Online Balanced Allocation of Dynamic
Components

Rajmohan Rajaraman & &
Northeastern University, Boston, MA, USA

Omer Wasim 24
Northeastern University, Boston, MA, USA

—— Abstract

We introduce Online Balanced Allocation of Dynamic Components (OBADC), a problem motivated
by the practical challenge of dynamic resource allocation for large-scale distributed applications. In
OBADC, we need to allocate a dynamic set of at most k¢ vertices (representing processes) in £ > 0
clusters. We consider an over-provisioned setup in which each cluster can hold at most k(1 + )

vertices, for an arbitrary constant € > 0. The communication requirements among the vertices are

modeled by the notion of a dynamically changing component, which is a subset of vertices that need

to be co-located in the same cluster. At each time ¢, a request r; of one of the following types arrives:

1. insertion of a vertex v forming a singleton component {v} at unit cost.

2. merge of (u,v) requiring that the components containing v and v be merged and co-located
thereafter.

3. deletion of an existing vertex v at zero cost.

Before serving any request, an algorithm can migrate vertices from one cluster to another, at a

unit migration cost per vertex. We seek an online algorithm to minimize the total migration cost

incurred for an arbitrary request sequence o = (r¢):>0, while simultaneously minimizing the number

of clusters utilized. We analyze competitiveness with respect to an optimal clairvoyant offiine

algorithm with identical (over-provisioned) capacity constraints.

We give an O(log k)-competitive algorithm for OBADC, and a matching lower-bound. The
number of clusters utilized by our algorithm is always within a (2 + ¢) factor of the minimum.
Furthermore, in a resource augmented setting where the optimal offline algorithm is constrained
to capacity k per cluster, our algorithm obtains O(log k) competitiveness and utilizes a number of
clusters within (1 + ) factor of the minimum.

We also consider OBADC in the context of machine-learned predictions, where for each newly
inserted vertex v at time ¢: i) with probability n > 0, the set of vertices (that exist at time ¢) in the
component of v is revealed and, ii) with probability 1 — 1, no information is revealed. For OBADC
with predictions, we give a O(1)-consistent and O(min(log %, log k))-robust algorithm.
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1 Introduction

Modern large-scale applications are distributed over multiple physical machines or computing
clusters in data centers, generating a considerable amount of network traffic. In a typical
setting, a cloud service provider provisions computational resources (such as CPU, memory,
storage) in the form of virtual machines (VMs) to users who pay a cost proportional to
their resource requirements which varies over time. However, operating and allocating
these resources in a “demand-aware” manner to minimize cost, and optimize performance
and energy utilization while fulfilling service-level agreements (SLAs) for various users is
technically challenging. This has garnered a surging interest in resource allocation strategies
in cloud computing frameworks in recent years [7, 9, 1, 31].
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Consider the setting where a massively distributed application attributed to a single
cloud user may be spread across multiple VMs, necessitating inter-VM communication.
If such VM’s are allocated in the same cluster, inter-VM communication consumes little
network bandwidth, leading to low communication cost and potential energy savings [31, 32].
However if inter-VM communication happens over physically separated clusters, this may
compromise quality of service, responsiveness, and incur a large consumption of network
resources. Almost all virtualization systems support “live-migration” of VMs between various
clusters with the aim of reducing latency, improving resource-allocation and energy savings
[12, 16, 17]. However, VM migration must be performed sparingly, as it creates network
overhead and may compromise the responsiveness of the VM being migrated.

In addition to inter-process communication patterns that evolve over time, another
challenge is to provision resources dynamically to users under varying resource requirements.
This leads to the removal of existing virtual machines and the insertion of new virtual
machines [6]. Thereafter, new communication patterns emerge between newly re-allocated
VMs. Such re-allocations also incur a cost for the cloud service provider which is inevitable,
in addition to future defragmentation of resources caused by multiple re-allocations over
time [30].

Finally, energy consumption of data centers due to an ever-increasing need for large-scale
cloud computing is well documented [19]. In practice, migration of VMs together with other
load-balancing strategies have been exploited to reduce the number of “active” physical
machines to save energy [16, 19, 17]. For example, VMs on under-loaded clusters are migrated
so that such clusters can save energy by moving to an idle state. Thus, it is highly desirable
to ensure that the number of “active” clusters dynamically scales with the workload.

In this paper, we address the challenges posed by unknown communication patterns,
dynamic resource requirements, and energy consumption by introducing the problem of On-
line Balanced Allocation of Dynamic Components (OBADC). We model the scenario
where clusters and VMs are homogeneous, and migration and inter-VM communication
costs are uniform across different clusters, while the communication patterns and dynamic
allocation requests are unknown.

1.1 Problem Formulation and Main Results

Our problem formulation is inspired by the online balanced graph partitioning (OBGR)
problem, introduced by Avin, Bienkowski, Loukas, Pacut and Schmid [2], and considers
additional technical aspects including the dynamics of VMs, and a secondary goal of min-
imizing the number of active clusters. In OBADC, we have a set V of at most n < k¢
vertices (representing VMs) at any given point in time, and ¢ > 0 clusters denoted by

51,89, ..., Sp, each with capacity k. Initially V = () and S; for all ¢ € [{] is empty. We

model the communication requirements among the vertices using the notion of a dynamically

changing component, which is a subset of vertices that need to be co-located in the same
cluster. The request sequence o = {r;};>1 is revealed online, such that each request r; is of
the following type:

1. Insertion of a vertex v: Insert v (and a corresponding singleton component {v}) at unit
cost, to any cluster which can accommodate it. The cost of insertion models a one-time
“startup” cost to initialize a VM in a cluster.

2. Deletion of a vertex v: Delete existing vertex v from its component C'. The cost of
deletion is zero; all vertices in C'\{v} are still required to be co-located.

3. Merge vertices u and v : Merge the components containing v and v into a single component
so that vertices in the resulting component are co-located thereafter.
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Insertions and deletions of vertices model VM allocation and de-allocation, while merge
requests model the scenario when frequently communicating VM’s dedicated to a single
application or a customer are consolidated for efficiency or energy savings [28].

The request sequence o induces a unique set of components denoted by C, over time. The
migration cost of a single vertex is unit. All vertices of a single component are required to
be assigned to the same cluster. Thus, we assume that the size of any component C' € C is
most k at all times, and that there exists a component assignment to clusters such that each
cluster is assigned a maximum of k vertices.

Competitive Analysis. We adopt the competitive analysis framework to analyze OBADC
algorithms. A deterministic (resp. randomized) online algorithm A is said to be p-competitive
(alternatively, p is the competitive ratio of A) if for any input sequence o, the cost (resp.
expected cost) ¢(A, o) incurred by A in o satisfies ¢(A,0) < pOPT(0) + v where 7 is a
constant independent of the length of o and OPT(o) is the cost of an optimal offline algorithm
denoted by OPT, which has complete information about the request sequence ¢ in advance.
Abusing notation slightly, we refer to OPT(c) as OPT when o is clear from context.

Resource Competitiveness. To capture the practical objective of utilizing a number of
clusters proportional to the total resource requirement (which varies over time), we seek
algorithms which are also competitive with respect to the number of clusters utilized by OPT.
Let n; denote the number of vertices at any time ¢, and let oy, 8; denote the number of
clusters used to assign all n; vertices at time ¢t by OPT and an online algorithm A. We say
that A is u-resource competitive if for all time ¢, 8; < pay.

OBADC with Over-Provisioning. For the sake of obtaining polynomial-time online al-
gorithms, we consider an overprovisioned setting, similar to the one considered in a recent
work [23]. Here, each cluster C; for i € [¢] has capacity (1 + )k for some ¢ € (0,1). While
seemingly similar to a (1 + €) resource-augmented model, we emphasize that in the over-
provisioned setup, both the online algorithm and the optimal offline algorithm OPT are
constrained to an identical cluster capacity of (1+¢)k for any cluster C;. As a result, compet-
itiveness is analyzed on a stricter benchmark, in that the optimal offline and online algorithm
have access to the same amount of resources, in strong contrast to resource augmentation
where competitiveness is analyzed with respect to an unaugmented offline algorithm (see
Chapter 4 of [25]).

