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Abstract—How can we find other repositories on GitHub
that are functionally similar to a specific repository? While
GitHub offers keyword-based search functionality, there is a
lack of a tool that can perform query by example to search
and compare functionally similar repositories. To address this
challenge, we present MetaSim: a search engine that finds similar
GitHub repositories based on repository metadata features.
MetaSim employs a customized technique to represent repository
metadata in the embedding space for efficient indexing and
searching. We construct a curated dataset of 267.6K public
GitHub repositories to support our search engine. We evaluate
our tool through a manual assessment on a set of 202 query
by example repository and their corresponding matching pairs.
Experiment results demonstrate that Readme alone can achieve
high similarity precision (90.1%), which we define later. In
contrast, the combined usage of Description, Topics, and Readme

yields the best overall performance with similarity precision of
97.8%. To foster both research and practical applications, we
open source our research artifacts through the MetaSim platform
at https://metasim-app.github.io. The demonstration video of
MetaSim is available at https://youtu.be/HnFnN3JclQw.

I. INTRODUCTION

The rise of open-source development has led to a signifi-
cant increase in the use of GitHub repositories for learning
and sharing knowledge [1]. Developers frequently explore
GitHub to find similar repositories for software prototyping,
explore alternative implementations, and contribute to rele-
vant projects[2], [3]. Additionally, researchers collect GitHub
repositories related to their specific research interests for
software repository mining studies[4]. However, in the current
era of automated software engineering driven by AI, the ability
to efficiently identify repositories of interest has become in-
creasingly crucial. This highlights the pressing need for a tool
that can effectively identify functionally similar repositories.

Problem. This work is driven by the question: Given a

GitHub repository, how can we find the 50 most similar

repositories in terms of functionality? Establishing similarity
of GitHub repositories is a challenging task for two reasons.
First, the similarity can be defined in diverse ways based on
the query’s objectives. For example, we can focus on code
level similarity [5] or put more weight on the high level
functionality such as finding alternative algorithms [6], which
necessitates a consideration of metadata information. Second,
the format of the query introduces significant variations, with
some queries rooted in examples, where users provide a target
repository, while others could offer a set of keywords. This
work focuses on the example-based query scenario focusing

Fig. 1: Assessing the contribution of each metadata feature in
determining repository similarity in terms of Similarity Precision.

on the high-level capabilities of a repository which we refer
to the term functional similarity. Finding such repositories
necessitates the use of various metadata features, for which
we use the most commonly used metadata features discussed
in [7], [8] including RepoName, Description, Topics, and
Readme.

Related work. Prior work in mining GitHub repositories
infers the similarity by considering a combination of dimen-
sions, including metadata, source code, and social context. In
contrast, we aim to develop a tool that can support the search
for finding similar repositories on GitHub.

Contribution. We present MetaSim, a search engine to
identify similar GitHub repositories based on repository meta-
data features. MetaSim relies on two functionalities: (a) the
Meta-Representation, which uses an embedding approach to
represent a repository, (b) the Meta-Similarity, which mea-
sures the similarity between repositories. Specifically, our tool
performs the following task: given the query repository and
a set of target repositories, it ranks the target ones in order
of similarity. To complement our search engine, we construct
a curated dataset of 267.6K public GitHub repositories. We
evaluate MetaSim through a manually annotation on a set
of 202 query by-example (repository, matching) pairs. We
define two evaluation metrics: (a) Similarity Precision, and
(b) Success Rate to compare the performance of different
combinations of features in finding similar repositories, as
discussed in Section IV. We summarize the key results below.

https://metasim-app.github.io
https://youtu.be/HnFnN3JclQw


Fig. 2: MetaSim architecture diagram shows how Repository Rsrc is compared against a set of Target repositories Rtrg .

A. Readme is the most informative feature. We find that
using the Readme alone produces better search results than us-
ing the other three features together (RepoName, Description,
Topics). Specifically, using only Readme results in a Similarity
Precision of 90.1%, compared to 80.8% achieved with the
three other features combined as shown in Figure 1.

B. Description, Topics, and Readme together as a feature
set stands the best performing. This feature set together
achieves 97.8% Similarity Precision and 100.0% Success Rate.

