) which is found 
to perform well consistently across many scenarios and data 
types (Bilenko et al. 2003) with a polynomial computational 
complexity of O(|L1| |L2|) . Intuitively, the method iterates 
through the elements of the first list and identifies the high-
est similarity with any element in the second list. The final 
value is the average chunk similarity. Formally, the method 
calculates the similarity for the two lists as follows:

where 1 ≤ j ≤ |L2| and L1[i] and L2[j] are the i-th and j-th 
chunk s of each list.

This method hides a subtle point. The function is sen-
sitive to the order of the arguments: ListSim(L1, L2) ≠ 
ListSim(L2, L1) . Therefore, one could consider three 
approaches. We can consider: (a) ListSim (L1, L2) , (b) 
ListSim(L2, L1) , or (c) considering both “directions", 
ListSim(L1, L2) + ListSim(L2, L1) . In the results that we 
show here, we use one direction with the longest list as the 
first argument, namely, assuming |L1| ≥ |L2| , ListSim(L1, L2)

.
c. Similarity of Bags of lists. This is the last step in 

assessing the similarity between two usernames, which are 
represented by their Bags. We use the term Similarity Score 
SimScore ( u1,u2 ) where u1 and u2 are the two usernames. We 
do the comparison exhaustively: each list in the Bag of one 
username is compared with each list of the other username 
using the list similarity function ListSim () from above. The 
Similarity Score is the maximum list similarity over all list 
pairs Ln

1
, Lm

2
 as follows:

SimScore(u1, u2) = maxn,m ListSim(Ln
1
, Lm

2
)

where 1 ≤ n ≤ |Bag(u1)| , 1 ≤ m ≤ |Bag(u2)|.

4.5 � Computational complexity

In our experience, the complexity was not prohibitive with 
most usernames having a single-digit number of lists, 
and each list having single-digit number of chunks. The 
computational complexity of the Comparison module is 
bounded by O(|Bmax|2|Lmax|2) , where |Bmax| , |Lmax| are the 
largest Bag and list L length, respectively. The complexity 
of the chunkification can vary depending on the optimi-
zations used in the exploration. Recall that we saw the 

ListSim(L1, L2) =

∑�L1�
i=1

max
∀j

ChunkSim(L1[i],L2[j])

�L1�

distribution of chunks in Fig. 3, where 95% of usernames 
have less than 8 chunks.

In practice, in matching 2 M pairs of usernames, we 
find that it takes approximately 5 min in a Ubuntu 20.04.5 
Linux machine with 64GB RAM and 8 CPU cores.

5 � Experiments and evaluation

We evaluate our approach by comparing it against state 
of the art methods, and we demonstrate its usefulness by 
identifying forum users who could be malicious hackers 
on GitHub.

5.1 � Evaluating GeekMAN

Here, we present our evaluation study and discuss our 
ground truth, comparison metrics, and the baseline algo-
rithms. At a high level, our experiment aims to match a 
set of users from a source forum with a set of users from 
a target forum.

5.1.1 � Baseline algorithms

The purpose of conducting an experiment is to determine 
how GeekMAN compares to two baseline state-of-the-art 
username matching methods: Wang-16  (Wang et al. 2016) 
and UISN-UD  (Li et al. 2019).

a. Wang-16: This method extracts content features (e.g. 
2-grams), and pattern features (e.g. letter-digit, date) from 
the usernames. Then, a vector based modeling is used to 
compute the cosine similarity of the vectors of features 
from usernames.

b. UISN-UD: This method exploits the information 
redundancies that can be available in a pair of usernames 
used by the same user. It computes features from differ-
ent string comparison metrics, such as common substring, 
common subsequence, and edit distance, which are used 
in their classifier.

The major difference of GeekMAN with them is the use 
of deslangification and chunkification of the technogeek 
usernames, assuming such properties exist in the compar-
ing usernames.

5.1.2 � Experimental process and setup

We conduct two experiments focusing on: (a) technogeek 
and (b) regular usernames.

