
Fully Dynamic (!+ 1)-Coloring Against Adaptive Adversaries

Soheil Behnezhad
∗

Rajmohan Rajaraman
∗

Omer Wasim
∗

Abstract
Over the years, there has been extensive work on fully dynamic algorithms for classic graph problems that

admit greedy solutions. Examples include (! + 1) vertex coloring, maximal independent set, and maximal
matching. For all three problems, there are randomized algorithms that maintain a valid solution after each
edge insertion or deletion to the n-vertex graph by spending polylog n time, provided that the adversary is
oblivious. However, none of these algorithms work against adaptive adversaries whose updates may depend
on the output of the algorithm. In fact, even breaking the trivial bound of O(n) against adaptive adversaries
remains open for all three problems. For instance, in the case of (! + 1) vertex coloring, the main challenge
is that an adaptive adversary can keep inserting edges between vertices of the same color, necessitating a
recoloring of one of the endpoints. The trivial algorithm would simply scan all neighbors of one endpoint to
find a new available color (which always exists) in O(n) time.

In this paper, we break this linear barrier for the (! + 1) vertex coloring problem. Our algorithm is
randomized, and maintains a valid (! + 1) vertex coloring after each edge update by spending Õ(n8/9) time
with high probability.

To achieve this result, we build on a powerful sparse-dense decomposition of graphs developed in previous
work. While such a decomposition has been applied to several sublinear models, this is its first application in
the dynamic setting. A major challenge in applying this framework to our setting is that it relies on maintaining
a perfect matching of a certain graph. While maintaining a perfect matching (conditionally) requires n

1→o(1)

time per update, we prove several structural properties of this graph (of possible independent interest) to
achieve an update-time that is sublinear in n.

1 Introduction

Over the years, significant research has been dedicated to developing fully dynamic algorithms for graph problems
such as (!+1) vertex coloring [7, 8, 18], maximal independent set (MIS) [6, 12], and maximal matching [5, 22, 6].
In a static setting, all three problems can be solved trivially via simple greedy algorithms that take linear time.
But the situation is very di!erent when it comes to fully dynamic graphs. Let us first formalize the model. A
fully dynamic graph undergoes a sequence of edge insertions and deletions. The goal is to maintain a desired
graph property while optimizing the update time, i.e., the time spent per update.

When the adversary is oblivious—meaning that the sequence of updates is independent of our output—
an extensive body of work over the last decade has led to randomized algorithms that only spend (polylog n)
amortized time per update for all three problems [7, 8, 18, 6, 12, 5, 22], where n is the number of vertices in the
graph. In fact, for (!+1) vertex coloring, the independent works of Bhattacharya, Grandoni, Kulkarni, Liu, and
Solomon [8] and Henzinger and Peng [18] achieve constant amortized update-time.

In sharp contrast, when it comes to adaptive adversaries, no algorithm with sublinear in n update-time is
known for either of the three problems above. This is unfortunate, since in many applications of dynamic graph
algorithms (such as the growing body of work on fast static graph algorithms [13, 14]) the output of the dynamic
algorithm influences its future updates.

While the significant gap between algorithms for adaptive and oblivious adversaries may seem surprising
at first, there is an intuitive explanation for it. Take the (! + 1) vertex coloring problem for example. In this

∗Northeastern University. Email: {s.behnezhad,r.rajaraman,wasim.o@northeastern.edu}. Partially supported by NSF grant
CCF-2335187.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4983

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

problem, the goal is to maintain an assignment of colors from {1, . . . ,!+1} to the vertices of a graph of maximum
degree ! such that any two adjacent vertices receive di!erent colors. Since the number of colors is greater than
than the maximum degree, any vertex has one available color to choose no matter how its neighbors are colored.
Thus, in a static setting, we can go over vertices one by one and color them greedily. In a dynamic setting, the
challenging updates are edge insertions between vertices of the same color, as these require at least one endpoint
to be recolored. If the vertex colors are su"ciently random, an oblivious adversary’s edge insertions will likely
involve vertices of di!erent colors, in which case no recoloring is necessary. However, an adaptive adversary, aware
of the current coloring, can deliberately insert edges between vertices of the same color, forcing a recoloring of
one endpoint. The trivial algorithm here scans all neighbors of one endpoint of the edge inserted to find a valid
new color to assign to it in ”(!) time which can be as large as ”(n). Breaking the ”(n) bound remains open not
just for (!+ 1) vertex coloring, but also for maximal matching and MIS, raising the following natural question:

Is #(n) time needed for maintaining a (!+ 1) vertex coloring, MIS, or maximal matching of a fully
dynamic graph against adaptive adversaries?1

Our Contribution: In this work, we show that the trivial O(n) update-time algorithm is not optimal at least
for the (!+ 1) vertex coloring problem by proving the following theorem.

Theorem 1.1. There exists a fully dynamic algorithm for (!+ 1)-coloring taking amortized update time
of Õ(n8/9) w.h.p., against an adaptive adversary.

To prove Theorem 1.1, we build on a powerful sparse-dense decomposition which has its root in the seminal
work of Reed [21] (see Chapter 15 of the book by Molloy and Reed [20]). While this decomposition has been
successfully applied to various sublinear models over the recent years (see in particular the celebrated work of
Assadi, Chen, and Khanna [2] as well as the works of [16, 11]) this is its first application in the dynamic setting.

The key challenge in applying this framework to the dynamic setting is that it relies on computing perfect
matchings of a certain auxiliary graph with vertices on one side and available colors on the other side. In our
setting, this graph undergoes both edge and vertex updates. In general, maintaining a perfect matching even
under just edge updates conditionally requires near linear in n update-time [1, 17, 15]. We get around this by
proving several properties of this auxiliary graph and showing, essentially, that any non-maximum matching in
it can be augmented by an augmenting path of length at most five that can be identified in sublinear time. We
provide a more detailed overview of our algorithm and these structural properties in Section 2.

2 Technical Overview

In this section, we give an overview of our algorithm for Theorem 1.1. We emphasize that our discussion here
over-simplifies many parts of the algorithm and the technical challenges that arise along the way to provide a
high level intuition about our approach. The formal proofs and arguments are provided in subsequent sections.

As discussed, our algorithm builds on a sparse-dense decomposition technique. While this decomposition has
become a standard tool for the (!+ 1) vertex coloring problem across various settings [16, 2, 11], this is its first
application for coloring in the dynamic setting. We first provide some background about this decomposition and
why it is useful for (!+1) vertex coloring in Section 2.1. We then focus on the challenges that arise with dynamic
graphs and discuss how we color the sparse and dense parts of the graph in Sections 2.3 and 2.4 respectively.

2.1 Background on Sparse-Dense Decompositions for (! + 1) Vertex Coloring Given a graph
G = (V,E) of maximum degree ! and a parameter ω > 0, one can always decompose the vertices of G into
sparse vertices VS and dense vertices VD with VD being further partitioned into vertex disjoint subsets C1, . . . , Ck

such that:

1We refer interested readers to Saranurak’s talk where this problem (along with many others) is mentioned https://www.youtube.

com/live/1cAv-A6EbZE?si=kGYvFHdjXfljZG8Y&t=2579.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4984

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://www.youtube.com/live/1cAv-A6EbZE?si=kGYvFHdjXfljZG8Y&t=2579
https://www.youtube.com/live/1cAv-A6EbZE?si=kGYvFHdjXfljZG8Y&t=2579

• Each Ci is an almost-clique of size (1 ± ω)! that’s nearly disjoint from the rest of the graph. Namely, each
vertex v → Ci has at most ω! non-neighbors in Ci, and at most ω! neighbors in V \ Ci.

• For each sparse vertex v → VS , the total number of edges between its neighbors is at most (1 ↑ ω2)
(!
2

)
. In

words, the neighborhood of a sparse vertex is ω2-far from a !-clique.

That the decomposition always exists is not hard to
prove, and the argument is also constructive and e"cient.
The figure on the right is an illustration of the sparse-dense
decomposition, with the blue clusters being the almost-
cliques and the white vertices being the sparse ones.

Now how is this decomposition helpful for (!+1) vertex
coloring? The challenge with (!+1) vertex coloring is that
given a partial coloring of the graph, an uncolored vertex
may only have one available color to choose. If instead we
had some #(ω!) excess colors for all uncolored vertices, then
the problem would have been much simpler. For sparse
vertices, as we will soon discuss in Section 2.3, it is relatively straightforward to create enough excess colors.
Doing so for dense vertices is generally impossible (e.g. if Ci is an almost-clique of size !+ 1, the last vertex to
be colored has exactly one color available). But given that the almost-cliques are highly structured, depending
on the setting, they usually have other nice properties to use.

2.2 Our Dynamic Coloring: Basic Invariants and Parameters Note that the trivial (! + 1) coloring
algorithm which upon insertion of an edge checks all neighbors of one endpoint to find a new feasible color takes
”(!) time per update. So if ! ↓ n8/9, the trivial algorithm yields Theorem 1.1. Thus, we assume for the rest of
the section that ! > n8/9.

Instead of an arbitrary (! + 1) vertex coloring, we will ensure at any point during the execution of our
dynamic algorithm, that every color c → {1, . . . ,!+1} is assigned to at most Õ(n/!) vertices in the graph. The
advantage of maintaining this property is that we can check if a color c is available for a vertex v in time Õ(n/!)
by going over the list of vertices of color c and checking if any of them is a neighbor of v. Note that this is much
faster than scanning all neighbors of v in ”(!) time given our assumption that ! ↔ n8/9.

We also point out that, crucially, in the sparse-dense decomposition that we will employ, the parameter ω is
sub-constant (particularly ω = 1/nc for some su"ciently small constant c > 0). With these parameters, running
times of say O(ωn), O(n

2

ω2!2), or O(1/ω4) will all be n1→”(1). We will use these facts in our forthcoming discussions.

2.3 Coloring Sparse Vertices Dynamically As discussed earlier, the nice property of sparse vertices is that
we can create many excess colors for them. For static algorithms, the standard approach is to run a One-Shot-
Coloring algorithm (see Algorithm 1) which samples a random color cv for each vertex v and assigns it to v if
no other neighbor of v picks the same color. It is not hard to show that a constant fraction of vertices will be
colored and, in fact, many neighbors of each sparse vertex will be assigned identical colors, guaranteeing some
#(ω2!) excess colors for each sparse vertex.

Suppose that we maintain this property dynamically. Namely, that at any point during the execution of our
dynamic algorithm, every sparse vertex has at least #(ω2!) excess colors. Now when the time comes to re-color
a sparse vertex v, we keep sampling a new random color for v. The probability that we hit one of those excess
colors with each sample is ”(ω2!)

!+1 = #(ω2). So after some O(1/ω2) samples we expect to find a feasible color for
v. Given that checking feasibility can be done in Õ(n/!) time based on our discussion of Section 2.2, it would
take Õ(n

ω2!) = n1→”(1) time to recolor sparse vertices.

From our discussion above, it remains to show that we can maintain #(ω2!) excess colors for sparse vertices
dynamically. Note that once we run One-Shot-Coloring, the adaptive adversary sees which colors are used
by more than one neighbor of a sparse vertex v, and so can enforce us to recolor these neighbors, reducing the
number of excess colors for v. To avoid this, we re-run One-Shot-Coloring from scratch after every t = ”(ω2!)
edge updates. Since each edge update only reduces the number of excess colors of each vertex by one (as we only

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4985

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

recolor one vertex), all sparse vertices will retain #(ω2!) ↑ t = #(ω2!) excess colors throughout the phase. We
will show that One-Shot-Coloring can be implemented in Õ(n2/!) time, thus the amortized update time of
running One-Shot-Coloring will be Õ(n2/!)/t = Õ(n

2

ω2!2) = n1→”(1).

Finally, we note that One-Shot-Coloring does not color all sparse vertices, but only a constant fraction
of them. The remaining sparse vertices at the beginning of a phase can be colored by iteratively sampling a color
for them until hitting one of their #(ω2!) excess colors. But an important technical di"culty arises here: if each
sparse vertex picks its color from among ”(ω2!) colors uniformly, then a single color c (which say is among the
excess colors of all n vertices) will be used some #(n

ω2!) times. While this may not seem very di!erent from our
desired upper bound of Õ(n/!) discussed in Section 2.2 on the total number of vertices assigned the same color,
the problem is the sub-constant ω2 factor in the denominator (we will get back to this when discussing dense
vertices). To get around this, we utilize an elegant greedy algorithm for coloring the remaining sparse vertices
due to Assadi and Yazdanyar [3] and prove that this algorithm guarantees only Õ(n/!) vertices will be assigned
the same color, without any dependency on ω (see Lemma 5.3).

2.4 Coloring Dense Vertices Dynamically Our algorithm maintains a proper coloring c for all sparse
vertices independently of dense vertices, i.e. when feasibility of any color is checked for a sparse vertex v, our
algorithm ignores its dense neighbors. In a static setting, Assadi, Chen, and Khanna [2] showed that this can be
done for an almost-clique Ci in the following two-step process:

Step I Find a ”(1)-approximate maximum matching MN of the non-edges inside Ci and assign the same colors
to the endpoints of each matched pair. This “saves” on the colors needed to color Ci as it colors the
vertices of the matching at a rate of two vertices per color.

Step II This step is responsible for coloring vertices in Ci which are not colored in Step I. Let L and R denote
the set of uncolored vertices and colors not used to color endpoints of any non-edge in Ci respectively.
Construct a bipartite graph H between L and R, adding an edge between v → L and c → R if color c is
not used by any neighbor of v outside L. Now a perfect matching from L to R corresponds to a valid
coloring of the whole clique. We note that existence of this perfect matching is not trivial, and follows
from the nice properties of dense vertices.

To dynamize Step I, we utilize existing fully dynamic algorithms for constant approximate maximum matching
against adaptive adversaries [9]. As these algorithms require adjacency list access to the edge-set of the graph,
we have to maintain the list of non-edges inside the almost-cliques explicitly; an issue we will come back to when
discussing dynamic maintenance of the decomposition. Another challenge is that we have to be careful about the
adjustment complexity of this matching, as each change to it may correspond to a recoloring of the rest of the
almost-clique in Step II. We provide more details about dynamizing Step I in Section 5.3.1.

Dynamizing Step II is the most technically challenging part of our paper. The first immediate challenge is
that maintaining a perfect matching, even against oblivious adversaries, conditionally requires linear time in the
number of vertices [1, 17, 15]. Since there are ”(!) vertices in graph H, this would correspond to an update-time
of, say, near-linear in ! which is not sublinear in n. To get around this major challenge, we rely heavily on the
structure of dense vertices and (essentially) prove that any non-perfect matching in H admits an augmenting
path of length at most 5 which can additionally be found fast in sublinear time. We end up using very di!erent
arguments for “large” almost-cliques of size at least !+ 1, and “small” almost-cliques of size at most !.

Large Almost-Cliques. Take an almost-clique Ci of size |Ci| ↔ !+1. Note that if a vertex v → Ci has d edges
to V \ Ci, then it must have at least d non-edges inside Ci. This property crucially relies on the almost-clique
having size at least ! + 1 and does not hold for smaller almost-cliques. Intuitively, it helps us because having
more edges outside Ci imposes more feasibility constraints for vertices of Ci, but on the other hand, implies a
large number of non-edges inside and so the non-edge matching in Ci will be more e!ective in saving colors.

For each almost-clique Ci we classify colors into heavy and light : a color c → [! + 1] is heavy for
Ci if some #(!) edges exist which have exactly one endpoint in Ci and their other endpoint is colored
c. Intuitively, heavy colors are infeasible for a large number of vertices. Our analysis which builds on

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4986

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the intuition above about the non-edge matching reveals that even after excluding the heavy colors H

from R, vertices in L can still be colored by R \ H perfectly. The nice thing about colors in R \

H is that they are feasible for most vertices in Ci and so it is easier to recolor vertices with them.

L R \H

w

v

c(w)

c

Consider an uncolored vertex v → L. We pick an unassigned color c in
R \ H. If c is feasible for v, we immediately assign c(v) ↗ c. If not,
we find a length 3 augmenting path as follows. First, we pick a random
vertex w → L. Since c is not heavy, it is feasible for w with large constant
probability. Additionally, since w is also assigned a color that is not heavy,
c(w) must be feasible for v with large constant probability. Putting the
two together, we can assign c(v) ↗ c(w) and c(w) ↗ c corresponding to
a length three augmenting path illustrated on the right.

Small Almost-Cliques. To color a vertex v in an almost-clique Ci which
has size at most !, we proceed as follows. Let |Ci| = !+1↑ k noting that k ↔ 1 for small almost-cliques. If the
size of the non-edge matching is large, we employ a similar approach as in the case of large almost-cliques.

For the case of small non-edge matchings, we analyze the number of available colors not assigned to any
vertex in Ci, and bound the number of edges incident to any subset D ↘ Ci to vertices outside Ci. Based on
this, we call a color good if #(!) vertices in L do not have a neighbor outside Ci colored c. E!ectively, we show
that a large majority of vertices in L are assigned good colors at any point. Thus, a random vertex is likely to be
assigned a good color. Our algorithm does not maintain the set of good colors as such, and they are only used in
the analysis.

L R

w

u

v

c(w)

c(u)

c

To recolor a vertex v, we first pick a random color c from the colors not
assigned to any vertex of Ci (we maintain this set explicitly). If c is available
for v we can assign it to v immediately, but c may not be available for v
due to sparse neighbors of v. To get around this, we take a random vertex
u → L. We show that c is feasible for u with probability at least #(1/k).
Thus, repeating this process Õ(k) = Õ(ω!) times ensures that a vertex u for
which c is feasible is found. Now if the color c(u) assigned to u is feasible
for v, we can assign c to u and c(u) to v (corresponding to a length three
augmenting path). However, c(u) may not be feasible to v again due to its
sparse neighbors. Nonetheless, we show that u is assigned a good color c(u)
with constant probability, so it is feasible for a constant fraction of vertices in
Ci. To utilize this, we pick yet another random vertex w → L. It so happens that with large constant probability
c(w) must be feasible for v and c(u) must be feasible for w (due to c(u) being good). This results in a length five
augmenting path illustrated on the right that can be used to color v.

The run-time of process above is dominated by the time required to find u. We need Õ(k) random candidates
for u and we need to check feasibility of c for each candidate which takes Õ(k ·

n

!) time overall. Since k ↓ ω! as
the size of almost-cliques is at least (1↑ ω)!, this sums up to Õ(ωn) which is sublinear. Note that this crucially
relies on checking feasibility in Õ(n/!) time and not say Õ(n/ω2!) or even Õ(n/ω!) time. This is why we
needed the strong upper bound of Õ(n/!) on the number of vertices assigned the same color for sparse vertices
in Section 2.3.

2.5 Putting Everything Together We note that our discussion above completely ignores maintenance of
the sparse-dense decomposition in a dynamic graph. In fact, as apparent from our discussion above, in addition
to the decomposition itself, we need to maintain the non-edges inside almost-cliques and guarantee that the
almost-cliques have size close to ! at all times. Our algorithm maintains this decomposition along with our
desired properties in O(log n/ω4) time per update. We provide a high-level overview of our dynamic sparse-dense
decomposition in Section 6.1.

Finally, by balancing ω as a function of ! and n we arrive at our update-time of Õ(n8/9) (see Section 5.4 for
the final update-time as a function of n,!, ω for various parts of the algorithm).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4987

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

3 Preliminaries

Let V = [n] = {1, 2, ..., n} denote the fixed set of vertices, where [k] = {1, 2, .., k} for any k → Z>0. For any vertex
v → V , let N(v) denote the set of neighbors of v at any given point during the algorithm, and d(v) = |N(v)| be
the degree of v. Let E(U,W) = {(u,w) | u → U,w → W} denote the set of edges with one endpoint in U and
the other in W . Let E(U) denote the set of edges with both endpoints in U . A pair of vertices (u, v) is called a
non-edge if (u, v) /→ E. A non-neighbor of any vertex v is a vertex u such that (u, v) /→ E. For a vertex v, and a
set U of vertices, we let NU (v) denote the set of neighbors of v in U .

Let ! denote the maximum degree of any vertex in the graph throughout the update sequence, which is
known in advance. The coloring on V maintained by our algorithm is denoted by c : V ≃ [!+ 1]. Throughout
the paper, we use the Õ(·) notation to hide a multiplicative polylog(n) term. Without loss of generality, we
assume that initially, G is an empty graph on n vertices (i.e, E = ⇐ at the beginning of the algorithm). We say
that an event E happens with high probability (abbreviated as w.h.p.) if Pr[E] ↔ 1↑ 1

poly(n) .

By choosing large constants during various sampling procedures and algorithms and, recomputing every
polynomially many (in n) updates yields that all desired events happen w.h.p. We do not stress on the number
of undesirable events or low-order constants arising in probabilistic analysis, which allows us to stress more on
the core technical ideas in this paper. Occasionally in our proofs, when deriving a high probability bound for an
event E, we implicitly condition on a small number of desirable events (which happen with high probability); by
taking a union bound over the failure probability of such desirable events, we are able to claim a high probability
bound for the event E.