Our main result is a O(log k)-competitive algorithm for OBADC in the over-provisioned
setting. We show that the competitive ratio of our algorithm is asymptotically optimal by
establishing a lower bound. Furthermore, our algorithm is (2 + ¢)-resource competitive.

» Theorem 1. Consider any instance of OBADC with £ clusters each of capacity (1 + )¢
and arbitrary sequence of insertion, deletion, and merge requests such that at any time the
resulting components can be allocated to the ¢ clusters using capacity at most k. There exists
an online algorithm that achieves cost at most O(logk) times the optimal, while utilizing at
most (2 + €) times more clusters than the minimum required at each time step.

Furthermore, every online algorithm incurs cost Q(logk) times the optimal for the worst-
case instance.

In a resource augmented setting where the optimal offline algorithm is constrained to
capacity k per cluster, our algorithm obtains O(logk) competitiveness, while utilizing a
number of clusters within (1+¢) factor of the minimum. The proof of resource-competitiveness
is deferred to the full version of the paper.
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OBADC with Machine-Learned Predictions. We next investigate OBADC in the context of
“algorithms with predictions” which is a growing research area [25, 15] with the over-arching
goal of circumventing pessimistic limitations of lower and upper bounds for various problems
in online, dynamic and approximation algorithms.

Prediction Model: At any time step ¢ when a vertex v is inserted, with probability n > 0, we

also receive a set P, consisting of all vertices in V; that lie in the same component as v, where
V; denotes the set of vertices at the beginning of time step ¢t. Note that with probability 1 —7,
we do not receive any information on the component of v. Furthermore, P, only consists of
vertices in v’s component which exist at time ¢, and contains no information about future
vertices in v’s component which may arrive after time t.

Our “prediction error” is quantified by the confidence 1 > 0 of the predictions, similar
to [11] and we analyze the performance of a learning-augmented online algorithm for OBADC
in a standard consistency-robustness framework [11, 15, 24]. An algorithm A for OBADC
with predictions is said to be a-consistent and S-robust if it is a-competitive when n = 1,
and S-competitive where § is a non-increasing function of 1. Roughly speaking if n = 1, and
we have perfect predictions, then one would desire constant-factor competitiveness. On the
other hand, as n approaches 0, the performance of the algorithm should gracefully degrade
to the competitive ratio obtained by the best-known online algorithm for the problem. Our
second result provides a near-tight consistency-robustness tradeoff for OBADC.

» Theorem 2. There exists an O(1)-consistent and O(min(log %, log k))-robust algorithm for
OBADC with predictions in the over-provisioned setting.

1.2 Technical Overview

In this section, we present a high level overview of our techniques towards obtaining our
algorithms. We ignore several intricacies in the following discussion.

1.2.1 Overview of the Algorithms

Our algorithm for OBADC classifies components in terms of their volume (which refers to
their size). A component is said to be small if it has volume at most Dk where D = (¢),
and large otherwise. Let Cg,Cy denote the set of small and large components maintained at
all times. Component volumes are rounded up to the nearest power of (1 + ), such that
components whose size is in the interval [(1+ )", (1 4 £)’) belong to component class i.
Thus, the total number of small component classes is O(log k) while the number of large
component classes is O(1). Our algorithm assigns volume to each component C' on a cluster
such that the assigned volume is upper bounded by (14 £)|C|. The precise volume assigned
by our algorithm is more fine-grained to further distinguish components within the same
component class.

The assignment of large components is accomplished by solving an integer linear program
(ILP) whose objective function seeks to minimize the number of clusters utilized. We remark
that large components are assigned independently of small components. Since the number of
large component classes is O(1), the ILP can be solved in polynomial time. Invoking a result
from [26] allows us to limit the total “change” in large component assignments after component
merges (resp. vertex deletions), which lead to increase (resp. decrease) in a component’s
class. Small components are assigned in a first-fit fashion. Our algorithm maintains a “tight”
assignment of components throughout time which guarantees (2+ ¢)-resource competitiveness.

The main challenge arises in maintaining these assignments dynamically, while simultan-
eously minimizing the total migration cost and clusters utilized. To accomplish this, our
algorithm maintains several invariants. We give an overview of our algorithm as follows.
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Insertion of singleton components are handled by provisioning volume on a cluster, with
sufficient residual volume whenever possible. For a merge request (u,v), if u,v are in the
same component C, the algorithm does nothing; else distinct components C;, C; containing
u and v respectively, are merged into a new component C,, where w.l.o.g. |C;| > |Cj].

When C,, is small and the volume assigned to C; is at least |C,, |, the smaller component
C; is migrated (unless it is assigned on the same cluster as C;). Otherwise, if there is
sufficient residual volume on the cluster to which C; is assigned, C,, is assigned volume and
vertices in C; are migrated (if necessary). If the residual volume is insufficient, this implies
that at least k vertices are assigned to this cluster. Thereafter, vertices in C; and C; are
migrated to another cluster with sufficient residual volume. This may lead to a reduction in
the assigned volume of C}’s cluster. Whenever the residual volume of a cluster decreases
below a certain threshold, our algorithm migrates small components as necessary from other
clusters to ensure resource-competitiveness.

On the other hand, if C,, is large such that C,, belongs to a higher component class than
C;, our algorithm solves an ILP; otherwise, vertices in C; are migrated (if necessary). If the
ILP is solved, this may lead to multiple components (both large and small) being reassigned
and migrated. We give a greedy procedure to assign large components, which together
with the sensitivity analysis result from [26], allows us to bound the total migration cost by
O(f(e)k). If the request sequence consists of only vertex insertions and component merges
(i.e. only monotonic increases in component sizes), we can establish O(log k)-competitiveness
by a relatively elegant charging argument (see Section 3).

However, for non-monotonic changes in component sizes a major challenge arises towards
ensuring resource-competitiveness, since vertex deletions in one component may necessitate
migration of other unrelated components to maintain a tight packing. To this end, our
algorithm always maintains the property that the assigned volume of any component C' is
within a (1 + §) factor of |C| under both component merges and vertex deletions. For small
components undergoing vertex deletions, volume reassignment can be done after a constant
fraction of vertices in C' are deleted. This may require migration of small components to C’s
cluster. On the other hand, if vertex deletions in C lead to a drop in C’s component class
we solve an ILP to reassign large components. This may be prohibitive in general because
repeated vertex insertions and deletions can lead to a cost of O(f(¢)k) every time an ILP
is solved. To circumvent this, our algorithm works with a relazed volume threshold (and
component class categorization) when “deciding” whether to re-solve an ILP under vertex
deletions. Thus, for example, certain large components may be treated as class ¢ components
by our algorithm even when their volume is less than (1 + %)i_l. However, once at least
Q(e%k) vertices are deleted from such components, our algorithm re-solves the ILP. We show
that treating certain components in this manner does not violate resource competitiveness,
since the total number of large components which can be assigned to any cluster is O(%)

For the learning-augmented model, we enhance our algorithm of Theorem 1 by executing
the merges indicated by the predictions at the time of insertion. That is, on the insertion
of a vertex v whose predicted set P(v) is non-empty, our algorithm issues merge requests
of the form (v,u) for all w € P(v). This allows us to inherit several desirable properties
of our algorithm of Theorem 1 while minimizing the total migration cost when augmented
with predictions. The resulting algorithm also yields a smooth interpolation between our
algorithm without predictions and one with full predictions.

