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—— Abstract

We study the communication complexity of the Minimum Vertex Cover (MVC) problem on general

graphs within the k-party one-way communication model. Edges of an arbitrary n-vertex graph
are distributed among k parties. The objective is for the parties to collectively find a small vertex
cover of the graph while adhering to a communication protocol where each party sequentially sends
a message to the next until the last party outputs a valid vertex cover of the whole graph. We are
particularly interested in the trade-off between the size of the messages sent and the approximation
ratio of the output solution.

It is straightforward to see that any constant approximation protocol for MVC requires commu-
nicating Q(n) bits. Additionally, there exists a trivial 2-approximation protocol where the parties
collectively find a maximal matching of the graph greedily and return the subset of vertices matched.
This raises a natural question: What is the best approrimation ratio achievable using optimal
communication of O(n)? We design a protocol with an approximation ratio of (2 — 27! 4 ¢) and
O(n) communication for any desirably small constant € > 0, which is strictly better than 2 for any
constant number of parties. Moreover, we show that achieving an approximation ratio smaller than

3/2 for the two-party case requires plte1/lglgn)

communication, thereby establishing the tightness
of our protocol for two parties.

A notable aspect of our protocol is that no edges are communicated between the parties. Instead,
for any 1 <4 < k, the i-th party only communicates a constant number of vertex covers for all edges
assigned to the first ¢ parties. An interesting consequence is that the communication cost of our
protocol is O(n) bits, as opposed to the typical Q(nlogn) bits required for many graph problems,

such as maximum matching, where protocols commonly involve communicating edges.
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1 Introduction

We study the communication complexity of the Minimum Vertex Cover (MVC) problem for
general graphs within the k-party one-way communication model. In this model, the edges
of an arbitrary n-vertex graph G = (V, E) are distributed among k parties, labeled from 1 to
k. The objective is for the parties to collectively find a small vertex cover of the graph G
while adhering to the following communication protocol: Each party, in sequence, sends a
message to the next party, starting from the first one, and ultimately, the last party outputs
a valid vertex cover of G. In this work, we focus particularly on the trade-off between the
size of the messages sent and the approximation ratio of the output solution.
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Extensive literature addresses various problems within this communication model, such
as graph connectivity, set cover, minimum cut, and maximum matching. (See e.g., [17,
18, 23, 5, 16, 7]). The model, first introduced by Yao [26] in 1979 also has close relations
with streaming algorithms, which has further contributed to the significant attention it
has received. However, to the best of our knowledge, this is the first work to consider the
minimum vertex cover problem for general graphs in this communication model.

It is straightforward to see that a message of size ((n) is necessary to achieve any constant
approximation ratio for the Minimum Vertex Cover (MVC) problem; for example, if the entire
graph is given to the first party and the MVC has size n/2. Moreover, with slight adjustments
to a lower bound for the maximum bipartite matching problem [17], we prove that to achieve
any approximation ratio smaller than 3/2 in the two-party case, w(n) communication is
necessary. On the positive side, there exists a trivial 2-approximation protocol where the
parties collectively find a maximal matching of the graph greedily and return the subset of
vertices matched in the maximal matching. Therefore, a natural question arises:

» Question 1. Is it possible to achieve better than a 2-approximation with the optimal
communication complexity of O(n)?

We note that this question was, in fact, open even with n2~%(!) communication. In
this work, we answer the question affirmatively for any constant number of parties. We
design a protocol with the approximation ratio being a function of the number of parties.
This protocol is optimal when there are only two parties. The approximation ratio and
communication complexity of our protocol are as follows.

» Theorem 1. For any k > 2 and any desirably small € > 0, there exists a randomized
MVC protocol in the k-party one-way communication model with an expected approximation
ratio of (2 — 271 4+ €), in which each party communicates a message of size Oy, .(n)'. This
approximation ratio is tight for k = 2 up to a factor of 1 + €.

An interesting aspect of our protocol is that no edges are communicated between the
parties. Instead, for any 1 < i < k, the i-th party communicates only a constant number
of vertex covers (dependent on ¢ and k) of all the edges assigned to the first ¢ parties. As
a result, the communication cost of our protocol is O(n) bits, in contrast to the typical
Q(nlogn) bits required for approximating many graph problems [23], such as maximum
matching, where protocols often involve communicating edges.

While the problem studied in this work is information-theoretical rather than compu-
tational, it is worth noting that our protocol is not polynomial-time. This is expected, as
achieving any approximation ratio better than 2 for the minimum vertex cover problem is
known to be computationally hard under the unique games conjecture [19]. Additionally,
our protocol can be considered non-explicit because we provide an existential proof for
parts of our protocol rather than explicitly constructing it in full (due to the use of von
Neumann’s Minimax Theorem). However, the protocol can, in principle, be identified through
a brute-force search in doubly exponential time.

Relation to streaming algorithms

A key motivation behind studying the communication complexity of one-way protocols for
graph problems is due to its relations with the streaming model [15]. In the single-pass
streaming model, the edges of an n-vertex graph arrive sequentially in a stream in an arbitrary

1 We use the notation Op,(+) to indicate that the hidden constant may depend on the parameters k and e.



M. Derakhshan, A. Ghasemi, and R. Rajaraman

order. A streaming algorithm needs to construct a solution using a limited memory smaller
than the input size. Any lower bounds established for the communication complexity in the
one-way model directly imply lower bounds for the memory requirements in the streaming

model. This, indeed, has been the standard approach for proving streaming lower bounds.

Similarly, any protocol developed within the communication framework can provide insights
into designing streaming algorithms.