II. DATASET OVERVIEW

According to the study [9], there is a substantial amount
of personal and duplicate projects in GitHub. So, different
selection criteria are considered for collecting repositories for
software engineering tasks. To collect repositories to create
the underlying repository database for our MetaSim search
engine, we select the following criteria: repository (a) is of
size greater than 0KB, (b) has at least 5 stars and 5 forks, (c)
is public and not forked from other repository. These criteria
are adapted from [10], [11] to ensure that we can discard
unused, duplicate and empty repositories. Since GitHub API
returns maximum 1K results/query, we invoke the repository
search API using the above criteria for each day in range from
Jan’08 to Sep’23. As an example, the API 1 is invoked to
retrieve repositories that are published on Jan 01, 2022. This
results in 1.46M public GitHub repositories with metadata
features: repo name, description, topics, stargazers, forks count
and so on. Then we download readme content (if available)
for those repositories. Then, we exclude repositories where
any of our metadata features is empty or the content is in
a non-English language. This refining process yields D All,
comprising 267.6K repositories.

III. TOOL: METASIM

To support the search of similar repositories, we have im-
plemented a search engine MetaSim that consists of two func-
tionalities: (A) Meta-Representation, and (B) Meta-Similarity,
inspired by an earlier work Repo2Vec[7]. While the first
function represents a repository as a document embedding
combining a set of selected metadata features, the latter

1https://api.github.com/search/repositories?q=is:public+fork:false+stars:�5+
forks:�5+size:>0+created:2022-01-01..2022-01-01

computes the similarity of a query repository Rsrc with the
repositories from the database D All, which we call as target
repositories Rtrg . All target repositories are represented in
the embedding space and stored in a vector database. Then
given a query repository from the user, similar repositories
are returned based on the proximity of their embeddings with
the query repository embedding. A conceptual overview of
inner working of MetaSim is illustrated in Figure 2, and the
web interface of our tool is displayed in Figure 3.

A. The Meta-Representation Function

In this step, a repository is represented in the vector space
utilizing three sub-functionalities: (i) Meta Select, (ii) Pre-
processing, and (iii) Meta Embedding. We discuss them in
detail in the following.
Meta Select. This module selects different combinations of
features to represent a repository. It is obvious that adding
more metadata information can help create better represen-
tation, but it can come at the cost of computation. The
module considers the following combinations of features: (i)
single feature, (ii) two features, (iii) three features, (iv) all
features from RepoName, Description, Topics, and Readme,
and represent the repositories separately, each for the selected
combination.

Meta Select selects combination of features, and feeds them
to the next step for pre-processing.
Pre-processing. The features are pre-processed to discard
unnecessary details, and concatenated together to form a
document.

RepoName, Topics: RepoName is tokenized using the avail-
able delimiters (‘-’, ‘.’, ‘ ’) and Camel Case conventions
as followed in [12]. Then a single sentence is created by
concatenating the tokens together. On the other hand, all of
the Topics in a repository are also concatenated by a comma
(,), and form another single sentence.

Description, Readme: Description of a repository sometimes
contains URLs. In addition to URLs, Readmes often share
source code, and provide contents embedded in html tags. The
URLs, source code content, and html tags from Description

and Readme are discarded.
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Fig. 3: MetaSim Tool: A search engine to find similar repositories.

Finally, the pre-processed selected features are joined to-
gether to form a representative text document from a given
repository.
Meta Embedding. To represent a textual document in the vec-
tor space, we can choose different techniques that are varied in
use-case and requirements. As our aim is to capture repository
similarities based on their metadata, we estimate the semantic
proximity across the metadata information. We follow the
embedding approach from [13] that uses SentenceBERT [14]
to generate embedding from a set of metadata features. Finally,
for each of the feature combination, an embedding for a given
repository is created from its textual representation.

B. The Meta-Similarity Function

We estimate the similarity of a source query repository
Rsrc with the target repositories Rtrg of D All based on the
similarities across their meta embedding computed in previous
step. We use FAISS 2 (Facebook AI Similarity Search), an
optimized and efficient similarity search library to compute
the similarity. Using FAISS, we index and store list of meta
embedding Etrg from all of the target repositories Rtrg in
D All database, for each of the feature combinations discussed
earlier. Finally, given a source repository embedding Esrc and
a feature set, this module ranks the repositories of D All that
are closest in embedding space for the given feature set in
respect of cosine similarity.