We present an overview of our analyses in Section 3 and Section 4 for our O(logk)-
competitive algorithm and learning-augmented algorithm, respectively.
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1.3 Related Work

Online graph partitioning problems. At a high-level, OBADC is related to previous work
on online partitioning of dynamically changing graphs. Related problems include variants of
online graph coloring and the OBGR problem. In recent work, Azar et al. [3] introduce an
online graph recoloring problem in which edges of a graph arrive online and an algorithm
needs to distribute the vertices among ¢ clusters such that for any edge, the two endpoints
must be in different clusters. Subsequent work [23] considers a capacitated variant of online
recoloring. A key distinction between such coloring problems and OBADC is that while an
edge in the former requires the endpoints to be separated, an edge in the latter requires the
endpoints to be co-located, leading to different technical considerations.

OBADOC is perhaps most closely related to OBGR [2], in which there is a static set V
of n = kl vertices and a set of [ > 0 clusters each holding k vertices initially. An online
sequence o = {(u, vt) }+>0 of communication requests arrives over time. The cost of serving
request (ug,v;) is 1 if u; and vy are in distinct clusters and 0 otherwise. Prior to serving
any request, a vertex can be migrated at a cost of a € Z>°. The cost incurred by an online
algorithm is the total communication and migration cost to serve all requests in 0. OBGR
has a O(k?[?)-competitive algorithm [2] in the non-augmented setting while a lower bound of
Q(kl) is known. In recent work, a O(kl2°*))-competitive algorithm was given in [4], which
is optimal for constant k. In the resource augmented setting, with (2 + ¢)-augmented cluster
capacity an O(klog k)-competitive deterministic algorithm was given in [2]. For the same
setting, a polynomial time algorithm was recently presented in [10]. A lower bound of Q(1)
holds even in the (1 + €)-augmented setting where ¢ < 1/3 [20].

In [14], Henzinger et al. introduced the learning model of the problem in which the vertex
set of the graph G, induced by the request sequence o can be partitioned into V7, ....V; such
that |V;| = k for all i and there are no inter-cluster requests (u,v) where u € V,.v € V;
for j # i. For the learning model, the lower bound of Q(kl) holds in the non-augmented
setting. Allowing (1 + ¢)-augmentation, the best deterministic and randomized algorithms
are O(llogk) and ©(log k + logl)-competitive respectively which are shown to be tight[13].

OBADC vs. OBGR. We describe the similarities and differences between OBADC and
OBGR. OBADC resembles a “fully dynamic” version of OBGR in the learning model, but
differs as follows. In OBADC, vertices arrive and depart over time, and hence the online
algorithm has to adapt to communication patterns which evolve over time between both
existing vertices and new vertices. The migration costs are identical between the two models;
however in OBADC, an insertion of a new vertex incurs a cost of 1 and we aim to have the
total number of clusters utilized by an online algorithm to adapt with the number of vertices.
This may incur strategic migrations of vertices to satisfy this additional objective, in contrast
to OBGR where migrations are performed to solely minimize communication overhead.

Resource-augmentation and over-provisioning. To circumvent pessimistic lower-bounds
and obtain polyonomial time algorithms, many online algorithmic problems have been
studied in the resource-augmented model (e.g., see [21, 33, 34]), going back as far as the
earliest work on caching [29]. OBGR has also been studied in the resource-augmentation
model [13, 22, 10, 2], where OPT is constrained to a capacity of k on each cluster, while an
online algorithm can utilize capacity (1 + €)k for some € > 0. In contrast, we study OBADC
in an over-provisioned setting, which yields stronger guarantees than resource-augmentation
since the algorithm and the optimal have the same resources. Any competitive ratio in
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the over-provisioned model immediately implies the same bound in the resource augmented
model; for the measure of number of clusters utilized, we are able to get stronger bounds in
the resource-augmentation model (see the remark after Theorem 1 in Section 1.1).

Learning-augmented algorithms. Another approach toward addressing pessimistic bounds
in online and approximation algorithms is to incorporate the growing availability of machine-
learned predictions in the design of algorithms [11, 18, 15, 5]. A central theme in this area
is the following: given access to an imperfect machine-learned oracle which can “predict”
characteristics of future request sequences or actions (in the context of online algorithms
[24, 15]), edge updates (in the context of dynamic algorithms [5]) or optimal solutions (in the
context of approximation algorithms [8]), can improved competitive ratios, running/update
times, or approximation ratios be obtained? The imperfection of predictions is quantified by
prediction error, which is problem and instance dependent, or a confidence parameter [11].
There is a great variation in terms of various prediction models and prediction errors which
have been utilized and there is no singular notion of either, which can be useful or applicable
to wide variety of problems.

Our study of online OBADC with predictions is also inspired from prior empirical
work in VM allocation and migration, in which various predictions on resource utilization
in clusters [17], future VM requests and migrations [19], and communication traffic from
historically collected data have been utilized towards efficient provisioning of resources.

1.4 OQutline and Preliminaries

Section 2 presents our main algorithm for OBADC. In Section 3, we give a proof sketch of the
competitive ratio of our algorithm. The proofs of resource competitiveness and correctness
are deferred to the full version of the paper. Finally, Section 4 presents a learning-augmented
algorithm for OBADC with predictions, together with a proof sketch of Theorem 2.

We present some useful notation. Let V; denote the set of vertices at any given point in
time ¢ such that n; = |V;| < kl. We use the notation [i] for any i € Z* to refer to the set
{1,2,...,i}. The volume of a component C is simply its size, and denoted by |C|.

Our algorithms maintain a set of components C = {C1, Cs, ...} induced on V; for all time ¢.
We use § = {51, S2,...,5¢} to denote the set of all clusters. When there is merge a request
(u,v) between distinct components C; and Cj, our algorithms merge C; and C; into Cy,. A
merge is viewed as deletion of components C; and C; from C and an insertion of C,, to C.

2 An O(log k)-competitive algorithm

In this section, we present an asymptotically optimal deterministic O(log k)-competitive
algorithm for OBADC. We begin by giving some definitions and invariants that our algorithm
maintains.

2.1 Definitions and Invariants

Component Classes. Our algorithm classifies components according to their size. For
a component C' € C, we say that C is in class ¢ if [C] € [(1+ 2)", (1 + £)*), where
1<i< Lln(H_%) k]. We say that a component is small if it is in class ¢ where i < ¢, where
¢s < [Ingqs) ¢ ]. Thus, any small component has size at most Dk where £ < D < £. All
the other components are said to be large.

81:7
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A large component is understood to be in class 7 if it is in class i + ¢;. By the above
definitions, it follows that a large component of class i has size in [Dk(1+ 5)"~!, Dk(1+ §)7).
The following lemma bounds the number of large component classes.

» Lemma 3. The number of large component classes is ¢; < z—g =0(1).

Proof. Note that a large component has volume at least % and at most k. Thus, ¢ <
5

% + 1. Since 1 — % <Inz <z —1 for any x € R2Y, it follows that ¢; < % <
4

e .5 41 < B sincee < 1. <

Assigned Volume. For every component C' € C, our algorithm provisions volume on some
cluster S; € S to which it is assigned, which we refer to as the assigned volume and denote it
by A(C).

For any cluster S; € S let A(S;) denote the total assigned volume for all components
assigned to S;. Let R; denote the residual unassigned volume of S;, where R, = (14+¢)k—A(S;).
We present a fine-grained scheme to assign volumes to components as follows.

Let A;; = 1+ 7)1+ )t for j € {0,1,2,3,4}. Thus, Ajp = (1 + £)! and
Aig = (1 + £)". Our algorithm maintains the following invariant for assigned volumes at all
times.

» Invariant 1 (Assigned Volume). For all classes i, and any class i component such that
ICl e [(14£), (14 £)), one of the following statements holds:

1. if Ao < |C| < Ajr, then |C| < A(C) < Ajs.

2. if Aj <|C| < Az, then |C| < A(C) < Ayy.

3. if Aip < |C| < Ags, then |C] < A(C) < (14 5)1+5)" = Aiy11.

8. if Aig < |C| < Au, then |C] < A(C) < (1+ £)(1+ 2)i = Agyr.

The following lemma is immediate based on the invariant above.