A long-standing, central open question in streaming literature is whether it is possible to
achieve better than a 0.5-approximate matching in O(n) space with only a single pass. Even
estimating the size of the maximum matching (the dual of minimum vertex cover) within a
factor greater than 0.5 remains unresolved in this setting. The same holds true for surpassing
a 2-approximation for Minimum Vertex Cover (MVC) in bipartite graphs, as well as the
seemingly more challenging problem of approximating MVC on general graphs.

Our work highlights an important point for those aiming to prove the impossibility of
better-than-2 approximation for streaming MVC within O(n) space: the standard approach
of using the one-way communication model with a constant number of parties does not suffice,

as we present a protocol that achieves better-than-2 approximation when k is a constant.

On a positive note, we hope that our protocol will inspire the development of space-efficient
streaming algorithms.

1.1 Our Techniques

In this section, we provide a brief overview of our protocol. A more detailed explanation of
the protocol for two parties is presented in Section 2, and the multi-party protocol is formally
introduced and analyzed in Section 3. A lower bound for the two-party case is presented in
Section 4, and the proof of main theorem put together in Section 5.

In our protocol, each party i, for 1 < i < k, communicates a set of vertex covers of
the edges assigned to parties 1 through . This information is clearly sufficient for the last
party to obtain a valid vertex cover of the entire graph. Interestingly, it turns out that
communicating only a constant number? of vertex covers provides enough information to
find a sufficiently small vertex cover of the whole graph. To construct this message, each
party ¢ must solve several instances of the following problem: Let S be one of the vertex
covers communicated to party ¢, and let Dp be a distribution on the edges assigned to the
future parties (i + 1 to k). Given this information, party ¢ aims to add a subset of vertices
to S to cover her edges while ensuring that this does not significantly increase the final
approximation ratio.

Let ¢, denote the probability of the vertex belonging to the optimal solution given the
distribution Dg. Player ¢ must choose which vertices to add to S. To make this decision,
she assigns weights to the vertices, where higher weights show a poorer fit for inclusion in
the solution. The player then computes the minimum-weighted vertex cover based on these
assigned weights. We aim to design the weight assignments so that vertices with higher
weights are less likely to be selected. Additionally, we aim to provide earlier players with less
flexibility in their choices, as they have access to less information. To achieve this, we define
the weight function as:

wy =1— (2= Br_i)cy, (1)

2 This constant is independent of n, the number of vertices, but depends on k, the number of parties, and
€.
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where (2 — B;—;) is the approximation ratio achievable in a protocol with k — ¢ parties (the
number of remaining parties). This means that if 7 is the second to last party (i.e., k —i = 1),
then she sets w, = 1 — ¢, since a single party protocol finds the optimal solution (5, = 1).
Finally, analyzing the approximation ratio boils down to upper-bounding the weight of this
minimum weight vertex cover which we discuss further in Sections 3.1 and 3.3. Once this
upper bound is established, we use an inductive proof to show that party ¢ can add a subset
of vertices to S ensuring

E[|Solution outputted by the final party\] o gkl @)

E [|optimal solution|]

where the expectation is taken over Dg. Ideally, we would prefer this to be an instance-
wise approximation ratio, where the upper bound holds for the expectation of the ratio
rather than for the ratio of expectations. In such a case, a simple application of von
Neumann’s Minimax Theorem would suffice to establish the existence of our desired protocol.
Nevertheless, this upper bound, combined with a simple trick (also used by Assadi and
Behnezhad [2]), can still give us the same approximation ratio with a small additive loss.

The key idea is that if the Minimum Vertex Cover of all instances in the support of the
distribution Dp have nearly the same size, then the per-instance approximation ratio and
the ratio of expectations will also be approximately equal. To use this, each party discretizes
the range of possible optimal solution sizes into a constant number of intervals. Each party
then solves a separate instance of the problem under the assumption that the true optimal
solution size falls within a particular interval. For each of these size estimates, the party is
facing a distinct problem instance. The number of size estimates (or “guesses”) each party
makes depends on their position among the k parties. Later parties in the protocol are
allowed more error, meaning they make a larger number of guesses to refine their estimate.
Ultimately, the total number of vertex covers that the last party receives is proportional to
the product of the guesses made by the first £ — 1 parties. See Figure 2 for a depiction of
this protocol.

1.2 Related Work

In recent works, several advancements in the communication complexity of various graph-
related problems have been made. Assadi et al. [6] established optimal lower bounds for
approximating the Set Cover problem in the two-party communication model, which also
corresponds with a streaming algorithm, thereby addressing both streaming and communic-
ation complexities. Additionally, Abboud et al. [1] investigated the same communication
model for exact answers, which included back-and-forth communication, while Dark et al.
[12] modified this model to include deletions. The model has also been studied by Assadi et
al. [4] in a simultaneous framework under random partitions. Moreover, Naidu and Shah
[22] as well as Chitnis et al. [11] contributed relevant insights in the dynamic data stream
model, particularly concerning the vertex cover problem.

Most related to our work is the rich literature on the communication complexity of
the maximum matching problem. (See e.g., [17, 10, 3, 21]) Within the O(n) one-way
communication regime, Goel, Kapralov, and Khanna have established a protocol for bipartite
matching that achieves a tight approximation ratio of 2/3 in the two-party case [17]. For
general graphs, the same tight approximation ratio is achieved by Assadi and Bernstein [3].
In scenarios involving more than two parties (k > 2), the work of Behnezhad and Khanna [9]
implies the existence of protocols with an approximation ratio of 0.6 and 0.53, respectively,
for three and four parties, and 0.5 + € /5 (1) for any £ > 4. Furthermore, Singla and Lee [21]
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provide 0.5 +2~9%) approximation protocols for the more restricted model where each party
has to irrevocably add some of their edges to the matching instead of communicating an
arbitrary message of size O(n)

Given the duality between maximum matching and minimum vertex cover (MVC) on
bipartite graphs, these results can be used to approximate the size of bipartite MVC. However,

simply having an approximate matching does not suffice to construct an approximate MVC.