Experiment-T: technogeek usernames. In this experi-
ment, we find matches between usernames from a source 
forum within a target forum. Specifically, we conduct two 
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such experiments: (a) Garage4Hackers (GH) as source and 
Offensive Community (OC) as target , (b) Garage4Hackers 
(GH) as source and RaidForums (RF) as target . Given our 
focus on technogeek names, we selected Garage4Hackers 
as source since it exhibits a higher level of slangified and 
chunkified usernames, based on our analysis of these forums 
(see Section  3). On the other hand, the target forums were 
picked randomly. To focus on technogeek usernames, we 
selected usernames from our source forum with either 3 or 
more chunk s or slangification. This way we obtain the D_All 
dataset, which is roughly 10% of the Garage4Hackers forum 
(on purpose small to enable validation as we discuss below). 
We also divide D_All into D_Multi (3 or more chunks) 
and D_Slang (slang conventions) datasets, in an effort to 
investigate the interplay between multi-chunk and slangified 
usernames such as {thegreathacker, T0x1cV3n0m}. We use 
GeekMAN and baselines to match each user in D_All with 
the most likely matching user in the target forums.

Experiment-R: Regular usernames. We wanted to 
evaluate our algorithms using regular usernames. We use a 
subset of the social media datasets of Table 1, which have 
confirmed user correspondences across the social platforms, 
as we explained earlier. We create a dataset D_Social of 98K 
username pairs among Google Plus (GP) and Twitter(TW) 
users: (a) 49K of these pairs are usernames that belong to the 
same user, and (b) we add 49K pairs that (most likely) do not 
by selecting randomly, but with a bias, among all the social 
usernames. To make the classification harder, we require 
that these false pairs have at least Levenshtein similarity 
matching scores of 0.3.

5.1.3 � Validation and ground truth

There exists ground truth for the Experiment-R, but there is 
no available groundtruth for Experiment-T, so we need to 
establish our own. We resort to sampling and manual verifi-
cation. The algorithms find the best matching user in target 
forum for the users in D_All. We recruit four domain-expert 
computer scientists to manually label each of these possible 
matches as a match or mismatch. To increase the reliability 
of our ground truth, we ask the annotators to match a user-
name pair only if they were certain they belong to the same 
user based on usernames only. We only consider a username 
pair as a verified match if at least three annotators agree it is. 
Here we focus primarily on verified matches which we will 
use as true positives.

We assess the level of agreement of the annotators using 
Fleiss Kappa coefficient for labeling the ground truth match-
ings in Tables 3 and 4. The Kappa score we get is above 
0.5, which is considered as a moderate agreement (0.41−
0.60)  (Emam 1999).

5.1.4 � The evaluation metrics

To compare our algorithms, we consider Precision, Rela-
tive Recall, and Relative F1-score for each algorithm in the 
experiment. The “Relative" term in the metrics , abbreviated 
Rel-, represents our effort to approximate the true Recall 
in the absence of established ground-truth. Our goal is to 
detect an algorithm that will opt for high Precision at the 
cost of Recall in the context of the specific comparison. We 
approximate the number of real matches, which we do not 
know in our dataset, by providing a lower bound as follows. 
We take the union of all true positives (validated by our 
annotators) of all the algorithms in the test. Formally, we 
define Ialgo to be the number of matches identified by algo-
rithm algo. We define TPalgo to be the true positives for that 
algorithm as verified by the annotators. We then calculate 
the union of the true positives TPunion as the union of all the 
true positives of all the algorithms: TPunion =

⋃
a∈Algos TPa . 

TPunion can be seen as a lower bound on the true matches that 
a perfect algorithm would have identified.

 
As the names indicate, the Relative Recall and Relative 

F1-score have only relative meaning within the scope of the 
comparison with the specific set of algorithms.