» Lemma 4. If Invariant 1 is maintained, then for any component C, |C| < A(C) <
1+ DICl.

Active Clusters. A cluster is said to be active if there is at least one component assigned
to it. The set of all active clusters is denoted by Sj4.

Marked Clusters. Our algorithm marks and un-marks active clusters over time. If a cluster
is marked, then its residual volume is small. We denote the set of marked clusters by Sy,
where Sy; C S4. Initially, all clusters are unmarked, i.e. Sy; = (). Our algorithm maintains
the following invariant at all times.

» Invariant 2. For a cluster S; € Sy, Rj < %

Furthermore, let Ss denote the set of clusters on which only small components (and no
large components) are assigned and let Sy denote the set of clusters to which at least one
large component is assigned. To ensure that the number of active clusters is at most (2 + €)
times the minimum needed, our algorithm maintains the following invariant.

» Invariant 3. At any time t, if |Sg| > 0 then both of the following hold: i) either Sp, =0 or
Sr C Sy (ie. all clusters in Sy, are marked) and, ii) exactly one cluster in Ss is unmarked.
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Marked Components. Our algorithm marks and un-marks certain components when their
component class decreases due to vertex deletions. If a large component of class i € [¢; — 1],
(resp. a small component of class ¢;) is marked, then it is treated as a large component
of class i + 1 (resp. a large component of class 1). Intuitively, we mark a component to
ensure that the ILP is not solved too frequently if its volume shrinks only slightly due to
deletions. The set of marked components at any time is denoted by Cp;. Note that all
marked components are treated as large components by our algorithm, thus Cy; € Cp. Our
algorithm maintains the following invariant for marked components.

» Invariant 4. At any point in time, a marked component C € Cy satisfies one of the
following conditions:
1. C is a small component of class c,, such that |C| > Dk — <5k
. Qk
2. Cis a large component of class i € [c; — 1], such that |C| > Dk(1+ )" — 55 -

Data Structures. Our algorithms maintain the sets Cg and Cy, of small and large components,
respectively, together with the set Cp; of marked components. For a component C, the
assigned volume A(C) is maintained, and for all S; € S, A(S;) and R; are maintained.
Furthermore, the sets of clusters S, Sy, Ss and Sy, are maintained.

In the following section, we outline our approach for assigning large components which is
completely independent of the assignment of small components.

2.2 An Approach to Assign Large Components

We first define the notion of a signature, similar to [22, 13]. Intuitively, a signature encodes
the number of large components of each component class that can be assigned to a single
cluster while respecting cluster capacity.

» Definition 5. A signature T = (11, T2, ..., T¢,) 1S a non-negative vector of dimension c¢; where
7; denotes the number of large components of class i such that Zfl:l(Dk(lJr%)i*l iog)ﬂ <k.

Let T = {11, T3, ...} denote the set of all possible signatures. The following lemma bounds
the size of T.

26

» Lemma 6. The total number of signatures, |’T| is bounded by (ﬁ)?2 =0(1).

Proof. We first note that Dk(1 + )z L_ 100 > Dk: 100 > % — W > % for any i > 0.
Thus, any entry T; is upper bounded by — /6 = 2. Since the number of large component
classes is 28 by Lemma 3, the total number of blgnatureb is at most (£ )7 =0(1). <

We solve an integer linear program (ILP) in polynomial time, and obtain signatures which
guide the placement of large components. Let T;; denote the 4t entry of a signature T; € T.
For each signature T;, we let z; € [0,¢] denote the number of clusters which are assigned
signature T;. Let o; denote the number of class j large components at any given point in
time. Our ILP is as follows.

ILP.
|7 7]

in s.t. Zlexl =o0;Vj€la), ;€[04 Vie[T].
i=1

=1

In matrix form, our ILP has n, = O(¢;) = O(1) rows and n. = O(|T|) = O(1) columns.
Thus, the ILP can be solved in polynomial time.

ITCS 2025
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Our algorithm solves this ILP whenever o; changes for any j € [¢;]. This could be after
components are merged leading to a larger component with a higher component class or,
vertex deletions from a component leading to a decrease in its component class. In both cases,
at most three components in C change, and as a result, at most three component classes
change. We invoke a well-known result in sensitivity analysis from [27], which quantifies the
change in optimal solutions of the ILP.

» Theorem 7 ([27]). Let A be an integral n, X n. matriz, such that each subdeterminant
of A is at most A in absolute value; let b’ and b be column n,.-vectors, and let ¢ be a Tow
ne-vector. Suppose max{cx|Ax <V : xintegral} and max{cz|Az <V : xintegral} are finite.
Then for each optimum solution z' of the first maximum there exists an optimum solution z"
of the second mazimum such that ||z — 2"||cc < nA(||V — b ||oo + 2)-

We prove the following lemma.

» Lemma 8. After a merge request or deletion request, the number of signatures which

7]
change in the optimal solution to the ILP is f(e) = lTS;T = 0O(1) for constant € > 0.

Proof. Whenever two components are merged or a deletion causes a large component’s size
class to decrease, the RHS vector in our ILP changes by at most 1 in the infinity norm. To
bound the sub-determinant, we use the Hadamard inequality to derive that A < (ncAmax)"c/ 2
where Apax denotes the maximum entry (in absolute value) of the constraint matrix A. Each
entry in the constraint matrix of our ILP has value either 1 or Tj; so that Apax < ﬁ = O(%)
As a result, A = O((@)IT\), Thus, the optimal solution to the ILP changes by O(|T|A)
in the infinity norm. Since x has dimension |T|, the number of signatures which change

between any two optimal solutions is O(|T|2A) = O(1). <

Greedy Assignment of Signatures to Clusters. Given the solution z = (z1, 22, ..., 27)
from the ILP, we perform a greedy assignment of signatures to clusters which minimizes the
number of clusters whose assigned signatures change. Let ' = (#}, %5, ..., #|) denote the
current signature, such that there are exactly 2 clusters which are assigned signature T;.
Our algorithm for greedy assignment, Assign-Signatures works as follows.

Let z; = x; for all i € [|T|] and 8’ := S4 denote the set of active clusters. We iterate over
all i € [|T]]: while z; > 0, if there exists an active cluster S; in 8" which is currently assigned
signature T}, z; is decremented, S; is removed from S’ and we continue. Else if no cluster in
S’ is assigned signature T;, we pick an arbitrary active cluster S; in S4 and assigns T; to S.
If 8’ = 0, our algorithm picks an arbitrary inactive cluster S; € S\Sa, adds S; to S4 and
assigns T; to S.

Let Sy C S4 denote the set of clusters which are assigned a new signature after the call
to Assign-Signatures. Any cluster S € Sy satisfies one of the following conditions prior to
the call to Assign-Signatures: i) S was inactive, ii) S was active but its signature changed
after the call to Assign-Signatures or iii) S was active and was not assigned any signature
prior to the call to Assign-Signatures.

Let So C S denote the set of clusters which were assigned a signature prior to solving
the ILP, and are no longer assigned a signature. Finally, let S; denote the set of clusters
whose assigned signatures are identical before and after the call to Assign-Signatures.
Our algorithm returns sets Sy, So and S;. Clearly, the assigned signatures change only for
clusters which are in Sy U Sp.

By virtue of subroutine Assign-Signatures and Lemma 8, the following lemma is
immediate.
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Algorithm 1 Assign-Signatures.

1: Let 2’ = (4,23, ...,2]7) denote the current signature.

2: 8"+ Sa, Sn 0, Sr 0.

3: Solve the ILP and let = (z1, 22, ..., z|7) denote the obtained signature
4: for i € [|T]] do

5: Zi = Tj.

6: while z; > 0 do

7: if there exists S; € S’ assigned a signature T; then

8: zi 2z — 1, S’ <—Sl\{Sj}, S (—SIU{SJ'}.