Although it would not be surprising if some of these works also have implications for finding
an approximate MVC for bipartite graphs, to the best of our knowledge, there is no explicit
study of MVC within the model discussed in this paper, even for bipartite graphs. General
graphs, however, which are the main focus of this work, are a completely different story, as
the MVC can be up to two times the maximum matching. Therefore, the ideas developed
for approximating matching matching are not of much use here.

Another line of work related to this paper is the study of the stochastic minimum vertex
cover problem [8, 13, 14]. In this problem, we are given a graph G = (V, E) and an existence
probability for each edge e € E. Edges of G are realized (or exist) independently with these
probabilities, forming the realized subgraph G. The existence of an edge in G can only be
verified using edge queries. The goal of this problem is to find a near-optimal vertex cover
of G using a small number of queries. Most related to our work is the 1.5 approximation
algorithm designed by Derakhshan et al [13]. Their algorithm first commits a subset of
vertices S to the final solution, then queries any edge in G which is not covered by S, and
adds an MVC of the realized edges to the solution. This effectively results in a solution
which covers all edges of G. The core of their algorithm is their choice of set S.

The stochastic vertex cover algorithm of [13] can be used to attack the special case of
the two-party communication model as follows. Let us assume that Alice (the first party) in
addition to her own graph also has a distribution over Bob’s graph (the second party). In
other words, she has a distribution over the whole graph with her edges having an existence
probability of one. (Unlike the stochastic model, existence of edges are not independent here.)
We observe that in this case if Alice follows the algorithm of [13] and only communicates
subset S to Bob, they will be able to find a vertex cover whose expected size is at most 1.5
times the expected size of the optimal solution. Moreover, we show that the assumption
regarding the knowledge of distribution can be lifted via techniques from [2] allowing for a
1.5 approximation in the 2-party communication model. However, for the multi-party case,
which is the main focus of this work, while the technical insights from this work are helpful, it
does not imply any approximation ratio better than 2. To address this challenge, we extend
the argument of [13] to bound the cost of a suitably weighted vertex cover in the 2-party
case and leverage that to further generalize to the k-party case, beating the threshold of 2
for the approximation ratio.

1.3 Preliminaries

In this work, we consider the one-way k-party communication model, focusing on randomized
protocols where each party utilizes private random bits. The primary interest in this model
is information-theoretical, with parties assumed to be computationally unbounded. The
communication cost is measured by the worst-case length of the messages exchanged between
any two parties. For standard definitions and further details, we refer to the textbook by
Kushilevitz and Nisan [20].

We have a base graph G = (V, E) which is distributed among k parties in a way that
each party i has the graph G; = (V, E;) where Ule E; = E. The objective of the parties
is to collectively find a small vertex cover of the graph G while adhering to the following
communication protocol: Starting from the first party, each party 1 < i < k, in turn, sends a
message M; and ultimately, the last party outputs a valid vertex cover of G.

66:5
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Notation. We define MVC(.) as a function that, for any given graph, returns its minimum
vertex cover. The size of the minimum vertex cover for an input graph is denoted by
7(.), and OPT represents the minimum vertex cover of the input graph G, implying that
|OPT| = 7 (G) is the optimal solution size.

2 An Overview of the Two-Party Protocol

As a warm-up, we consider a two-party version of the problem with Alice and Bob as the
first and second parties, respectively. Let G4 = (V, E4) and Gg = (V, Ep) represent the
subgraphs given to Alice and Bob. In this section, we provide an overview of our protocol
for two parties with O(n) communication for a constant € > 0 that can be made arbitrarily
small. We later prove this is a 3/2 4 e-approximate protocol.

Consider a simplified version of the problem where Alice, in addition to G 4, also knows
the size of the minimum vertex cover of the whole graph G = G4 U Gg. We will later
discuss how to lift this assumption. For this case, the protocol we consider is simple: Alice
communicates a carefully constructed vertex cover X of her subgraph (not necessarily the
minimum vertex cover) to Bob. This construction is randomized, and we argue that it is
possible to pick X that will lead to an expected approximation ratio of 3/2.

Let us analyze the approximation ratio achieved by a fixed X. The final solution picked
by Bob will be the union of X and a minimum vertex cover of Gg[V\X]. Hence, the
approximation ratio will be:

E[|X]+ 7 (G[V\X])]

() ®)

A Two-Player Game. We can view the problem faced by Alice as a zero-sum two-player
game between her and an adversary, both of whom know G 4 and the size of the optimal
solution represented by OPT. Alice’s strategy is to select a subset X C V' of vertices that
covers G 4. The adversary’s strategy is to select G such that 7(Gg UG 4) = opT. We let the
adversary’s utility be the approximation ratio defined in Equation 3 since that is what Alice
wants to minimize. Note that a mixed strategy of Alice in this game (a distribution over
vertex covers of G 4) is equivalent to a randomized algorithm for picking X in the original
problem. Therefore, we are interested in proving that Alice has a mixed strategy for selecting
X such that no pure strategy of the adversary obtains utility larger than 3/2 against it. The
Minimax Theorem due to von Neumann [24] implies the following about this game:

» Proposition 2. In the described game, if for any mized strategy chosen by the adversary,
there exists a pure strategy X for Alice such that the adversary’s expected utility is at most 3/2,
then there exists a mized strategy for Alice that ensures the expected utility of the adversary
is at most 3/2 for any strategy the adversary employs.