3.1 Organization of the Paper We give a high level technical overview of our paper in Section 2. In
Section 4, we give a technical overview of sparse-dense decompositions and state properties of our fully dynamic
decomposition. The algorithm to maintain the decomposition and the analysis are deferred to Section 6, which
can be read independently of other sections.

In Section 5, we present our fully dynamic algorithm to maintain a (! + 1)-coloring. This is divided into
multiple subsections. We first highlight our approach of working with a fixed sparse-dense decomposition for a
phase of updates in Section 5.1. We present our algorithm for coloring sparse vertices in Section 5.2.1, and our
fully dynamic algorithm to maintain a coloring on sparse vertices in Section 5.2.2.

Section 5.3 describes our approach to color dense vertices. In Section 5.3.1, we show how to compute and
maintain non-edge matching in almost-cliques, together with maintaining a proper coloring. In Sections 5.3.3
and 5.3.4, we give our perfect matching algorithms for small and large almost-cliques respectively. We present
our final algorithm in Section 5.4 which unifies various algorithms and approaches we develop in the preceding
sections to obtain our final sublinear in n update time.

4 A Fully Dynamic Sparse-Dense Decomposition

In this section, we give a fully dynamic algorithm to maintain a sparse-dense decomposition of a dynamic graph
G = (V,E) under edge updates.

In a sparse-dense decomposition, V is partitioned into a set VS of sparse vertices and a set VD of dense
vertices. The set VD is further partitioned into a collection of cliques C1, C2, . . . , Ck, where for any i → [k], Ci is
an almost-clique, that is, |Ci| = ”(!) and |E(Ci)| ↔ (1 ↑ #(ω))!2. The graph decomposition is parametrized
by a small constant ω > 0 and maintained independently of the coloring. In the following, we introduce some
definitions to formalize our decomposition.

Definition 1. (ω-friend edges [16]) Given 0 < ω < 1, an edge (u, v) → E is an ω-friend edge if

|N(u) ⇒N(v)| ↔ (1↑ ω)!.

A vertex u (resp. v) is an ω-friend of v (resp. u) if (u, v) is an ω-friend edge.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4988

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 2. (ω-dense vertices [16]) Given 0 < ω < 1, a vertex is ω-dense if it has at least (1 ↑ ω)!
ω-friends in V . A vertex is ω-sparse if it is not ω-dense.

Let Fω ↘ E denote the set of ω-friend edges of G. Let Fω(v) ↘ N(v) denote the set of all ω-friends of
v. Let V dense

ω
denote the set of all ω-dense vertices and V sparse

ω
:= V \V dense

ω
denote the set of all ω-sparse

vertices. Note that the number of edges whose endpoints are neighbors of any ω-sparse vertex v is given by
|E(N(v))| ↓

(!
2

)
↑

ω!·ω!
2 ↓ (1 ↑ ω2)

(!
2

)
. This follows because any vertex in V which is not an ω-friend of v has

at most (1↑ ω)! common neighbors with v and the number of such vertices is at least ω!.

Let Gω = (V dense
ω

, Fω) be the induced subgraph of G on the set of ω-dense vertices, which contains only
ω-friend edges in Fω, i.e. Fω = {(u, v)|u, v → V dense

ω
, (u, v) → Fω}. The following lemma (reproduced from [16])

gives properties of the decomposition of Gω into almost-cliques C1, C2, ..., Ck.

Lemma 4.1. ([16]) For any graph G = (V,E), and any 0 ↓ ω < 1
5 , let Gω = (V dense

ω
, Fω) denote the induced

subgraph of G on the set of ω-dense vertices and the set of ω-friend edges. Then, there exists a decomposition of
Gω into connected components C1, ..., Ck satisfying Vω = C1 ⇑ C2... ⇑ Ck such that for any i → [k]:

1. |Ci| ↓ (1 + 3ω)!.

2. Each vertex in Ci has at most ω! neighbors (in G) in V \Ci.

3. Each vertex in Ci has at most 3ω! non-neighbors (in G) in Ci.

4. For any u, v → Ci, |N(u) ⇒N(v)| ↔ (1↑ 2ω)!.

To utilize this decomposition for fully dynamic (!+1)-coloring, we require additional properties. In particular,
a lower bound on |Ci| of #(!) for all i gives an upper bound on the number of neighbors outside Ci for any vertex
in Ci. Furthermore, it is crucial to limit the number of non-edges across all almost-cliques which change after a
single edge update to the graph; this e!ectively limits the change in the coloring maintained by our algorithm. We
present the first fully dynamic algorithm which maintains a sparse-dense decomposition satisfying these additional
properties.

For a vertex v in an almost-clique C, let EC(v) denote the total number of non-edges of v in C, i.e.
EC(v) = {(u, v)|u → C\N(u)}. Let E(C) =

⋃
v↑C

EC(v) denote the set of all non-edges in C.

Definition 3. (Adjustment Complexity of Non-Edges) The adjustment complexity of non-edges is the total
number of changes to the list of non-edges across all almost-cliques after a single edge update to G.

The following theorem summarizes the main result of this section.

Theorem 4.1. For any graph G = (V,E), and any constant 0 < ω < 3
50 , there exists a fully dynamic randomized

algorithm which maintains a graph decomposition of G in O(lnn

ω4
) worst-case update time against an adaptive

adversary. The algorithm maintains a partition of V := VS ⇑ VD such that at all times VS ↘ V sparse
4ω/3 and

VD ↘ V dense
11ω/4 .

Furthermore, VD is partitioned into vertex-disjoint almost-cliques VD := C1 ⇑ C2 ⇑ ...Cε such that after
processing any edge update, the following properties for all i → [ε] hold with high probability:

1. (1↑ 4ω)! ↓ |Ci| ↓ (1 + 10ω)!.

2. Each vertex in Ci has at least (1↑ 4ω)! neighbors in Ci.

3. The adjustment complexity of non-edges is O(1
ω4
).

Our fully dynamic algorithm to maintain the sparse dense decomposition and the proof of Theorem 4.1 is
deferred to Section 6.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4989

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

5 A Fully Dynamic (!+ 1)-Coloring Algorithm

In this section, we describe our (!+1)-coloring algorithm, given the sparse-dense decomposition in Theorem 4.1.
First, we describe an algorithm which maintains a (!+ 1)-coloring on the subgraph induced on the set of sparse
vertices VS . Given the coloring on sparse vertices, we show how to maintain a (!+ 1) coloring on dense vertices
in VD.

To obtain a sublinear (in n) update time, our algorithms work with a fixed sparse-dense decomposition for
every t = #(ω2!) updates. While we maintain data structures such as non-edges in almost-cliques, the set of
sparse and dense vertices VS and VD respectively remain fixed throughout these t updates. After every t updates,
we utilize our fully dynamic algorithm Update-Decomposition to update the sparse-dense decomposition. The
next section formalizes our approach.

5.1 Working with a Fixed Decomposition for ”(ω2!) updates Our approach is simple. Within t = ω
2!

18e6

updates, the decomposition of G remains fixed. More precisely, we consider the sequence of updates partitioned
into contiguous subsequences of t updates each; each such subsequence is called a phase. We denote the jth phase
by Uj .

For every phase Uj , we maintain a (!+ 1) coloring of G such that the decomposition of V into VS and VD,
together with all almost-cliques Cj for i → [ε] remains fixed. Edge updates during phase Uj are reflected in data
structures, including NS(·), ND(·), EC(·), NC(·), E(C) for all C (see Section 6.3), which takes O(1) update time.
However, no vertex moves from VS to VD or vice-versa, and every dense vertex stays in the same almost-clique
throughout Uj . Since vertices do not move from VS to VD or vice versa, it holds that for any almost-clique Ci,
the set of non-edges E(Ci) changes by at most one per update.

Before the next phase Uj+1 begins, all updates to the aforementioned data structures are undone. Then,
Update-Decomposition is invoked on each update (u, v) → Uj . This ensures that our algorithm works with
an updated decomposition after each phase. Thereafter, all vertices in G are recolored from scratch given the
updated decomposition.

The following lemma shows that the resulting properties of the sparse-dense decomposition throughout a
phase by our algorithm are essentially similar to the ones guaranteed by Theorem 4.1.

Lemma 5.1. For any constant 0 < ω < 3
50 , there exists a sparse-dense decomposition for a graph G = (V,E)

undergoing edge insertions or deletions which can be maintained in O(logn

ω4
) amortized update time against an

adaptive adversary, such that throughout every phase of t = ω
2!

18e6 = ”(ω2!) updates to G the following properties
hold, w.h.p.:

1. the decomposition of V = (VS , VD) and VD = (C1, C2, ..., Cε) remains fixed, where VS ↘ V sparse
ω/3 and

VD ↘ V dense
15ω/4 .

2. For all i → [ε]:

• (1↑ 4ω)! ↓ |Ci| ↓ (1 + 10ω)!.

• Each vertex in Ci has at least (1↑ 5ω)! neighbors in Ci.

• E(Ci) changes by at most 1 per update.

Proof. Before a new phase begins, Update-Decomposition(ω, ω

3 , (u, v)) is invoked for all updates in the current
phase. By the proof of Theorem 4.1, the amortized update time for this step is O(logn

ω4
).

Clearly, the properties stated in Theorem 4.1 hold before the beginning of any phase. Since Ci for all i → [ε]
remains fixed throughout phase Uj , the bounds on |Ci| don’t change. Since a phase consists of most t updates,
any vertex in Ci, i → [ε] has at least (1↑ 4ω↑ ω

2

18e6)! ↔ (1↑ 5ω)! neighbors in Ci throughout the phase. Thus,
any vertex in Ci, i → [ε] has at most 5ω! neighbors outside Ci.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4990

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Any update changes E(Ci) by at most 1. By Theorem 4.1 it follows that after Update-Decomposition is
invoked for all updates in the previous phase, for any vertex v → VS , v is 4ω

3 -sparse. Since t ↓ !, any vertex
v → VS is ω

3 sparse throughout a phase. Similarly, it holds that any vertex v → VD is 15ω
4 -dense.

We note that the number of almost-cliques is O(n

(1→4ω)!) = O(n

!) for 0 < ω < 1. In the next two sections, we
present algorithms to maintain a (!+ 1) coloring on the sets VS and VD, respectively.

5.2 An Algorithm for Sparse Vertices In this section, we present a fully dynamic algorithm to maintain
a (! + 1)-coloring in Õ(n

ω2!) amortized update time on the subgraph GS = (VS , E(VS)) induced on the set of
sparse vertices. For this section, let VS denote the set of ω-sparse vertices and E(VS) denotes edges in G with
both endpoints in VS in a given phase. We assume that 0 < ω < 1.

Before presenting the fully dynamic algorithm, we give a static algorithm to obtain a (! + 1)-coloring on
sparse vertices, at the beginning of a phase.

5.2.1 Recoloring Sparse Vertices at the Beginning of a Phase We exploit sparsity of vertices in a manner
similar to (! + 1)-coloring algorithms in sublinear and distributed settings [16, 2, 11]. Recall that any ω-sparse
vertex has at most (1↑ ω)!, ω-friends by definition, and thus, the number of non-edges (u,w) s.t. u,w → N(v) is
at least #(ω2!2). Let VS denote the set of ω-sparse vertices in V .

Sparse vertices are colored using two simple subroutines, which we call One-Shot-Coloring and Greedy-
Coloring respectively. We maintain a list L(c) for each colors c → [! + 1] which contains all vertices assigned
color c. Initially, L(c) = ⇐ for all c → [!+ 1] and all vertices are assigned a blank color ⇓.

One Shot Coloring. The subroutine One-Shot-Coloring receives a set U of vertices to be colored and
proceeds as follows. First, each vertex v → U independently picks a single color c uniformly at random from
[!+ 1]. For any vertex v → U , if no neighbor of u → U picks the color c which is picked by v, v is assigned color
c. A constant fraction of vertices in U are assigned a valid color with high probability in this manner. The set
U ↓

↘ U of vertices successfully colored after One-Shot-Coloring concludes is returned.

Algorithm 1 One-Shot-Coloring(U)

1: U ↓ = ⇐.
2: for all v → U do
3: Sample a color c↓(v) uniformly at random from [!+ 1].
4: for all v → U do
5: c ↗ c↓(v).
6: if no neighbor of v is in L(c) then
7: c(v) ↗ c, L(c) ↗ L(c) ⇑ {v}, U ↓

↗ U ↓
⇑ {v}.

8: return U ↓.

Let A(v) denote the set of colors not assigned to any other sparse neighbor of v at any point in time, i.e.
A(v) = [! + 1] \ {c(u) | u → N(v) ⇒ VS}. We remark that the set of available colors is not maintained by our
algorithm, since this can be costly.

Let dr(v) denote the set of remaining uncolored sparse neighbors of v after One-Shot-Coloring finishes.
We assume that ω ↓

1
5000 , ϑ ↔ 50003, and (! + 1) > ϑ logn

ω2
. The following lemma can be derived from Lemma

3.1 and Lemma A.1 in [2].

Lemma 5.2. For every uncolored vertex v → V \ U ↓ after One-Shot-Coloring(U) is completed, the number of
available colors |A(v)| ↔ dr(v) +

ω
2!
9e6 with probability at least 1↑ exp(↑#(ω2!)).

Greedy Coloring. The remaining uncolored vertices in S := VS \ U ↓ are colored in a sequential greedy manner
using the Greedy-Coloring subroutine. This subroutine is due to Assadi and Yazdanyar [3] and works as

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4991

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

follows. We consider vertices in S in random order. Upon considering an uncolored vertex v, a random color c
is drawn uniformly at random from [!+ 1]. If none of v’s neighbors have been assigned c, v is assigned color c.
Else, the previous step is repeated.

We give the pseudo-code of the subroutine as follows.

Algorithm 2 Greedy-Coloring(S)

1: Generate a uniformly random permutation ϖ: [|S|] ≃ [|S|].
2: for i = 1 to |S| do
3: v ↗ S[ϖ(i)]. ϱ i.e. v is the ϖ(i)th vertex in list S.
4: while c(v) =⇓ do
5: Draw a color c uniformly at random from [!+ 1].
6: if no neighbor of v is in L(c) then
7: c(v) ↗ c, L(c) ↗ L(c) ⇑ {v}.

Finally, we give our algorithm Color-Sparse which takes as input the list VS of sparse vertices and obtains
a proper coloring for vertices in VS . The algorithm works as follows. Each vertex v is added to a set U with
probability 1

2 independently. Thereafter, One-Shot-Coloring(U) is invoked. Let S := V \U ↓ denote the set of
uncolored vertices after this step. Thereafter, Greedy-Coloring(S) is invoked.

Algorithm 3 Color-Sparse(VS)

1: U := ⇐.
2: for all v → VS do
3: Add v to U with probability 1

2 .
4: U ↓

↗ One-Shot-Coloring(U).
5: Greedy-Coloring(VS \ U ↓).

We give some key properties of Algorithm Color-Sparse as follows. We prove that the total number of
colors drawn by all vertices throughout the execution of Color-Sparse is Õ(n) with high probability. Based on
this, we conclude that the size of list L(c) for any c → [!+1] is at most Õ(n

!) after Color-Sparse is completed.
This allows us to bound the total running time of Color-Sparse by Õ(n

2

!). Since the proof is a straightforward
adaptation of the arguments in [3], we defer it to Appendix A.1.

Lemma 5.3. Algorithm Color-Sparse takes Õ(n
2

!) time and on termination, |L(c)| = Õ(n

!) for any color
c → [!+ 1] with high probability. Moreover, for every vertex v → V , |A(v)| ↔ ω

2!
9e6 with high probability.

In the next section, we present a fully dynamic algorithm to maintain a coloring on sparse vertices during a
phase.

5.2.2 Recoloring Sparse Vertices During a Phase Our algorithm in this section is utilized whenever a
recoloring is necessitated for a sparse vertex v after an edge update in a given phase. Lemma 5.3 implies that
within an arbitrary t = ω

2!
18e6 recolorings of sparse vertices following an invocation of Color-Sparse, the number

of available colors for any vertex is at least t with high probability. Thus, during any phase there exist at least t
colors for every sparse vertex v which are not used to color any neighbors of v in VS .

During any phase, our algorithm works as follows. On an edge insertion (u, v) for which c(u) = c(v) and
u, v → VS , v is recolored by invoking subroutine Recolor-Sparse as follows. A color c is sampled from [!+ 1]
uniformly at random and if there exists a sparse neighbor of v assigned c, the sampling process is repeated until
the sampled color c is not assigned to any of v↓s sparse neighbors. Thereafter, v is assigned color c. We maintain
lists L(c) for all c → [!+ 1] throughout a phase, such that L(c) consists of vertices colored c.

We give the pseudo code of our algorithm Recolor-Sparse as follows. A vertex which is currently not
assigned a color is assigned a blank color, denoted by ⇓. Let NS(v) denotes the list of all neighbors of v in VS .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4992

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 4 Recolor-Sparse(v)

1: L(c(v)) ↗ L(c(v))\{v}, c(v) ↗⇓.
2: while c(v) =⇓ do
3: Sample a color c uniformly at random from [!+ 1].
4: if L(c) ⇒NS(v) = ⇐ then
5: c(v) ↗ c.
6: L(c) ↗ L(c) ⇑ {v}.

By Lemma 5.3, Color-Sparse satisfies that for any c → [! + 1], |L(c)| is Õ(n

!) w.h.p at the beginning of
a phase. We show that during any phase, (i.e. between any two calls to Color-Sparse), |L(c)| is Õ(n

!) w.h.p.
Intuitively, this holds since our algorithm picks a random color from the set of available colors for any vertex v
whenever v is recolored within a phase. Thus, checking if a color is feasible for a vertex takes Õ(n

!) time.

Lemma 5.4. During any phase, |L(c)| = Õ(n

!) for all c → [!+ 1] with high probability.

Proof. By Lemma 5.3, |A(v)| ↔ ω
2!
9e6 for all v → V w.h.p. when Color-Sparse is invoked at the beginning of

a phase. We analyze |L(c)| for any color c at any point during the phase, conditioned on this high probability
event. Moreover, within any phase of length t = ω

2!
18e6 , there can only be t recolorings of sparse vertices.

Fix a color c. Let Xc denote the random variable denoting the length of L(c) at the beginning of the phase
(i.e. after Color-Sparse is called). By Lemma 5.3, Xc = Õ(n

!) w.h.p. Conditioned on this, let Yc denote
the random variable denoting the length of L(c) after an arbitrary t recolorings of sparse vertices. Moreover,
let Z1, Z2, .., Zt be independent random variables where Zi = 1 if c is assigned to a sparse vertex at the ith

recoloring, and 0 otherwise. Let Z =
∑

t

i=1 Zi. We have that Yc = Xc + Z. Let vi denote the vertex for which
Recolor-Sparse(vi) is invoked at the ith recoloring.

Note that,

Pr[Zi = 1] = Pr[c → A(vi) ⇒ c is the first color in A(vi) sampled]
↓ Pr[c is the first color in A(vi) sampled]

↓
18e6

ω2!

where the final inequality follows from Lemma 5.3, and the fact that i ↓ t = ω
2!

18e6 . Let B1, B2, ..., Bt be independent
and identically distributed random Poisson random variables s.t. Pr[Bi = 1] = 18e6

ω2! , and B =
∑

t

i=1 Bi. Note
that B stochastically dominates Z, i.e. Pr[Z ↔ a] ↓ Pr[B ↔ a] for any a. Since E[B] ↓ ω

2!
18e6 ·

18e6

ω2! = 1, applying
a Cherno! bound yields Pr[B ↔

⇔
3d log n+ 1] ↓ 1

nd for any constant d > 0.

Thus, Yc = Xc + Z ↓ Xc + B = Õ(n logn

!) + O(
⇔
log n) = Õ(n

!) with probability at least 1 ↑ 1
nd . Applying

a union bound over all c → [!] and combining this with the high probability bound of Lemma 5.3, we have that
|L(c)| = Õ(n

!) for all c → [!+1] with probability at least 1↑ 1
poly(n) for su"ciently large d, completing the proof.

Lemma 5.5. Recolor-Sparse takes Õ(n

ω2!) with high probability.

Proof. By Lemma 5.3, after Color-Sparse is completed, A(v) ↔
ω
2!

18e6 w.h.p. Conditioned on this, within an
arbitrary t recolorings of sparse vertices the number of available colors A(v) for any vertex v satisfies |A(v)| ↔ ω

2!
18e6

w.h.p. Moreover, by Lemma 5.4, the length of any list L(c) for c → [!] is Õ(n

!) w.h.p. The probability of sampling
an available color in A(v) is at least ω

2

18e6 . Thus after sampling O(logn

ω2
) colors, an available color c → A(v)

is sampled and assigned to v. Concluding, Recolor-Sparse takes Õ(n

!)O(logn

ω2
) = Õ(n

ω2!) time with high

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4993

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

probability. Taking a union bound over at most t = #(ω2!) recolorings of sparse vertices during a phase yields
that any call to Recolor-Sparse takes Õ(n

ω2!) time with high probability.