Precision =
TPalgo

Ialgo
Rel-Recall =

TPalgo

TPunion

Rel-F1-score =
2 ∗ Precision ∗ Rel-Recall

Precision + Rel-Recall

Table 3   Performance comparison analysis for the algorithms in D_
All using SimT = 0.7 for GeekMAN with annotator agreement Kappa 
Score K=0.53

Dataset D_All

Method Precision Rel-Recall Rel-F1-score K

Wang-16 76.0 29.9 42.9 0.53
UISN-UD 47.4 71.6 57.1
GeekMAN 86.0 62.9 72.6

Table 4   Performance comparison analysis for the algorithms in 
D_Slang using SimT = 0.7 for GeekMAN with annotator agreement 
Kappa Score K = 0.54

Dataset D_Slang

Method Precision Rel-Recall Rel-F1-score K

Wang-16 77.7 25.3 38.1 0.54
UISN-UD 45.9 68.6 54.9
GeekMAN 81.6 69.9 75.3



	 Social Network Analysis and Mining (2024) 14:177177  Page 10 of 14

5.1.5 � Choosing the similarity score threshold

We want to identify an appropriate Similarity Score 
Threshold (SimT) value, which is a critical parameter for 
our approach. First, we apply GeekMAN and baseline algo-
rithms on D_All (D_Multi + D_Slang) to find matching 
pairs between source forum and target forum. Second, the 
matchings are labeled by the annotators. Depending on their 
annotations, we calculate the defined evaluation metrics for 
our algorithm at different SimT values ranging between 0.1−
1.0 at 0.01 intervals. Finally, we plot the Precision, Rel-
Recall, Rel-F1-score curves at those values in Fig.  7. We 
find that the curves meet at SimT value of 0.64. We notice 
that after SimT = 0.68, Rel-F1-score decreases, while Preci-
sion is increasing even after 0.70. We opt to prioritize Preci-
sion, and we choose a SimT of 0.7 for our study.

5.1.6 � Evaluation results

We show the performance evaluation for GeekMAN and the 
two baseline algorithms.

GeekMAN: 15% better Relative F1-score. In Table 3, 
we show the results for the D_All dataset. GeekMAN 
achieves a Precision of 86.0% and Relative F1-score of 
72.6%. By contrast, the baseline algorithms achieve 76.0% 
and 47.4% Precision with 42.9% and 57.1% Relative 
F1-score, respectively. It is also worth noting that the base-
line algorithms only do well either in Precision or in Relative 
Recall. For example, Wang-16 offers high Precision (76.0%) 
but at the cost of the Rel-Recall (29.9%). The opposite is 
true for UISN-UD.

What about bonafide technogeek names? We want to 
further understand how the algorithms perform when the 
usernames use slang conventions. As expected, our approach 

does even better here with a difference in the Relative 
F1-score close to 20%. Focusing on our D_Slang dataset, 
we show the results in Table 4. GeekMAN surpasses the 
baselines in all metrics with a Precision of 81.6% and Rela-
tive F1-score of 75.3%, while baseline algorithms achieve 
a maximum 77.7% Precision and 54.9% Relative F1-score.

What do the other approaches miss? We did a deepdive 
to understand the origin of the lower performance of the 
other methods. Table 5 shows some of the matching pairs 
identified by GeekMAN that the baselines could not iden-
tify. We conjecture that this happens due to the usernames 
exhibiting slangification and chunkification, like h4ckj4ck 
and JackTheHack. These usernames exhibit slangification 
and chunkification, that the baselines were not designed to 
handle. For some of these algorithms as they rely on stand-
ard string techniques, such as 2-grams and substring match-
ing, that will clearly not work well here.

5.1.7 � GeekMAN performs well with “regular" usernames

We also show that our approach works well with regular 
social media usernames with Experiment-R. We apply 
each algorithm on D_Social to evaluate the performance. 
Table 6 shows that GeekMAN outperforms the baseline 
algorithms in terms of Precision being 98.6% with Simi-
larity Score Threshold, SimT = 0.7, whereas the baseline 
algorithms have a maximum 66.1% Precision. Additionally, 
the F1-score of the methods is within 2% of each other.