Due to Proposition 2, the problem is reduced to proving that given any distribution Dp
over GG, there exists a vertex cover X of G4 with an instance-wise approximation ratio of
at most 3/2. Given distribution Dp, let ¢, denote the probability of a vertex being in the
optimal solution of G4 U G, assuming G is drawn from Dg. That is,

cy:= _Pr [veMVC(GaUGR)].

Gg~Dg

After calculating these probabilities (which is possible without computational limitations),
Alice constructs a vertex-weighted subgraph with the weight of any vertex v € V' being
w, = 1 — ¢,. She then lets X be the minimum weight vertex cover of G 4. These steps are
formalized in Algorithm 1.
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Algorithm 1 Minimum Weighted Vertex Cover 2-Party Algorithm.

Let ¢, = Prlv € MVC(G 4 U Gp)]| given distribution Dp.
Let w, =1—¢, forallveV.

Alice finds a minimum weighted vertex cover X of G 4.
Alice sends X to Bob.

Bob finds a minimum vertex cover M of Gp[V\X].

Bob outputs X U M.

[ B B U

We now provide some intuition behind Algorithm 1. Let W (X) be the sum of the weight
of the vertices in X. We claim that W(X) is the expected difference between OPT and the
size of the solution outputted by the algorithm. For any vertex in X, its weight is essentially
the difference between its contribution to X and its contribution to the optimal solution. In
other words, this weight is the cost of including that vertex in X.

We observe that since Bob calculates the exact minimum vertex cover (MVC) for the
edges that X does not cover, the total weight W (X) acts as an upper bound on the expected
difference between the optimal solution and the solution found by the algorithm. This is
exactly what we want to minimize, which is why Alice sets weights as w, = 1 — ¢, and takes
a minimum weight vertex cover of G 4.

Following this observation, to prove the desired approximation ratio, we need to show an
upper bound of

W(X) < Eggnps [T (G)]/2. (4)

Proving this turns out to be a technically challenging problem, which we tackle in Section 3.3
(in more generality)®. Our proof uses the probabilistic method and shows that the expected
weight of a particular randomized vertex cover of G4 is at most half the optimal vertex cover
cost of G. To construct this randomized vertex cover, we follow a similar approach as the
stochastic vertex cover algorithm of [13]. In particular, we organize the vertices into three
groups based on the ¢, values and a suitable threshold ¢ > 1/2: ¢, € (0,1 —t], ¢, € (1 —¢,¢],
(t,1]. We include all vertices from the third group. The vertices in the first group can be
omitted from a vertex cover as all their edges in G 4 are to vertices in the third group. Finally,
we include those vertices from the middle group that are selected in a minimum vertex cover
of a graph G4 U Gp drawn randomly based on the distribution Dp.

We extend the argument of [13] to analyze the weight of the above randomized vertex
cover, which we then leverage to both establish the inequality 4 as well as crucially generalize
to the case of k players.

Using inequality 4, we then prove for the 2-player case that

|X| + Egp~pp [T (GB[V\X])]
]EGBNDB [T (G)}

Here, | X |+ Egy~p, [T (Gp[V\X])] is the expected size of the output since Bob returns the
union of X and a minimum vertex cover of the remaining graph. Observe that by definition

< 3/2. ()

of weights, for any vertex we have ¢, +w, = 1. As a result we can write

X] +Efr (GoNXD] < Y (eo +wn) + 3 er =Elr (G)] + 3w, < 3E[r (G))/2

veX v X veX

3 Inequality 4 follows from Lemma 8 with parameter § = 1.
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This, however, is not an instance-wise approximation ratio. By invoking Yao’s minimax
principle and using the assumption that the size of the solution is fixed, we are able to ensure
that there is a randomized protocol that achieves an instance-wise approximation ratio of
3/2 under the fixed size assumption.

Lifting the Knowledge of Size. So far, we have discussed our protocol, assuming that
Alice knows the size of the optimal solution. To lift this assumption, we use a standard
approach which is also used by Assadi and Behnezhad [2]. Given a constant € € (0,1), we
create [log; . 2| instances of the problem. In the i-th instance, Alice guesses the size of the
optimal solution to be in the range

(L+e) ™' (Ga), (1 +6)'7(Ga))-

For each of her guesses, she communicates a different vertex cover of G4. It is easy to
show that if one of these guesses is correct, the subset Alice communicates for that guess
allows Bob to find a 3/2 4 ¢ approximation ratio. These guesses together cover the case of
T(G) < 27 (G4). To address the case of 7 (G) > 27 (G 4), Alice also communicates an MVC
of her graph. In this scenario, the size of the output would be at most

7(G) +7(Ga) <37(G) /2.

Putting the pieces together, Alice can guarantee an expected approximation ratio of 3/2 + €
by communicating a message of size n[log; . 2].

3 The k-Party Protocol

In this section, we present the general k-party protocol, which builds on the sketch of the
2-party protocol presented in Section 2. Our protocol simulates a series of two-party protocols
between any party ¢ and a second party encapsulating all the remaining parties ¢ + 1 to k.

However, it is important to note that a naive approach of composing arbitrary 3/2-
approximate two-party protocols may not yield an effective k-party protocol. For instance,
consider the graph presented in Figure 1 consisting of sets A, B, C, and D, each containing
n/4 vertices. These sets are connected by two bipartite matchings, M; between A and B,
and Ms between C' and D, and a complete graph K over BU C. For this graph, the optimal
vertex cover is B U C of size n/2. Suppose the first party receives My, the second party
receives Mo and the third party receives K. A 3/2-approximate two-party protocol may
select My for the first party and My for the second party, leading to an overall solution
of size n, which would be 2-approximate. We address this challenge by carefully selecting
vertices, prioritized by the ¢, values, and setting weights so that the optimal solution for the
remaining graph becomes progressively smaller as the protocol proceeds with the parties.

