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Abstract

How can we identify malicious hackers participating in different online platforms using their usernames only? Establishing
the identity of a user across online platforms (e.g. security forums, GitHub, YouTube) is an essential capability for trac-
ing malicious hackers. Although a hacker could pick arbitrary names, they often use the same or similar usernames as this
helps them establish an online “brand”. We propose GeekMAN, a systematic human-inspired approach to identify similar
usernames across online platforms focusing on technogeek platforms. The key novelty consists of the development and
integration of three capabilities: (a) decomposing usernames into meaningful chunks, (b) de-obfuscating technical and slang
conventions, and (c) considering all the different outcomes of the two previous functions exhaustively when calculating the
similarity. We conduct a study using 1.8M usernames from three different types of forums: (a) security forums, (b) malware
authors from GitHub, and (c) mainstream social media platforms, which we use as reference. First, our method outperforms
previous methods with a Precision of 81-86% on technogeek datasets. Second, we find 6327 forum users that match malware
authors on GitHub with a high similarity score (> 0.7). Finally, we provide a translation dictionary for slang terms with 5.8K

entries, and create GeekMAN platform to facilitate further studies https://geekman.streamlit.app.

Keywords Username matching - Hacking - GitHub - Cybersecurity - Online forum analysis - Social network

1 Introduction

How can we identify malicious hackers across different
platforms? This is the question that motivates our work.
First, hackers with visible online personas often lead major
cyber-criminal activities (Samtani and Chen 2016). Second,
these hackers are active and visible on many online plat-
forms including specialized security forums and popular
platforms like GitHub (Islam et al. 2021a). In fact, some
of these platforms harbor malicious activities to the point
that they are forced to shut down (Gharibshah et al. 2018).
One thing is clear: these hackers create a brand around
their online names. As a result, hackers: (a) adopt unusual
names, and (b) use them fairly consistently with only minor
changes across different platforms. For example, a username
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of interest could be w33dgod, which we may want to match
with godweed (both are real usernames).

The problem we address here is the following: given
two usernames, how can we determine if they are likely
to belong to the same user? As our focus is tracing hacker
activity, we focus on technogeek usernames, which we
define as usernames with: (a) technical jargon, (b) slang and
unconventional use of letters and characters, and (c) multiple
parts. These types of usernames seem to be used by mali-
cious hackers, but also by tech-enthusiasts, gamers etc. For
example, IAmBlackHacker on GitHub and B/I4CKH4K3R
on Facebook.! We refer to this kind of obfuscation using
letters and digits in unusual ways as slangification. Many
of their usernames have multiple parts, which we refer to as
chunks. Traditional string matching and edit distance tech-
niques have difficulty matching these types of usernames.
Here, we impose an additional challenge: we do not use
other types of information, such as demographic attributes,
context, or social connections, which could help refine the

! All examples here are real usernames. The GitHub malware author
IAmBlackHacker refers to https://www.facebook.com/B14CKH4K3R
as her blog in the profile information. The Facebook page claims
Varanasi, India as its location, so we suspect that black must refer to
black hat hacking.
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matching accuracy. Our framing of the problem can be seen
as an essential building block of a broader solution. Thus,
our goal is to push the username level matching to its limit:
how far can we go with just usernames?

There has been relatively little work on the problem as
we define it here. In particular, we find that most of the
previous works: (a) focus on the popular social media user-
names, (b) rely on training data, and (c) use string match-
ing without following a human-like interpretation, such as
decomposing the username into meaningful chunks. Specifi-
cally, many methods treat the username as a string, and use
features such as the frequency of bi-grams and tri-grams.
Overall, we can group the previous efforts in three large
families depending on their primary focus on: (a) concen-
trating on username similarity (Perito et al. 2011; Zafarani
and Liu 2013; Wang et al. 2016; Li et al. 2019), (b) leverag-
ing user profile attributes, such as demographic informa-
tion (e.g. gender, education, job title) (Vosecky et al. 2009;
Goga et al. 2013; Zhang et al. 2014; Mu et al. 2016), and (c)
combining multiple dimensions of information, such as the
user-generated content, including topics and linguistic style,
and in-platform social connections (Liu et al. 2013, 2016;
Zhang et al. 2018). As we explain later, we compare our
approach against a set of state-of-the-art username similarity
algorithms (Wang et al. 2016; Li et al. 2019). We discuss
previous works in Sect. 7.

As our key contribution, we propose GeekMAN, a sys-
tematic approach for linking technogeek users across plat-
forms. Our approach is inspired by human cognition: it
attempts to emulate how a human will try to disambiguate
this type of username, such as IAmBlackHacker and B14CK-
H4K3R, which we mentioned above. The key novelty of our
work consists of the development and integration of three
capabilities: (a) deslangification, which de-obfuscates slang
and geeky naming conventions, (b) chunkification, which
decomposes usernames into meaningful chunks, which leads
to one or more lists of chunks, and (c) comparison, which
considers all the lists of chunks to calculate the similarity
between two given usernames. We introduce our metric of
Similarity Score, SimScore , and we use the Similarity Score
Threshold, SimT, to select username pairs that are a likely
match.