9: else
10: if S’ =0 then
11: Pick an arbitrary cluster S; € S\Sa, and assign T; to S;.
12: Sy <—SNU{Sj}.
13: else
14: Pick an arbitrary active cluster S; in &’ and assign T; to S;.
15: Sy« Sy U{S;}, &' + S'\{S;}.

16: So <+ St\(S1 U Sw)).
17: Sp + Sy USr.
18: Return (Sn,So, S1).

» Lemma 9. After a call to Assign-Signatures, |Sy USo| = f(e) = O(1).

For all clusters S; € S; whose assigned signatures do not change, our algorithm does not
modify the assignment of large components. Let C} denote the set of all large components
in Cy, which are not assigned to any cluster in Sy. It follows from Lemma 9 that the total
volume of all large components in C; is O(kf(g)).

Components in C; are assigned to clusters in Sy, corresponding to the newly assigned

signatures. Let Cg denote the set of all small components previously assigned to Sy U Sp.

From Lemma 9, it follows that the total volume of all components in Cy is O(kf(g)). Our
algorithm re-assigns small components in Cg in a first-fit fashion, explained in the next
section. The following Lemma is immediate from Lemma 8, Lemma 9 and our preceding
discussion.

» Lemma 10. The total volume of components in C;, UCq is bounded by O(kf(e) = O(k).

2.3 The Full Algorithm

In this section, we present our algorithm which takes as input a request r; at time ¢, and

maintains an assignment of components to clusters while satisfying Invariants 1 through 4.

Our algorithm relies on various subroutines, which we present in the following.

Subroutine Assign-Volume. This subroutine takes as input a component C, and a cluster
S; € S4 and assigns volume for C' on S;. In the case when C is a class ¢ — 1 marked
component, it is treated as a class ¢ component and assigned volume A;s.

Observe that Invariant 1 is satisfied for any component C' after a call to Assign-Volume.

Subroutine Assign-Small. The subroutine Assign-Small is invoked whenever a small
component C' needs to be assigned volume on a cluster. We iterate over active unmarked
clusters S; € S4\Snr, and if R; > (1 + £)|C|, C is assigned to S;. Else, S; is marked and
added to Syy.

81:11
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Algorithm 2 Assign-Volume(C,S;).
1. if C ¢ Cy then

2 Leti>O0st. [Cle[(1+5)"1 (1+2)).
3: A(C) 0.

4: if A;p < |C| < A;1 then

5: A(C) — Aig.

6: else if 4;; <|C| < A;2 then

7 A(O) — Aig.

8: else if 4,5 <|C| < A;3 then

9: A(C) — Ai,4-

10: else

11: A(C) — Ai+1,1'

12: A(Sj) — A(Sj) + A(C), Rj — Rj — A(C)
13: else > If C' is marked.

14: Leti>0s.t. |C| € [Dk(1+ )" — =& D).
15: A(C) < Aig.

If all clusters are marked, i.e. Sy = S4 we add an arbitrary cluster in S\S4 to S4 and
assign volume for C.

Algorithm 3 Assign-Small(C).

1: is-assigned=false.

2: for all Sj S SA\SM do

if R; > (1+ 5)|C| then
Assign-Volume(C,S;).

@

4

5: is-assigned=true.

6: break

7 else

8 SM%SMU{S]'}.

9: if is-assigned=false then

10: Pick an arbitrary cluster S; € S\Sa.
11: Sa+— SaU{S;}

12: Assign-Volume(C,S;).

13: Ss <—SsU{Sj}.

Subroutine Handle-Insertion. The subroutine Handle-Insertion is called whenever a
request r; at time ¢ corresponds to a vertex insertion v. Subroutine Assign-Small is invoked
to assign the singleton component {v}.

Algorithm 4 Handle-Insertion(v).
1: C + {U}
2: Cg + CsU{C},C«+CU{C]}.
3: Assign-Small(C).
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Subroutine Unassign-Volume. This subroutine takes as input a component C' which is
currently assigned to a cluster S;. The quantity A(S;) is decremented by A(C) and A(C) is
set to 0. If S; € Spy and R; > %, S; is unmarked. The reason why .S; is unmarked is that if
R; > %, a small component can be assigned volume on S;, since the assigned volume for a
small component is bounded by %(1 +3) < % by Invariant 1. The pseudo-code is given as

follows.

Algorithm 5 Unassign-Volume(C, S;).

A(S;) + A(S;) — A(C), R; + R, + A(C).
A(C) « 0.

if S; € S)y and R; > % then

Subroutine Handle-Unmarked. This subroutine takes as input a newly unmarked cluster S;.
If the assigned volume A(S;) = 0, then S; is removed from the sets Sy and Sg. If |Sg| > 0,
an arbitrary cluster S € Sg is chosen and unmarked.

Else, if A(S;) > 0, Invariant 3 is restored as follows. Note that if S; € Sy and Sg =0
or S; € Sg and |Sg| = 1, nothing needs to be done since Invariant 3 is already maintained.
Else, let S € Sg denote an unmarked cluster where S # S;. While the residual volume of
S; is sufficient (and S; is unmarked and |Sg| > 0) small components from S are migrated
to S;. If the residual volume of .S; is insufficient, S; is marked and added to Sy;. If at any
point A(S) = 0, S is removed from S4 and Sg. Thereafter, if S; € Sy, and |Ss| > 0, an
arbitrary cluster S in Sg is unmarked. If S; € Sg, and |Sg| > 1, an arbitrary cluster in Sg is
unmarked. The procedure continues while the residual volume of .S; is sufficient. On the
other hand, if \S; is the only cluster in Sg it is unmarked and the process terminates.

Subroutine Reassign-Large. We give a subroutine Reassign-Large which is invoked
whenever the number of large components o; of any class i € [¢;] change. In Reassign-Large,
the subroutine Assign-Signatures is invoked which returns the sets Sy,So and Sy of
clusters (see Section 2.2).

Let Cg denote the set of all small components assigned to clusters in Sp U Sy. Small
components currently assigned to clusters in Sp U Sy are unassigned. Clusters in Sp U Sy
are unmarked and the set of active clusters S4 is updated by removing clusters in Sp and
adding clusters in Sy.

Next, let C; denote the set of large components which are not assigned to any cluster in
Cy. For all clusters S € Sy, let T be the signature assigned to cluster S. For all non-zero
Ty, where a € [¢], a class a large component C' is chosen from C}, and Assign-Volume(S, C)
is invoked, concluding the the assignment of large components.

For small components C' € Cy, Assign-Small(C') is invoked. Finally, for all un-
marked clusters S in Sy ¢ Sps, Handle-Unmarked(S) is invoked. The pseudo code of
Reassign-Large is deferred to the full version of the paper.

Subroutine Handle-Deletion. We present a subroutine Handle-Deletion which takes as
input a vertex v to be deleted. We assume that Invariant 1 holds prior to the deletion request.
Let C' denote the component containing v prior to v’s deletion s.t. [C| € [(1+£)!, (14 %))
and S; denote the cluster to which C' is assigned. We consider two cases.
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Algorithm 6 Handle-Unmarked(S;).

1. if A(S;) =0 then

2: Sy SA\{Si},SS — Ss\{Sl}

3: if |Sg| > 0 then Pick an arbitrary cluster S € Sg, Sar + Sy \{S}.

4: else

5: if (S; € S and Ss # 0) or (S; € Sg and |Sg| > 1) then

6: Let S # S; be an unmarked cluster in Sgs.

7: while S; ¢ Sy and Sg # 0 do

8: Let C be an arbitrary small component assigned to S.

9: if R; > (14 £)|C| then

10: Assign-Volume(C, S;).

11: Unassign-Volume(C, S).

12: else

13: Sy + Sy U{S;}. > S; is marked
14: if A(S) =0 then

15: Sa + Sa\{S}, Sg + Ss\{5}. > S is made inactive.
16: if S; € Sp and |Sg| > 0 then

17: Let S be an arbitrary cluster in Sg.