We give an overview of our k-party protocol. Following the framework of the 2-party
protocol, the first party makes several guesses about the size of OPT, with the number of
guesses depending only on k and parameter € > 0, which can be made arbitrarily small. For
each guess (which is an interval) the first party constructs a vertex cover for her graph and
communicates all these vertex covers to the next party. Figure 2 depicts our protocol.

For any 1 < i < k, the i-th party receives a message M, which is a set of sets of vertices.
Each element S € M is a vertex cover of Uj<;<;G;. For each S € M, party i constructs
a new instance of the problem. She assumes S will be in the final vertex cover and lets
G} = G;[V'\S] be the subgraph of G; not covered by S. At this point, party ¢ faces a similar
problem to the first party in a (k — i)-party setting with the assigned subgraph being G.
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Figure 1 The blue matching M is given to the first party, the red matching M> to the second
party, and a complete graph (non-bipartite) among vertices in the box to the third party.

Therefore, she starts by making a number of guesses about 7 (G[V'\\S]). We use b; to refer to
the number of guesses party 7 needs to make and later discuss its exact value. For each guess,
she picks a vertex cover of G} and takes its union with S as a vertex cover of Ui<;<;G;.
Repeating this for all elements of M results in constructing

| M| x [number of guesses on 7 (G[V\S]) for any S € M|

vertex covers of Uj<;<;G;. She then communicates all of these to the next party. Since the
number of guesses is only a function of k and e, the size of the message is O ¢(n).

Finally, the last party, after receiving a message M, finds the smallest vertex cover of her
graph that includes at least one subset of vertices S € M. This ensures that the final output
is a valid vertex cover for the entire graph.

Two points remain to be addressed about the protocol. Consider party ¢ and the message
M she receives. First, for any S € M, we need to describe how the party forms guesses
about the size of the minimum vertex cover of G[V'\ S]. Party i makes b; = log, 2*~% + 1
guesses about 7 (G[V '\ S]). For any 1 < [ < b;, the I-th guess is:

(1477 (G) <7 (GIV\ S]) < (1+¢)'7(G)).

There is an additional guess 7 (G[V \ S]) > (1+4¢)% 7 (G%) to cover the remaining possibilities.

The second point to address is the following: given a guess on the optimal vertex cover,
how should we construct a vertex cover of G; = G;[V \ S] in order to obtain the desired
approximation ratio? We discuss this in detail in Section 3.1 via the formulation of a two-
player game that captures the decision process for party i. We then formalize the protocol in
Section 3.2 and establish its communication complexity and approximation ratio.

3.1 A Two-Player Game

In this section, we will discuss the sub-problems each party needs to solve in the design of our
protocol. In Figure 2, the construction of a message sent through any edge represents one
of these sub-problems. Consider any subset of vertices S party 7 receives from the previous
party. (For the first party, this is an empty set.), and let V/ = V'\ S. Assuming that S will be
part of the final solution and any guess the party has about the size of the optimal solution
on the remaining graph G’ = G[V’], she needs to send a message to the next party. The
message will be the union of S and a vertex cover X of her remaining subgraph G = G;[V].

To simplify the problem, we can ignore S since it is part of both the input message
and the outgoing message. Therefore, in the simplified version, party ¢ needs to solve the
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1st party bl

2nd party by

i-th party b;

k-th party / J

Figure 2 The tree of communications generated by parties using algorithm 2. The message S
sent through each edge to the i-th layer is a vertex cover of the subgraphs given to the first ¢ — 1

parties. For any of these messages the i-th party receives, she constructs b, different vertex covers of
G = G;[V \ S] and sends their union with S to the next party. Each edge basically represents a
subproblem party i needs to solve. Given S, she will make b; guesses about the size of 7 (G}) and for
any of these guesses, needs to solve the following subproblem: Find a vertex cover X of G such that
committing the subset S U X to the final solution results in a good approximation ratio conditioned
on the specific guess about 7 (G5).

following problem. The input consists of a subgraph G; = (V’, E!) and a guess about the
size of the remaining optimal solution in the form of 7 (G’") € (O, (1 + €)O) where O is an
integer number. The goal of the party is to find a vertex cover X of G/ in order to minimize
the size of the final solution if subset X is committed to the final solution knowing that the
rest of the parties will implement a protocol with an expected approximation ratio of at most
2 — 20=% 4 5e on the remaining subgraph G'[V’ \ X].

We can view these sub-problems as two-party problems between party ¢, which we will
refer to as Alice, and a second party, Bob, who encapsulates parties i + 1 to k in the original
problem. In this problem, Bob, instead of being able to find an exact MVC of the remaining
graph, can only find a solution with an approximation ratio of at most 2 — 2°=% 4 5¢. In this
two-party problem, we use G4 = (V', E4) to refer to G’ and G = (V', Eg) as the union
of the subgraphs given to parties i + 1 to k in the original problem. Hence, Alice’s goal
here is to pick a randomized X such that it results in an expected approximation of at most
2 — 2i7k=1 4 5¢ for any priori fixed Gp.

We reformulate this two-party problem as a two-player game. The first player is Alice,
and the second player is an adversary who will determine G .