We deploy our approach on 1.8M usernames from three
different types of online platforms: (a) five popular hacker-
rich security forum users, (b) 7.3K malware authors from
GitHub, and (c) three mainstream social media platform
users, which we use as reference. The key results are sum-
marized below.

a. Technogeek usernames use slang and chunks exten-
sively. To quantify the use of slang, we compare usernames
that have multiple digits or symbols in between characters.
We find that technogeek forums have 1.5-6 times more
such usernames compared to social media platforms (see
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Sect. 3). Quantifying the prevalence of chunks, we find that
60-70% of the usernames could be decomposed into at least
four chunks, while roughly 20% of them have more than 6
chunks!

b. GeekMAN outperforms prior approaches esp. on
technogeek usernames Focusing on technogeek usernames,
we find that our approach identifies matches with 86.0% Pre-
cision and 72.6% Relative F1-score (which we define later).
By contrast, two prior approaches exhibit 76.0% and 47.4%
Precision with 42.9% and 57.1% Relative F1-score, respec-
tively. Our approach outperforms prior methods even with
usernames of common social networks.

c. GeekMAN finds 6327 forum users who likely own
malicious repositories on GitHub! As an indicative use
of our approach, we match security forum users to mali-
cious GitHub authors (Rokon et al. 2020). We find 6327 such
matches with a similarity score threshold of SimT = 0.7.
Manual investigation to a set of randomly selected matched
users shows that often the forum users proudly point to
their own GitHub profile or repositories, which validates
the match.

d. GeekMAN allows for balancing the Precision
- Recall trade off. Depending on the need of the study,
our approach can be easily tuned to favor higher Precision
or higher Recall. The 6327 likely matches between forum
and GitHub users for SimT = 0.7 become 1958 matches for
Similarity Score Threshold SimT = 0.9. Note that only 260
matches correspond to identical strings: our method adds
value beyond the obvious matches. We find that 57.7% of
these 1958 matches use digits/symbols in their usernames
as opposed to only 16.2% of among the 260 exact matches.

e. An online platform, datasets, and a ‘“‘deslangifica-
tion dictionary''. To facilitate further research, we provide:
(a) an online tool, as shown in Fig. 1, (b) our datasets, (c)
our groundtruth, and (d) a slang-translation dictionary. We
are off to a great start: with 1.8M usernames, three different

% geekman.streamlit.app e %

GeekMAN - Geek Oriented Username Matching
across Online Networks

Regular Search  File Upload

Username 1
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AnOn3xpl0it3r

Find Similarity Score ]
{ )

Similarity Score is: 0.963

2024 GeekMAN App

Fig.1 GeekMAN Platform: Matching usernames Anon-Exploiter and
AnOn3xpl0it3r
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username-matching algorithms, and manually verified
ground-truth. Currently, our slang-translation dictionary
has 5.8K entries consisting of slang words and their coun-
terparts. We have shared our source code in GitHub (Geek-
MAN 2023).

Our work in perspective. Our approach is a fundamental
building block for tracing users across different platforms
with an emphasis on technogeek usernames. We revisit its
practical impact and limitations in Sect. 6. In the same sec-
tion, we also discuss the issue that a matching pair of user-
names does not necessarily mean that they belong to the
same user.

2 Background and data

In this section, we provide some background, explain the
motivation of our approach, and discuss the dataset in detail.

2.1 Malicious hackers use technogeek in usernames

Hackers and other malicious users often participate in
various public platforms, including specialized discus-
sion forums, technical forums, and software platforms
like GitHub. Their main goals seem to be: (a) establish-
ing an online brand, and (b) boasting of their accomplish-
ments (Islam et al. 2021a, b). For example, we have seen
posts by hackers to advertise their services, claim the credit
of successful hacking activities, and create communities of
like minded people (Islam et al. 2022).

Often they use the same username consistently across
platforms, but sometimes they vary the spelling or structure
of the name or the order of the parts of their names. They
sometimes choose different username spelling via transfor-
mation of their original alias in order to establish a branding
or hide their own persona in the forum. We refer to this user-
name spelling transformation as slangification. As a note-
worthy example, an FBI most wanted cybercriminal, having
alias haOr3n, was found to have a GitHub profile named
wo4haoren. In 2020, FBI listed another most wanted hacker
named Behzad Mohammadzadeh, with alias Mrb3hz4d, who
was charged for defacing a number of websites (FBI 2020).

2.2 Datasets

Our dataset contains nine different online platforms span-
ning across three broad categories: security forums, open-
source software plaforms, and social networks. Table 1 dis-
plays a summary of them.

Table 1 Summary of datasets: forums, GitHub, and social media

Category Platform Abbr.  Users
Security forums Garage4Hackers GH 865
Offensive Community oC 11371
RaidForums RF 44107
Multiplayer Game Hacking ~MP 507945
Hack Forums HF 659672
Software platforms ~ GitHub GT 7389
Social media Facebook FB 163037
Twitter T™W 196534
Google+ GP 280318

2.2.1 Security forums

This category comprises five security forums:
Garage4Hackers(GH), Offensive Community(OC),
RaidForums(RF), Multiplayer Game Hacking(MP), and
Hackforums(HF) (Garage4Hackers 2021; Community
2021; RaidForums 2021; Hacking 2021; Hackforums
2021). The data of this category contains posts and threads
of 1.2M users ranging between 2005 and 2021. The data
comes from two main sources, our automated crawler and
Cambridge Cybercrime Centre (cambridgecybercrime
2022), who kindly shared their data with us.

2.2.2 The GitHub software platform

Interestingly, hackers share malware source code in public
platforms, such as GitHub. We consider 7389 GitHub (GT)
authors, who were identified to have at least one repository
with malware source code (Rokon et al. 2020; Source-
Finder 2022).

2.2.3 Social media

We also consider 639K usernames (Goga et al. 2015)
from three popular social networks: Facebook(FB),
Twitter(TW), and Google+(GP) (the popularity of
Google+ did not last). Among them there are 49K pairs
of usernames that belong to the same user, which we use
later in our evaluation. We use this dataset to compare the
username patterns in typical social networks against the
patterns in our technogeek platforms, and to evaluate the
performance of GeekMAN in regular usernames. For the
rest of the paper, we use the term technogeek to refer to the
first two categories: security forums and GitHub.
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2.3 Validation and groundtruth

Note that the social media dataset consists of verified
accounts owned by the same users. So we use this to partly
evaluate our algorithms. However, given our focus on tech-
nogeek forums, we describe our validation approach in
Sect. 5.

3 Quantifying technogeek usernames

In this section, we study the usernames in technogeek
forums, which are likely to be visited by hackers. The goal
is to understand the username selection patterns and con-
ventions in order to inform our approach. Overall, we find
that the usernames in technogeek forums are different from
those in general purpose platforms, such as social media.