5.2 � Case study: matching GitHub malware authors

We showcase the capabilities of our approach with the fol-
lowing application. We use GeekMAN to identify forum 
users that match malware authors on GitHub (Rokon et al. 
2020).

5.2.1 � GeekMAN matches forum users with malware 
authors on GitHub

We find 6327 GitHub malware authors who have been 
matched with at least one user from one of our security 
forums. We apply our method with GitHub as the source 
platform and each of the security forums as the target forum. 
In the case that a study values Precision over Recall, we can 
adjust the Similarity Score Threshold. By using SimT = 0.9, 
we identify 1958 matches, which is an even stronger indica-
tion that a substantial set of these usernames may belong to 
the same user.

We also find 260 GitHub malware authors in the security 
forums using exact username matching. For comparison, 
Table 7 shows the number of matched forum users using 
GeekMAN and exact username matching. We find that 
GeekMAN provides 24 and 7.5 times more matching than 

Table 5   Real username matches that baseline algorithms missed

Platform 1 Platform 2

c0d3m@st3r Codomaster
41ph4w01f alphawolfffff
h4ckj4ck JackTheHack
OverlordShadow Shadowlord

Table 6   Performance metrics between GeekMAN and the baseline 
algorithms across social network ground-truth

Dataset D_Social

Method Precision Recall F1-Score

Wang-16 63.2 74.5 68.4
UISN-UD 66.1 75.1 70.3
GeekMAN (SimT 

=0.7)
98.6 52.4 68.4
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purely exact username matching using SimT = 0.7 and 0.9, 
respectively.

5.2.2 � Deep dive: influential users and motives

Who are these malware authors and what is their activ-
ity on the security forums? Among the matched malware 
authors, we focus on the most influential authors who 
have at least 250 followers on GitHub. We then analyze 
the threads and posts of the counterpart matching forum 
users. They seem to fall into the following broad groups 
according to major activity: (a) promoting their GitHub 
repositories (e.g.TheSph1nx, TheSphinx), (b) requesting 
hacking related information (e.g. Cr4sh, crash), (c) shar-
ing hacking tutorials (e.g. Bl4ckDr460n, blackdrag0), and 
(d) boasting and advertising personal hacking skills (e.g. 
Anon-Exploiter, An0n3xpl0it3r). We also detect 4 matched 
GitHub authors who have since had their GitHub accounts 
deactivated, such as author bl4ckic3 who was promoting a 
keylogger repository using the username Blackice in forum 
HF.

Many malware authors (3-13%) are highly active in 
the forums. We wanted to see how visibly these malware 
authors are highly active on our security forums. We use the 
term heavy-hitter to refer to users who are in the top 10% 
in terms of number of posts in the forum. In Table 7, we see 
that 3-13% of matched malware authors are also heavy-hit-
ters in the forum. By analyzing the URLs these users posted, 
we identify 18 users who share their own GitHub profile and 
repositories.

6 � Discussion: tool and scope

We discuss the GeekMAN tool, potential scope and usecase, 
the limitations and impact of our approach in this section.

The GeekMAN online platform. We provide an online 
platform that implements our approach to enable further 
research in the area. A sample of our platform is shown in 

Fig. 1, which is publicly accessible at https://​geekm​an.​strea​
mlit.​app. Currently, we provide a set of minimal function-
alities. However, in our platform, we intend to support the 
following capabilities incrementally.

a. Finding a match within our database(s). A user can 
provide a username which we will match with the top-k 
most similar usernames in our database. A user can specify 
which platforms to include in the match, e.g. specific online 
forums, or all of them.

b. Leveraging our matching algorithms. A user can 
upload two CSV files with usernames, and we can provide 
the best matches for each username in the first file within the 
second file. The user can specify which algorithms to use 
for the matching, and even compare the similarity scores for 
the algorithms.

c. Providing the largest username database, ground 
truth and slang-dictionary. We intend to develop the largest 
database of usernames by adding more platforms that focus 
on technogeek space. We will also provide our manually 
verified results as groundtruth, which we expect to grow 
over time with the help of experts and maybe even using 
carefully-run MTurk studies. Finally, we will share our tech-
nogeek dictionary which already has 5.8K entries.