C. User Interface

We provide an online platform for users to find similar
GitHub repositories based on a given query repository. The

2 https://github.com/facebookresearch/faiss

web interface of the platform is displayed in Figure 3. We
support the following functionalities.
1) A user can provide author and RepoName as query with

a feature set of her interest to be used for finding similar
repositories in D All. The similar repositories are returned
with their corresponding metadata features.

2) The user can filter the search results based on topics,
programming language and license.

3) The user can order the search results by star/fork/open
issue count and publish date.

4) The user can download the results in csv format.

IV. EXPERIMENT AND RESULTS

In this section, we discuss the ground-truth creation, exper-
imental setup, and performance evaluation of different combi-
nations of metadata feature to determine repository similarity.

A. Ground-truth Creation

To create the ground-truth search results, we first select
a set of query repositories QuerySet. Next, we find similar
repositories for QuerySet repositories considering all of our
metadata features. These matches are manually validated by
the annotators. This process yields DGround, which contains
the union of all repositories in QuerySet along with their
validated counterparts. Below we discuss the steps in detail.
QuerySet Selection. We select QuerySet repositories to ensure
that they can represent diverse topics and varying levels of
popularity.
• Identifying 30 Popular Topics: We find that there are

193.3K unique topics in D All. We calculate the fre-
quency distribution of the topics. The distribution lets
us group the most frequent topics in three categories:
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TABLE I: Popular topics for creating ground-truth dataset, DGround

Topics
Most Popular Medium Popular Less Popular

hacktoberfest,
deep-learning,
machine-learning,
security, blockchain,
computer-vision,
open-source, data-
science, visualization,
database

rest-api, website,
serverless, image-
processing, natural-
language-processing,
reverse-engineering,
game-development,
cryptography, object-
detection, hacking

algorithms,
logging,
pentesting,
networking,
privacy, education,
microservices,
ecommerce,
analytics, design

(a) Most, (b) Medium, and (c) Less Popular. Then, we
manually select 10 topics from each of these categories
excluding the generic topics related to programming lan-
guage or tools (e.g. python, java, vscode, linux) as shown
in Table I.

• Selecting QuerySet Repositories for Popular Topics: To
balance the size of QuerySet and the subsequent annotation
cost, we opt for n = 9 repositories per popular topic. This
results in a curated set of 270 repositories for QuerySet.

Repository Search. We find repositories similar to each of
QuerySet repositories using MetaSim tool. We deploy each
of QuerySet as Rsrc and all repositories of D All as Rtrg .
We take five top matches per query repository. Here, Meta
Select chooses the combination of all features (RepoName,
Description, Topics, and Readme) to best approximate the
ground-truth matchings.
Manual Validation. We allot 270 sets of records (record:
query repository, 5 top matches) to 9 domain-expert computer
scientists, where each of them is assigned 30 different query
repositories and their corresponding matches. They assign a
confidence score from 1 to 5 to each matching pair (with 5
corresponding to ‘highly similar’, 4 to ‘similar’, 3 to ‘neutral’,
2 to ‘dissimilar’, 1 to ‘highly dissimilar’). The annotators have
at least 2 years of experience of working in software industry.
They are instructed to visit the repositories online, and assign
the score considering all the repository information available
including source code, metadata features and so on.
DGround Creation. Based on the annotation, we find 68
query repositories having no similar/highly similar repository,
and we discard them. Finally we take the union of QuerySet

repositories and their corresponding manually annotated sim-
ilar repos to create our ground-truth dataset, including 1199
repositories.

B. Experimental Setup and Evaluation Metrics

We run experiment and evaluate the performance of differ-
ent combinations of feature set to find repository similarity.

In particular, for each feature set, we have embeddings
for the DGround repositories using the corresponding feature
set. So, we search and rank the repositories similar to each
QuerySet repository. We extract five top matches for each
query. Finally, we evaluate the performance of each feature
set with the help of two metrics: (a) Similarity Precision, and
(b) Success Rate.
Similarity Precision: Similarity Precision is defined as the
proportion of highly similar and similar repositories in the

TABLE II: Performance of different combinations of features.