» Definition 3 (MVC Game). Given three parameters 3 € (0,1), € € (0,1) and O € (0,n) we
define a two-player zero-sum game between Alice and an adversary on a graph with vertex set
V'. Alice has a set of edges E 5 between vertices V', which is known to both players. Alice’s
strategy 1s to select a subset X C V' of vertices that covers all edges in E4. The adversary’s
strateqy is to select a set of edges Eg over V' satisfying

0< |MVC(EB UEA)| < (1 + 6)0

The adversary’s utility is defined as:

X[+ (2 - 8) x IMVC(ER[V \ X])|
Up(X, Ep) = INVC(Ep U Ba)| ' (©)

The notation Eg[V \ X| represents the edges in Ep that are induced by the vertices in the
set V'\ X, meaning it includes only those edges in Eg where both endpoints are in V \ X.
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We begin by proving that for any given distribution over adversary’s strategies, there
exists a deterministic strategy for Alice that achieves a payoff of at least (2 — 3/2)(1 + ¢€).

» Lemma 4. In the MVC game presented in Definition 3, given any randomized (mized)
strategy Ep of the adversary, Alice has a deterministic (pure) strategy X such that

E[Up(X, Ep)] < (2—-5/2)(1 +¢).
Proof. For any vertex v let us define ¢, = Prjv € MVC(EpUE4)]. Alice chooses a minimum

weight vertex cover X of E 4, where the weight of a vertex is defined as w, = 1 — (2 — 8)c,.
We will prove that this choice of X satisfies the statement of the lemma. We have

E[|X] + (2 - 8)|MVC(EB[V \ X])|] < (Z 1) +2-8) > @
veX veV\X

= (Z(l_(Q_ﬂ)cv+(2_ﬁ)cv)> +(2_/8) Z Cy

veX veEV\X
= (Z(l -2- ﬁ)cn) +2-8) e (7)
veX veV
In the first inequality, we use the fact that
E[[MVC(Es[VA X)) < > e (8)
veVA\X

This is due to the definition of ¢,s, which implies there is a vertex cover of EgUFE 4, containing
any vertex v € V' \ X w.p. ¢,. Since edges in Eg[V \ X] can only be covered by vertices in
V'\ X, this implies that there is also a vertex cover of Eg[V \ X] which contains each vertex
w.p. ¢, hence by linearity of expectation, we get (8).

A technical part of our proof is to show Y (1 — (2 = f)c,) < %Zvev ¢y, which we
defer to Lemma 8 in Section 3.3. Combining this with (7) gives us

E[|IX|+ (2= BMVC(ER[V\ X)) <> (1= 2= Be) +2-5) ) e

veX veV
B
< EZCU‘F(Q_B)ZCU
veV veV

<@2-5/2)) e

veV
< (2— B/2EMVC(Ea U Eg)] < (2 — B/2)(1 + €)O.

Hence, we get

g [ 1K+ @2 = BIMVC(ER[V \ X])I} < ElX]+ @2 - B)MVC(ER[V \ X])[]
IMVC(E4 U Ey)| - [0)
<B2ABRLI0 < (3 g+,
completing the proof of the lemma. <

Combining Lemma 4 with von Neumann’s Minimax Theorem yields the existence of a
randomized strategy for Alice that achieves an expected payoff of at least (2 — 5/2)(1 + €).
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» Lemma 5. In the MVC game presented in Definition 3, Alice has a randomized strateqy X
such that no strategy Ep played by the adversary obtains utility larger than (2 — 5/2)(1 +¢€).

Proof. Given any parameter o > 0, von Neumann’s Minimax Theorem [24] (alternatively,
Yao’s minimax principle [25]) implies that in the described game, if for any mixed strategy
chosen by the adversary, there exists a pure strategy X for Alice such that the adversary’s
expected utility is at most «, then there exists a mixed strategy for Alice that ensures the
expected utility of the adversary is at most « for any strategy the adversary employs. By
Lemma 4, for any mixed strategy of the adversary, there exists a pure strategy for Alice
that achieves an expected utility of at least (2 — 3/2)(1 4 €). This implies the existence of a
mixed strategy for Alice with the same expected utility against an arbitrary adversary. <«

3.2 The Protocol

In this section, we provide a formal statement of our protocol in Algorithm 2. We then
establish in Lemma 6 that the total communication complexity is O(n) for any constant k.
Finally, we prove in Lemma 7 that it results in our desired approximation ratio.

Algorithm 2 k-Party Algorithm for party i.

1 Input: subgraph G; and M;_; (message from party i — 1 and My = {0}.)
2 Let € € (0,1/5) be a given constant number.
3 for S € M;_; do

4 Gl = G;[V\S] (Remove all the vertices in S from the graph.)

5 if ¢ < k then

6 for{ =1 tob; do

7 O+ (14 )17 (Gh).

8 B = 27k Be.

9 Apply the strategy of Lemma 5 with O and 8 to get Xj.
10 Add X; U S to M;.
11 Add MVC(G}) U S to M.

12 if i = k then

13 ‘ return the set II; with minimum size in M;.
14 else

15 L send M; to party ¢+ 1

As mentioned before, parts of our protocol are non-explicit. In particular, we only show
the existence of suitable subsets X, ..., X;,. In our protocol, each party ¢ communicates a
set of suitable vertex covers of the graph given to the first ¢ parties. We do not present an
efficient procedure for computing these covers, which makes our protocol non-explicit.

» Lemma 6. Given a graph G = (V,E) and k parties, if all the parties use algorithm
2 to communicate and find the vertexr cover of G, the communication cost will be (k —
1)!(logy 4. 2)*7*O(n).

Proof. Since each party sends b; new subsets for each subset they receive, the number of
subsets communicated between the last two parties is

bibo...by_1 = log;,  2""! -logy, 2"7% - logy, 2! = (k — 1)!(log, . 2)" !

Moreover, since each subset of vertices can be represented using an n-bit string, the commu-
nication cost is (k — 1)!(log,, . 2)*71O(n) = O, x(n). <
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We next establish an upper bound on the approximation ratio achieved by the protocol.