Scope, practical applications and impact. We see our 
approach as a key building block for tracing malicious users 
across online platforms. Its focus on technogeek usernames 
makes it particularly well suited for the disambiguation 
of such users which, apart from malicious hackers, could 
include hate groups, and sociopaths, which could be of 
interest to law enforcement entities. GeekMAN amplifies 
the ability of security analysts to quickly hone in on persons 
of interest and comprehensively track them across platforms. 
We see it as the first step in the following pipeline: (a) col-
lecting usernames from forums of interest, (b) identifying 
likely similar usernames, (c) investigating further with 
more computationally-expensive methods, and (d) involv-
ing humans in the effort. The goal is to enable efforts to 
stop individuals that cause real harm through cyber-criminal 
activities, such as ransomware, Denial of Service attacks, 
and identify theft. We would like to stress that a username 
match should be treated carefully as we discuss below.

How representative is our data? This is the question 
that plagues any measurement-driven effort. We argue that 
our data is sufficiently representative for the purposes of 
the study. The security forums that we use are among the 
appropriate targets that a security analyst would examine: 
they are highly technical and in the grey area between white 
and black hat hacking. Our successful linking of malware 
authors from GitHub to users in our forums is an additional 
indication of using relevant datasets. Our goal is to show the 
challenges and offer a solution in disambiguating technogeek 
usernames.

Table 7   GeekMAN finds more forum-GitHub matches (SimT = 0.7) 
compared to exact matches alone

A substantial percentage of them are heavy-hitters in that forum. Note 
that a malware author can match users in more than one forum

Forum GitHub author matched Heavy-
hitters 
(%)Exact match GeekMAN

GH 3 226 13.2
OC 16 1306 3.7
RF 20 2553 7.3
MP 64 4767 10.9
HF 182 5111 9.9

https://geekman.streamlit.app
https://geekman.streamlit.app
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Limitations and extensions. We discuss limitations and 
potential extensions of the work.

Username vs. identity. It should be clear that identifying 
similar or even identical usernames does not guarantee that 
the owners behind them are the same person. However, we 
argue that this is a good place to start in absence of other 
leads. Our automatic sifting through hundreds of thousands 
or millions of usernames is essential to make such an inves-
tigation feasible.

Expanding the matching capability. We intend to further 
develop the matching capability by considering additional 
sources of information when these are available. For exam-
ple, we will consider (a) the content of the posts, (b) posted 
or linked URLs, and (c) social connectivity. For the latter, 
we can extract “social links" by finding groups of users 
that post in the same threads, or that refer to each others’ 
resources and accounts on YouTube and GitHub.

Extensions. We intend to scale up our study by: (a) col-
lecting data from more security forums and (b) intercon-
necting their users with other platforms, including YouTube, 
which provides hacking tutorials, communication platforms 
like Telegram and Discord, and social media, which are 
known to harbor hackers (from personal communication 
with Amazon’s security team).

Ethical considerations. Our work adheres to the com-
munity-defined ethical practices. First, we only use publicly 
available data. Anyone can collect the data from the forums 
and we use other data that has been made public by other 
researchers. Second, the usernames are not directly reveal-
ing any particular individual, but only represent an online 
persona. We only use specific usernames to illustrate naming 
conventions but we will be happy to obfuscate or use artifi-
cial examples in the final version of the journal. Finally, we 
want to stress: a pair of matching usernames simply points 

to the probability that there is a connection and further proof 
should be solicited before any action is taken.

7 � Related work

Most previous works differ from our approach in that: (a) 
they are supervised approaches that need training data, (b) 
they are not focusing on complex-technogeek usernames, 
and (c) they rely on information beyond the username, such 
as user profile attributes, content, and social connectivity. By 
contrast, our approach is designed to: (a) handle technogeek 
names, and (b) rely only on usernames.

a. Username-based matching. We already discussed 
the two methods that we use in our performance analy-
sis;  (Wang et al. 2016) and  (Li et al. 2019).