3.1 Technogeek forum users use symbols and digits
more frequently than social media users

We measure the number of usernames that contain symbols
and digits to test our intuition that technogeek usernames
contain these characters more frequently and in more unu-
sual ways compared to social media usernames. We plot
the distribution of the users in different platforms who use
digits in between two alphabetical characters in their user-
names in Fig. 2. We see that around 17~37% of technogeek
forum usernames have multiple digits in between letters
of their usernames, which is at least 1.5-6 times compared
to social media users. This indicates that the technogeek
users are more likely to use this type of usernames. For

H two digits
35 [0 three digits
Hl > three digits

Percentage
N
=)

GH OC RF MP HF GT FB
Platform

T™W GP

Fig.2 Distribution of percentage of population who use digit in
between letters multiple times. An example username containing two
digits in between letters: g3ntl3man
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Fig.3 The CCDF of total number of chunks found per username
across different types of online platforms. An example username:
sniper7kills having three chunks {sniper, 7, kills}

example: n/nj4sec and z3rOd4y contain two and three digits
in between letters, instead of ninjasec and zeroday. Further-
more, we find that 22% of the GitHub users in our dataset,
indicated as GT in the plot, also demonstrate this type of
behavior. Recall that our GitHub users have been identi-
fied as malware producing authors, so this percentage will
most likely differ if we consider GitHub users at large. By
contrast, this behavior is much less pronounced in social
media platforms, such as Facebook. We find similar trends
for using symbols during the investigation.

3.2 We find 60-70% of usernames with multiple
chunks

We want to quantify how frequently usernames consist of
multiple parts, which we refer to as chunks. We use the
Chunkification method that we describe in the next section
on all the online platforms in our dataset. For each username,
we consider a list of all possible chunks, which we could
find from different chunkification approaches. In Fig. 3, we
plot the CCDF (Complementary Cumulative Distribution
Function) curve of the total number of chunks found per
username. We find that approximately 60-70% of the users
on each of the online platforms contain 4 or more chunks in
their usernames, irrespective of technogeek and social media
platforms. We also notice that the number of chunks per
username seems consistent across all platforms, although the
frequency of more than 5 chunks is slightly higher among
the technogeek forums.

In an effort to get a deeper understanding, we also inves-
tigated the username chunks. We find that general users
prefer proper English words and names in their chunks. By
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contrast, technogeek forum users transform the spelling of
English words in their usernames by replacing one or more
letters with digits/symbols. Our analysis concludes that the
percentage of technogeek users who use slangification is
2-8 times higher compared to social media users. We illus-
trate the most commonly slangified English words used by
technogeek forum users via a word cloud shown in Fig. 4.

4 Proposed method

The goal of our method is to determine the similarity score
of two given usernames. The inspiration behind GeekMAN
is the emulation of a human interpreter. The key idea is to
de-obfuscate the usernames (if possible), decompose them
into several possible lists of chunks, and finally compare the
lists of chunks to calculate the similarity score.

Our approach consists of three main modules: (a)
Deslangification, (b) Chunkification, and (c) Comparison.
We provide a conceptual overview in Fig. 5 and demonstrate
its operation for usernames z3r0c00l and COOL_zERO in
Fig. 6.

4.1 Deslangification module

This module aims to deslangify a given username by: (a)
identifying likely use of slang, and (b) translating the slang
into regular words. One such example is: z3r0c00l which
most likely refers to zerocool.

4.2 Chunkification module

This module takes a username and produces one or more
lists of chunks. We use the term L to refer to each such list
and the term Bag to refer to all the lists of chunks for a user-
name. Table 2 provides a list of our terminology. Note that in
its most general case, the Chunkification module can provide
more than one possible ways to chunkify the username. E.g.

>

e rDr

dOw
b3ast 'b100d
f] MGLQWM r'
gr33n mast3r d3ath
ghOstwr
d3mon

sueyb3r
hack3r

(a) Technogeek forums

shddow

4ward

hdck3r
hOst

yOung

(b) Social media

Fig.4 The word-cloud that shows popular slangified words used at
least 10 times as usernames or as parts of usernames in technogeek
forums (200 words) than social media (6 words only)

M3: compare

[

b 4

score of best match

OUTPUT:

Fig.5 GeekMAN calculates the similarity score for a pair of user-
names focusing on technogeek users. Our approach tries to emu-
late human interpretation by combining the: a Chunkification, b
Deslangification and ¢ Comparison modules

mr-satanl can be decomposed into: {mr, -, satan, 1}, and
{mr, -, satanl}, since Satani’ could be a slangified version
of someone’s last name. In fact, we want to generate as many
as possible plausible lists of chunks to ensure the highest
possible similarity.

4.3 Comparison module

This module takes as input two Bags with lists of chunks,
one for each username, and returns the highest similarity
score among all possible pairs of lists. In more detail, it
consists of functions that calculate the similarity at different
granularity: (a) between two chunks, (b) between two lists of
chunks, and (c) between two Bags of lists of chunks.

4.4 Our approach in detail
We now describe our method in more detail by discussing

our algorithmic choices and the related challenges. For con-
venience, we list key terms and functions in Table 2.

2 According to Wikipedia, Satani is the name of a Vaishnavite com-
munity and caste in India, and also a community in Northern Ghana.
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[ 4 [
ol ol
Usernames: 23r0c001 COOL_zERO
Deslangification Module
Slang zerocool COOL_zERO
variations 23r0c001
Chunkification Module
Bag1 Bag2
ChunkList 1 zerocool COOL zERO
ChunkList 2 z3r0c00! cooL zZERO
ChunkList 3 zero cool cool zero
ChunkList 4 z3r0 (]

Comparison Module
z3r0c001 COOL_zERO
Bagl Bag 2
zerocool COOL_zERO
23r0c001 83 CoOL | zERO
zero cool cool zero
z3r0 c00l1

Simseore |

Fig.6 An example of how the modules of our approach will handle a pair of usernames: z3r0c00! and COOL_zERO

Table 2 Definition of

X Terms
terminology for GeekMAN

Definitions

approach alpha

num

sym

char

chunk

L

Bag (u)
slangChar
slangCharMap()

TokenDict
ChunkSim()
ListSim()

A lowercase or uppercase English letter.