Lemma 5.6. The amortized update time for recoloring sparse vertices is Õ(n
2

ω2!2) with high probability.

Proof. By Lemma 5.3, the running time of Color-Sparse is Õ(n
2

!) with high probability. Thus, the amortized
update time incurred as a result of running Color-Sparse at the beginning of any phase is Õ(n

2

ω2!2).

5.3 An Algorithm for Dense Vertices In this section, we show to maintain a (! + 1)-coloring on the set
of dense vertices VD := V \VS . The coloring on sparse vertices is maintained independently of dense vertices in
the following sense: when coloring a sparse vertex v, we only consider sparse neighbors of v. As a result, if v
is assigned color c, this may necessitate recolorings of dense neighbors of v which are assigned color c. In this
section, we assume that sparse vertices are already colored. Our main result in this section is a fully dynamic
algorithm to maintain a (! + 1)-coloring on a single dense almost-clique C during any phase. Our algorithm
follows a two-step framework which we briefly describe as follows.

Step I ensures that for any almost-clique C which has non-edges, endpoints of such non-edges are assigned
the same color whenever possible to save colors for Step II. This is accomplished by maintaining a matching on
non-edges in E(C) such that endpoints of matched non-edges are assigned the same color. Distinct endpoints
of distinct non-edges in the non-edge matching are assigned distinct colors. Thus, each color in [! + 1] is used
to color exactly two vertices and the number of vertices colored in Step I is twice the number of colors used.
After Step I is completed, the number of colors left for the remaining uncolored vertices is shown to be su"cient.
These vertices are handled in Step II. We remark that vertices in Step I are colored independently of Step II.
More precisely, when coloring endpoints u, v of a matched non-edge (u, v), we only check feasibility of a color with
respect to neighbors of u and v outside C, and endpoints of other matched non-edges.

Step II of our algorithm assigns a color to the remaining vertices in C which are not endpoints of any matched
non-edge from Step I. These vertices are handled by maintaining a perfect matching dynamically between vertices
and the unused colors in [!+1] from Step I. Hence, the coloring of vertices in Step II depends on both the coloring
of sparse vertices and the coloring of matched non-edges in Step I. We establish several structural properties of
this perfect matching graph to argue that, after vertex updates to this graph, the perfect matching can be quickly
updated in Õ(ωn) time. E!ectively, by arguing the existence of small augmenting paths that can be quickly found,
we bound the time taken to recolor any vertex under updates to the perfect matching graph.

Finally to ensure that the update time is Õ(ωn) = o(n) with high probability for any update during a phase,
it is crucial that the adjustment complexity of our non-edge matching is small. If the non-edge matching is
significantly large at the beginning of a phase, we do not maintain it, as such during the phase. However if
it is small, we use a naive algorithm to maintain a maximal matching on non-edges which takes O(ω!) worst-
case update time, and guarantees that the non-edge matching changes by O(1) per update. This ensures a large
matching with respect to the number of non-edges E(C) is maintained at any time during the phase which changes
by O(1) and thus limits updates to the perfect matching by O(1) per update.

We maintain a list LD(c) for all c → [! + 1], such that LD(c) contains all dense vertices v in VD which are
assigned color c. Our algorithm maintains the property that each color c → [! + 1] is assigned to at most two
vertices in any almost-clique C. Thus |LD(c)| = O(n

!) for any c → [! + 1]. In addition, we have access to lists
L(c) which contains sparse vertices assigned color c such that |L(c)| = Õ(n

!) for any c → [!+ 1] by Lemma 5.4.

In the next two sections, we present Steps I and II of our algorithm.

5.3.1 Step I: Coloring via Non-Edge Matchings Step I is a pre-processing step for almost-cliques C with
the objective of coloring a large number of vertices whenever possible, by assigning identical colors to endpoints of
non-edges in C. However, non-edges may share endpoints, and thus we maintain a matching MN on E(C), and
assign identical colors to endpoints of matched non-edges in MN . Endpoints u, v of every non-edge (u, v) → MN

are assigned a color which is not taken by any of u or v’s neighbors outside C, or endpoints of other matched

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4994

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

non-edges in MN . The reason why endpoints of distinct non-edges are assigned distinct colors is because for
edges (u, v), (w, x) in the matching, if (u, x) → E then assigning identical colors to u, v, w, x does not result in a
proper coloring.

Since we work with a fixed sparse-dense decomposition during a phase, E(C) changes by at most 1 per
update. Note that when a phase concludes, our decomposition may change. The non-edge matching MN for
an almost-clique C is updated to reflect the updates in this phase, and endpoints of the updated matching are
recolored before the next phase begins.

5.3.1.1 Initializing Non Edge Matchings For a New Phase

We present our approach to recompute MN given the updated decomposition before the beginning of any phase.
Although we maintain a non-edge matching MN during a phase, the decomposition remains fixed throughout a
phase and thus, MN may no longer correspond to a valid non-edge matching for the next phase Ui+1, since some
vertices may move from VS to VD or vice versa in the updated decomposition. We show how to initialize MN on
E(C) for an almost-clique C.

Let Ui be the phase which has concluded. Recall that a phase consists of t = O(ω2!) updates.

Data Structures. For an almost-clique C, we maintain a boolean array, matched[·] such that matched[v] = 1 if
v is an endpoint of a matched edge in the non-edge matching MN for C and 0 otherwise at any given point in
time. This can be maintained trivially whenever an edge is inserted or deleted from MN , or E(C).

Before the next phase Ui+1 begins, we do the following. Let M
F

N
denote the current matching on non-edges

E(C) at the end of phase Ui for an almost-clique C. All updates made to MN , E(C) and array matched[·] during
Ui are reversed, and undone to retrieve the non-edge matching M

I

N
and the state of various data structures at

the beginning of phase Ui.

We use a known fully dynamic matching algorithm due to Bhattacharya, Henzinger and Nanongkai [9] to
recompute a non-edge matching on E(C) that will be used before by our algorithm before phase Ui+1 begins.
The following lemma is reproduced from [9].

Lemma 5.7. [9] For every ς → (0, 1), there is a deterministic algorithm that maintains a (2 + ς)-approximate
maximum matching in a dynamic graph in O(polylog(n, 1

ϖ
)) amortized update time, where n denotes the number

of nodes in the graph.

For our purpose, it su"ces to maintain a (2+ς)-approximate matching for some ς > 0. Let (uj , vj) be the jth

update in phase Ui. Let Bj denote the set of non-edges in almost-cliques which change (i.e. are added or removed)
after our algorithm Update-Decomposition(ω, ω

3 , (uj , vj)) is invoked for update (uj , vj). From Theorem 4.1, it
follows that the |Bj | = O(1

ω4
) in an amortized sense. Thus, on average, each edge update in a phase leads to a

change of at most O(1
ω4
) non-edges across all almost-cliques as a result of sparse or dense moves by algorithm

Update-Decomposition. The dynamic matching algorithm [9] is run separately for all almost-cliques, and the
amortized update time to recompute the matching across all cliques before Ui+1 begins is Õ(1

ω4
) for constant

ς > 0.

We give the following lemma.

Lemma 5.8. For each almost-clique C, a matching MN of size at least |E(C)|
22ω! can be obtained at the beginning

of any phase with high probability. The amortized update time for initializing non-edge matchings across all
almost-cliques is Õ(1

ω4
).

Proof. By our discussion above, it follows that the amortized update time to initialize non-edge matchings across
all almost-cliques is Õ(1

ω4
).

Let ς = 1
6 . By Lemma 5.1, any vertex in C has at most 5ω! non-neighbors in C at any point in time w.h.p.

Conditioned on this event, every non-edge can be incident to at most 10ω! non-edges w.h.p. Thus, there is a

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4995

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

matching of size at least |E(C)|
10ω! w.h.p. Running the dynamic matching algorithm of Lemma 5.7 yields that a

matching MN of size at least |E(C)|
10ω!(2+ 1

6)
> |E(C)|

22ω! can be maintained at any given point in time.

A Post-Processing Step for Small Matchings:
In the case when the computed matching |MN | is small, we employ a post-processing step before the next phase
Ui+1 begins to ensure that MN corresponds to a maximal matching. This allows us to maintain a large matching
throughout the phase in O(ω!) update time as outlined in the next section. If |MN | ↔ ω2!, we skip this
post-processing step.

If |MN | < ω2!, it follows that |E(C)| < 22ω!·ω2! = O(ω3!2) by Lemma 5.8. We iterate over all (u, v) → MN

and remove (u, v) from MN , and set matched[u] =matched[v] = 0. Thus, MN = ⇐ at this point. Next, we greedily
compute a maximal matching in O(|E(C)| = O(ω3!2) time as follows: go over all edges (u, v) → E(C), and if
matched[u] =matched[v] = 0, (u, v) is added to MN , and matched[u] := matched[v] := 1.

Lemma 5.9. The amortized update time for the post-processing step for all almost-cliques which have small non-
edge matchings is O(ωn) with high probability. If C is an almost-clique for which this step is carried out, the
non-edge maximal matching MN for E(C) has size at least |E(C)|

20ω! with high probability.

Proof. Consider an almost-clique C for which this post-processing step is implemented. By Lemma 5.1, any vertex
in C has at most 5ω! neighbors at any point in time w.h.p., and thus each non-edge can be incident to at most
10ω! non-edges. Thus, there exists a matching of size at least |E(C)|

10ω! . Since the post-processing step computes a
maximal matching for E(C), it follows that MN has size at least |E(C)|

20ω! w.h.p.

The total time to implement this post-processing step for all almost-cliques is O(n

!) · O(ω3!2) = O(ω3n!).
Since the length of a phase is ”(ω2!), this yields an amortized update time of O(ωn).

The following Corollary follows from Lemmas 5.8 and 5.9.

Corollary 5.1. For each almost-clique C, a matching MN of size at least |E(C)|
22ω! can be obtained at the beginning

of any phase with high probability. The amortized update time for initializing non-edge matchings across all
almost-cliques is Õ(1

ω4
+ ωn) with high probability.

Before the new phase Ui+1 begins, we recolor all endpoints of the non-edge matchings sequentially across all
almost-cliques C1, C2, ..., Cε based on the updated decomposition.

5.3.1.2 Recoloring Endpoints of a Matched Non-Edge

We present an algorithm Recolor-Non-Edge which recolors endpoints of a non-edge (u, v) in some almost-clique
C. We utilize this algorithm in one of two cases:

1. Recoloring non-edges in non-edge matchings across all almost-cliques at the beginning of a new phase.

2. Recoloring endpoints of a single non-edge during any phase if needed.

Data Structures. For each almost-clique C, we maintain an array AN of length [! + 1] such that AN [c] = 1
if color c is used to color an endpoint of a matched non-edge in MN . For any c, if AN [c] = 1, a pointer to the
non-edge (u, v) whose endpoints are colored c is maintained.

The algorithm is presented as follows.

On input (u, v), the subroutine Recolor-Non-Edge updates the associated data structures. Next, a random
color c in [!+ 1] is sampled. If there exists a non-edge (w, x) such that c(w) = c(x) = c, or a neighbor of either
u or v outside C is colored c, the process repeats until a proper color is found. Else, u, v are colored c.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4996

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 5 Recolor-Non-Edge((u, v))
1: AN [c(u)] ↗ 0, AN [c(v)] ↗ 0.
2: c(u) ↗⇓, c(v) ↗⇓.
3: while c(u) =⇓ do
4: Sample a color c uniformly at random from [!+ 1].
5: if AN [c] = 0 and (L(c) ⇑ (LD(c)\C)) ⇒ ((N(u) \NC(u)) ⇑ (N(v) \NC(v))) = ⇐ then
6: AN [c] ↗ 1.
7: c(u) ↗ c, c(v) ↗ c.
8: return c(u).

The following observation follows from Lemma 5.1, concerning the upper bound on the size of any almost-
clique C at any point in time.

Observation 1. The size of the non-edge matching |MN | ↓
|C|

2 ↓ (12 + 5ω)! with high probability.

Lemma 5.10. Algorithm Recolor-Non-Edge takes Õ(n

!) update time with high probability.

Proof. We first analyze the probability of picking a color c s.t (L(c) ⇑ (LD(c)\C)) ⇒ ((N(u)\NC(u)) ⇑ (N(v) ⇑
NC(v))) = ⇐. Then, we analyze the time complexity.

Note that the number of neighbors of u, v outside C is at most 10ω! by Lemma 5.1, both at the beginning of
any phase and during any phase, with high probability. Moreover, since |MN | ↓ (12 +5ω)! by Observation 1 and
each non-edge is assigned a distinct color, it follows that there are at least !+1↑(10ω!+(12+5ω)!) ↔ (12↑15ω)!
colors that can be assigned to u, v w.h.p. It is worth noting that we have lower bounded the feasible colors for u, v
by upper bounding neighbors of u, v outside C and the size of the maximum matching MN . Thus, conditioned on
the high probability event, picking a random color c succeeds with probability at least 1

2 ↑15ω ↔ 0.49 for ω ↓ 1
1500 .

Thus, after #(3d lnn) trials, u, v are assigned a proper color with probability at least 1↑ 1
nd for a constant d > 0

by a Cherno! bound.

Recall that LD(c) is the list containing all dense vertices colored c across all almost-cliques. Since each color
in [! + 1] is assigned to at most 2 vertices in C, |LD(c)| = O(n

!). Conditioned on the high probability event
given by Lemma 5.4, we know that |L(c)| = Õ(n

!) throughout a phase. Computing the list (L(c) ⇑ (LD(c)\C))

takes Õ(n

!) time. Checking whether any vertex w in this list is also in N(u)\NC(u) or N(v)\NC(v) takes O(1)
time. If no neighbors of u, v outside C are assigned c, and endpoints of any non-edge in C are not assigned c, we
assign c to u, v; otherwise we repeat. Thus, a single iteration of the while loop takes Õ(n

!) time.

Conditioned on the high probability events including, the properties given in Theorem 4.1 which hold at the
beginning of any phase, the upper bound of (12 + 5ω)! on |MN | by Observation 1, and the upper bound on the
size of lists L(c) by Lemma 5.4 throughout a phase, we obtain that Algorithm Recolor-Non-Edge takes Õ(n

!)
time with high probability.

Corollary 5.2. The amortized update time to recolor endpoints of matched non-edges across all almost-cliques
at the beginning of any phase, is Õ(n

2

ω2!2) with high probability.

Proof. By Lemma 5.10, the time to recolor a single non-edge is Õ(n

!) with high probability. The total number of
matched non-edges across all almost-cliques is bounded by O(n). Thus, the total time to re color all non-edges
is Õ(n

2

!), and amortized over the length of a phase this yields Õ(n
2

!) ·O(1
ω2!) = Õ(n

2

ω2!2) amortized update time.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4997

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

5.3.1.3 Maintaining Non-Edge Matchings During a Phase

Let MN denote the non-edge matching on the set of non-edges E(C) for an almost-clique C obtained the beginning
of a phase. By Corollary 5.1, it follows that |MN | ↔

|E(C)|
22ω! . We distinguish two cases depending on |MN |: 1.

|MN | < ω2! and, 2. |MN | ↔ ω2!.

Case 1. If |MN | < ω2!, we ensure that a large non-edge matching with respect to the total non-edges in E(C)
is dynamically maintained. We do not utilize the dynamic matching algorithm [9] which we use to initialize
matchings at the beginning of every phase because we want:

1. The non-edge matching MN to change by at most O(1) per update during a phase so that few vertices are
recolored in Step II to obtain o(n) update time.

2. The update time to recolor dense vertices during any phase to be independent of the running time and
adjustment complexity of the dynamic matching algorithm [9] which simplifies analysis.

As a result the amortized update time guarantee of [9] is utilized only towards analyzing amortized costs of
re-initializing non-edge matchings at the beginning of a phase.

Recall that if |MN | < ω2!, the post-processing step must have been carried out such that MN corresponds
to a maximal matching. We use a naive algorithm, Maintain-Matching to maintain a maximal matching on
E(C) throughout a phase under edge updates. It is described as follows.

Algorithm Maintain-Matching. On input (u, v) where u, v → C the algorithm Maintain-Matching proceeds
as follows. First, the data structures are updated to reflect the edge update. If (u, v) is an edge insertion, this is a
non-edge deletion, in which case if (u, v) → MN , then (u, v) is removed from MN and matched[u] :=matched[v] :=
0. For w → {u, v}, the algorithm iterates through the list of non-edges EC(w) in C, and if there exists a non-edge
(w, x) such that matched[x] = 0, (w, x) is added to MN , and matched[w] :=matched[x] := 1.

If (u, v) is an edge deletion, this is a non-edge insertion. If matched[u] =matched[v] = 0, (u, v) is added to
MN , and matched[u] :=matched[v] := 1.

The set of newly added edges to MN is returned by the algorithm. The pseudo-code is as follows.

Algorithm 6 Maintain-Matching(u, v)

1: M ↗ ⇐.
2: if (u, v) is an edge insertion then ϱ (u, v) is a non-edge deletion.
3: E(C) ↗ E(C)\{(u, v)}, EC(u) ↗ EC(u)\{(u, v)}, EC(v) ↗ EC(v)\{(u, v)}.
4: if (u, v) → MN then
5: MN ↗ MN\{(u, v)}.
6: matched[u] :=matched[v] := 0.
7: for w → {u, v} do
8: if there exists (w, x) → EC(w) s.t. matched[w] = 0 then
9: MN ↗ MN ⇑ {(w, x)}, matched[w] :=matched[x] := 1, M ↗ M ⇑ {(w, x)}.

10: else ϱ (u, v) is an edge deletion (non-edge insertion).
11: E(C) ↗ E(C) ⇑ {(u, v)}, EC(u) ↗ EC(u) ⇑ {(u, v)}, EC(v) ⇑ EC(v)\{(u, v)}.
12: if matched[u] =matched[v] = 0 then
13: MN ↗ MN ⇑ {(u, v)}, matched[u] :=matched[v] := 1, M ↗ M ⇑ {(u, v)}.

return M .

Lemma 5.11. Maintain-Matching takes O(ω!) time and maintains a maximal matching MN of size at least
|E(C)|
20ω! with high probability, throughout a phase.

Proof. Since every vertex has at most O(ω!) non-neighbors in C throughout a phase by Lemma 5.1, the update

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4998

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

time of Maintain-Matching is O(ω!). Moreover, it follows from the proof of Lemma 5.9 that the size of MN

has size at least |E(C)|
20ω! throughout the phase, since MN is a maximal matching at any given point in time.

Case 2. If |MN | ↔ ω2! at the beginning of a phase, we do not update MN in this phase; the size of
MN decreases by at most t = ω

2!
18e6 throughout a phase. This is su"cient for our purpose. By Lemma 5.1,

|E(C)| ↓ 22ω!ω2! = 22ω3!2 at the beginning of the phase w.h.p. Since a phase has length ω
2!

18e6 , it follows that
|E(C)| ↓ 22ω3!2 + ω

2!
18e6 ↓ 44ω3!2, for ω ↔

1
396e6! throughout a phase. Since |MN | ↔ (1 ↑ 1

18e6)ω
2! at the end

of a phase, it follows that |MN | ↔
|E(C)|
50ω! in this case w.h.p.

The following lemma follows from our preceding discussion.

Lemma 5.12. A non-edge matching of size at least |E(C)|
50ω! can be dynamically maintained for every almost-clique

throughout a phase in O(ω!) update time where ω ↔ 1
396e6! , with high probability.

We present a subroutine Update-Non-Edges which maintains a non-edge matching satisfying the property
in Lemma 5.12 for an almost-clique throughout a phase.

Algorithm Update-Non-Edges. Note that non-edge matchings are a!ected only when u, v → VD and
u, v are in the same almost-clique, denoted by C. On an edge update, (u, v), the data structures
ND(u), ND(v), EC(u), EC(u), E(C) are updated. The algorithm considers two cases depending on the size of
the non-edge matching at the beginning of the current phase: 1) |MN | ↔ ω2!, and 2) MN < ω2!. We describe
how these cases are handled as follows.

1. If (u, v) is an edge insertion, and u, v are endpoints of some matched non-edges (u,w), (v, x) where
w ↖= v, x ↖= u then MN does not change. If (u, v) → MN , (u, v) is removed from MN , and u, v are
added to set LO which is returned by the algorithm.

If (u, v) is an edge deletion, the matching MN does not change.

2. Algorithm Maintain-Matching(u, v) is invoked which returns a set M . Recall that in the case when (u, v)
is an edge deletion such that matched[u]=matched[v] = 0, (u, v) is added to MN , M = {(u, v)} is returned
and vertices u, v are added to the set LI .

If (u, v) is an edge insertion such that (u, v) → MN , (u, v) is removed from MN and the returned set M
consists of edges added to MN where |M | ↓ 2. In this case, if either u or v is no longer an endpoint of a
matched non-edge in M , it is added to LO. In any case, LI consists of all vertices which are endpoints of
matched non-edges in M .

To summarize, Update-Non-Edges returns a tuple (LO, LI ,M) where:

1. M consists of all edges that are added to MN after this update.

2. LO consists of vertices which cease to be endpoints of a matched non-edge in MN after this update. These
vertices will be handled by our perfect matching algorithms in Step II.