18: Su +— Su\{S}. > S is unmarked.
19: if S; € Sg then
20: if |Sg| > 1 then
21: Let S # S; be an arbitrary cluster in Sg.
22: Sm — Su\{S}. > S is unmarked.
23: else
24: break. > S; is the only unmarked cluster in Sg in this case.

1. C is small and unmarked: Vertex v is removed from C. There are five sub-cases to

consider.
a. If A(C) = Ait1,2 and |C] < A;s, then A(C) is set to A;1q 1.
b. If A(C) = A;111 and |C| < A2, then A(C) is set to Ajq.
c. If A(C)= Aiy and |C| < A;1, then A(C) is set to A;3.
d. fA(C)=A

A(C) is set to Ajs.
e. f C =0, A(C) is set to 0.

i3 and |C] < Ajo = (1+ %), then C has become a class i — 1 component.

In all of the above cases, A(S;) and R; are updated. If S; € Sy and R; > £, 5; is

removed from Sy; and Handle-Unmarked(S;) is invoked.

2. C is large or marked: We first remove v from C. We consider the following cases.

a. C is large and unmarked (i.e. C € C \Cpr): Our algorithm considers the following

cases.
i. If A(C) = A;+12 and |C| < A3, then A(C) is set to Aj1.1.

i. If A(C) = Ai;11 and |C] < Aj2, then A(C) is set to A;4.

iii. If A(C) = A;4 and |C| < A;1, then A(C) is set to Ajs.

iv. If |C| < Aio, C is marked. If A(C) = A;3 then A(C) is set to A;s.
In the above cases, if S; € Sy and R; > %,
Handle-Unmarked(S;) is invoked.

S; is removed from Sy and
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b. C is marked: There are two cases to consider depending on whether C' is large or small
(after the deletion of v).

i. Let C' be a marked large component of class ¢ where ¢ = i — ¢, such that ¢ € [¢; — 1].

If |C| > Dk(14£)°—£5%, there is nothing to be done. Else, if |C| < Dk(1+% )C—%,
C is unmarked. The counter o.41 is decremented since C' is now considered a class
¢ component, and o, is incremented. Then, the subroutine Reassign-Large is
invoked.

ii. Let C be a marked small component of class ¢;. If |C| > Dk — 100,
Else, if |C| < Dk — 100, C is first unmarked. Then, C is removed from C;, and added
to Cs. The counter oy is decremented. Then, the subroutine Reassign-Large is

invoked.

The pseudo-code of Handle-Deletion is deferred to the full version of the paper.

Merge-Components. The subroutine Merge-Components is invoked by our algorithm to
handle a merge request (u,v). Let C;, C; denote the components of u and v respectively. If
C; = Cj, nothing needs to be done. Otherwise, w.l.o.g., let |C;| < |C;| and S; and S; denote
the clusters on which C; and C; are currently assigned. Let Cy, = C; U C;.

1. C,, is small: The subroutine Handle-Small is called and considers two cases.

a. C; is marked: We note that C; cannot be a marked component since this would
contradict that C’m is small. This is because 1f C’ is marked then |C,,| > 2(Dk— 100)
Dk + Dk — & > Dk since Dk — &5 > &£ — £2 > (. Thus, the only possibility is
that C; is marked Since any marked small component must have volume at least
Dk — 1(230, and C, is small it follows that |Cy,| < Dk. In this case we note that
A(C;) = As2 > Dk so that A(Cy,) can be set to A(C;). C; is removed from Cp; and
Cyn is added to Cpy. If |C,| < DE, Cy, is added to Cpr. As such, Cp, is still treated by
our algorithm as a large marked component. If S; = S; nothing needs to be done. Else,
vertices in C; are migrated to S;, and Unassign-Volume(C}, S;) is invoked. Subroutine
Handle-Unmarked(S;) is invoked to handle the case when \S; becomes unmarked.

b. C; and C; are not marked: In this case, there are two cases to consider.

i. If A(C;) > |Cpl, we set A(Cy,) to A(C;) and A(C;), A(Cj) to 0. If S; = S;,
nothing needs to be done. If S; # S;, vertices in C; are migrated to S;, and

Unassign-Volume(C}) is invoked. Subroutine Handle-Unmarked(S;) is invoked to
handle the case if S; becomes unmarked.
i. If  A(C) < |Cm|,  we invoke Unassign-Volume(C;,S;) and

Unassign-Volume(C}, Sj). If R; > (14 §)|Cy|, we call Assign-Volume(Cyy, S;).

If S; # S;, we migrate vertices in C; to S;. We invoke Handle-Unmarked(S;) and
Handle-Unmarked(S;).
On the other hand, if R; < (14 $)|C|, S; is marked and Assign-Small(Cy,) is

invoked.
2. C,, is large: The subroutine Handle-Large is invoked which adds C,, to the set of large
components.
Let m' € [¢;] be an integer such that |C,,| € [Dk(1 + %)m/’l,Dk(l + %)m'). If C; is
marked, i.e. C; € CM, let i/ := a + 1 be the integer where a is an integer such that
|Ci| € [DE(1+ £)* — 1—00,Dk‘( + £)%), else we let i’ := a be the integer where a is an

integer such that |C;| € [Dk(1+4 £)*~*, Dk(1+ §)*). We consider the following cases.
a. Cj is large or C} is marked or m’ >4t If C; is marked, we let j/ = a + 1 be the

integer where a is an integer such that |C;| € [DE(1+ 5)* — W,Dk(l +£)%). Else

if C; is unmarked, we let j/ := a be the integer where a is an integer such that

nothing is done.
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|C;| € [DE(1+ £)*~!, DE(1 + §)*). We decrement o and o; by 1, and increment
om by 1. We remove Cj, C; from Cps to make sure that the set of marked components
is updated. Thereafter, we update the component sets Cg,C;, and call subroutine
Reassign-Large to handle the assignment of large components.

. C; is small and C}; is unmarked and m' < ¢': In this case, we note that o;/, 0, do not

change. Thus, the ILP is not solved. We assign volume for the merged component as
follows.

In the case when A(C;) > A(C,,), vertices in C; are migrated to S; if S; # S;. We
invoke Unassign-Volume(C}j,S;), and Handle-Unmarked(S;). Else, nothing needs
to be done. The assigned volumes A(C;), A(C;) are set to 0. If C; is marked and
|Cm| < DE(1+ %)i/_l, then C; is removed from Cj; and C,, is added to Cps. We note
that in this case, A(C;) = A2 > A(Ch).

If  A(C) < |Cm|, then we invoke Unassign-Volume(C;,S;) and
Unassign-Volume(C}, S;).

If R; > (14-5)|Cp|, we assign volume for C,, on S; by invoking Assign-Volume(Cy,, S;).
If A(S;) =0, we call Handle-Unmarked(S;). Next, we call Handle-Unmarked(S;). In
the case when A(S;) # 0 (and S; € S as a result), we invoke Handle-Unmarked(S;).

If Ri < (1+ §)|Cwl|, we do the following. While R; < (1 + §)|Ch|, we call
Unassign-Volume(C, S;) where C is an arbitrary small component assigned on .S;, and
add it to a set Cg. Once R; > (14 5)|Cp|, we invoke Assign-Volume(Cy,, S;) and
migrate vertices in C; to S; if needed (in the case when S; # S;) together with a call
to Unassign-Volume(C}, S;). Next, we assign components in Cy to S; as long as there
is sufficient volume and \S; is not marked. If all components in Cg have been assigned
and S; is unmarked, we call Handle-Unmarked(.S;).

If S; is unmarked, we invoke Handle-Unmarked(S;). All remaining unassigned com-
ponents C' in C4 (if any) are assigned by invoking Assign-Small(C). Finally, the
component sets Cg,Cy, are updated.

The pseudo-code of subroutines Merge-Components, Handle-Small and Handle-Large are

deferred to the full version of the paper.

We present the pseudo-code of our final online algorithm 0OBA that utilizes the aforemen-

tioned subroutines as follows.

Algorithm 7 0BA.