A numerical character.

A non-alphanumeric character.

A character: alpha, num, or sym.

A string of chars.

A list of chunks.

A set of L generated from username u.

A single num or sym which is known to be used in place of an alpha.

A function that maps a potential slangChar to alpha characters. E.g.
“3" to “e" and “3" to “‘s".

A dictionary of English word/name phrases.

A function that returns the similarity between two chunks.

A function that returns the similarity between two L.

4.4.1 Maximizing the likelihood of a match

The task of reverse engineering the naming habits of users
is a challenging problem. The overarching goal is to ensure
that we find a possible match, even in the face of obfusca-
tion. The two modules of deslangification and chunkification
can be used synergistically and in conjunction. To have the
broadest possible coverage, we can consider the following
approaches:

We do deslangification and then chunkification
We do chunkification and then deslangification
We keep the initial username as is as a one-chunk list
We keep the deslangified username as one-chunk list
We filter out unlikely lists of chunks (optional)

RARE ol

@ Springer

6. We apply chunkification iteratively on chunks

Note that the best results are derived from the first sequence
in our study as we explain in Sect. 5.

4.4.2 Deslangification module

In this module, we try to de-obfuscate the username to
identify any available slangified chunk. First, we create
slangCharMap(), a function that maps a potential slang
character to a letter following the common technogeek con-
ventions based on our observations and commonly reported
usage (Wikipedia 2023). Then, we search for potential slang
characters in the username, and if any are found, we replace
them with the corresponding letter character found from
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slangCharMap(). As an example, username th3m4lw4r3
can turn into themalware and username z3rOs4mur41 into
zerosamurai. We notice that digit 4 can be translated as both
a and r. In addition, digit 4 does not necessarily have to
transform into a letter. Thus, we obtain a plethora of poten-
tial deslangified versions from one username along with the
original username string.

4.4.3 Chunkification module

We perform chunkification on a given username based on
different criteria and create a Bag which is a set of lists of
chunks. We consider four different chunkification criteria
emulating four different aspects of username naming behav-
ior. The algorithmic challenge is to strike the following
balance. On the one hand, we want to extract as many as
possible reasonable lists of chunks to maximize the pos-
sibility of similarity. On the other hand, doing all possible
chunkifications without any semantic cues would create a
combinatorial explosion of lists. We address this problem
with the following methods.

a. Symbol-based chunkification: Some symbols are
used as delimiters to chunkify usernames. Typically delim-
iter symbols are the underscore, the space and the dot. In
Section 3, we discussed the idea of using symbols in user-
names. We create L, a list of chunks using the symbols pre-
sent in the username. An example is COOL_zERO which we
can split into { COOL, zERO}. Note that we could of course
keep delimiter symbols as chunks in the list, but we consider
that they would rather impede than help matching accuracy.

b. Digit-based chunkification: Numbers are sometimes
used to separate words, and we use this here as well. Digits
in a username can be either something telling about the user
or just a combination of single/ multiple random digits. For
example, in one case a user may choose to use digits related
to her personal information, while in another case a user may
use random digits simply to make her username comply with
certain platform requirements. We search for numbers in the
username, and if any are found, we chunkify the username
accordingly. An example of digit based chunkification can
be: sniper7kills will be split into {sniper, 7, kills}.

c. Capitalization-based chunkification: Capital letters
can also provide cues for chunks. Capitalization is often used
by users to specify multiple parts of their usernames. For
example, in the username ObscureCoder is reasonable to
assume that the user has combined Obscure and Coder. In
a more challenging example, 70xIc V3nOm can be split into
{TOxIc, V3nOm} which could lead to {Toxic, Venom}. Note
that in both these examples, we leverage the appearance of
commonly-used English words, but if users use obscure
geographical, or regional names, things can become more
complex.

d. Token-based chunkification: We also propose an
approach to detect chunks even in the absence of cues. Intui-
tively, we try to find potential words that could be “hiding"
in the username. As an example, let us consider the follow-
ing username thegreathacker which seems to correspond to
L = {the, great, hacker}.

3

There are many different ways to identify words in a
string (Hall and Dowling 1980). We follow the approach
below. We start from the end of the string and consider
letters until we find a word that exists in our TokenDict,
a dictionary of English word/name phrases. In our exam-
ple that word would be hacker. We then create two parallel
approaches: (a) we repeat the same process on the string,
having removed hacker, and (b) we continue to see if the
word hacker is part of a longer word. At the end of this
process, we have several lists of chunks.

4.4.4 Comparison module

Given two Bags with lists of chunks from usernames u, and
u,, we calculate the highest similarity score among all pos-
sible comparisons between the lists of chunks. We are now
ready to provide a more formal description of our approach
while an intuitive visualization is provided in Fig. 6. Given
usernames u; and u,, earlier modules produce two sets of
lists of chunks, Bag(u,) and Bag(u, ), respectively with N and
M, the number of lists in each Bag.