3. LI consists of vertices that are endpoints of newly matched non-edges in MN after this update. This set
can also include u or v.

It follows that |LO| ↓ 2, |LI | ↓ 4 and |M | ↓ 2.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited4999

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 7 Update-Non-Edges(u, v)

1: C ↗ almost-clique containing u, v.
2: LO, LI ,M ↗ ⇐.
3: if MN > ω2! at the beginning of this phase then
4: if (u, v) is an edge insertion then ϱ (u, v) is a non-edge deletion.
5: E(C) ↗ E(C)\{(u, v)}, EC(u) ↗ EC(u) \ {v}, EC(v) ↗ EC(v) \ {u}.
6: if (u, v) → MN then
7: MN ↗ MN \ {(u, v)}, LO ↗ LO ⇑ {u, v}.
8: else
9: E(C) ↗ E(C) ⇑ {(u, v)}, EC(u) ↗ EC(u) ⇑ {v}, EC(v) ↗ EC(v) ⇑ {u}.

10: else
11: bu ↗matched[u], bv ↗matched[v].
12: M ↗ Maintain-Matching(u,v).
13: for w → {u, v} do
14: if bw = 1 and matched[w] = 0 then
15: LO ↗ LO ⇑ {w}.
16: LI ↗ LI ⇑ (⇑(x,y)↑M{x, y}).
17: return (LO, LI ,M).

Lemma 5.13. Algorithm Update-Non-Edges takes O(ω!) time and maintains a non-edge matching of size at
least |E(C)|

50ω! for every almost-clique with high probability.

Proof. By Lemma 5.12, and virtue of Algorithm Update-Non-Edges a non-edge matching of size at least |E(C)|
50ω!

is maintained for every almost-clique at any point in time w.h.p.

If MN > ω2! at the beginning of the current phase, the running time is O(1). Otherwise, the running time
is O(ω!), concluding the proof.

5.3.2 Step II: Coloring via Perfect Matchings Given the coloring of sparse vertices and dense vertices
which are matched in the non-edge matching, we present our approach to color the remaining dense vertices in
each almost-clique. Consider an almost-clique C. Recall that we want to ensure that each color c → [!+1] is used
at most twice in C. In case c is used to color endpoints of a matched non-edge, exactly two vertices are colored
c in C. Otherwise, c is assigned to at most one other vertex in C. Let L = C\(⇑(u,v)↑MN

{u, v}) denote the set
of vertices that are not endpoints of any matched non-edge in the non-edge matching MN that is maintained for
C. Let R denote the set of colors in [!+ 1] s.t. R = {i| i → [!+ 1] s.t. AN [i] = 1}, which are not used to color
endpoints of any non-edges in MN . We maintain a perfect matching MP between L and R that corresponds to
a proper coloring of vertices in L at any given point in time.

Let GL,R denote bipartite graph on vertex sets L and R consisting of all edges of the form (u, c) where
u → L, c → R if c is not currently assigned to any neighbor of u except potentially a neighbor in L. We remark
that GL,R is not maintained explicitly since this can be prohibitive in terms of time complexity. Instead, we
exploit structural properties of the GL,R to recompute a perfect matching MP before a new phase begins and
dynamically maintain it during any phase under vertex updates. The matched neighbor c of any vertex v → L in
MP simply corresponds to the color of v at any point, i.e. c(v) = c.

Our algorithm utilizes a subroutine Match(·) which takes as input a vertex v → L in some almost-clique C,
and recolors v by assigning a proper color to v. We give our subroutine Match(v) as follows.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5000

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 8 Match(v)

1: if |MN | ↔
!
10 then

2: Random-Match(v).
3: else
4: if |C| > ! then
5: Match-Large(v).
6: else
7: Match-Small(v).

Consider the case when a vertex v → L has to be recolored. Algorithm Match considers two cases depending
on the current size of MN : i) |MN | ↔

!
10 , and ii) |MN | < !

10 . For the former, we present a simple algorithm,
Random-Match as follows.

Algorithm Random-Match: On input vertex v, algorithm repeatedly samples a color c → [!+1] until a feasible
color in R is found which is not assigned to any of v↓s neighbors.

Algorithm 9 Random-Match(v)

1: c(v) ↗⇓.
2: while c(v) =⇓ do
3: Sample a color c uniformly at random from [!+ 1].
4: if c → R and N(v) ⇒ (L(c) ⇑ LD(c)) = ⇐ then
5: c(v) ↗ c, MP ↗ MP ⇑ {(v, c)}.

Lemma 5.14. On input v, Random-Match takes Õ(n

!) time with high probability and assigns a proper color to
v for ω < 1

500 .

Proof. Since |MN | > !
10 , note that whenever ω < 1

500 , |L| ↓ (1 + 5ω)! ↑ 2|MN | ↓ 0.81!. On the other hand,
|R| ↔ (! + 1 ↑ 0.1!) ↔ 0.9!. Moreover, each vertex in L has at most 5ω! < 0.01! neighbors outside C
throughout a phase by Lemma 5.1. Thus, there are at least 0.9!↑ 0.81!↑ 0.01! = 0.08! = #(!) colors in R

that v → L can be matched to, at any given point in time. Thus, after O(log n) iterations of the while loop (lines
3-5) of Random-Match, v is assigned a color with high probability by a Cherno! bound. Checking feasibility
of any color takes Õ(n

!) time since L(c) has size at most Õ(n

!) by Lemma 5.4 and LD(c) has size at most O(n

!).
Thus Random-Match takes a total time of Õ(n

!) time w.h.p.

For the case, when the non-edge matching MN is less than !
10 , we distinguish two cases depending on the

size of the almost-clique C: i) |C| > ! and ii) |C| ↓ !. We give subroutines Match-Large and Match-Small
respectively for these two cases, in the following sections.

5.3.3 Perfect Matchings for Large Almost-Cliques In this section, we describe how to maintain perfect
matchings for large almost-cliques C, i.e. |C| = !+ k for some k > 0.

Data Structures. Recall that each vertex v → V maintains lists of its sparse and dense neighbors
NS(v) and ND(v) and for any almost-clique C, the list NC(v) containing its neighbors in C.

We maintain an additional data structure TC(c) for an almost-clique C and all c → [!], which counts the
number of edges with one endpoint in C and the other endpoint u in VS where c(u) = c. We describe how to
initialize and maintain these counters at the beginning of and, during a phase respectively.

Initializing Edge Counts: The counters TC(c) are initially 0 for all c → [! + 1], and all almost-cliques C at the
beginning of a phase. We iterate over all sparse vertices v → VS , and for each almost-clique C increment TC(c(v))

by |NC(v)|. This takes O(n

!) time per vertex v since there are O(n

!) almost-cliques, and a total time of O(n
2

!)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5001

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

time to initialize all counters. Amortizing over the length of a phase, which is ”(ω2!) yields an amortized update
time of O(n

2

ω2!2) to initialize these counters.

Maintaining Edge Counts: During any phase, consider the case when a sparse vertex v is recolored from i to j.
For every almost-clique C, we decrement TC(i) by |NC(v)| and increment TC(j) by |NC(v)|. This takes O(n

!)
time by the upper bound on the number of almost-cliques.

Definition 4. (Heavy Color) A color c → [!+1] is said to be a heavy color for an almost-clique C is TC(c) >
!
100 .

A color c is light if it is not heavy.

Note that by definition, a heavy color c cannot be assigned to at least !
100 vertices in C since there exists a

sparse neighbor assigned color c for such vertices. The set of all heavy colors for an almost-clique C is denoted by
H. Note that set H depends on counters TC(c), and can be maintained at any give point in the same asymptotic
time required to maintain TC(c).

The next lemma shows that even if the set of heavy colors H is excluded from the set of remaining unused
colors R after Step I, there are at least |L| colors. This allows us to maintain a perfect matching between L and
colors in R\H e"ciently, as shown later.

Lemma 5.15. Let C be an almost-clique, such that |C| = ! + k for k > 0, and let t denote the total number of
edges incident to C from vertices outside C. Then, |MN | ↔

k→1
100ω + t

100ω! .

Proof. We first lower bound the number of non-edges in C:

|E(C)| =

(
!+ k

2

)
↑ |E(C,C)|

↔
(!+ k)(!+ k ↑ 1)

2
↑

(!+ k)!↑ t

2

=
(!+ k)(!+ k ↑ 1)

2
↑

!(!+ k)

2
+

t

2

=
(!+ k)(k ↑ 1)

2
+

t

2

↔
(k ↑ 1)!

2
+

t

2
.

Invoking Lemma 5.13, it follows that |MN | ↔
k→1
100ω + t

100ω! , completing the proof.

Lemma 5.16. For ω ↓ 1
10000 , |R|↑ |H| ↔ |L| whenever |C| = !+ k for k > 0.

Proof. We have that |R| ↔ !+ 1↑ |MN | and L ↓ !+ k ↑ 2|MN |. Thus, to prove the claim, it su"ces to show
that |MN | ↔ k ↑ 1 + |H|. On the other hand, note that t ↔ !|H|

100 by the definition of a heavy color. By Lemma
5.15, we have that |MN | ↔

k→1
100ω + t

100ω! . Thus, we have that,

|MN | ↔
k ↑ 1

100ω
+

t

100ω!
↔

k ↑ 1

100ω
+

|H|

10000ω
↔ k ↑ 1 + |H|

whenever ω ↓ 1
10000 .

Algorithm Match-Large: We give our subroutine Match-Large which on input v matches (recolors) v → L in
some almost-clique C. Our algorithm proceeds as follows. First, an arbitrary unassigned color c → R\H is picked.
If c can be assigned to v, then v is assigned c. Note that this requires scanning L(c) and LD(c) to check if any
neighbor of v outside C, is assigned c.

If v cannot be colored c, an augmenting path of length 3 in MP is found with constant probability as follows.
First, the algorithm samples a random vertex w in L. Our analysis reveals that a constant fraction of vertices in L

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5002

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

can be assigned color c and thus, c is feasible for w with constant probability. Let c(w) denote the color currently
assigned to w. Moreover, we show that c(w) is feasible for v with constant probability. The resulting augmenting
path is ↙u, c(w), v, c∝ and the algorithm sets c(v) := c(w), and c(w) := c. Repeating this process O(log n) times
ensures that a length three augmenting path is found and v is matched in MP with high probability. The
pseudo-code is given as follows.

Algorithm 10 Match-Large(v)

1: c(v) ↗⇓.
2: while c(v) =⇓ do
3: Pick an unassigned color c from R\H.
4: if N(v) ⇒ (L(c) ⇑ LD(c)) = ⇐ then
5: c(v) ↗ c, MP ↗ MP ⇑ {(v, c)}.
6: else
7: Sample a random vertex w → L

8: c↓ ↗ c(w).
9: if N(w) ⇒ (L(c) ⇑ LD(c)) = ⇐ and N(v) ⇒ (L(c↓) ⇑ LD(c↓)) = ⇐ then

10: c(v) ↗ c↓, MP ↗ MP \{(w, c↓)},MP ↗ MP ⇑ {(v, c↓}.
11: c(w) ↗ c,MP ↗ MP ⇑ {(w, c)}.

Lemma 5.17. On input v, Match-Large takes Õ(n

!) time with high probability and assigns a proper color to v
for ω < 1

500 .

Proof. Note that checking if an unassigned color c picked from R\H is feasible for v takes Õ(n

!) time as before. If
c is not feasible for v, we argue that v can be colored with constant probability in this iteration of the while loop.
Recall from Lemma 5.16 that the size of |R\H| is at least |L|. The list of colors R\H is maintained explicitly,
which is straightforward since R and H are already maintained by our algorithm.

Note that since c /→ H, there are at most !
100 vertices in L with a sparse neighbor having color c. Note that

|L| ↔ !+ k ↑ 2|MN | ↔ 0.8! where the latter inequality follows since |MN | < !
10 . It follows that at least 0.79!

vertices in L can be assigned color c → R \ H. In particular, c is feasible for w with constant probability for a
random vertex w → L.

Next, note that for any vertex v → L, a large fraction of colors in R\H are feasible for v since the number of
neighbors of v outside C is at most 5ω! ↓

!
100 by Lemma 5.1. Since |R\H| ↔ |L|, v has at least 0.79! feasible

colors in R \ H. Now, since w is a random vertex, it holds that c(w) is feasible for v with constant probability.
Thus, the resulting augmenting path ↙v, c(w), w, c∝ is feasible with constant probability. Checking feasibility of a
color for any vertex takes Õ(n

!) time; thus, a single iteration of the while loop (lines 2-11) takes Õ(n

!) time and v

is colored with constant probability. Thus, after Õ(1) iterations, v is colored with high probability by a Cherno!
bound. Thus, the total time of Match-Large is Õ(n

!) w.h.p.

Next, we give our subroutine for small almost-cliques.

5.3.4 Perfect Matchings for Small Almost-Cliques For a small clique C of size at most !, we use a
di!erent algorithm. We assume for the rest of the section that the size of the non-edge matching MN maintained
on E(C) is at most !

10 .

Let A be the set of available colors in [!+ 1] that are not assigned to any vertex in an almost-clique C. We
maintain A explicitly in a simple manner; every time a vertex is recolored in C, A is updated (to avoid clutter in
our recoloring subroutines, we omit this update to A). As before, let L denote the set of vertices in C that are
not endpoints of any matched non-edge in MN . We give an algorithm Match-Small as follows.

Algorithm Match-Small: To assign a color to vertex v our algorithm proceeds as follows.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5003

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

L R

w

u

v

c(w)

c(u)

c

uncolored vertex color in A assigned colors after re-coloring

L R

w

u

v

c(w)

c(u)

c

Figure 5.1: The length five augmenting path we find for coloring a vertex v in small almost-cliques.

First, a random vertex u → L and a random color c → A are sampled. The feasibility of color c is checked for
u. If c is not feasible for u, this step is repeated.

Let u → L and c be the random vertex and color respectively from the last step such that c is feasible for
u. Next, we sample a random vertex w → L and check if c(u) is feasible for w. If it is, we then check if c(w) is
feasible for v. If this is the case, v is colored c(w), w is colored c(u) and u is colored c corresponding to a length
five augmenting path. See Figure 5.1

Algorithm 11 Match-Small(v)

1: c(v) ↗⇓.
2: while c(v) =⇓ do
3: c ↗⇓.
4: while c =⇓ do
5: Sample a random vertex u → L uniformly at random.
6: Sample a random color c↓ → A.
7: if N(u) ⇒ (L(c↓) ⇑ LD(c↓)) = ⇐ then
8: c ↗ c↓.
9: Sample a random vertex w → L.

10: c↓ ↗ c(u), c↓↓ ↗ c(w).
11: if N(w) ⇒ ((LD(c↓) ⇑ L(c↓) \ {u})) = ⇐ then
12: if (N(v) ⇒ ((L(c↓↓) ⇑ LD(c↓↓)) \ {w})) = ⇐ then
13: c(v) ↗ c↓↓,MP ↗ MP ⇑ {(v, c↓↓)}.
14: c(u) ↗ c,MP ↗ MP ⇑ {(u, c)},MP ↗ MP \{(u, c↓)}.
15: c(w) ↗ c↓,MP ↗ MP ⇑ {(w, c↓)},MP ↗ MP \{(w, c↓↓)}.

We prove the following lemma.

Lemma 5.18. On input v where v is in an almost-clique of size !+ 1↑ k for some k ↔ 1, Match-Small takes
Õ(ωn) time with high probability and assigns a proper color to v.

We build towards a proof of the Lemma 5.18 via the following claims. Let U ↘ L denote the set of vertices
in C that are currently not assigned a color.

Claim 1. |A| = k + |MN |+ |U |.

Proof. For endpoints of a non-edge in MN , a single color is used and the rest of the vertices in C \U are assigned
unique colors. Thus, the total number of colors assigned to vertices in C is at most

|MN |+ (|C|↑ 2|MN |↑ |U |) = |C|↑ |MN |↑ |U | = !+ 1↑ k ↑ |MN |↑ |U |.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5004

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Since there are a total of !+ 1 colors, the number of available colors is exactly

!+ 1↑ (!+ 1↑ k ↑ |MN |↑ |U |) = k + |MN |+ |U |.

Next, let us bound the number of edges with one endpoint in D and another outside C where D ↘ C.

Claim 2. For any D ↘ C, the total number of edges of D to V \ C is at most |D|k + 100|MN |ω!.

Proof. Recall that we maintain sets NC(v) and EC(v) corresponding to the neighbors and non-edges of any vertex
v in C, respectively. Since the maximum degree of the graph is !, the number of edges with one endpoint in D
and another in V \ C is at most

∑

v↑D

!↑ |NC(v)| =
∑

v↑D

!↑ (|C|↑ 1↑ |EC(v)|) =
∑

v↑D

!↑ (!↑ k ↑ |EC(v)|) = k|D|+
∑

v↑D

|EC(v)|.

Note that
∑

v↑D
|EC(v)| ↓ 2|E(C)|. By Lemma 5.12, we know |MN | ↔ |E(C)|/(50ω!). Together, these bounds

imply
∑

v↑D
|EC(v)| ↓ 2|E(C)| ↓ 100|MN |ω!. Substituting into the inequality above concludes the proof.

Let T be the set of colors not in A and not assigned to any endpoint of a matched non-edge in MN . In other
words, these are colors assigned to vertices in L \ U . We call a color c → T a good color if at least !/10 vertices
in L do not have a neighbor in V \ C of color c. Let TG denote the set of good colors, and LG denote the set of
vertices in L that are assigned a good color, respectively. We do not maintain the list of good colors explicitly,
and they are only used for analysis.

Definition 5. (Color availability for a vertex) We say that a color c → A is available for a vertex v → L if no
vertex in N(v) \ L is assigned c.

Claim 3. |LG| ↔ |L|↑ o(!) for ω = o(1).

Proof. If a vertex of L is not in LG, then it is assigned a color that is not good. Call such a color bad.
By definition, for every bad color c, at least |L| ↑ !/10 vertices in L have a neighbor in V \ C assigned
color c. Since |C| ↔ (1 ↑ 4ω)! ↔ (1 ↑ o(1))! by Lemma 5.1 and |L| = |C| ↑ 2|MN |, there are at least
(1 ↑ o(1))! ↑ 2|MN | ↑ !/10 ↔ 0.6! edges with one endpoint in L and the other to vertex in V \ C which is
assigned a particular bad color c.

Since the total number of edges with one endpoint in C and another in V \C is at most |C|5ω! ↓ 5ω!2 = o(!2)
by Lemma 5.1, we get that the total number of bad colors is at most o(!2)/0.6! = o(!). Hence, we get that
|LG| ↔ |L|↑ o(!).

Claim 4. The total number of vertex-color pairs (u, c) where u → LG , c → A, and c is available for u is at least

|LG||U |+ #(!|MN |).

Proof. From Claim 2, we know that at most |LG|k + 100|MN |ω! edges have one endpoint in LG and another in
V \ C. Note that a color c → A is available for a vertex u → LG unless u has a neighbor in V \ L of color c. As
such, the total number of vertex-color pairs (u, c) where u → LG, c → A, and c is available for u is at least

|LG||A|↑

(
|LG|k + 100|MN |ω!

)
.

Replacing |A| = k + |MN |+ |U | from Claim 1, this is at least

|LG|(k + |MN |+ |U |)↑
(
|LG|k + 100|MN |ω!

)
= |LG|(|MN |+ |U |)↑ 100ω!|MN |.

Since |LG| ↔ |L|↑ o(!) and |L| = #(!), this is at least #(!|MN |) + |LG||U |.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5005

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.19. Let c → A be a random color picked from A and u → L be a random vertex picked from L. Let
U ↘ L be the set of vertices not currently assigned a color, where |U | ↔ 1. Then, the probability that c is available
for u is at least #(|U |

k+|U |
).

Proof. By Claim 4, it follows that the total number of vertex color pairs (u, c) where u → LG , c → A, and c is
available for u is at least |LG||U | + #(!|MN |). By Claim 3, a random vertex u belongs to LG with constant
probability. Conditioned on this event, the probability that c is available for v, is at least

|LG||U |+ #(!|MN |)

|LG||A|

Claim 1
=

|LG||U |

|LG|(k + |MN |+ |U |)
+

#(!|MN |)

|LG|(k + |MN |+ |U |)
.

If |MN | > k + |U |, this quantity is at least #(1). On the other hand, if |MN | < k + |U |, where U is the set of
vertices currently uncolored, then the probability that a random color c is available for v is #(|U |

k+|U |
) by the first

term.

The following corollary is immediate from Lemma 5.19.

Corollary 5.3. Let c → A be a random color picked from A and u → L be a random vertex picked from L, such
that there is at least one vertex in C not assigned any color. Then, the probability that c is available for u is at
least #(1

k
).

Lemma 5.20. Let U denote the set of vertices that are not assigned any color in a clique C of size at most !.
Then, Match-Small takes Õ((1 + k

|U |
) n

!) update time with high probability..