Features Similarity
Precision(%)

Success
Rate(%)

One Feature
RepoName 51.0 71.3
Description 66.0 85.1
Topics 52.9 78.2
Readme 90.1 98.5
Two Features
RepoName, Description 74.7 91.6
RepoName, Topics 67.8 90.1
RepoName, Readme 91.4 98.5
Description, Topics 74.4 92.1
Description, Readme 93.7 99.5
Topics, Readme 93.5 100
Three Features
Description, Topics, Readme 97.8 100
RepoName, Topics, Readme 96.1 100
RepoName, Description, Readme 94.8 99.5
RepoName, Description, Topics 80.8 95.0

ground-truth among the top 5 matches found by a feature set
for a query.
Success Rate: We define a query as successful if any of the top
5 matches by a feature set is found as similar/highly similar
in the ground-truth. Success Rate is percentage of successful
queries.

C. Results

We show the performance evaluation of the feature sets in
Table II.
• Readme is found as the most important feature. Readme

offers 90.1% Similarity Precision and 98.5% Success
Rate, while Readme with Description increases Similarity
Precision by 3.6% and Success Rate by 1.0%. While
being small source of information compared to Readme,
RepoName/Topics solely achieves 51%/52.9% Similarity
Precision and 71.3%/78.2% Success Rate, Description

provides 13% better Similarity Precision (66.0%) and 7%
better Success Rate (85.1%).

• RepoName and Description together as a feature set stands

competitive considering its simplicity and availability. Re-

poName and Description together achieves 74.7% Similar-
ity Precision and 91.6% Success Rate. It is worth noting
that adding Readme to any combination of feature set
always increases both performance metrics. Accompanied
by Readme with RepoName and Description, improves
Precision and Success Rate by ⇠ 20% and ⇠ 8%, respec-
tively.

• Feature set of Description, Topics, and Readme shows the

best performance among all combinations.. This feature
set provides 97.8% Similarity Precision and 100% Success
Rate. Feature set of Topics and Readme offers highest
Success Rate with any combination.

V. DISCUSSION

We discuss the representativeness of our dataset in this
section.

How representative is our data? We argue that our
dataset is fairly representative since it contains repositories that
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have significant exposure across the GitHub platform having
at least 5 stars and 5 forks. These repositories gain such
popularity because of the content and impact of the projects
that they contribute to the community. Indeed, these influential
repositories can be highly expected when mining repositories
in different research domains.

Considering additional repository information. Having
more information per repository is bound to provide additional
depth in determining similarity but it will come at the compu-
tational cost of both: (a) collecting the data, and (b) comparing
the repositories. One can consider four types of information:
(a) metadata, including the author or the number of stars or
forks of the repository, (b) user activity such as comments and
issues, (c) social context, the people that follow the repository,
the community of the author etc., and, of course, (d) the
source code. Note that if the focus of the study is functional
similarity, the specifics of the code implementation may be
of less interest, when the metadata is available. We intend to
explore the capabilities leveraging additional repository data
in future work. However, downloading a full repository is a
significantly resource consuming undertaking.

VI. RELATED WORK

We can review prior related efforts into three categories.
a. Identifying similar GitHub repositories. Topic modeling

techniques are used to categorize similar software repositories
[15], [16]. CLAN [5] leverages API calls and RepoPal [17]
utilizes metadata to infer similarity. CrossSim [18], [19]
embeds the source code and different social interactions in
a graph for repository similarity.

b. Repository representation in vector space. Repo2Vec
[7] follows an embedding approach to determine repository
similarity using metadata, source code and repo structure. On
the other hand, Paper2Repo [20] recommends repositories
given an academic paper based on their embedding. Later,
Rep2Vec [8] constructs a repository heterogeneous graph to
model the relationship among repository, user and topic which
is then encoded using a graph neural network to generate
repository embedding.

c. Mining software repositories. SourceFinder [21] collects
GitHub repositories to identify repositories with malware
source code. [11] creates a dataset of automotive software
projects in GitHub.

VII. CONCLUSIONS

We propose MetaSim, an online search engine to find
similar github repositories given a repository as query. Our
experiment results show that though Readme is the most im-
portant feature offering 90.1% Similarity Precision and 98.5%
Success Rate, feature set containing RepoName, Description,
and Topics offers comparable 80.8% Similarity Precision and
95.0% Success Rate considering its simplicity as opposed to
Readme. Our work can be seen as a building block for future
work in the space of repository mining.
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