Bag(u)) = [L],L},....L}]

Bag(u,) = [L},L3,....L)]

We use three similarity functions: (a) ChunkSim(c,, c,) for
chunks c, and c,, (b) ListSim(L,, L,) for two lists L, and L,,
and (c) SimScore (Bag,, Bag,) between two bags Bag, and
Bag,. The additional complexity is that at the list and Bag
level, we need to iteratively calculate many possible poten-
tial matchings. We present a visualization of our approach in
Fig. 6 using the real usernames: z3r0c00! and COOL_zERO.

a. Similarity of chunks. This is the easiest step in the
similarity estimation as the similarity between strings is well
established. There are many string matching algorithms, and
our approach could use any of them. We select the Leven-
shtein method (Levenshtein et al. 1966) which is widely used
in text processing (Gharibshah et al. 2020). We use the term
ChunkSim(c,,c,) to refer to this function.

b. Similarity of lists of chunks. Comparing lists of
chunks is slightly more complex, as we need to identify the
most likely match between the chunks of the two lists L,

3 Though unlikely, "Thegreat" could be an unusual non-english
name. A name analysis website states: "The name Thegreat is ranked
on the 46,265th position of the most used names. It means that this
name is rarely used. We estimate that there are at least 3500 persons
in the world having this name which is around 0.001% of the popula-
tion." Source: themeaningofthename.com.
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L, (note that for clarity we drop the superscipt in the nota-
tion). We use the term ListSim(L,,L,) to refer to this func-
tion. There are many different algorithms that we can use to
compare similarity of unordered lists that vary in efficiency
and computational complexity. Our approach could use any
such function. In our current implementation, we use the
Monge-Elkan method (Monge et al. 1996) which is found
to perform well consistently across many scenarios and data
types (Bilenko et al. 2003) with a polynomial computational
complexity of O(|L,||L,|). Intuitively, the method iterates
through the elements of the first list and identifies the high-
est similarity with any element in the second list. The final
value is the average chunk similarity. Formally, the method
calculates the similarity for the two lists as follows:

sl max ChunkSim(L ], L)
ListSim(L,, L,) = :

L]

where | <j < |L,|and L,[i{] and L,][;] are the i-th and j-th
chunks of each list.

This method hides a subtle point. The function is sen-
sitive to the order of the arguments: ListSim(L;,L,) #
ListSim(L,,L,). Therefore, one could consider three
approaches. We can consider: (a) ListSim (L, L,), (b)
ListSim(L,,L,), or (c) considering both “directions",
ListSim(L,,L,) 4+ ListSim(L,,L;). In the results that we
show here, we use one direction with the longest list as the
first argument, namely, assuming|L, | > |L,|, ListSim(L,, L,)

c. Similarity of Bags of lists. This is the last step in
assessing the similarity between two usernames, which are
represented by their Bags. We use the term Similarity Score
SimScore (u,u,) where u; and u, are the two usernames. We
do the comparison exhaustively: each list in the Bag of one
username is compared with each list of the other username
using the list similarity function ListSim() from above. The
Similarity Score is the maximum list similarity over all list
pairs L, L’z" as follows:

SimScore(u,, u,) = max, ,, ListSim(L7, L")

where 1 < n < |Bag(u,)|,1 <m < |Bag(u,)|.

4.5 Computational complexity

In our experience, the complexity was not prohibitive with
most usernames having a single-digit number of lists,
and each list having single-digit number of chunks. The
computational complexity of the Comparison module is
bounded by O(|B,,,.|*|L,..|?), Where |B,, .|, |L,...| are the
largest Bag and list L length, respectively. The complexity
of the chunkification can vary depending on the optimi-
zations used in the exploration. Recall that we saw the

max max
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distribution of chunks in Fig. 3, where 95% of usernames
have less than 8 chunks.

In practice, in matching 2 M pairs of usernames, we
find that it takes approximately 5 min in a Ubuntu 20.04.5
Linux machine with 64GB RAM and 8 CPU cores.

5 Experiments and evaluation

We evaluate our approach by comparing it against state
of the art methods, and we demonstrate its usefulness by
identifying forum users who could be malicious hackers
on GitHub.

5.1 Evaluating GeekMAN

Here, we present our evaluation study and discuss our
ground truth, comparison metrics, and the baseline algo-
rithms. At a high level, our experiment aims to match a
set of users from a source forum with a set of users from
a target forum.

5.1.1 Baseline algorithms

The purpose of conducting an experiment is to determine
how GeekMAN compares to two baseline state-of-the-art
username matching methods: Wang-16 (Wang et al. 2016)
and UISN-UD (Li et al. 2019).

a. Wang-16: This method extracts content features (e.g.
2-grams), and pattern features (e.g. letter-digit, date) from
the usernames. Then, a vector based modeling is used to
compute the cosine similarity of the vectors of features
from usernames.

b. UISN-UD: This method exploits the information
redundancies that can be available in a pair of usernames
used by the same user. It computes features from differ-
ent string comparison metrics, such as common substring,
common subsequence, and edit distance, which are used
in their classifier.

The major difference of GeekMAN with them is the use
of deslangification and chunkification of the technogeek
usernames, assuming such properties exist in the compar-
ing usernames.

5.1.2 Experimental process and setup

We conduct two experiments focusing on: (a) technogeek
and (b) regular usernames.

Experiment-T: technogeek usernames. In this experi-
ment, we find matches between usernames from a source
forum within a farget forum. Specifically, we conduct two
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such experiments: (a) Garage4Hackers (GH) as source and
Offensive Community (OC) as rarget, (b) Garage4Hackers
(GH) as source and RaidForums (RF) as target. Given our
focus on technogeek names, we selected Garage4Hackers
as source since it exhibits a higher level of slangified and
chunkified usernames, based on our analysis of these forums
(see Section 3). On the other hand, the target forums were
picked randomly. To focus on technogeek usernames, we
selected usernames from our source forum with either 3 or
more chunks or slangification. This way we obtain the D_All
dataset, which is roughly 10% of the Garage4Hackers forum
(on purpose small to enable validation as we discuss below).
We also divide D_AIl into D_Multi (3 or more chunks)
and D_Slang (slang conventions) datasets, in an effort to
investigate the interplay between multi-chunk and slangified
usernames such as {thegreathacker, TOx1cV3nOm}. We use
GeekMAN and baselines to match each user in D_All with
the most likely matching user in the farget forums.