» Lemma 7. In the k-party minimum vertex cover problem, let w(G) be the size of the
output if all the parties use algorithm 2 on the base graph G. Then

E[m,(G)] < (2 +56)7(G)

© 9k-1
Proof. We will use induction on the number of parties. If & = 1, then the algorithm
will output the set with the minimum size in M;. Since My = {0}, a set in M; will be
7 (G = G[V\D] = G) that is added on line 11. Therefore, the output is 7 (G) which gives us

Em(G)]<7(G)<(2- % +56)7 (G) = (1 + 5e)7 (G),

proving base case for k = 1. For the inductive step, assume that the lemma statement holds
for k — 1 parties and any base graph G’. That is

E[re_1(G')] < (2 +56)7(G). (9)

T 9k—2
In line 6 of the algorithm 2, let X1, X, ..., Xp, be the subsets generated by the first party
using the strategy of Lemma 5 with O and 3 of line 9, where b; = log, 2F=1 Let j be the
integer number satisfying (1 + €)/~17 (G1) < 7(GQ) < (1 +€)/7 (Gy).

Case 1: j < by. Party 2 upon receiving X, constructs a graph G’ = G[V'\ X,] since X;
is committed to be in the final solution and we do not need to consider the edges of these

vertices. We find a vertex cover on G’ where the partitions are G} = G;[V\X}] for 2 <1 < k.

Since the lemma statement holds for & — 1 parties, applying algorithm 2 on a graph G’ gives
us a vertex cover of G’ with the expected approximation ratio of

(2- T + 5e).

2(;,3,1),
Since IIj, covers all the edges in G[V'\Xj], a vertex cover for G is ITj, U X.

As a result of this, the final solution will have size m;(G) = |X;| + mr—1(G’) and results
in the following inequality for the approximation ratio.

Elr(G)] _ E[IXG]] +E[me-1(G)] _ [X5] + (2 = g +56)7(C)

G~ r(EaUER = 7(EaUEp) (10)

Now, we construct a version of the MVC game in which we have Alice as the first party and

the adversary as the union of the next k — 1 parties. Let 3 = = —5¢, O = (1+€)7 717 (G))

and € = L. As described in the game definition, Alice sends a vertex cover to Bob and aims

5

to minimize the utility function 11. The adversary (the next k — 1 parties) aims to choose
edges Ep in a way to maximize his utility. Let Gg = (V, Ep = Uf:g E;). The adversary’s
strategy is to select a set of edges Ep over V s.t. O < |1 (EpUEA)| < (1+4¢€)O.

_ X+ 2= BT (EsV\X) X[+ 2~ 5 + 597 ()

E[UB(Xj’EB)] B T(EB UEA) T(EB UEA) (11)

Now using Lemma 5, Alice has a strategy such that no strategy played by the adversary
obtains utility larger than (2 — 3/2)(1 + €).

E[m(G)]

T’(“G) <E[Up(X;, Ep)] < (2— /2)(1 +¢) (12)
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By putting § in Equation 12 we get

E[Us(X;, Ep)] < (2—-8/2)(1+¢) = (2— +5/26)(1+¢)

ok—1

1 1 1
=2 gy +5/2+ 2 — et 5/28 =2 — o +€[9/2 - o +5/2d).

Since € < %, 9/2 — 2,€—_1 + 5/2¢ < 5. The following completes our inductive step for case 1.

Wk(G)

1
(@) S @B/ +e) <2 gy + e

ok—1

Case 2: j > b;. So, 28717 (Gy) < 7(G). Since 7 (G) is a subset in My, party 2 constructs
G' = GIV\MVC(Gy)]. Since 7 (G") < 7 (G), by Equation 9, we get

Elme—1(G")] < (2 — +56)7(G') < (2—

+56)7 (GQ) .

ok—2 ok—2

As explained in the previous case, the output is at least the summation of the minimum
vertex cover of G; and the algorithm’s output on the rest of the partitions.

1
Elmi(G)] < 7(G) + 1k 1(€) < gy (G)+ (2 g +50)7 (C) < (2 gy 4597 (G).
This completes the proof for case 2 which completes the proof. <

The upper bound of Theorem 1 follows from Lemmas 6 and 7.

3.3 A Technical Lemma
In this section, we establish the following lemma, which is used in the proof of Lemma 4.

» Lemma 8. ) _(1-(2-8)c) < %Zvev Cy-

It helps to first establish the following claim that may be of independent interest. We defer
the proof to the full version of the paper.

» Lemma 9. Let w: (0,1] — R>o be a function with finite support*. Then, we have

Voe(1/2,1]: Y wy) y= Y w)y| = Y wy)-y(l-2y) <0

y€lw,1] y€[0,1—x] y€(0,1]

Proof of Lemma 8. Consider a vertex cover I := {v : ¢, > t} U{MVC(G; ~ G)N
v:c € (1—tt)}, where MVC(G; ~ G) is the minimum vertex cover of a graph G;
drawn randomly according to the distribution G and ¢ is the smallest ¢ € [0.5, 1] such that
Zv:cpt cy < Zv:cv<1—t Cy. Since X is a minimum weighted vertex cover of GA, we have that

Let S ={v:c,<1—t}, So={v:1—-t<e, <t},and S3 ={v:¢, >t}. Then,

El Y w Zm—Zl 2cv+ﬁcv)<2ﬂcv<§<ch+zcv>=§ d e
S3 S3 S1&8S3

(S1&S3)NI S1

where we used ¢, > 1/2 for v € S3 and ZSS Cy < Zsl ¢, by definition of ¢.