1: Cs,Cr,Cr,Co < 0.

2: for all S; € S do A(S;) < 0,R; = (1+¢)k
3: S5,S81,S0m, 84 0.

4: for r; at time t do

5:

11:

if r; is an insertion request for vertex v then
Handle-Insertion(v).

else if r; is a deletion request for vertex v then
Handle-Deletion(v).

else
Let r; be a merge request between vertices (u,v).
Merge-Components(u,v).
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3  Analysis of 0BA

In this section, we give a proof sketch towards O(log k)-competitiveness of our algorithm.

Technical details of our proof, together with proofs of correctness and resource competitiveness
are deferred to the full version of the paper.

Our analysis is intricate and relies on various charging arguments. At a high level, we
show that a vertex can be assigned sufficient credit on insertion such that the total amount of
credit on it at any point in time is sufficient to pay for the cost charged against it. The total
credit on a vertex is the sum of its direct and indirect credits. Direct credit is a one-time
credit assigned to v on its insertion. Indirect credit on v is credit passed on to it by other
vertices which get deleted from v’s component.

Warm up: An insertions-only case. Let us first consider a (finite) request sequence o which
only consists of insertion and merge requests. For this sequence, the assigned volume of any
component containing a vertex v monotonically increases over time, and no components
are ever marked. We show that it suffices to charge each vertex an amount O(log k + %)
on its insertion. On v’s insertion, our algorithm assigns {v} to an active cluster in S4, or
makes a new cluster active and assigns {v} to it. On a merge request between components
C; and C; which are merged into a small component C,,, where w.lo.g., |C;| > |C;| our
algorithm always migrates vertices in C; to C; (in the case when S; # S;) as long as the
cluster S; containing C; has sufficient residual volume. The first key observation is that
for such a merge, all vertices in C; are now part of a component (i.e. Cy,) with a larger
component class. Thus, if A(C;) > |C| or Ry > (1 + 7)|Cp|, only vertices in Cj are
migrated. Potentially some other vertices may be migrated to S; if S; becomes unmarked
after volume is un-assigned due to the migration of C; (we ignore these costs for now). For
any vertex v, and the component C' containing v, note that C’s component class increases
monotonically over time due to merge requests. The number of component classes, which is
O(cs + ¢1) = O(logk + %) bounds the number of times the component class can increase.

On the other hand, if R; is insufficient to accommodate vertices in C; (i.e. in the
case when A(C;) < [Cy,| and R; < (1 + §)k), vertices in both C; and C; are migrated
to another cluster. Note that in this case, A(Cy,) > A(C;). Since there are at most
4(cs 4+ 1) = O(logk 4+ ) = O(log k) possible values that assigned volumes can take, and
assigned volume increases monotonically for any component, each vertex v can migrate only
O(logk + Z) times in this manner.

Crucially, we note that if the component C' containing v becomes large (or C is large
and its component class increases), a total of O(f(¢)k) migration cost may be incurred, by
Lemma 10. This migration cost can be incurred a total of ¢; = O(%) times. By definition, a
C has size at least Dk > %; we charge the migration cost to all Q(ek) vertices in C. Thus,

f(e)

each vertex in C contributes at least O(+=)) credit a total of O(Z%) times. Therefore, a

credit of O(%) on a vertex is sufficient to pay for migrations of this type.

We now analyze the potential migration costs incurred when a component C' migrates
from one cluster (say S;) to S;, which may lead to a call to Handle-Unmarked(S;) leading
to components migrations to .S;. To account for these costs, a cluster credit ©(|C|) is left
on S; when C migrates to S;, and each vertex in C' is charged an amount O(1). As a
result, each time the residual volume of a cluster increases, there is enough cluster credit
to pay for successive migrations (as part of Handle-Unmarked). Note that in subroutine
Handle-Unmarked, only small components are migrated from an unmarked cluster, and the

total amount of migrated components is proportional to the increase in residual volume.
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Thus, a vertex is charged for cluster credit each time its component is promoted to a higher
class or its assigned volume increases. Since the number of choices for assigned volumes (and
component classes) is O(logk + E%), any vertex is charged O(logk + 6%) in this manner.

By the above, it follows that assigning a one-time direct credit of O(Z f(¢) + logk) on
each vertex v on its insertion is sufficient. Since OPT is lower bounded by the number of
vertex insertions, this yields O(log k) competitiveness.

The General Case. Let us consider the case when the request sequence consists of insertions,
merges and deletions. In this case, the component class of any component C' and its assigned
volume A(C) do not necessarily increase over time, in general. Thus, direct credit on v is
insufficient, and our analysis crucially relies on indirect credit. Indirect credit is assigned to
any vertex in the following manner: whenever a vertex u is deleted from v’s component C,
an amount of indirect credit is distributed to all remaining vertices in C'. Some credit is also
left as cluster credit on the cluster containing C' on u’s deletion. Cluster credit is used to
pay for re-balancing and migrating components as in the previous case. The total indirect
credit assigned to vertices in C, together with cluster credit that is left on w’s deletion is
charged against vertex u. On the other hand, the total credit assigned to a vertex is the sum
of the direct credit and indirect credit distributed to it by other vertices. Let C' denote the
component containing v. We show that even in the case of deletions, it suffices to assign a
direct credit of O(E%, f(e) +logk) to vertex v upon insertion, which is used to pay for:
1. the unit migration cost incurred each time C is promoted to a component class for the
first time, or the assigned volume of C increases for the first time as in the previous case.
2. indirect credit assigned to vertices in C' upon the deletion of v.

w

cluster credit assigned to the cluster containing C', upon v’s deletion.

4. cluster credit assigned to the cluster containing C', before C is migrated to another cluster
as a result of C' being promoted to either a component class for the first time, or an
increase in its assigned volume for the first time.

Consider a vertex v and let C' denote an (unmarked) component containing v with assigned

volume A(C). Upon vertex deletions from C, A(C) may decrease. Suppose A(C) = A;;

for some j € {1,2,3,4}. Consider a set of deleted vertices Cp which lead to a reduction

in C’s assigned volume to A; j_1. For this to happen, |[Cp| > 5 (14 £)"~!. On the other
hand, |C| < (1+ 4te)(1+ £)7L < (1+ 2)(1+ )1, after vertices in Cp are deleted.

For each vertex u in Cp, we distribute a total indirect credit of O(Z f(¢)) uniformly to all

remaining vertices in C. As a result, the total indirect credit gained by each remaining vertex

1)
in C\Cp is at least O(|Cp]| - (H_%%) = O(@) after all vertices in C'p are deleted.

The éndirect credit gained by any vertex v in C\Cp is used to pay for: i) a single future
migration of a vertex v € C\Cp which leads to an increase in either the assigned volume
of v’s component or the component class of v’s component and ii) leave O(1) cluster credit
when the aforementioned migration happens.

Next, consider the time when a component C' is marked, such that |C| < Dk(1+ £)"~!

where i > 1. Once |C| < Dk(1+ £)"~! — %, this leads to either a call to Reassign-Large

(if C is large) or C is treated as a small component thereafter (see Handle-Deletion). Since

C has size at most k, this implies that at least %

deleted before either of these events happen. The total migration and reassignment cost

= Q(g?) fraction of vertices in C' are

incurred due to Reassign-Large is O(f(¢)k) by Lemma 10. To pay for this cost, leave an
indirect credit of O(@) on each remaining vertex in C, and assign a cluster credit of O(1),
it suffices to charge each deleted vertex from C' an amount O(Z f(€)). The cluster credit is
used to pay for the migration cost of vertices to .S; if .S; becomes unmarked. The amount
charged against a deleted vertex w is paid by the direct credit assigned to u upon its insertion.
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By the above, it follows that assigning a direct credit of O(logk + %) to a vertex upon
its insertion is sufficient. Since OPT is lower bounded by the number of vertices inserted

over all time, this yields O(log k) competitiveness for constant ¢ > 0.