Experiment-R: Regular usernames. We wanted to
evaluate our algorithms using regular usernames. We use a
subset of the social media datasets of Table 1, which have
confirmed user correspondences across the social platforms,
as we explained earlier. We create a dataset D_Social of 98K
username pairs among Google Plus (GP) and Twitter(TW)
users: (a) 49K of these pairs are usernames that belong to the
same user, and (b) we add 49K pairs that (most likely) do not
by selecting randomly, but with a bias, among all the social
usernames. To make the classification harder, we require
that these false pairs have at least Levenshtein similarity
matching scores of 0.3.

5.1.3 Validation and ground truth

There exists ground truth for the Experiment-R, but there is
no available groundtruth for Experiment-T, so we need to
establish our own. We resort to sampling and manual verifi-
cation. The algorithms find the best matching user in target
forum for the users in D_AIl. We recruit four domain-expert
computer scientists to manually label each of these possible
matches as a match or mismatch. To increase the reliability
of our ground truth, we ask the annotators to match a user-
name pair only if they were certain they belong to the same
user based on usernames only. We only consider a username
pair as a verified match if at least three annotators agree it is.
Here we focus primarily on verified matches which we will
use as true positives.

We assess the level of agreement of the annotators using
Fleiss Kappa coefficient for labeling the ground truth match-
ings in Tables 3 and 4. The Kappa score we get is above
0.5, which is considered as a moderate agreement (0.41—
0.60) (Emam 1999).

Table 3 Performance comparison analysis for the algorithms in D_
All using SimT = 0.7 for GeekMAN with annotator agreement Kappa
Score K=0.53

Dataset D_All

Method Precision Rel-Recall Rel-F1-score K
Wang-16 76.0 29.9 429 0.53
UISN-UD 474 71.6 57.1

GeekMAN 86.0 62.9 72.6

Table 4 Performance comparison analysis for the algorithms in
D_Slang using SimT = 0.7 for GeekMAN with annotator agreement
Kappa Score K = 0.54

Dataset D_Slang

Method Precision Rel-Recall Rel-F1-score K
Wang-16 71.7 25.3 38.1 0.54
UISN-UD 459 68.6 54.9

GeekMAN 81.6 69.9 75.3

5.1.4 The evaluation metrics

To compare our algorithms, we consider Precision, Rela-
tive Recall, and Relative F1-score for each algorithm in the
experiment. The “Relative" term in the metrics , abbreviated
Rel-, represents our effort to approximate the true Recall
in the absence of established ground-truth. Our goal is to
detect an algorithm that will opt for high Precision at the
cost of Recall in the context of the specific comparison. We
approximate the number of real matches, which we do not
know in our dataset, by providing a lower bound as follows.
We take the union of all true positives (validated by our
annotators) of all the algorithms in the test. Formally, we
define /,,, to be the number of matches identified by algo-
rithm algo. We define TP, to be the true positives for that
algorithm as verified by the annotators. We then calculate
the union of the true positives 7P, as the union of all the
true positives of all the algorithms: TP,,;,,, = | ,ca 1g0s TP
TP, can be seen as a lower bound on the true matches that
a perfect algorithm would have identified.

TP

algo TP algo

Rel-Recall =

algo union

Precision =

2 % Precision * Rel-Recall

Rel-F1-score = —
Precision + Rel-Recall

As the names indicate, the Relative Recall and Relative
F1-score have only relative meaning within the scope of the
comparison with the specific set of algorithms.

@ Springer
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5.1.5 Choosing the similarity score threshold

We want to identify an appropriate Similarity Score
Threshold (SimT) value, which is a critical parameter for
our approach. First, we apply GeekMAN and baseline algo-
rithms on D_AIl (D_Multi + D_Slang) to find matching
pairs between source forum and target forum. Second, the
matchings are labeled by the annotators. Depending on their
annotations, we calculate the defined evaluation metrics for
our algorithm at different SimT values ranging between 0.1—
1.0 at 0.01 intervals. Finally, we plot the Precision, Rel-
Recall, Rel-F1-score curves at those values in Fig. 7. We
find that the curves meet at SimT value of 0.64. We notice
that after SimT = 0.68, Rel-F1-score decreases, while Preci-
sion is increasing even after 0.70. We opt to prioritize Preci-
sion, and we choose a SimT of 0.7 for our study.

5.1.6 Evaluation results

We show the performance evaluation for GeekMAN and the
two baseline algorithms.

GeekKMAN: 15% better Relative F1-score. In Table 3,
we show the results for the D_AIll dataset. GeekMAN
achieves a Precision of 86.0% and Relative F1-score of
72.6%. By contrast, the baseline algorithms achieve 76.0%
and 47.4% Precision with 42.9% and 57.1% Relative
F1-score, respectively. It is also worth noting that the base-
line algorithms only do well either in Precision or in Relative
Recall. For example, Wang-16 offers high Precision (76.0%)
but at the cost of the Rel-Recall (29.9%). The opposite is
true for UISN-UD.

What about bonafide technogeek names? We want to
further understand how the algorithms perform when the
usernames use slang conventions. As expected, our approach

Table 5 Real username matches that baseline algorithms missed

Platform 1 Platform 2
c0d3m@st3r Codomaster
41ph4wO1f alphawolffftf
hdckjdck JackTheHack
OverlordShadow Shadowlord

Table 6 Performance metrics between GeekMAN and the baseline
algorithms across social network ground-truth

Dataset D_Social

Method Precision Recall F1-Score

Wang-16 63.2 74.5 68.4

UISN-UD 66.1 75.1 70.3

GeekMAN (SimT 98.6 52.4 68.4
=0.7)

@ Springer

does even better here with a difference in the Relative
F1-score close to 20%. Focusing on our D_Slang dataset,
we show the results in Table 4. GeekMAN surpasses the
baselines in all metrics with a Precision of 81.6% and Rela-
tive Fl-score of 75.3%, while baseline algorithms achieve
a maximum 77.7% Precision and 54.9% Relative F1-score.