Proof. We prove that the while loop (lines 2-15) of Match-Small succeeds with constant probability. Thus,
after Õ(1) iterations, v is assigned a proper color with high probability by a Cherno! bound.

From Lemma 5.19, it follows that for a random vertex u and random color c picked from L and A respectively,
c is available for u with probability at least #(|U |

k+|U |
). Note that we can check feasibility of this color in Õ(n/!)

by Lemma 5.4 and the fact that LD(c) has size at most O(n

!). Repeating the process Õ(1+ k

|U |
) times, a feasible

pair (u, c) can be bound with high probability. Thus, the while loop (lines 4-8) of Match-Small takes total time
Õ((1 + k

|U |
) n

!) w.h.p.

Let us condition on the event that the vertex u → LG, which happens with constant probability by Claim
3. Thus, the color c(u) currently assigned to u must be available for at least !/10 vertices in L. The algorithm
picks a random vertex w → L and checks if c(u) is available for it; note that since w is randomly chosen, c(u) is
available for w with constant probability. This takes Õ(n

!) time.

Next, we analyze the probability that c(w) is available for v. Note that since there are at least !/10 choices
of w, and there are at most O(ω!) = o(!) colors that we cannot assign to v due to its neighbors outside C, it
follows that c(w) is available for v with constant probability. Thus, c(w) is available for v and c(u) is available
for w, with constant probability. This step takes Õ(n

!) time.

Thus, the running time of Match-Small is bounded by Õ((1 + k

|U |
) n

!) with high probability.

We are now ready to prove Lemma 5.18.

Proof. [Proof of Lemma 5.18] Since k = O(ω!) by the lower bound on the size of C by Lemma 5.1 and |U | ↔ 1,
it follows from Lemma 5.20 that the running time of Match-Small is bounded by Õ(n

! + ωn) = Õ(ωn).

5.3.4.1 Initializing Perfect Matchings For a New Phase

Given our algorithm Match and subroutines Match-Small and Match-Large respectively, we bound the
total update time for initializing perfect matchings for all almost-cliques at the beginning of any phase.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5006

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Initializing perfect matchings is simple. We simply iterate over all cliques sequentially. Let C denote the
clique in consideration. For all v → L where L corresponds to the vertices in C that are not endpoints of any
matched non-edges in C, we invoke Match(v). The following lemma bounds the amortized update time to
initialize perfect matchings.

Lemma 5.21. The amortized update time to initialize perfect matchings for all almost-cliques, given a proper
coloring of sparse vertices and matched non-edges at the beginning of any phase is Õ(n

2

ω2!2) with high probability.

Proof. Note that the total number of vertices that are matched by our perfect matching algorithms at any point in
time is bounded by n. Note that for any vertex that is not an endpoint of a matched non-edge in its almost-clique
one of the subroutines Random-Match,Match-Small and Match-Large is invoked to assign a proper color.

For almost-cliques for which the non-edge matching |MN | ↔
!
10 , it follows by Lemma 5.14, that recoloring a

single vertex takes Õ(n

!) w.h.p. Thus, the total time to match all vertices using Algorithm Random-Match is
Õ(n

2

!) w.h.p.

For large almost-cliques of size greater than !, it follows by Lemma 5.17 that, to color a single vertex takes
time Õ(n

!) and thus, the total update time is bounded by Õ(n
2

!) w.h.p.

On the other hand, for a small almost-clique C let U denote the set of vertices which are currently not assigned
a color. Clearly, |U | ↓ ! and by Lemma 5.20, an invocation to Match-Small takes Õ((1 + k

|U |
) n

!) time w.h.p.
Thus, the total update time to match all vertices in C is bounded by

∑!
|U |=1 Õ((1+ k

|U |
) n

!) = Õ(n+
∑!

|U |=1
ωn

|U |
) =

Õ(n+ ωn ln!) = Õ(n). For all O(n

!) small almost-cliques, this takes a total time of Õ(n
2

!) w.h.p.

Thus, the total time to initialize perfect matchings at the beginning of a phase is Õ(n
2

!). Amortized over the
length of a phase, this yields Õ(n

2

ω2!2) time w.h.p.

5.4 The Final Algorithm In this section, we give our full algorithm based on our approaches outlined in the
previous sections. Our algorithm utilizes two subroutines, initialization and Update-Coloring, respectively.

Recall that our algorithm works with a fixed decomposition of V into VS , and VD = (C1, C2, ..., Cε) throughout
a phase of consisting of t = ω

2!
18e6 updates as outlined in Section 5.1. After a phase Ui finishes, the Initialization

subroutine reflects edge updates in Ui, to yield an updated sparse-dense decomposition that our algorithm works
with, for the next phase. The Initialization subroutine is also responsible for recoloring all vertices from scratch,
based on the updated decomposition.

The Update-Coloring subroutine, maintains a proper coloring of G after an edge update during a phase.
Both subroutines are described as follows.

5.4.1 Initialization subroutine The Initialization subroutine is responsible for i) initializing data
structures and ii) recoloring vertices in V at the beginning of a new phase.

5.4.1.1 Initializing Data Structures.

After a phase Ui finishes, edge updates in all data structures performed during the phase Ui are undone (reversed)
to yield the states of all data structures at the beginning of a phase. Crucially, we recover the non-edge matching for
every almost-clique that is computed by the dynamic matching algorithm [9] at the beginning of Ui. This matching
corresponds to the one obtained before carrying out the post-processing step (in case of small of matchings to
transform it into a maximal matching). This can be accomplished by maintaining a batch of ”(ω2!) changes
that are made to all data structures in any phase. Thus, the total time to recover the states of all data structures
at the beginning of a phase Ui is bounded by ”(ω2!) and takes O(1) amortized update time.

Next, for each update (u, v) in Ui, we invoke algorithm Update-Decomposition(ω, ω

3 , (u, v)) and the dynamic
matching algorithm with ς = 1

6 (see Lemma 5.7). This ensures that a non-edge matching based on the updated

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5007

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

sparse-dense decomposition accounting for updates in phase Ui is obtained. By Lemma 5.8 it follows that these
steps combined take Õ(1

ω4
) amortized update time w.h.p. and a matching of size at least |E(C)|/(22ω!) can be

obtained for all almost-cliques. Corollary 5.1 implies that accounting for the post-processing step (to transform
small non-edge matchings to maximal matchings) yields an overall amortized update time of Õ(1

ω4
+ ωn).

Thus, the amortized update time for initializing data structures is bounded by Õ(1
ω4

+ ωn). A subtle point to
note is that the update time guarantee of the dynamic matching algorithm (see Lemma 5.7) need not necessarily
hold in the amortized sense for a sequence of ”̃(ω2! ·

1
ω4
) = ”̃(!

ω2
) updates. However, as long as the number of

phases is su"ciently large (i.e. the update sequence is long enough) the amortized update time guarantee for the
Initialization subroutine holds.

5.4.1.2 Recoloring Vertices from Scratch.

The Initialization subroutine recolors all vertices in V from scratch. Let VS and VD = (C1, C2, ..., Cε) denote
the (updated) decomposition of V . All vertices are uncolored at this point, i.e. c(v) =⇓ for all v → V . By Lemma
5.6, the amortized update time to recolor sparse vertices is Õ(n

2

ω2!2).

Initializing the data structures TC(c) for all c → [! + 1] for all almost-cliques C, takes O(n
2

ω2!2) amortized
update time as noted in Section 5.3.3.

Dense vertices in almost-cliques C1, C2, ..., Cε are sequentially colored as follows. Let Ci be an almost-clique.
First, endpoints of each matched non-edge are assigned a color using algorithm Recolor-Non-Edge (see 5.3.1).
The number of non-edges is at most O(n) and by Corollary 5.2, it follows that the amortized update time to
recolor non-edges across all almost-cliques is Õ(n

2

ω2!2).

Finally, we color the remaining uncolored vertices in all almost-cliques C1, C2, .., Cε sequentially as described
in Section 5.3.4.1 which takes Õ(n

2

ω2!2) amortized update time with high probability.

Thus, recoloring all vertices from scratch takes Õ(n
2

ω2!2) time w.h.p.

The following Lemma is immediate from the preceding discussion.

Lemma 5.22. The amortized update time for the Initialization is Õ(n
2

ω2!2 + ωn+ 1
ω4
) w.h.p.

5.4.2 Handle-Update Subroutine To maintain a proper coloring on G after an edge update (u, v) during
a phase Ui, our algorithm utilizes the Handle-Update subroutine. In the following sections we consider
the following cases for an edge update (u, v) and give implementations of the Handle-Update subroutine,
respectively.

1. u, v → VS .

2. u → VS , v → VD.

3. u, v → VD.

5.4.2.1 Case 1

We assume that the edge update (u, v) is of the form u, v → VS .

1. (u, v) is an edge deletion: Vertex v (resp. u) is removed from NS(u) (resp. NS(v)).

2. (u, v) is an edge insertion: Vertex v (resp. u) is added to NS(u) (resp. NS(v)).
If c(u) = c(v), vertex v is recolored by invoking Algorithm Recolor-Sparse(v). Let c denote the color
assigned to v. For all almost-cliques C, the counters TC(c(u)) and TC(c) are updated by decrementing

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5008

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

TC(c(u)) by |NC(v)| and incrementing TC(c) by |NC(v)|. Next, all neighbors w of v in LD(c), are recolored.
Since |LD(c)| = O(n

!) the number of such neighbors w is bounded by O(n

!).
Consider any neighbor w of v in some almost-clique C. Since any almost-clique C has at most two vertices
of any color, v has at most two neighbors in LD(c) which are in C. If there is exactly one neighbor w, then
it must be a matched vertex in the perfect matching maintained for C. Otherwise, if v has two neighbors
w, x colored c then (w, x) must be a matched non-edge.
If a neighbor w is an endpoint of a matched non-edge (w, x) the subroutine Recolor-Non-Edge(w, x)
is invoked. Thereafter, c is added to R. If an edge (y, c(w)) if present in the perfect matching MP , it is
removed, c(y) is set to ⇓ and Match(y) is invoked.
On the other hand, if a neighbor w of v is an endpoint of an edge in the perfect matching MP , such that
(w, c) → MP , (w, c) is removed, c(w) is set to ⇓ and Match(w) is invoked.

Lemma 5.23. For Case 1, Handle-Update(u, v) takes Õ(n

ω2! + n
2

!2 + ωn
2

!) update time w.h.p.

Proof. If the update is an edge deletion, only O(1) update time is incurred. If the update is an edge insertion,
Algorithm Recolor-Sparse takes Õ(n

ω2!) time w.h.p by Lemma 5.5. Updating counters TC(·) takes O(n

!) time.
Recoloring of neighbors w of v in an almost-clique takes at most Õ(n

! + ωn) time by Lemmas 5.10, 5.17 and 5.18
w.h.p. Thus, the total update time for all almost-cliques is Õ(n

! · (n

! + ωn)) = Õ(n
2

!2 + ωn
2

!) w.h.p.

Thus, the total update time for Handle-Update for Case 1 is Õ(n

ω2! + n
2

!2 + ωn
2

!) w.h.p.

5.4.2.2 Case 2

We assume that the edge update (u, v) is of the form u → VS , v → VD. Let v be in almost-clique C.

1. (u, v) is an edge deletion: Vertex v (resp. u) is removed from ND(u) (resp. NS(v)). The counter TC(c(u))
is decremented by |NC(u)|. Vertex v is removed from NC(u).

2. (u, v) is an edge insertion: Vertex v (resp. u) is added to ND(u) (resp. NS(v)). The counter TC(c(u)) is
incremented by |NC(u)|. Vertex v is added to NC(u). If c(u) = c(v), we recolor vertex v as follows.
If v is an endpoint of a matched non-edge (v, w) the subroutine Recolor-Non-Edge(v, w) is invoked. Let
c denote the color assigned to v, w. Thereafter, color c(u) is added to R and c is removed from R. If an
edge (y, c) if present in the perfect matching MP , it is deleted, c(y) is set to ⇓ and Match(y) is invoked.
On the other hand, if v is an endpoint of an edge in the perfect matching MP , edge (v, c) → MP is deleted,
c(v) is set to ⇓ and Match(v) is invoked.

Lemma 5.24. For Case 2, Handle-Update(u, v) takes Õ(n

! + ωn) update time w.h.p.

Proof. If the update is an edge deletion, only O(1) update time is incurred. If the update is an edge insertion,
the total time taken is at most Õ(n

! + ωn) time by Lemmas 5.10, 5.17 and 5.18 w.h.p.

5.4.2.3 Case 3

We assume that the edge update (u, v) is of the form u, v → VD. Let v be in almost-clique C.

1. (u, v) is an edge deletion: There are two sub-cases.

(a) u → C: Vertex v (resp. u) is removed from ND(u) (resp. ND(v)) and NC(u) (resp. NC(v)). Algorithm
Update-Non-Edges(u, v) is invoked and sets (LO, LI ,M) are returned, where |M | ↓ 1, LO = ⇐ (since
no vertices which are endpoints of matched non-edges get unmatched), and |LI | = 2|M |. For w → LI ,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5009

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

edge (w, c) → MP is deleted and w is removed from L. Thereafter, Recolor-Non-Edge(w, x) is
invoked, where (w, x) is a newly matched non-edge in M . Let c↓ denote the color assigned to w, x. The
color c↓ is removed from R and if there exists an edge (y, c↓) → MP , it is removed from MP , c(y) is
set to ⇓, and Match(y) is invoked.

(b) u /→ C: Vertex v (resp. u) is removed from ND(u) (resp. ND(v)). Vertex v is removed from NC(u),
and u is removed from NC→(v) where C ↓ is the almost-clique of v.

2. (u, v) is an edge insertion: There are two sub-cases.

(a) u → C: Vertex v (resp. u) is added to ND(u) (resp. ND(v)) and NC(u) (resp. NC(v)). Algorithm
Update-Non-Edges(u, v) is invoked and sets (LO, LI ,M) are returned, where |M | ↓ 2, |LO| ↓ 2 and
|LI | = 2|M |. First, for all w → LI ⇒ L, edge (w, c↓) is removed from MP , and w is removed from L.
Thereafter, Recolor-Non-Edge is invoked on all edges (w, x) → M . Let c denote the color assigned
to w, x for any non-edge (w, x) → M by Recolor-Non-Edge. The color c is removed from R and if
there exists an edge (y, c) → MP , it is removed from MP , c(y) is set to ⇓, and Match(y) is invoked.

(b) u /→ C: Vertex v (resp. u) is added to ND(u) (resp. ND(v)). Vertex v is added to NC(u), and u is
added to NC→(v) where C ↓ is the almost-clique of v. If c(u) = c(v), we recolor vertex v similarly to
Case 2. If v is an endpoint of a matched non-edge (v, w) the subroutine Recolor-Non-Edge(v, w)
is invoked. Let c denote the color assigned to v, w. Thereafter, c(u) is added to R and c is removed
from R. If an edge (y, c(v)) if present in the perfect matching MP , it is deleted, c(y) is set to ⇓ and
Match(y) is invoked.
On the other hand, if v is an endpoint of an edge in the perfect matching MP , edge (v, c) → MP is
deleted, c(v) is set to ⇓ and Match(v) is invoked.

Lemma 5.25. For Case 3, Handle-Update(u, v) takes Õ(n

! + ωn) update time w.h.p.

Proof. If u /→ C and (u, v) is an edge deletion, the update time is O(1). If u /→ C and (u, v) is an edge insertion,
the update time is Õ(n

! + ωn) by Lemmas 5.10, 5.17 and 5.18 w.h.p.

If (u, v) is an edge insertion or deletion, and u → C, the call to Update-Non-Edges takes O(ω!) time w.h.p.
by Lemma 5.13. There are at most O(1) invocations of subroutines Recolor-Non-Edge and Match thereafter,
which takes Õ(n

! + ωn) time in total w.h.p. by Lemmas 5.10, 5.17 and 5.18.

Thus, for Case 3, the total update time is bounded by Õ(n

! + ωn) w.h.p.

We conclude by giving a proof of Theorem 1.1.

Theorem 5.1. There exists a fully dynamic algorithm for (! + 1)-coloring taking amortized update time of
Õ(n8/9) w.h.p., against an adaptive adversary.

Proof. By Lemma 5.22, the amortized update time of the Initialization subroutine of our algorithm is
Õ(n

2

ω2!2 + ωn + 1
ω4
) while the time taken by the Handle-Update subroutine of our algorithm is Õ(n

ω2! + n
2

!2 +
ωn

2

! + n

! + ωn) = Õ(n

ω2! + n
2

!2 + ωn
2

!) by Lemmas 5.23, 5.24 and 5.25.

Thus, all in all our algorithm takes Õ(n
2

ω2!2 + 1
ω4

+ ωn
2

!) since ω < 1 and n ↔ !.

Setting ω = !1/5

n2/5 yields an amortized update time of Õ(n
8/5

!4/5 + n
14/5

!12/5) = Õ(n
8/5

!4/5) for our algorithm.

When ! ↓ n8/9, the naive algorithm which scans all neighbors of any vertex after any edge update to find a
feasible color takes O(n8/9) time.

On the other hand, when ! > n8/9, our algorithm with ω = !1/5

n2/5 takes Õ(n8/9) update time. Note that the
conditions on ω in various Lemmas and in particular Lemma 5.12 are satisfied for ! su"ciently large, completing
the proof.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5010

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

6 Fully Dynamic Algorithm for Sparse-Dense Decomposition

We recall Theorem 4.1.

Theorem 6.1. For any graph G = (V,E), and any constant 0 < ω < 3
50 , there exists a fully dynamic randomized

algorithm which maintains a graph decomposition of G in O(lnn

ω4
) worst-case update time against an adaptive

adversary. The algorithm maintains a partition of V := VS ⇑ VD such that at all times VS ↘ V sparse
4ω/3 and

VD ↘ V dense
11ω/4 .

Furthermore, VD is partitioned into vertex-disjoint almost-cliques VD := C1 ⇑ C2 ⇑ ...Cε such that after
processing any edge update, the following properties for all i → [ε] hold with high probability:

1. (1↑ 4ω)! ↓ |Ci| ↓ (1 + 10ω)!.

2. Each vertex in Ci has at least (1↑ 4ω)! neighbors in Ci.

3. The adjustment complexity of non-edges is O(1
ω4
).

The rest of this section is devoted to proving Theorem 4.1. We first start with an informal overview of the
algorithm in Section 6.1, and formalize it in the forthcoming sections.

6.1 High Level Overview of Our Algorithm We give an informal overview of our sparse-dense decompo-
sition in this section.

Our algorithm keeps track of the sparsity of vertices and ‘friend-ness’ of edges under edge updates. We give
simple subroutines which rely on random sampling to determine whether an edge is an ω-friend edge or a vertex
is ω-dense. By utilizing standard concentration arguments, we give high probability bounds on their correctness.
A major observation which is exploited by our algorithm is that sparsity of a vertex v is fairly insensitive to edge
updates. In other words, sparsity of a vertex v changes noticeably if v or its neighbors are incident to a su"ciently
large number of edge updates. For example, suppose v is ω-dense at some point. Then, for v to become 2ω-sparse,
it must lose at least ω! of its ω-friends. This can happen via the following types of updates. Firstly, an edge
deletion (u, v) where u is an ω-friend of v decreases the number of ω-friends of v by 1. Secondly, an ω-friend u of v
might lose ω-‘friend-ness’ if it becomes a 2ω-friend. This happens when the number of common neighbors of u and
v decreases by at least #(ω!). Thus, for ω! friends of v which were previously ω-friends and are now 2ω-friends,
there must be at least ω2!2 edge updates in the neighborhood of v. In either case, by assigning a credit of Õ(1

ω4
)

to endpoints of every updated edge, we show that v has a credit of Õ(!
ω2
) available after it becomes 2ω-sparse.

Since the source of all credits is the credit that is assigned to endpoints of an updated edge, some of this credit
on v may be contributed by its neighbors. Our algorithm ensures that whenever a vertex accumulates a credit of
Õ(!

ω2
), it is used to update various data structures, recompute ‘friend-ness’ of incident edges and leave a credit

on v↓s neighbors. Our overall charging scheme is intricate, and involves a careful analysis (see Section 6.2.3 for
details).

In addition to maintaining the list of sparse and dense vertices VS and VD respectively, we also require a
fully dynamic decomposition of VD into almost cliques (C1, C2, ..., Cε). Additionally, we want all almost-cliques to
satisfy desirable properties at all times such as size bounds and small adjustment complexity after any edge update.
Instead of using a fully dynamic connectivity algorithm as a black-box to maintain these almost-cliques induced
by friend edges, which could blow up the adjustment complexity in general, we give an alternative approach to
maintain almost-cliques which ensures low adjustment complexity.