Earlier,  Perito et al. (2011) employed a Markov-Chain 
based language model to quantify username uniqueness. 
The authors suggest that the selection of usernames follows 
a probabilistic distribution, with more predictable and less 
diverse usernames being more likely to be duplicated. To 
quantify this probability, they estimate the probability of a 
username’s occurrence based on a large username dataset 
leveraging Markov Chains model. To measure the similar-
ity between usernames, they employ distance metrics such 
as Levenshtein distance and Jaro distance, alongside term 
frequency-inverse document frequency (TF-IDF).

Other efforts by   Zafarani and Liu (2013) proposed 
MOBIUS to identify users across sites by analyzing the nam-
ing patterns of usernames. This technique exploits the redun-
dant information in username patterns revealed through user 
behavior. MOBIUS considers various user behavioral pat-
terns, such as keyboard layouts, language usage, and user-
name modification habits, to construct features. To link 

Fig. 7   The effect of SimT on the performance of GeekMAN. The blue vertical line at 0.7 marks the point that finds a reasonable trade-off with a 
slight emphasis on Precision
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usernames, it employs several similarity measures, including 
Longest Common Substring (LCS), edit distance, Dynamic 
Time Warping distance, Jensen-Shannon divergence, and 
n-gram algorithm.

However, both previous approaches did not address the 
unique characteristics of usernames in the technogeek forum 
context as GeekMAN does. Additionally, technogeek users 
frequently engage as silent observers in the forum, leading 
to the unavailability of their behavioral patterns. This poses 
a challenge for earlier username disambiguation methods 
that rely on such data.

b. Using user profiles. An earlier study by  Vosecky 
et al. (2009) introduced a vector based supervised algorithm 
which utilizes user profile features with differing weights. In 
some other efforts, Goga et al. (2013) and (Zhang et al. 2014 
proposed probabilistic classifiers which link user identities 
based on profile attributes like description, location, pro-
file image etc including username. Also, a projection based 
modeling proposed by  Mu et al. (2016) incorporated the 
profile features to link users on different platforms.

c. Combining multiple types of information. A num-
ber of efforts like  (Malhotra et al. 2012; Zhou et al. 2015; 
Zafarani et al. 2015; Zhang et al. 2015; Liu et al. 2016 
consider the social relationship for user matching. On the 
other hand,  Liu et al. (2013); Jain et al. (2013); Goga et al. 
(2015); Arabnezhad et al. (2020); Cabrero-Holgueras and 
Pastrana (2021) incorporate a set of user related features 
including profile attributes, social relationships, and user 
generated contents. Some recent approaches  (Zhang et al. 
2018, 2019 leverage a user’s ego network to connect users 
across platforms.

8 � Conclusion

We propose GeekMAN, a systematic approach to identify 
similar technogeek usernames across online platforms. The 
key novelty consists of the development and integration of 
three capabilities: (a) decomposing usernames into meaning-
ful chunks, (b) de-obfuscating technical and slang conven-
tions, and (c) considering all the different outcomes of the 
two previous functions exhaustively when calculating the 
similarity. These three capabilities attempt to emulate the 
way a human will attempt to “understand" a username. We 
conduct a study using 1.8M usernames from three different 
types of forums: (a) security forums, (b) malware authors 
from GitHub, and (c) mainstream social media platforms. 
Our experiment shows that GeekMAN can match techno-
geek usernames with offering a higher precision of 81.6% 
and above, outperforming the previous studies. Besides, our 
approach outperforms prior methods even with usernames of 
common social networks in terms of precision. In the future, 
we intend to apply our method in other varied forums and 

platforms to interconnect users. Overall, we see our approach 
as fundamental building block for tracing users across differ-
ent platforms by providing: (a) our platform, (b) datasets, (c) 
groundtruth, and (d) a slang-translation dictionary.
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