4 OBADC with Predictions

In this section, we present our algorithm for OBADC which is augmented with machine
learned predictions. The problem formulation and objectives are identical as in the standard
un-augmented setup. At each time step ¢, a request 7 which corresponds to either a vertex
insertion, deletion or a merge between two components is issued. At any given point in time,
an online algorithm is required to maintain an assignment of components to clusters, while
respecting the over-provisioned cluster capacity of (1 4 €)k, such that all vertices in any
component are assigned to the same cluster. In light of the (logk) lower bound on the
competitiveness of any randomized algorithm, it is natural to ask whether this barrier can
be circumvented given oracle access to machine-learned predictions to guide the assignment
of components. To this end, we recap our prediction model.

Prediction Model. Let V;_; denote the set of vertices at the beginning of time ¢ — 1. For a

request 7; at time ¢ which corresponds to an insertion of vertex v, we obtain:

1. with probability n > 0, a predicted set P(v) of all vertices in V;_; which will be in the
same component as v.

2. with probability 1 — 7, a null prediction, i.e. P(v) = (). Thus no information is revealed
on the insertion of v.

We present an algorithm Predicted-0BA which is O(1)-consistent and min{log %, log k}-
robust. This algorithm is similar in many ways to our O(log k) competitive algorithm OBA.
We utilize identical data structures, definitions and subroutines as detailed in Section 2. We
also maintain Invariants 1 through 4 as in Section 2.

Our algorithm Predicted-0BA is as follows.

Algorithm 8 Predicted-0BA.
1: CS’vclnC]WvCC — @
2: for all S; € Sdo A(S;) <~ 0,R; = (1 +¢)k

3: Sg, 80, 8m,8a + 0.
4: for r; at time ¢t do
5: if r; is an insertion request for vertex v then

6: Predicted-Insertion(v, P(v)).

7 else if r; is a deletion request for vertex v then

8: Handle-Deletion(v).

9: else

10: Let 7, be a merge request between components C; and C;.
11: Merge-Components(C;, Cj).

We give an additional subroutine, Predicted-Insertion as follows.

Subroutine Predicted-Insertion. This subroutine takes as input a vertex v inserted at
time ¢t and a predicted set P(v) consisting of vertices at time ¢ that will be in the same
component as v. If P(v) =, the subroutine Handle-Insertion(v) is invoked. Else, a set
o of merge requests is created where o = {(u,v)| u € P(v)}. For each merge request in oy,
the subroutine Merge-Components(u, v) is invoked.
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The following lemma bounds the competitive ratio of Algorithm Predicted-0BA.
» Lemma 11. Algorithm Predicted-0BA is O(min{log(1/n),log k})-competitive.

We build towards a proof of Lemma 11 in the following. We first analyze the probability
of a merge request being incident to vertices in distinct components C;, C; as a function of
component, sizes.

» Lemma 12. Let r; be a merge request between components C and C' at time t, such that

s = |C| < |C'| without loss of generality. Then, the probability that C' # C' is bounded by
e 5.

Proof. We note that if C'# C’, then for at least s = |C| insertions of vertices w, P(w) = 0.
Since the probability that P(w) = @ for any w is (1 —n), it follows that for s vertex insertions,
the probability that all predicted sets are empty is bounded by (1 —n)® < e "%, <

We define monotonic merges as follows.

» Definition 13 (Monotonic Merge). Let C' be the component containing vertex v at any

point in time throughout v’s lifetime. Let t1 and ty be time-steps s.t. v is inserted at time tq

and deleted at time to. A merge request involving components C and C' at time t € [t1,t2) is

said to be a monotonic merge for v if |C| < |C’| and one of the following holds:

1. The assigned volume of C is set to A;; by our algorithm where i € [cs +¢1],j € {1,2,3,4}
for the first time during time interval [t1,t2).

2. The component class of C is set to i € [cs + ¢;] by our algorithm for the first time during
time interval [t1,t2).

A merge request for v is non-monotonic if it is not monotonic.

» Lemma 14. The expected number of monotonic merge requests for any vertex v including
merge requests created by Subroutine Predicted-Insertion is bounded by O(log(%)).
Proof. Let C denote the component of v, such that v is inserted at time ¢; and deleted at
time t5. Let d = (1 + ), so that a class ¢ component has volume in [d*~!,d"). By Lemma
12, the probability that a merge request involving C' where C' is the smaller of the two
components and belongs to class i, is bounded by emmd Thus, the expected number of
monotonic merge requests for v is bounded by

log k ) log(1/m) v log k )
Sertn= 3 ety S e <log(1/n) + 0(1) = O(log(1/n)). <
=0

i=0 i=log(1/m)+1

Proof Sketch of Lemma 11. Let us recall the analysis of O(log k)-competitiveness of our
algorithm 0BA. We argued that it suffices to leave a direct credit of O(logk + %) on any
vertex v upon its insertion, which is sufficient to pay for: i) migration costs and cluster credits
charged against v for both monotonic and non-monotonic merges and, ii) cluster and indirect
credits charged against v upon its deletion. The O(log k) term comes from the fact a vertex
v can be part of monotonic merges for a total of ¢; + ¢; = O(log k) times, and is charged
O(log k) times for merges while C' is small. On the other hand, for a non-monotonic merge, v
is charged an amount O(1) to pay for its migration cost and leave cluster credit if the residual
volume of the cluster C' is assigned to, is no longer sufficient to accommodate an increase in
A(C). Since the number of choices for assigned volumes is O(c, + ¢;) = O(logk + %), the
total cost charged against v for non-monotonic merges is O(logk + ).
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We modify our charging argument for non-monotonic merges as follows. Ignoring the
reassignment of components that takes place as a result of subroutine Handle-Unmarked for
the sake of clarity, we crucially observe that whenever the residual volume of C’s cluster
(denoted by S;) decreases, it is due to either: i) vertices in a smaller component involved in
a merge request migrate to .S;, or ii) new vertices are inserted to S;’s cluster. We modify
our charging argument such that the migrated or inserted vertex in the above cases leaves
O(1) extra cluster credit on S;. Thus, whenever the residual volume of \S; decreases by Q(k),
these extra cluster credits can be used to pay for non-monotonic merges involving vertices
already assigned on S;. As a result, we focus on the cost charged for monotonic merges in
the remainder of the analysis.

By Lemma 14, it follows that the expected number of monotonic merges for a vertex is
bounded by O(log( %)) By our analysis of 0BA, it follows that the expected cost charged to
a vertex for monotonic merges is O( @) Thus, an expected credit of O(log(1 /n)@) is
sufficient for monotonic merges. On the other hand, when a vertex v is deleted, we charge
an amount O(%) to it which is assigned as indirect credit and cluster credit. As a result,
it follows that a total direct credit of O(log(l/n)@ + %) in expectation, is sufficient to
pay for all costs charged against v throughout its lifetime.

This yields O(log(1/n))-competitiveness. On the other hand, as n — 0, the beha-
vior of algorithm Predicted-0BA resembles the behavior of algorithm 0BA, and thus, the
competitiveness of Predicted-0BA is bounded by O(logk) in the worst-case. This yields
O(min(log(1/n),log k))-competitiveness. The following lemma establishes O(1) competitive-
ness when n = 1. The proof is deferred to the full version of the paper.

» Lemma 15. Algorithm Predicted-0BA is O(1) consistent.

Theorem 2 follows from Lemmas 11 and 15.

5 Future Work

Our model for OBADC is restrictive in the sense that component sizes decrease only as a
result of vertex deletions; in particular, our model does not allow for splitting of existing
components. We believe that such a model will be much more challenging to handle; indeed,
it could be considered as a generalization of the general model of OBGR, for which there is a
significant gap between the upper and lower bounds for the best competitive ratio achievable.

In this work, we introduced the OBADC and studied it in the context of machine-learned
predictions. It would be interesting to extend our prediction model to the case when
predictions are always available but may be erroneous. Other prediction models for online
balanced allocation problems would be worth exploring.
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