At a high level, our algorithm works as follows. Let us first consider the case when a vertex v becomes
ω-dense. If v is the first vertex in its neighborhood to become ω-dense, we create an almost-clique containing v
and its (1↑ ω)!, ω-friends. However, if v already has an ω-friend u in VD, our algorithm moves all ω-friends of v
(which could be in VS) together with v, to u’s almost-clique. Next, consider when a vertex becomes ”(ω)-sparse.
In this case, v is moved to VS and data structures are updated. However, over a period of time such moves to
VS may cause almost-cliques to violate the desired lower bound of #(!). To get around this, we maintain a
size invariant (in addition to other key invariants–see Section 6.3). Whenever an almost-clique shrinks beyond

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5011

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

a certain threshold size, our algorithm collapses the whole clique and handles su"ciently dense vertices in the
collapsed clique individually. Such vertices can potentially join other almost-cliques thereafter. Our charging
argument shows that a total credit of ”(!) is available for a vertex when it moves to VS or VD. Additionally,
when an almost-clique collapses, a total credit of ”(!2) is available.

All in all, we exploit various sparsity properties and the structure of almost-cliques, together with intricate
charging arguments to obtain Õ(1

ω4
) update time. Our algorithm ensures that the desired properties of the

sparse-dense decomposition are maintained at any given point in time, which allows us to e"ciently maintain a
(!+ 1)-coloring on top of it.

6.2 Subroutines: Friend Edges and Dense Vertices Before providing the full algorithm, we describe some
subroutines which we will utilize extensively in our main algorithm. Throughout this section, let ω = ω↓ + φ for
a small constant φ > 0 where φ ↓ ω↓ is an accuracy parameter that will be set later to enable desired bounds on
the running time. Note that by Definition 1, an ω↓-friend edge is also a ω-friend edge.

6.2.1 Determining Friend Edges For any vertex v, we maintain a set Nω(v) such that any vertex u is in
Nω(v) if and only if (u, v) is an ω-friend edge with high probability. We give a randomized subroutine, Determine-
Friend, which on input a pair (u, v) and parameters ω > 0, φ > 0 determines whether u and v share at least
(1↑ ω+ φ)! common neighbors, with high probability. Subsequently, the lists Nω(u) and Nω(v) are updated.

Algorithm 12 Determine-Friend((u, v), ω, φ)

1: ω↓ ↗ ω↑ φ .
2: Sample k neighbors w1, w2, ..., wk uniformly and independently at random from N(u).
3: Set Zj = 1 if wj → N(u) ⇒N(v), and 0 otherwise.
4: if T = !

k

∑
k

j=1 Zj ↔ (1↑ (ω↑ ϱ

2))! then
5: Nω(v) ↗ Nω(v) ⇑ {u}, Nω(u) ↗ Nω(u) ⇑ {v}.
6: else
7: Nω(v) ↗ Nω(v)\{u}, Nω(u) ↗ Nω(u)\{v}.

Lemma 6.1. Given edge (u, v) and parameters ω > 0, φ > 0 as input, Determine-Friend satisfies the following
with probability at least 1↑ 1

nc , whenever k ↔
12c lnn

ϱ2 = #(lnn

ϱ2), where c > 0 is an arbitrarily large constant:

(a) If (u, v) is a ω↓-friend edge, i.e. |N(u) ⇒ N(v)| ↔ (1 ↑ ω↓)!, then u (resp., v) is added to Nω(v) (resp.,
Nω(u)).

(b) If (u, v) is not a ω-friend edge, i.e. |N(u) ⇒ N(v)| < (1 ↑ ω)!, then u (resp., v) is removed from Nω(v)
(resp., Nω(u)).

Proof. We begin by noting that E[Zj] = Pr[wj → N(u) ⇒N(v)] = 1
! |N(u) ⇒N(v)|. Let Z =

∑
k

j=1 E[Zj]. Thus,
E[Z] =

∑
k

j=1 E[Zi] =
k

! |N(u) ⇒ N(v)|. Moreover, T = !
k
Z and by linearity of expectation, E[T] = !

k
E[Z] =

|N(u) ⇒N(v)|.

Let E1 denote the event that Determine-Friend removes u (resp. v) from Nω(v) (resp. Nω(u)) when
|N(u) ⇒N(v)| ↔ (1↑ ω↓)!. Let E2 denote the event that Determine-Friend adds u (resp. v) to Nω(v)) (resp.
Nω(u)) when |N(u)⇒N(v)| ↓ (1↑ ω↓ ↑ φ)! = (1↑ ω)!. We give a lower bound on k such that the probability is
upper bounded by 1

nc .

We establish part (b) first. By Lines 4–7 of the algorithm, note that Pr[E1] ↓ Pr[T ↔ (1↑ω↓↑ ϱ

2)!] (assuming
that |N(u) ⇒N(v)| < (1↑ ω)!]). For any ς > 0, we have

Pr[T ↑ E[T] ↔ ςE[T]] = Pr

[
!

k
Z ↑

!

k
E[Z] ↔

ς!

k
E[Z]

]
= Pr[Z ↑ E[Z] ↔ ςE[Z]]

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5012

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Applying a standard Cherno! bound for i.i.d. Bernoulli random variables (see [19]), the above probability is at
most e→

ω2E[Z]
3 . Setting ς = ϱ

2(1→ω) and noting that E[Z] = k

! (1↑ ω)! = k(1↑ ω), we obtain

Pr[T ↑ E[T] ↔ ςE[T]] = Pr[Z ↑ E[Z] ↔ ςE[Z]] ↓ e
→

ε2

4(1↑ϑ)2
·
k(1↑ϑ)

3 = e→
ε2k

12(1↑ϑ) .

By setting k ↔
12c(1→ω) lnn

ϱ2 , we conclude that Pr[¬E1] ↓
1
nc , thus completing the proof for part (b).

Similarly, we establish part (a) of the lemma. Suppose |N(u)⇒N(v)| ↔ (1↑ ω↓)!. By Lines 4–7, E2 happens
exactly when T ↓ (1 ↑ ω↓ ↑ ϱ

2)!, which is equivalent to T ↓ (1 + ς)E[T] for ς = ϱ

2(1→ω→) . Again, by applying a
standard Cherno! bound for i.i.d. Bernoulli random variables, we derive

Pr[E2] = Pr[T ↓ (1 + ς)E[T]] = Pr[Z ↓ (1 + ς)E[Z]] ↓ e
→

ε→2
4(1↑ϑ→)2 ·

k(1↑ϑ→)
3 = e

→
ε→2k

12(1↑ϑ→) .

By setting k ↔ max
{

12c(1→ω) lnn

ϱ2 , 12c(1→ω
→) lnn

ϱ2

}
, we obtain Pr[E2] ↓

1
nc . Setting k = 12c lnn

ϱ2 , we obtain the desired
upper bound on Pr[E2], completing the proof of part (b).

6.2.2 Determining Dense Vertices For every vertex v, we maintain boolean variables is-dense(v, d) which is
1 if v is d-dense and 0 otherwise for various values of d, specified later. We give a subroutine Determine-Dense
which, given as input a (ω↑ φ)-dense vertex v → V and parameters ω > 0, φ > 0, determines if v is ω-dense. It is
implemented as follows: for each neighbor u → N(v), run Determine-Friend((u, v), ω, φ). If |Nω(v)| ↔ (1↑ ω)!,
is-dense(v, ω) is set to 1 and 0 otherwise. We also maintain the set Vω of ω-dense vertices containing all vertices in
V for which is-dense(v, ω) = 1, i.e. all vertices which are at most ω dense.

Algorithm 13 Determine-Dense(v, ω, φ)

1: for each vertex u → N(v) do
2: Run Determine-Friend((u, v), ω, φ).
3: if |Nω(v)| ↔ (1↑ ω)! then
4: is-dense(v, ω) = 1.
5: Vω ↗ Vω ⇑ {v}.
6: else
7: is-dense(v, ω) = 0.
8: Vω ↗ Vω\{v}.

Lemma 6.2. Given an (ω ↑ φ)-dense vertex v (hence, ω-dense by definition) and parameters ω, φ as input,
Determine-Dense takes O(! lnn

ϱ2) time and correctly determines if v is ω-dense with probability at least 1↑ 1
nc↑1 .

Here, 1↑ 1
nc is the success probability of Determine-Friend on inputs (u, v), ω and φ as in Lemma 6.1.

Proof. The running time of Determine-Friend((u, v), ω, φ) is O(lnn

ϱ2). Thus, Determine-Dense takes O(! lnn

ϱ2)
time. Note that any call to Determine-Friend((u, v), ω, φ) correctly determines whether (u, v) is a (ω↑φ)-friend
edge with probability at least 1 ↑

1
nc by Lemma 6.1. If v has at least (1 ↑ (ω ↑ φ))! < ! ↓ n such friends u,

then the probability that any of these calls incorrectly determines friend status is at most n ·
1
nc = 1

nc↑1 . Thus, it
follows that if v is (ω↑ φ)-dense, then Determine-Dense(v, ω, φ) is correct with probability least 1↑ 1

nc↑1 .

By a similar argument, if v is ω-sparse then for any edge (u, v) which is not a ω-friend edge, the probability
that Determine-Friend((u, v), ω, φ) correctly determines this is 1 ↑

1
nc by Lemma 6.1. The probability that

this holds for all friend edges (u, v) which are not ω friend edges is at least 1↑ 1
nc↑1 . Thus, if v is ω-sparse, then

Determine-Dense(v, ω, φ) sets is-dense(v, ω) = 0.

6.2.3 Fully Dynamic Algorithm to Maintain Friend Edges Given the subroutines in the pre-
vious section for determining ω-friend edges and ω-dense vertices, we give a fully dynamic algorithm

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5013

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Maintain-Friends((u, v), ω, φ) which takes parameters φ > 0, ω > 0 as input and, maintains for all vertices
v sets Niω(v) for i → {1, 2, 3}. To simplify notation, we use Niω(v) and Ni(v) interchangeably. By definition,
N3(v) ↘ N2(v) ↘ N1(v). Our algorithm satisfies the following properties at any point in time.

1. If u → Niω(v) for any v → V , i → {1, 2, 3} then (u, v) is a (iω+ φ) friend.

2. If is-dense(v, iω) = 1 for any v → V, i → {1, 2, 3} then v is (iω+ φ)-dense.

We now describe the high level ideas of our algorithm. For a vertex v, an edge update is a direct update to v
if it is incident to v. Data structures for v and neighbors u → N(v) are updated after every ϱ!

8 direct updates to
v by invoking subroutine Update(v). An update is called a Type 1 update for v if ϱ!

8 direct updates to v have
taken place since the last call to Update(v). For all v → V , counters direct(v) and indirect(v) are maintained,
which count the number of direct and indirect updates, defined below since the last call to Update(v). Whenever
direct(v) = ϱ!

8 (i.e. a Type 1 update for v), the procedure Update(v) is called. After Update(v) is executed,
direct(v) is reset to 0 and counters indirect(u) are incremented for all u → N(v).

An update which leads to indirect(u) being incremented as a result of a Type 1 update to some neighbor
v → N(u) is called an indirect update. Whenever indirect(v) = ϱ!

8 for any vertex v, procedure Update(v) is
called. Such an update is called a Type 2 update for v (note that this is not a direct update). Thereafter,
indirect(v) is reset to 0.

For both Type 1 and Type 2 updates for any vertex v, Update(v) is called. The crucial di!erence between
the two is that, following a Type 2 update for v the counters indirect(u) are not incremented for any u → N(v).
On the other hand, following a Type 1 update for v, the counters indirect(u) are incremented for all neighbors
u → N(v).

In the following, we give the pseudo-code of our algorithm Maintain-Friends, and subroutine Update.

Algorithm 14 Maintain-Friends((u, v), ω, φ)

1: Update N(u), N(v) accordingly.
2: direct(u) ↗direct(u) + 1, direct(v) ↗direct(v) + 1.
3: for i → {1, 2, 3} do
4: if (u, v) → E then ϱ The case when (u, v) is an edge insertion.
5: Determine-Friend((u, v), iω, ϱ

2).
6: else ϱ The case when (u, v) is an edge deletion.
7: Ni(u) ↗ Ni(u)\{v}.
8: Ni(v) ↗ Ni(v)\{u}.
9: U ↗ ⇐.

10: for w → {u, v} s.t. direct(w) = ϱ!
8 do

11: Update(w). ϱ (u, v) is a Type 1 update for w.
12: direct(w) = 0.
13: U ↗ U ⇑ {w}.
14: for z →

⋃
y↑U

N(y) do

15: indirect(z) ↗indirect(z) + 1.
16: if indirect(z) = ϱ!

8 then
17: Update(z). ϱ (u, v) is a Type 2 update for z.
18: U ↗ U ⇑ {z}.
19: indirect(z) ↗ 0.
20: return U .

Lemma 6.3. Algorithm Maintain-Friends takes O(lnn

ϱ4) amortized update time and, invoking Algorithm
Maintain-Friends((u, v), ω, φ) after every edge update (u, v) satisfies the following properties for any vertex
v → V , i → {1, 2, 3} with high probability at any time:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5014

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 15 Update(v)
1: for i → {1, 2, 3} do
2: Determine-Dense(v, iω, ϱ

2).

• For any vertex v, if u → Ni(v) then u is a (iω+ φ)-friend of v.

• For any vertex v, if u is a (iω↑ φ)-friend of v, then u → Ni(v).

• For any vertex v, if v → Vi then v is (iω+ φ)-dense.

• For any vertex v /→ Vi, v is (iω↑ 3ϱ
4)-sparse.

Proof. Fix c > 0 to be a large constant in Lemma 6.1 so that all calls to Determine-Friend correctly determine
friend statuses. We prove the theorem statement conditioned on this event.

Analysis of running time. We first prove the running time guarantee of Maintain-Friends. Updating data
structures of endpoints of the updated edge takes O(1) time, while a single call to Determine-Friend takes
O(lnn

ϱ2) time by Lemma 6.1. To bound the total update time, we use a charging argument– each direct update
(u, v) is charged an amount ”(lnn

ϱ4). We show this is su"cient to pay for Type 1 and Type 2 updates.

Our charging scheme works as follows. Both endpoints u, v of an updated edge (u, v) receive a credit of
”(lnn

ϱ4). Consider a Type 1 update for v. After ϱ!
8 direct updates to v, the total credit is at least ”(! lnn

ϱ3). This
credit is used to pay for the cost of Update(v), which is ”(! lnn

ϱ2). Moreover, for all neighbors w → N(v), a credit
of ”(lnn

ϱ3) is assigned and indirect(w) is incremented. As a result, a Type 1 update has an amortized update time
of O(! lnn

ϱ4).

Next, we analyze the amortized cost incurred of a Type 2 update for any v. Note that whenever indirect(v) is
incremented, some neighbor w is involved in a Type 1 update and gives a credit of ”(lnn

ϱ3) to v. Thus, for a Type
2 update for v there is a total credit of at least ϱ!

8 · ”(lnn

ϱ3) = ”(! lnn

ϱ2). This credit is used to pay for the cost
of Update(v) which is ”(! lnn

ϱ2) by Lemma 6.2. Note that for a Type 2 update to a vertex v, we do not leave a
credit for any neighbors. Thus, the cost to handle Type 2 updates is completely paid for by charging every direct
update ”(lnn

ω4
). This yields an amortized update time of ”(lnn

ϱ4).

Proof of Correctness. We begin by noting that for any vertex v, the sum direct(v)+indirect(v) is at most ϱ!
4 . Let

Ni(v) for any i → {1, 2, 3} be the maintained lists. For an edge insertion (u, v), Determine-Friend((u, v), iω, ϱ

2)
is called and u is added to Ni(v) i! |N(u)⇒N(v)| ↔ (1↑ iω)! by the second guarantee given by Lemma 6.1. On
the other hand, for an edge deletion (u, v), u is removed from Ni(v) for all i.

We argue that a vertex u → Ni(v), then |N(u)⇒N(v)| ↔ (1↑ (iω+ φ))!– hence, proving that u is a (iω+ φ)-
friend of v. This is clearly the case when either Update(v) or Update(v) is invoked or Determine-Friend is
called when (u, v) is inserted at which point |N(u) ⇒ N(v)| ↔ (1 ↑ iω)! by Lemma 6.1. For, |N(u) ⇒ N(v)| to
decrease by at least ϱ!

4 , there must be at least ϱ!
4 direct updates incident to at least one of u or v. But any time

there are at least ϱ!
8 direct updates incident to either u or v, the subroutine Determine-Friend((u, v), iω, ϱ

2)
is called. Thus, between any two consecutive invocations of Determine-Friend((u, v), iω, ϱ

2) there are at
most ϱ!

4 vertices in |N(u) ⇒ N(v)| which could be deleted. Thus, for any vertex u → Ni(v), it holds that
|N(u) ⇒N(v)| ↔ (1↑ iω)!↑

ϱ!
4 ↔ (1↑ (iω+ ϱ

4))! > (1↑ (iω+ φ))!.

We next argue that if u is a (iω ↑ 5φ/4)-friend of v, then u → Ni(v). If u is a (iω ↑ 5φ/4)-friend of v, then
|N(u) ⇒ N(v)| ↔ (1 ↑ (iω ↑ 5φ/4))!. When (u, v) was inserted, Determine-Friend is called. If at that time
|N(u) ⇒ N(v)| ↔ (1 ↑ (iω ↑ φ))!, then by Lemma 6.1, u is added to Ni(v) with high probability. If not, then
|N(u)⇒N(v)| has increased by at least ϱ!

4 since then. As we argued above, for this to happen, there must be at
least ϱ!

8 direct updates incident to either u or v, implying that the subroutine Determine-Friend((u, v), iω, ϱ

2)
is called at some time between the period when |N(u)⇒N(v)| increases from (1↑ (iω↑φ))! to (1↑ (iω↑5φ/4))!.
During that call, by Lemma 6.1, u is added to Ni(v) with high probability and remains in that list.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5015

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Next, we prove that for any vertex v, if the variable is-dense(v, iω) = 1 then v is (iω + φ) dense. This is
true at the time when is-dense(v, iω) is set to 1 by subroutine Determine-Dense. Between any two consecutive
invocations of Update(v) due to Type 1 updates for v, the number of friends in any list Ni(v) changes by at
most ϱ!

8 . On the other hand, the number of friends in any list Ni(v) may only change by at most ϱ!
8 between

any two Type 2 updates for v. Thus, between any two calls to Determine-Dense(v, iω, ϱ

2) the number of friends
that changes is at most ϱ!

4 . Thus, between any two calls, v has at least (1↑ (iω+ ϱ

4))! > (1↑ (iω+ φ))!, (iω+ φ)
friends, i.e. v is (iω+ φ)-dense.

Finally, we prove that if vertex v /→ Vi, then v is (iω ↑
3ϱ
4)-sparse. This is true immediately after

the call to Determine-Dense(v, iω, ϱ

2) by Lemma 6.2 since v must have less than (1 ↑ (iω ↑
ϱ

2))! friends.
Similar to the above argument, between any two calls to Determine-Dense(v, iω, ϱ

2), the number of friends
can increase by at most ϱ!

4 . Thus, between any two calls to Determine-Dense(v, iω, ϱ

2), v has at most
(1↑ iω+ ϱ

2)!+ ϱ!
4 = (1↑ (iω↑ 3ϱ

4))!, (iω↑ 3ϱ
4) friends implying that v is (iω↑ 3ϱ

4)-sparse.

6.3 Algorithm for Maintaining Sparse-Dense Decomposition Given the subroutines in the previous
sections, we present an algorithm Update-Decomposition((u, v), ω,φ) which maintains a sparse-dense de-
composition satisfying the properties outlined in Theorem 4.1. As before, ω and φ are input parameters. Our
algorithm utilizes the subroutine Maintain-Friends to handle any edge update, which maintains the sets Ni(v)
for all v → V containing the set of (iω+ φ) friends of v, and the sets Vi of (iω+ φ)-dense vertices respectively for
all i → {1, 2, 3}. For notational convenience ci = iω+ φ , such that ci ↑ ci→1 = ω for i → {2, 3}.

High Level Overview. Our algorithm maintains a sparse-dense decomposition of the graph G = (V,E) by
partitioning V into VS and VD such that VS ↘ V \V1. By Lemma 6.3, it follows that any vertex not in V1 is
(ω↑ 3ϱ

4)-sparse. That is, VS ↘ V sparse
(ω→ 3ε

4)
, is a subset of vertices in G that are (ω↑ 3ϱ

4)-sparse at any given point in
time. Moreover, we maintain VD ↘ V3, i.e. VD ↘ V dense

(3ω+ϱ) is a subset of vertices in G that are c3 = (3ω+ φ)-dense
at any given point in time. Furthermore, our algorithm maintains almost-cliques on VD induced by c3-friend
edges.

Our algorithm for maintaining a sparse-dense decomposition achieves its objectives by ensuring that four
invariants hold at the start of every step. Two invariants concern vertices while the remaining two concern
almost-cliques.

• Density(v): If v is in VD, v is in V3; otherwise, v is not in V1.

• Friendship(v): If v is in almost-clique C, then v has at least (1 ↑ c3)! neighbors from N3(v) that are
currently in C or were members of C at some time since C ↓s creation.

• Size(C): Almost-clique C has size at least (1↑ c3)! and at most (1 + 3c3)!.

• Connectedness(C): The c3-friend edges in almost-clique C form a spanning connected subgraph of C.