What do the other approaches miss? We did a deepdive
to understand the origin of the lower performance of the
other methods. Table 5 shows some of the matching pairs
identified by GeekMAN that the baselines could not iden-
tify. We conjecture that this happens due to the usernames
exhibiting slangification and chunkification, like h4ckj4ck
and JackTheHack. These usernames exhibit slangification
and chunkification, that the baselines were not designed to
handle. For some of these algorithms as they rely on stand-
ard string techniques, such as 2-grams and substring match-
ing, that will clearly not work well here.

5.1.7 GeekMAN performs well with “regular” usernames

We also show that our approach works well with regular
social media usernames with Experiment-R. We apply
each algorithm on D_Social to evaluate the performance.
Table 6 shows that GeekMAN outperforms the baseline
algorithms in terms of Precision being 98.6% with Simi-
larity Score Threshold, SimT = 0.7, whereas the baseline
algorithms have a maximum 66.1% Precision. Additionally,
the F1-score of the methods is within 2% of each other.

5.2 Case study: matching GitHub malware authors

We showcase the capabilities of our approach with the fol-
lowing application. We use GeekMAN to identify forum
users that match malware authors on GitHub (Rokon et al.
2020).

5.2.1 GeekMAN matches forum users with malware
authors on GitHub

We find 6327 GitHub malware authors who have been
matched with at least one user from one of our security
forums. We apply our method with GitHub as the source
platform and each of the security forums as the target forum.
In the case that a study values Precision over Recall, we can
adjust the Similarity Score Threshold. By using SimT = 0.9,
we identify 1958 matches, which is an even stronger indica-
tion that a substantial set of these usernames may belong to
the same user.

We also find 260 GitHub malware authors in the security
forums using exact username matching. For comparison,
Table 7 shows the number of matched forum users using
GeekMAN and exact username matching. We find that
GeekMAN provides 24 and 7.5 times more matching than
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purely exact username matching using Sim7 = 0.7 and 0.9,
respectively.

5.2.2 Deep dive: influential users and motives

Who are these malware authors and what is their activ-
ity on the security forums? Among the matched malware
authors, we focus on the most influential authors who
have at least 250 followers on GitHub. We then analyze
the threads and posts of the counterpart matching forum
users. They seem to fall into the following broad groups
according to major activity: (a) promoting their GitHub
repositories (e.g.TheSphlnx, TheSphinx), (b) requesting
hacking related information (e.g. Cr4sh, crash), (c) shar-
ing hacking tutorials (e.g. Bl4ckDr460n, blackdrag0), and
(d) boasting and advertising personal hacking skills (e.g.
Anon-Exploiter, AnOn3xpl0it3r). We also detect 4 matched
GitHub authors who have since had their GitHub accounts
deactivated, such as author bl4ckic3 who was promoting a
keylogger repository using the username Blackice in forum
HF.

Many malware authors (3-13%) are highly active in
the forums. We wanted to see how visibly these malware
authors are highly active on our security forums. We use the
term heavy-hitter to refer to users who are in the top 10%
in terms of number of posts in the forum. In Table 7, we see
that 3-13% of matched malware authors are also heavy-hit-
ters in the forum. By analyzing the URLSs these users posted,
we identify 18 users who share their own GitHub profile and
repositories.

6 Discussion: tool and scope

We discuss the GeekM AN tool, potential scope and usecase,
the limitations and impact of our approach in this section.
The GeekMAN online platform. We provide an online
platform that implements our approach to enable further
research in the area. A sample of our platform is shown in

Table7 GeekMAN finds more forum-GitHub matches (SimT = 0.7)
compared to exact matches alone

Forum GitHub author matched Heavy-
hitters
Exact match GeekMAN
(%)
GH 3 226 13.2
oC 16 1306 3.7
RF 20 2553 73
MP 64 4767 10.9
HF 182 5111 9.9

A substantial percentage of them are heavy-hitters in that forum. Note
that a malware author can match users in more than one forum

Fig. 1, which is publicly accessible at https://geekman.strea
mlit.app. Currently, we provide a set of minimal function-
alities. However, in our platform, we intend to support the
following capabilities incrementally.

a. Finding a match within our database(s). A user can
provide a username which we will match with the top-k
most similar usernames in our database. A user can specify
which platforms to include in the match, e.g. specific online
forums, or all of them.

b. Leveraging our matching algorithms. A user can
upload two CSV files with usernames, and we can provide
the best matches for each username in the first file within the
second file. The user can specify which algorithms to use
for the matching, and even compare the similarity scores for
the algorithms.

c. Providing the largest username database, ground
truth and slang-dictionary. We intend to develop the largest
database of usernames by adding more platforms that focus
on technogeek space. We will also provide our manually
verified results as groundtruth, which we expect to grow
over time with the help of experts and maybe even using
carefully-run MTurk studies. Finally, we will share our tech-
nogeek dictionary which already has 5.8K entries.

Scope, practical applications and impact. We see our
approach as a key building block for tracing malicious users
across online platforms. Its focus on technogeek usernames
makes it particularly well suited for the disambiguation
of such users which, apart from malicious hackers, could
include hate groups, and sociopaths, which could be of
interest to law enforcement entities. GeekMAN amplifies
the ability of security analysts to quickly hone in on persons
of interest and comprehensively track them across platforms.
We see it as the first step in the following pipeline: (a) col-
lecting usernames from forums of interest, (b) identifying
likely similar usernames, (c) investigating further with
more computationally-expensive methods, and (d) involv-
ing humans in the effort. The goal is to enable efforts to
stop individuals that cause real harm through cyber-criminal
activities, such as ransomware, Denial of Service attacks,
and identify theft. We would like to stress that a username
match should be treated carefully as we discuss below.