Our algorithm determines when to move vertices between VS and VD so as to maintain the invariants. Starting
with an empty graph, all vertices are in VS , and VD := ⇐. After any edge update, if there is a vertex v in VS that
is inserted to V1, we call Dense-Move(v), which operates as follows:

• If v has a c1-friend u in VD, move v and all of the c1-friends of v that are in VS to VD into the same
almost-clique as u, updating data structures as necessary. (Type 1 dense move)

• Otherwise, move v and all its c1-friends from VS to VD, forming a new almost-clique, updating data structures
as necessary. (Type 2 dense move)

Similarly, after any edge deletion, if there is a vertex v in VD that is not in V3 or has fewer than (1 ↑ c3)!
neighbors from C in N3(v) (i.e., violating Density or Friendship invariants), then we call Sparse-Move(v),
which operates as follows:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5016

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Move v move from VD to VS , updating data structures as necessary.

Finally, for a suitably small constant ↼ > 0, when at least ↼! vertices from an almost-clique C have been moved
from VD to VS (i.e., #(!) calls have been made to Sparse-Move for vertices in C), we move all vertices in C to
VS , delete C, and reconstruct a new almost-clique (if necessary) by calling Dense-Move on the subset of these
vertices that are in V1. This ensures that the Size and Connectedness invariants continue to hold.

The analysis of our algorithm uses a charging argument for vertex moves. This yields Õ(1
ω4
) amortized

update time. Crucially, we ensure that the number of non-neighbors of every vertex v → VD in its almost-clique
has low-adjustment complexity. Finally, using the standard technique of periodically rebuilding data structures,
we point out how to obtain Õ(1

ω4
) worst-case update time, incurring only a constant factor increase in update time.

Data Structures. We maintain additional data structures. Each vertex v maintains lists NS(v) and
ND(v) corresponding to its neighbors in VS and VD respectively, s.t. N(v) = NS(v) ⇑ ND(v). The algorithm
maintains a list of all almost-cliques and each vertex v maintains a pointer to the almost-clique C it is part of.
For all v → VD, v maintains a list EC(v) of non-edges in its almost-clique C and a list N ↓(v) = N3(v) ⇒ C. For
all v → V and all almost cliques C, we maintain the list NC(v) containing neighbors of v in C.

The Full Algorithm. We present algorithm Update-Decomposition and subroutines Dense-Move
and Sparse-Move in the following. Recall that on any update, the procedure Maintain-Friends returns a
set U of vertices for which Update is invoked. For a vertex v → U , we call v an a!ected vertex if v is added or
removed from one of V1, V2 or V3 (this can be done by labelling a vertex v in U if is-dense(v, iω) changes for
any i → {1, 2, 3} when Update(v) is called). Our algorithm processes the set of all a!ected vertices, since these
vertices may need to be moved. We say v is part of a sparse (resp. dense) move if it is moved from VD to VS

(resp. VS to VD).

Algorithm 16 Update-Decomposition(ω, φ, (u, v))

1: U ↗ Maintain-Friends((u, v), ω, φ).
2: if u, v → VD and are in the same almost-clique C then
3: Update NC(u), NC(v), N ↓

C
(u), N ↓

C
(v), EC(u), EC(v).

4: if (u, v) is an edge insertion then
5: for w → U do
6: if w → V1 and w → VS then Call Dense-Move(w).
7: if (u, v) is an edge deletion then
8: C ↗ ⇐. U ↓

↗ ⇐.
9: for w → U do

10: Let C be the almost-clique of w.
11: if w → VD and (w /→ V3 or |N ↓(w)| ↓ (1↑ c3)!) then
12: Increment ↽(C).
13: if ↽(C) ↔ ϑφ! then C ↗ C ⇑ {C}.
14: else Call Sparse-Move(w).
15: for C → C do
16: for w → C do
17: VS = VS ⇑ {w}. VD = VD \ {w}. U ↓ = U ↓

⇑ {w}.
18: Update NS(w), ND(w), delete EC(w), N ↓(w), and for z → N(w): delete NC(z).
19: Remove C from list of almost-cliques.
20: for w → U ↓ do
21: if w → V1 and w → VS then Call Dense-Move(w).

Algorithm Update-Decomposition on edge update (u, v) calls the subroutine Maintain-Friends which
is responsible for maintaining sets V1, V2, V3 of c1, c2, c3 dense vertices and N1(v), N2(v), N3(v) of c1, c2, c3 friends
of v, for all v → V . The only time a vertex changes its dense status is when Update is invoked. Thus, the set U

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5017

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

returned by Maintain-Friends contains the list of all vertices that could potentially be added or removed from
one of V1, V2, V3.

If the edge update is an insertion, then we check for each vertex w → U whether a dense move is necessitated.
If w → U was not in V1 before the current update and it is now in V1 yet still in VS , then by Lemma 6.3, w is
(ω + φ)-dense. Subsequently, the subroutine Dense-Move(w) is called, and w is moved to VD. We execute the
preceding step for each w → U . As mentioned above, Dense-Move considers Type 1 and Type 2 dense moves,
adding relevant vertices to an existing almost-clique in the former case and creating a new almost-clique in the
latter case.

If the edge update is a deletion, then we we check for each vertex w → U whether a sparse move is necessitated.
If w is in VD as part of almost-clique C but either is not in V3 or has at most (1↑ c3)! neighbors in N3(w) ⇒C,
then either w is (ω ↑ 3φ/4)-sparse by Lemma 6.3 or it does not have a su"cient number of c3-friends in C. In
this scenario, we would like to move w to VS , for which we invoke a call to Sparse-Move. Such a move may, in
fact, trigger other sparse moves from the C, eventually possibly leading to C becoming empty. To accommodate
such a sequence of moves, we keep track of the number of sparse moves associated with each almost-clique since
its inception by maintaining a quantity ↽(C). As soon as this number exceeds ↼!, for a suitably small constant
↼ > 0, we move all of its vertices to VS and then consider each vertex that is su"ciently dense for a dense move,
possibly creating a new almost-clique.

We describe how the subroutine Dense-Move(v) works for a vertex v. First, the sets VD, VS are updated.
Next, we check if there exists a c1 = (ω+ φ)-friend u of v in VD. If it is, then, v joins the almost-clique containing
u (a Type 1 dense move). Thereafter, all c1-friends of v in N1(v)\VD, i.e. c1-friends in VS , are added to C. We
update all data structures of vertices in U ⇑ C, where U is the set of vertices moved to VD in this step. For a
Type 2 dense move, i.e. when all of v↓s c1-friends in N1(v) are in VS , a new almost-clique C containing v and all
c1 friends in N1(v) is created. Data structures of all vertices in C are updated.

For a sparse move for v (Sparse-Move(v)), the sets VS , VD are updated and v is removed from almost-clique
C. Data structures of all remaining vertices in U and v↓s neighbors are updated. This completes the description
of Update-Decomposition and the subroutines Dense-Move and Sparse-Move.

Algorithm 17 Dense-Move(v)

1: VD ↗ VD ⇑ {v}, VS ↗ VS\{v}.
2: if there exists u → VD s.t. u → N1(v) then ϱ Type 1 dense move
3: Let C ↗ almost-clique of u.
4: C ↗ C ⇑ {v}, U ↗ {v}.
5: for all u → N1(v)\VD: C ↗ C ⇑ {u}, U ↗ U ⇑ {v}.
6: for all w → U ⇑ C: Update NS(w), ND(w), EC(w), NC(w), N ↓(w).
7: for all w → U : for all z → N(w): Update NC(z).
8: else ϱ Type 2 dense move
9: Create almost-clique C and add to list of almost-cliques.

10: C ↗ {v} ⇑N1(v), U ↗ {v} ⇑N1(v). ↽(C) ↗ 0.
11: for all w → U : Update NS(w), ND(w), EC(w), N ↓(w), and for all z → N(w): Update NC(z).

Algorithm 18 Sparse-Move(v)

1: U ↗ ⇐. ϱ Set U stores vertices which will be possibly moved.
2: C ↗ almost-clique of v.
3: U ↗ NC(v).
4: VS ↗ VS ⇑ {v}, VD ↗ VD\{v}.
5: C ↗ C\{v}.
6: for all u → N(v): NS(u) ↗ NS(u) ⇑ {v}, ND(u) ↗ ND(u)\{v} and NC(u) ↗ NC(u)\{v}.
7: for all (u, v) → EC(v): EC(u) ↗ EC(u)\{(u, v)}.
8: EC(v) ↗ ⇐.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5018

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

6.4 Analysis We prove several lemmas towards a proof of Theorem 4.1. We start with an observation about
↽(C) for any almost-clique C.

Observation 2. At any point in time, for any almost-clique C, ↽(C) is at most ↼!. Furthermore, if an update
is an edge insertion, then ↽(C) does not change during the processing of the update.

Proof. The proof of the second claim is immediate from the fact that only dense moves are executed during the
processing of an edge insertion; for any existing almost-clique C, ↽(C) does not change during a dense move, and
for a new almost-clique, ↽(C) is set to zero and remains so until the end of the step.

The proof of the first claim is by induction on the number of steps. The base case is trivial. Suppose the claim
is true at the start of a step. If the step is an edge insertion, then the induction step follows from the first claim.
Otherwise, the induction step holds since whenever ↽(C) exceeds ↼!, C is deleted, and any new almost-clique C ↓

formed during the step has ↽(C ↓) = 0 at the end of the step.

We next prove that if the Density and Friendship invariants hold, then for a Type 1 dense move for vertex
v which becomes c1-dense, all its c1-friends in VD must be in the same almost-clique for suitably small ω.

Lemma 6.4. If the Density and Friendship invariants are satisfied for every vertex in VD immediately preceding
a call to Dense-Move(v) and v has at least one c1-friend in VD (i.e., the condition in line 2 of Algorithm 17 is
satisfied), then all of the c1-friends of v in VD reside in at exactly one almost-clique, assuming ω < 1

8 ↑
ϱ

2 ↑
ς

4 .

Proof. Suppose for the sake of contradiction that v has two c1 friends u,w in distinct almost-cliques C1 and C2.
Consider C1. By the Friendship invariant for u and Observation 2, u has at least (1↑ c3)!↑↼! neighbors from
N3(u) in C1. By Lemma 6.3, this implies that u has (1 ↑ c3 ↑ ↼)! (c3 + φ)-friends in C1. Since, u and v share
at least (1↑ c1)! neighbors, at least (1↑ (c1 + c3 + ↼))! of neighbors of u must also be neighbors of v since the
maximum degree is bounded by !. Moreover, each such common neighbor w → N(v) ⇒N(u) must have at least
(1↑ (c1 + c3 + ↼))! common neighbors with v, since the maximum degree is bounded by ! and v (resp. w) has
at least (1↑ c1)! (resp. (1↑ c3)!) common neighbors with u. Thus, (v, w) is a (c1 + c3 + ↼)-friend edge.

We repeat the same argument for C2, and observe that v has at least (1↑ (c1 + c3 + ↼))! distinct neighbors
in C1, and (1↑ (c1 + c3 + ↼))! distinct neighbors in C2, for a total of at least 2(1↑ (c1 + c3 + ↼))! neighbors in
total. This is a contradiction for ω < 1

8 ↑
ϱ

2 ↑
ς

4 .

The next lemma shows that any vertex which joins VD has at least (1↑2c1)! 2c1-friends in its almost-clique.

Lemma 6.5. Let φ < ω < 1
8 ↑

ϱ

2 ↑
ς

4 . Then, if Density and Friendship invariants hold for every vertex in VD

before a call to Dense-Move, then any vertex that moves as a result of the call has at least (1↑2c1)!, 2c1-friends
in its almost-clique.

Proof. Let v be a vertex that moves during a Dense-Move call, and let C be the almost-clique v joins after the
move. We will prove that v has at least (1↑ 2c1)!, 2c1-friends in C.

We first consider the case where v moves to VD as a result of a call to Dense-Move(v). There are two
sub-cases. First is where v and all its neighbors in N1(v) form a new almost-clique C. In this sub-case, by
Lemma 6.3, v is c1-dense and every vertex in N1(v) is a c1-friend of v; since v is c1-dense, it has at least (1↑c1)!,
c1-friends, all of which are in C. The second sub-case is where v and all of its neighbors in N1(v) ⇒ VS move to
the almost-clique C containing a c1-friend u of v. By Lemma 6.4, it holds that after the move all of v’s c1-friends
in VD are in the same almost-clique C. Thus, in both sub-cases, v has at least (1↑ c1)!, c1-friends in C, yielding
the desired claim of the lemma.

We next consider the case when v is moved from VS to VD when Dense-Move(u) is called for a neighbor
u of v in V1; v is moved to VD and joins u↓s almost-clique C. By the argument in the first case, u has at least
(1 ↑ c1)! c1-friends in C. Let w be any c1-friend of u. Then |N(w) ⇒ N(v)| ↔ (1 ↑ (c1 + c1))! = (1 ↑ 2c1)!
since the maximum degree is bounded by !. Since there are at least (1↑ c1)! > (1↑ 2c1)! such friends, v has
at least (1↑ 2c1)!, 2c1-friends in C, completing the desired claim and the proof of the lemma.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5019

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 6.6. If φ < ω < 1
8 ↑

ϱ

2 ↑
ς

4 , then the Density and Friendship invariants are maintained immediately
after a call to Dense-Move.

Proof. Consider any call Dense-Move(v). For the sake of the proof, assume that Density and Friendship
invariants hold immediately preceding the call to Dense-Move(v). Since only v and its c1-friends in VS are
moved from VS to VD, both the invariants continue to hold for vertices that are not moved. Since v is in V1, it
satisfies the Density invariant. Furthermore, every c1-friend of v is c2-dense and hence is in V3 by Lemma 6.3,
thus also satisfying the Density invariant. By Lemma 6.5, all the vertices that move also satisfy the Friendship
invariant.

Lemma 6.7. If the Density, Friendship, and Connectedness invariants hold preceding a call to
Dense-Move, then the Connectedness invariant is maintained after the call.

Proof. Consider any call Dense-Move(v). For the sake of the proof, assume that Density and Friendship
invariants hold immediately preceding the call to Dense-Move(v). Since only v and its c1-friends in VS are moved
from VS to VD, the Connectedness invariant continues to hold for all cliques other than the one containing v.
We consider two cases. First is where v and all its neighbors in N1(v) form a new almost-clique C. Clearly, v and
its c1-friend edges from a spanning tree for C, completing the proof for this case. The second case is where v and
all of its neighbors in N1(v) ⇒ VS move to the almost-clique C containing a c1-friend u of v. By our assumption,
before the move, the c3-friend edges in C spanned the vertices in C. Since (u, v) is a c1-friend edge and all of the
other vertices that move have a c1-friend edge to v, it follows that after the move, the c3-friend edges in C span
all the vertices in C, thus completing the proof.

Next, we upper bound the size of any almost-clique C by upper bounding the size of EC(v) for any v → C.
The proofs of the next two lemmas are similar to the proofs of Lemmas 3.4, 3.9 in [16].

Lemma 6.8. Let ω < 1
15 ↑

ϱ

3 . Then, if Density, Friendship, and Connectedness invariants hold, then for
any two vertices u, v → VD that are in the same almost-clique C, |NC(u) ⇒NC(v)| ↔ (1↑ 2c3)!.

Proof. Suppose the Density, Friendship, and Connectedness invariants hold. Then by the Connectedness
invariant, for any two vertices (u, v) in C, there exists a path u0 := u, u1 := v, u2, . . . , uk = v, where (ui, ui→1) is
a c3-friend edge. We prove that |N(u)⇒N(ui)| ↔ (1↑ 2c3)! at any given point in time for i → [k]. The base case
follows since (u, u1) is a c3-friend edge. By the induction hypothesis |N(u) ⇒N(ui)| has a 2c3-friend edge. Thus,

|N(u) ⇒N(ui+1)| ↔ |N(u) ⇒N(ui) ⇒N(ui+1)|

= |N(ui) ⇒N(ui+1)|+ |N(ui) ⇒N(u)|↑ |(N(ui) ⇒N(ui+1)) ⇑ (N(ui) ⇒N(u))|

↔ |N(ui) ⇒N(ui+1)|+ |N(ui) ⇒N(u)|↑ |N(ui)|

↔ (1↑ c3)!+ (1↑ 2c3)!↑!

= (1↑ 3c3)!.

Since u and ui+1 are both c3-dense, they have at most c3! neighbors each which are not c3-friends. Thus, the
number of common friends of u and ui+1 are at least |N(u)⇒N(ui+1)|↑ 2c3! ↔ (1↑ 3c3)!↑ 2c3! = (1↑ 5c3)!.
In particular, for c3 = 3ω+ φ < 1

5 , |N(u)⇒N(ui+1)| > 0, so they have at least one common neighbor x → C which
is c3-dense (by the Density invariant) such that |N(x) ⇒N(u)| ↔ (1↑ c3)!, and |N(x) ⇒N(ui+1)| ↔ (1↑ c3)!.
Since the maximum degree is !, it follows that,

|N(u) ⇒N(ui+1)| ↔ (1↑ c3)!+ (1↑ c3)!↑! = (1↑ 2c3)!

completing the proof.

Lemma 6.9. If Density, Friendship, and Connectedness invariants hold, then for any v → VD such that v
is in almost-clique C, |EC(v)| ↓ 3c3!, whenever ω < 1

15 ↑
ϱ

3 .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5020

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Let v be in almost-clique C and consider u → N(v). By Lemma 6.8, it follows that any two vertices v, u → C
have at least one common neighbor w where u /→ N(v). We count the number of length two paths of the form
v, w, u, denoted by P . For any u → C\N(v), there at most |N(v) ⇒N(u)| possible choices for w. By Lemma 6.8,
|N(v) ⇒ N(u)| ↔ (1 ↑ 2c3)!, so that P =

∑
u↑C\N(v) |N(v) ⇒ N(u)| ↔ |EN (v)|(1 ↑ 2c3)!. On the other hand,

summing over all intermediate vertices w on the v ↑ u path, we have that,

P =
∑

w↑N(v)

|N(w) ⇒ (C\N(v))| ↓
∑

w↑N(v)

|N(w)\N(v)|

=
∑

w↑N3(v)

|N(w)\N(v)|+
∑

w↑N(v)\N3(v)

|N(w)\N(v)|

↓

∑

w↑N3(v)

c3!+
∑

w↑N(v)\N3(v)

!

↓ (1↑ c3)! · c3!+ c3!
2

= (2↑ c3)c3!
2.

Combining the inequalities yields |EC(v)| ↓ ! c3(2→c3)
1→2c3

, which is at most 3c3! for ω < 1
15 ↑

ϱ

3 .

Corollary 6.1. For ω < 1
15 ↑

ϱ

3 , if Density, Friendship, and Connectedness invariants hold, then any
almost-clique on vertices in VD has size at most (1 + 3c3)!.

Proof. For any v → C, note that |C| = |C\N(v)| + |C ⇒N(v)| ↓ |EN (v)| + |N(v)| ↓ (1 + 3c3)! where the final
inequality follows from Lemma 6.9.

Lemma 6.10. For ω < 1
15 ↑

ϱ

3 , if the Friendship invariant holds for every vertex and the Size invariant holds
for every almost-clique, then the Connectedness invariant holds for every almost-clique.

Proof. Fix an almost-clique C. By the Friendship invariant, every vertex v of C has at least (1↑c3)! neighbors
in N3(v) ⇒ C. By Lemma 6.3, this implies that every v → C has at least (1 ↑ c3 ↑ ↼)! c3-friends in C. Since
ω < 1

15 ↑
ϱ

3 , c3 = 3ω + φ < 1
5 ↑ ↼ for a su"ciently small constant ↼ > 0. Therefore, 2(1 ↑ c3 ↑ ↼) > 1, implying

that any two vertices u and v in C share a neighbor w which is a c3-friend for both. This establishes the
Connectedness invariant for C.

In the following, we establish three of the four invariants after the decomposition is updated following an edge
deletion.

Lemma 6.11. Following the completion of Update-Decomposition after an edge deletion, the Density,
Friendship, and Size invariants continue to hold.

Proof. After the deletion of an edge (u, v), U is a subset of vertices for which there is a change the density or
the friendship of an incident edge. For every other vertex v, the Density invariant continues to hold since the
membership in V3 or V1 is not impacted, and the Friendship invariant continues to hold since the number of
neighbors from N3(v) that lie in its almost-clique can only decrease by the number of sparse moves during this
step.

For any vertex w in U , if w is in VS , Sparse-Move(w) is not called. On the other hand, if w → U ⇒ VD

and w either violates the Density or Friendship invariant, we move w to VS , thus ensuring that it satisfies the
Density and Friendship invariants after the sequence of calls to Sparse-Move. All of the vertices a!ected by
these sparse moves belong to the almost-cliques in C.

Consider an almost-clique C in C. If the number of sparse moves in C since its creation is at most ϑφ!, it
follows that all of the vertices in C but not in U continue to satisfy the Density and Friendship invariants. This

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5021

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

is because for any such vertex v, its membership in V3 has not changed (ensuring the Density invariant) and the
number of neighbors in N3(v)⇒C is at least (1↑c3↑↼)! . Furthermore, the Size invariant holds since (a) vertices
have only been removed from C, implying the upper bound, and (b) the size is at least (1 ↑ c1)! ↑ ↼!, which
is at least the lower bound. The Density, Friendship, and Size invariants in turn imply the Connectedness
invariant by Lemma 6.10.

We now consider the case where ↽(C) exceeds ↼!. Almost-clique C is deleted by moving all its vertices to VS ,
and then issuing a sequence of Dense-Move calls to vertices that are in V1. By Lemmas 6.6 and 6.7, it follows
that the Density, Friendship, and Connectedness invariants hold for each such C. This in turn yields the
Size invariant by Corollary 6.1.

We now have all the ingredients to establish the four invariants before every update.

Lemma 6.12. The Density, Friendship, Connectedness, and Size invariants hold before every edge update.

Proof. The proof is by induction on the number of edge updates. The induction base case holds for an empty
graph since every vertex is in VS . Consider any edge update. If it is an edge insertion, then the algorithm issues a
(possibly empty) sequence of dense moves. By Lemmas 6.6 and 6.7, Density, Friendship, and Connectedness
invariants hold after every dense move. By Corollary 6.1, the Size invariant also holds. Thus, the four invariants
hold after the edge update is processed, completing the induction step for edge insertion.

If the edge update is an edge deletion, by Lemma 6.11, the Density, Friendship, and Size invariants
continue to hold after the completion of Update-Decomposition. By Lemma 6.10, the Connectedness
invariant also continues to hold, thus completing the proof of the lemma.

The following Lemma establishes that we can maintain a sparse-dense decomposition using Algorithm
Update-Decomposition in O(lnn

ϱ4)-amortized update time.

Lemma 6.13. Let ω ↑ φ > ϱ

4 . Then, Algorithm Update-Decomposition(ω, φ) takes O(lnn

ϱ4) amortized update
time.

Proof. We adopt a charging scheme similar to the one in the proof of Lemma 6.3. Each edge update (u, v) is
charged an amount C lnn

ϱ4 such that both u and v receive a credit of ”(lnn

ϱ4), where C is a su"ciently large constant.
We refer to this credit as edge credit, which is the ultimate source for paying for all of the algorithm’s costs and
for any other credits created for future steps. By Lemma 6.2, the cost of Determine-Dense is ”(! lnn

ϱ2). By
Lemma 6.1, the cost of Determine-Friend is ”(lnn

ϱ2). Both of these costs are paid for by edge credits. By
setting the constant C in the edge credit su"ciently large, we assume that (i) every call to Determine-Dense
for vertex v leaves a dense credit of ”(! lnn

ϱ2) on v, and (ii) every call to Determine-Friend for vertex v leaves
a friend credit of ”(! lnn

ϱ2) on v.

We will now prove that the edge, dense, and friend credits together are su"cient to pay for all of the costs of
Update-Decomposition. In our argument, we will work with two other kinds of credits, which we refer to as
move credit and clique credit. We maintain the invariant that any vertex in VS that is in V2 has a move credit of
#(! lnn); we refer to this as the move credit invariant. The clique credit is assigned to an almost-clique and is
used to pay for the cost of reconstructing it after a sparse move sequence. Again, note that both the move and
clique credits ultimately originate from edge credits.

The cost of lines 2-3 of Update-Decomposition is O(1). We now analyze the calls to Dense-Move in
lines 6 and 21. Consider Dense-Move(v) for a vertex v. By lines 6 and 21, it follows that at the time of the
call w is in V1 and VS . The running time of Dense-Move(v) is O(k! lnn), where k is the number of vertices in
N1(v) \ VD since lines 1–5 of Dense-Move take time O(lnn) and lines 6–12 take time O(k! lnn). By the move
credit invariant, w and each vertex in N1(v) \ VD has a move credit of #(! lnn). We thus have a total move
credit of O(k! lnn), which we use to pay for the call to Dense-Move(v).

We now analyze lines 7–19 of Update-Decomposition. Lines 7–12 maintain relevant data structures and
take time proportional to |U |. Consider the call Sparse-Move(w). We first note that the total running time of

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5022

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Sparse-Move is O(! lnn). Now, Sparse-Move(w) is called made only if the almost-clique C containing w has
↽(C) < ϑφ!. In this case, there are two sub-cases. The first is where w is not in V3. Since w was in V3 prior to
the edge update (by the Density invariant of Lemma 6.12), a call to Determine-Dense for w has been made,
yielding an #(! lnn) dense credit, which we use to pay for (i) the running time of Sparse-Move, (ii) leaving a
move credit on w to maintain the move credit invariant, and (iii) leaving an #(! lnn) clique credit on C. The
second sub-case is where w has lost #(!) c3-friends; by Lemma 6.5) w had at least (1↑ 2c1)! 2c1-friends at the
time w entered VD, but has fewer than (1 ↑ c3)! c3-friends at this time. Since c3 > 2c1 and since fewer than
(c3 ↑ 2c1)!/2 vertices in C have moved from VD to VS since the creation of the almost-clique, it follows that
either at least (c3 ↑ 2c1)!/4 edges of w have been deleted or at least (c3 ↑ 2c1)!/4 neighbors of w are no longer
in N3(w). We use the #(! lnn) edge credit at w in the former situation and the #(! lnn) friend credit at w
in the latter situation to pay for (i) the cost of the sparse move, (ii) leaving a move credit of #(! lnn) on w to
maintain the move credit invariant, and (iii) adding #(! lnn) clique credit to C.

Finally, we consider the scenario where C is a clique for which ↽(C) exceeds #(!) during the course of this
update. In this scenario, we have #(!2 lnn) clique credit on C. We use this to pay for the cost incurred in lines
15–18 of Update-Decomposition and for leaving a move credit on all the vertices that are being moved from
VD to VS before issuing any calls to Dense-Move, as necessary. This completes the proof.

The following corollary bounds the amortized adjustment complexity of non-edges across all almost-cliques
i.e. the average total number of non-edges which change across all almost-cliques after an edge update. The proof
follows from the proof of Lemma 6.13, and uses essentially identical charging arguments, and we omit it.

Corollary 6.2. The amortized adjustment complexity of non-edges obtained by Algorithm Update- Decom-
position is O(1

ω4
)

Finally, we conclude this section by giving a proof of our main technical result summarized in Theorem 4.1.

Proof. [Proof of Theorem 4.1] We first show that the theorem holds for an amortized update time guarantee of
Õ(1

ω4
). Then, we show that the same properties of the decomposition can be recovered in Õ(1

ω4
) worst-case update

time.

Let φ = ω

3 . This satisfies the condition of Lemma 6.13. Moreover, we choose ω < 3
50 to satisfy the conditions

in Corollary 6.1 and Lemmas 6.4, 6.5, 6.8 and 6.9.

By Lemma 6.12, all of the four invariants hold after the processing of every edge update. By the Size
invariant, we have that any almost-clique Ci has size at most (1 + 3(3ω + φ))! = (1 + 10ω)!, and at
least (1 ↑ c3)! = (1 ↑ (3ω + ω

3)) = (1 ↑
10ω
3)! ↔ (1 ↑ 4ω)!. By the Density invariant, it follows that

VS ↘ V sparse
(ω+ϱ)

:= V sparse
4ϑ
3

. Similarly, VD ↘ V dense
(3ω→ 3ε

4)
:= V dense

11ϑ
4

. The Friendship invariant guarantees that
every vertex v in an almost clique C has at least (1 ↑ c3)! ↔ (1 ↑ 4ω)! neighbors in C; it also follows that the
number of neighbors of v outside C is at most 4ω!.

By Corollary 6.2, the adjustment complexity of non-edges is O(1
ω4
).

Finally we note that, while it su"ces to work with amortized running time and adjustment complexity
guarantees for the purpose of obtaining a sublinear (in n) update time algorithm for (! + 1) coloring, we can
transform the aforementioned amortized guarantees to worst-case. This is done by employing the standard
technique of periodically rebuilding data structures (see [10, 4]), by incurring only a constant factor increase in the
running time. Our algorithm can be run on a small parameter, say ω

2 as opposed to the parameter ω it receives
as input. Subroutines such as Update and Determine-Friend can be invoked whenever direct or indirect
counters for any vertex v change by a smaller value–say ϱ!

16 . The update sequence can be partitioned into epochs
of length ω!

16 , where the time taken to reflect edge updates in a previous epoch is amortized over the length of the
current epoch. Since periodically rebuilding data structures to convert amortized bounds to worst-case bounds is
a well-known technique, we omit further details.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5023

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,

USA, October 18-21, 2014, pages 434–443, 2014.
[2] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (ω + 1) vertex coloring. In Proceedings of

the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 767–786, USA, 2019. Society
for Industrial and Applied Mathematics.

[3] Sepehr Assadi and Helia Yazdanyar. Simple sublinear (ω + 1) vertex coloring algorithms via asymmetric palette
sparsification. Private communication (see the following YouTube link for a talk by Sepehr Assadi on the algorithm).
Manuscript 2024.

[4] Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic dfs in undirected
graphs: breaking the o (m) barrier. In Proceedings of the twenty-seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 730–739. SIAM, 2016.
[5] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in o(log n) update time. SIAM

Journal on Computing, 44(1):88–113, 2015.
[6] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cli! Stein, and Madhu Sudan. Fully dynamic

maximal independent set with polylogarithmic update time. In 2019 IEEE 60th Annual Symposium on Foundations

of Computer Science (FOCS), pages 382–405. IEEE, 2019.
[7] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai. Dynamic algorithms for

graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1–20. SIAM, 2018.

[8] Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C Liu, and Shay Solomon. Fully dynamic
(ω+ 1)-coloring in o(1) update time. ACM Transactions on Algorithms (TALG), 18(2):1–25, 2022.

[9] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approximation algorithms for
fully dynamic matching. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
398–411, 2016.

[10] Timothy M Chan and Qizheng He. More dynamic data structures for geometric set cover with sublinear update time.
arXiv preprint arXiv:2103.07857, 2021.

[11] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (ω+1)-coloring algorithm? In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 445–456, New York, NY,
USA, 2018. Association for Computing Machinery.

[12] Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log update time. In 2019

IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 370–381. IEEE, 2019.
[13] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum

flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612–623, 2022.
[14] Julia Chuzhoy and Sanjeev Khanna. Maximum bipartite matching in n

2+o(1) time via a combinatorial algorithm. In
Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada,

June 24-28, 2024, pages 83–94, 2024.
[15] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to diameter. In 43rd

International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
pages 48:1–48:14, 2016.

[16] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (ω+1)-coloring in sublogarithmic rounds. In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page 465–478, New
York, NY, USA, 2016. Association for Computing Machinery.

[17] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strength-
ening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,

2015, pages 21–30, 2015.
[18] Monika Henzinger and Pan Peng. Constant-time dynamic (! +1)-coloring. ACM Trans. Algorithms, 18(2):16:1–

16:21, 2022.
[19] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabilistic techniques in

algorithms and data analysis. Cambridge university press, 2017.
[20] Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, volume 23. Springer Science &

Business Media, 2002.
[21] Bruce A. Reed. ε, ω, and ϑ. J. Graph Theory, 27(4):177–212, 1998.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5024

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[22] Shay Solomon. Fully dynamic maximal matching in constant update time. In 2016 IEEE 57th Annual Symposium

on Foundations of Computer Science (FOCS), pages 325–334. IEEE, 2016.

A Appendix

A.1 Proof of Lemma 5.3 We recall Lemma 5.3.

Lemma 5.3. Algorithm Color-Sparse takes Õ(n
2

!) time and on termination, |L(c)| = Õ(n

!) for any color
c → [!+ 1] with high probability. Moreover, for every vertex v → V , |A(v)| ↔ ω

2!
9e6 with high probability.

We build towards a proof of the aforementioned properties via the following lemmas.

Claim 5. Let G[U] denote the subgraph induced on ω-sparse vertices in U such that each vertex in VS is included
in probability 1

2 . Then for any ω-sparse vertex v with at least 9
10! neighbors in VS, the number of neighbors of v

in U is in [25!, 11
20!] with high probability.

Proof. Fix a ω-sparse vertex v, and let dU (v) denote the number of neighbors of v in U . Let E[dU (v)] denote the
expected number of neighbors of v in U . If v has at least 9

10! neighbors in VS , then 9
20! ↓ E[dU (v)] ↓

1
2!. By

a standard Cherno! bound, it follows that

Pr

[
|dU (v)↑ E[dU (v)|] ↔

5

100
!

]
↓ e→

↑9!
6000 ↓

1

nd

for an arbitrarily large constant d > 0 whenever ! ↔ 670d lnn.

We utilize the fact that the number of non-edges in the neighborhood of any vertex v → VS is at least ω2
(!
2

)
.

By introducing ‘ghost’ vertices as neighbors of v in VS such that the number of neighbors of v in VS is exactly
! (as in the proofs in [2]), it is immediate by Claim 5 that the number of non-edges of the form (u,w) where
u,w → U is at least 2

9ω
2
(!
2

)
. Note that the introduction of ghost vertices is not done by our algorithm, and is

merely a tool for analysis (since we ignore edges and non-edges incident to dense neighbors of v). We assume that
ω ↓ 1

5000 , ϑ ↔ 50003, and (!+ 1) > ϑ logn

ω2
.

Proof. [Proof of Lemma 5.3] The lower bound on |A(v)| follows from Lemma 5.2 and is immediate by taking a union
bound over all vertices (noting that ! ′

⇔
n as otherwise the problem can be trivially solved in ”(!) = O(

⇔
n)

update-time).

As a warm-up to the proof, we first claim an upper bound on the expected running time of
Greedy-Coloring(VS) on the set VS without running One-Shot-Coloring at all. The fact that for all
c → [! + 1], E[|L(c)|] = n

!+1 is not hard to observe. For the running time analysis, let r(v) denote the rank of
a vertex v in the permutation ϖ such that the number of neighbors w for which ϖ(w) < ϖ(v) is exactly r(v)↑ 1.
Thus, for a vertex v with rank r(v), the probability that a random color chosen from [! + 1] can be assigned
to v, is at least !+1→r(v)+1

!+1 = !→r(v)
!+1 . Let Zi denote the geometric random variable which is 1 with proba-

bility !→i

!+1 . It follows that E[Zi] =
!+1
!→i

, implying that if r(v) = i, the expected number of iterations of the
while loop of Greedy-Coloring (lines 4-7) is at most !+1

!→i
. The probability that r(v) = i for any i is 1

d(v)

for any vertex v. Let d(v) denote the degree of v. Thus, the expected number of while loop iterations for any
vertex v is !+1

d(v)

∑
d(v)
i=1

1
!→i+2 = O(! ln! 1

d(v)). For all vertices v, the total number of iterations is bounded by
O(! ln!)

∑
v↑V

1
d(v) = O(! ln!) · n(1

n!/n
) = O(! ln!) · n

! = n ln!
! . Each iteration of the while loop takes

O(n

!) time in expectation by the expected bound on the list sizes. Thus, in expectation, the running time of
Color-Sparse(VS) is O(n

2 ln!
!).

Now, we analyze the running time of Color-Sparse. Note that One-Shot-Coloring runs in Õ(n
2

!) time
with high probability. This follows since a total of Õ(n) colors are sampled, and so each color is sampled Õ(n

!)

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5025

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

times with high probability, thus |L(c)| = Õ(n

!). To check whether a color can be assigned to a vertex takes time
O(|L(c)|) = Õ(n

!) for a total time of Õ(n
2

!).

For the running time of Greedy-Coloring we first observe that for any vertex v with number of sparse
neighbors at most 9

10!, the number of iterations of the while loop (lines 4-7) of Greedy-Coloring is Õ(1)
before a feasible color is assigned to v. This holds since, a random color is feasible with probability at least 1

10 ,
and after Õ(1) random colors have been sampled, one must be feasible for v w.h.p. Thus, for the remainder of
the proof, we bound the number of colors sampled for vertices with degree greater than 9

10!.

Fix a vertex v, with at least 9
10! sparse neighbors. Let r(v) = i denote the rank of v among its remaining dr(v)

uncolored neighbors after One-Shot-Coloring finishes, where i → [1, dr(v) + 1]. When Greedy-Coloring
considers v, the number of colors that are feasible for v is at least ! + 1 ↑ (|NS(v)| ↑ dr(v)) ↑ (i ↑ 1) =
!+2↑|NS(v)|+dr(v)↑i. On the other hand, by Claim 5, dr(v) ↔ 9

10!↑
11
20! ↔

7
20! and dr(v) ↓ !↑

9
20! = 11

20!
w.h.p. It follows that the total number of colors sampled before v is assigned a feasible color by Greedy-
Coloring is

Õ

(
!+ 1

!+ 2↑ |NS(v)|+ dr(v)↑ i

)
= Õ

(
!

dr(v)↑ i+ 2

)
.

To obtain a high probability bound, we analyze the following stochastic process. Consider each vertex in
S := VS \ U ↓ picking one of b = ”(!

logn
) bins B1, B2, ..., Bb uniformly at random. Once this process is finished,

we consider vertices in the following order: go over all bins Bi in the order of increasing index i, and within
each bin Bi, consider vertices in bin Bi in random order. Let r(v) be the rank of a vertex in this order, where
i → [1, dr(v)+1] = [1,”(!)]. We note that by virtue of this random process, the resulting final ordering of vertices
corresponds to a random permutation. It can be shown by a standard application of a Cherno! bound that the
number of vertices in each bin is ”(n logn

!) with high probability. Here n = |VS |. By a similar calculation, each
vertex has at most ”(log n) neighbors in each bin with high probability.

Let us consider a grouping of vertices in geometric order of their ranks. Let s = 11
20!. Let Gi denote the

group of vertices which have ranks in the range [s ↑ 2i+1 + 1, s ↑ 2i], where i → {0, 1, 2, ...,”(log!)}. First, we
note that for a vertex v in Gi, i.e. for a vertex of rank at least s ↑ 2i+1 + 1, it must be in the last O(2i+1) bins
with high probability, by a Cherno! bound. This follows since there are at least s ↑ 2i+1 neighbors of v before
v in the ordering, each bin contains at ”(log n) neighbors of v with high probability, and conditioned on this,
v must be in the last ”(!

logn
↑

!→2i+1

logn
) = ”(2

i+1

logn
) bins. Thus, w.h.p, v is in the last ”(2i+1) bins. Any bin is

assigned at most n logn

! vertices with high probability, thus it follows that the number of vertices with rank at
least s↑ 2i+1 + 1 is bounded by Õ(2i+1 n

!).

Consider a vertex in Gi. The number of iterations of the while loop, i.e. number of colors sampled before
a feasible color is found with constant probability for v is at most !+1

!+1→(s→2i) = O(!+1
2i), and Õ(!2i) with high

probability. Thus, the total number of iterations for vertices in Gi is bounded by Õ(!2i · 2i+1 n

!) = Õ(n) with
high probability. Taking a union bound over all O(log!) groups, yields that the total number of colors drawn
throughout Algorithm Color-Sparse is Õ(n) with high probability.

Since a total of Õ(n) colors are drawn uniformly at random from [!+1], it follows that the number of times a
particular color is drawn is no more than Õ(n

!) w.h.p. Thus, the length of lists L(c) for all c → [!+1] is bounded
by Õ(n

!) with high probability.

As a result, each iteration of the while loop takes Õ(n

!) w.h.p. Thus, the total running time of Color-Sparse
is bounded by Õ(n

!) · Õ(n) = Õ(n
2

!).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5026

D
ow

nl
oa

de
d

11
/3

0/
25

 to
 2

09
.6

.1
45

.1
68

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Technical Overview
	Background on Sparse-Dense Decompositions for D+1 Vertex Coloring
	Our Dynamic Coloring: Basic Invariants and Parameters
	Coloring Sparse Vertices Dynamically
	Coloring Dense Vertices Dynamically
	Putting Everything Together

	Preliminaries
	Organization of the Paper

	A Fully Dynamic Sparse-Dense Decomposition
	A Fully Dynamic D+1-Coloring Algorithm
	Working with a Fixed Decomposition for e2D updates
	An Algorithm for Sparse Vertices
	Recoloring Sparse Vertices at the Beginning of a Phase
	Recoloring Sparse Vertices During a Phase

	An Algorithm for Dense Vertices
	Step I: Coloring via Non-Edge Matchings
	Step II: Coloring via Perfect Matchings
	Perfect Matchings for Large Almost-Cliques
	Perfect Matchings for Small Almost-Cliques

	The Final Algorithm
	Initialization subroutine
	Handle-Update Subroutine

	Fully Dynamic Algorithm for Sparse-Dense Decomposition
	High Level Overview of Our Algorithm
	Subroutines: Friend Edges and Dense Vertices
	Determining Friend Edges
	Determining Dense Vertices
	Fully Dynamic Algorithm to Maintain Friend Edges

	Algorithm for Maintaining Sparse-Dense Decomposition
	Analysis

	Appendix
	Proof of Lemma 5.3