How representative is our data? This is the question
that plagues any measurement-driven effort. We argue that
our data is sufficiently representative for the purposes of
the study. The security forums that we use are among the
appropriate targets that a security analyst would examine:
they are highly technical and in the grey area between white
and black hat hacking. Our successful linking of malware
authors from GitHub to users in our forums is an additional
indication of using relevant datasets. Our goal is to show the
challenges and offer a solution in disambiguating technogeek
usernames.
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Fig.7 The effect of SimT on the performance of GeekMAN. The blue vertical line at 0.7 marks the point that finds a reasonable trade-off with a

slight emphasis on Precision

Limitations and extensions. We discuss limitations and
potential extensions of the work.

Username vs. identity. It should be clear that identifying
similar or even identical usernames does not guarantee that
the owners behind them are the same person. However, we
argue that this is a good place to start in absence of other
leads. Our automatic sifting through hundreds of thousands
or millions of usernames is essential to make such an inves-
tigation feasible.

Expanding the matching capability. We intend to further
develop the matching capability by considering additional
sources of information when these are available. For exam-
ple, we will consider (a) the content of the posts, (b) posted
or linked URLs, and (c) social connectivity. For the latter,
we can extract “social links" by finding groups of users
that post in the same threads, or that refer to each others’
resources and accounts on YouTube and GitHub.

Extensions. We intend to scale up our study by: (a) col-
lecting data from more security forums and (b) intercon-
necting their users with other platforms, including YouTube,
which provides hacking tutorials, communication platforms
like Telegram and Discord, and social media, which are
known to harbor hackers (from personal communication
with Amazon’s security team).

Ethical considerations. Our work adheres to the com-
munity-defined ethical practices. First, we only use publicly
available data. Anyone can collect the data from the forums
and we use other data that has been made public by other
researchers. Second, the usernames are not directly reveal-
ing any particular individual, but only represent an online
persona. We only use specific usernames to illustrate naming
conventions but we will be happy to obfuscate or use artifi-
cial examples in the final version of the journal. Finally, we
want to stress: a pair of matching usernames simply points
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to the probability that there is a connection and further proof
should be solicited before any action is taken.

7 Related work

Most previous works differ from our approach in that: (a)
they are supervised approaches that need training data, (b)
they are not focusing on complex-technogeek usernames,
and (c) they rely on information beyond the username, such
as user profile attributes, content, and social connectivity. By
contrast, our approach is designed to: (a) handle technogeek
names, and (b) rely only on usernames.

a. Username-based matching. We already discussed
the two methods that we use in our performance analy-
sis; (Wang et al. 2016) and (Li et al. 2019).

Earlier, Perito et al. (2011) employed a Markov-Chain
based language model to quantify username uniqueness.
The authors suggest that the selection of usernames follows
a probabilistic distribution, with more predictable and less
diverse usernames being more likely to be duplicated. To
quantify this probability, they estimate the probability of a
username’s occurrence based on a large username dataset
leveraging Markov Chains model. To measure the similar-
ity between usernames, they employ distance metrics such
as Levenshtein distance and Jaro distance, alongside term
frequency-inverse document frequency (TF-IDF).

Other efforts by Zafarani and Liu (2013) proposed
MOBIUS to identify users across sites by analyzing the nam-
ing patterns of usernames. This technique exploits the redun-
dant information in username patterns revealed through user
behavior. MOBIUS considers various user behavioral pat-
terns, such as keyboard layouts, language usage, and user-
name modification habits, to construct features. To link
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usernames, it employs several similarity measures, including
Longest Common Substring (LCS), edit distance, Dynamic
Time Warping distance, Jensen-Shannon divergence, and
n-gram algorithm.

However, both previous approaches did not address the
unique characteristics of usernames in the technogeek forum
context as GeekMAN does. Additionally, technogeek users
frequently engage as silent observers in the forum, leading
to the unavailability of their behavioral patterns. This poses
a challenge for earlier username disambiguation methods
that rely on such data.

b. Using user profiles. An earlier study by Vosecky
et al. (2009) introduced a vector based supervised algorithm
which utilizes user profile features with differing weights. In
some other efforts, Goga et al. (2013) and (Zhang et al. 2014
proposed probabilistic classifiers which link user identities
based on profile attributes like description, location, pro-
file image etc including username. Also, a projection based
modeling proposed by Mu et al. (2016) incorporated the
profile features to link users on different platforms.

c. Combining multiple types of information. A num-
ber of efforts like (Malhotra et al. 2012; Zhou et al. 2015;
Zafarani et al. 2015; Zhang et al. 2015; Liu et al. 2016
consider the social relationship for user matching. On the
other hand, Liu et al. (2013); Jain et al. (2013); Goga et al.
(2015); Arabnezhad et al. (2020); Cabrero-Holgueras and
Pastrana (2021) incorporate a set of user related features
including profile attributes, social relationships, and user
generated contents. Some recent approaches (Zhang et al.
2018, 2019 leverage a user’s ego network to connect users
across platforms.

8 Conclusion

We propose GeekMAN, a systematic approach to identify
similar technogeek usernames across online platforms. The
key novelty consists of the development and integration of
three capabilities: (a) decomposing usernames into meaning-
ful chunks, (b) de-obfuscating technical and slang conven-
tions, and (c) considering all the different outcomes of the
two previous functions exhaustively when calculating the
similarity. These three capabilities attempt to emulate the
way a human will attempt to “understand" a username. We
conduct a study using 1.8M usernames from three different
types of forums: (a) security forums, (b) malware authors
from GitHub, and (c) mainstream social media platforms.
Our experiment shows that GeekMAN can match techno-
geek usernames with offering a higher precision of 81.6%
and above, outperforming the previous studies. Besides, our
approach outperforms prior methods even with usernames of
common social networks in terms of precision. In the future,
we intend to apply our method in other varied forums and

platforms to interconnect users. Overall, we see our approach
as fundamental building block for tracing users across differ-
ent platforms by providing: (a) our platform, (b) datasets, (c)
groundtruth, and (d) a slang-translation dictionary.
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