4 We define the support of w to be the number of elements z € (0,1] for which w(z) > 0.
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We now consider the set Sy. We derive

E [Z wv] = Z CU(17(2*6)CU) = Z (Cv(172cv)+ﬂ612))

SanI vESy vES>
— Z (cv(l —2¢,) — gcv(l —2¢y) + g )
vES2
p ﬁ ﬁ
= (1 — 5 Z CU( 2Cv Z Cy 5 Z Cy,
vESs v652 v€S2

where the last inequality follows from Lemma 9 (with w(x) set to the number of vertices v
for which ¢, = z, if x € Sy, and 0 if = ¢ S5).
This yields E[Y, o, wo] < g >, Co implying that > w, < g >y Co- <

4 A Lower Bound for the Two-Party Case

We show the following lower bound, which establishes the tightness of our protocol for the
two-party case.

» Lemma 10. For any constant € > 0, there exists a constant ¢ > 0 such that any vertex
cover computed by a two party protocol with n*T¢/1818" communication complexity has an
approzimation ratio of at least 3/2 — ¢.

Proof. Let G be a Rusza-Szemeredi (bipartite) graph (P, @, E) formed by n vertices on each
side and k induced matchings M; ..., My, where k = n*(1/18187) and |M;| = (1/2 — 1)n for
1 <i <k, where 1 > 0 is a constant that can be made arbitrarily small. Rusza-Szemeredi
graphs with the preceding parameters have been shown to exist [17]. We generate a random
bipartite graph G' = (PU P, QU Q’, E1 U Es), with a total of (34 2¢1)n vertices, as follows:

1. P, Q are as in G; P’ (resp., Q) is a set of (1/2 + &1)n vertices disjoint from P (resp., Q).

2. Select a subset M/ of e edges uniformly at random from M;, for 1 < ¢ < k, independently,
where €5 > 0 is a constant that can be set arbitrarily small. Set By = Uy<;<M]; we thus
have |Eq| = kean.

3. Choose r uniformly at random from {1,...,k}. Let P. and Q, denote the vertices of M,
in P and @, respectively. Let Mp and Mg denote a perfect matching between P’ and
P\ P, and between Q" and @ \ Q. respectively. Set Ey to Mp U M.

In the two-party instance, Alice receives the bipartite graph (P U P’,Q U @', E1) and Bob

receives the bipartite graph (P U P’,Q U @', E3). The minimum vertex cover of G’ has size

at most ean + 2(1/2 +e1)n = (1 + e + 2e1)n; for example, if P denotes the set of vertices of

M! in P,, then PU (P \ P,) U (Q\ Q) is a vertex cover of this size. We will argue below

that with probability at least 1 — o(1), any protocol with O(n) communication produces a

vertex cover of size at least (3/2 + 2e2 — €3)n, where £3 > 0 is a constant that can be made

arbitrarily small by suitably setting other constants, if necessary.
The proof is via a counting argument. Let G4 denote the collection of all possible graphs
that can be presented to Alice. By our construction above, we have

gz (V2 (2™

Suppose Alice sends a message with s bits to Bob; let ¢ : G4 — {0,1}® denote the mapping
that Alice uses to map the graph she receives to the s-bit message she sends. For any graph
HeGa,let I'(H)={H': ¢(H') = ¢(H)}. Since Bob needs to produce a valid vertex cover
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under all inputs, Bob needs to ensure that the vertex cover output for any input H to Alice
should cover every edge in the union of all graphs in I'(H). Since the number of possible
outputs of ¢ is 2°) a simple averaging argument implies that there exists an H such that

IC(H)| = |Gal/2°.

» Lemma 11. For any subset F of G, let I C {1,...,k} be the set of indices such that union
of all of the edges in the graphs in F has at least (1/2 — e3)n edges from M;, for each i € I,
where €3 > €1 is an arbitrary positive constant. If |F| > |Ga|/2°0 1) and s = o(nk), then
1| = k(1 —o(1)).

Proof. Fix an i in [k]. Let m; denote the number of edges from M; contained in the union
of all of the edges in the graphs in F. Then, if I is the set of indices as defined in the lemma,
we have the following upper bound on |F]|.

= ()

< (1/2 =¢e1)n 1 (1/2 —e3)n k=l
- €M €M
((1/2=2a)m) k=l
£2M
o ( (v Qi“)”) )
g2
1/2 —ca —g ean(k—|I|)
< G4 w
1/2761*52
Gal/2m 410,

for some constant ¢ > 0, which depends on 1,9, e3. Since |F| > |Ga|/2°T°M) it follows
that cn(k — |I|) is at most s(1 + o(1)). Since s = o(nk), we obtain |I| > k(1 — o(1)). <

IN

For a uniformly random chosen graph H € G4, with probability at least 1 — o(1),
ID(H)| > |Gal|/250+°(M); this is because the number of graphs H in G4 that have |I'(H)|
less than |G4|/2°(7°(M) is at most 2° - |G4|/2°(1T°(M) | which is a o(1) fraction of G4. By
Lemma 11, it follows that for a randomly chosen matching M,., with probability 1 — o(1), the
union of all of the edges in the graphs in I'(H) contains at least (1/2 — e3)n edges from M,..
Since Bob has to cover all the edges in this union, the vertex cover returned includes at least
n/2 — ean of the vertices of M, and at least the 2(n/2 + ean) vertices needed to cover the
edges of Fy. This implies a vertex cover of size at least 3n/2 + 2eon — e3n with probability
at least 1 — o(1).

This completes the proof of the desired claim that any protocol with o(nk) = pit(1/lglgn)
communication (for a suitable hidden constant in the {2 term) produces a vertex cover of size
at least (3/2 + 2e3 — e3)n with probability 1 — o(1). Therefore, there exists a constant ¢ > 0
such that no vertex cover computed by a two party protocol with n'+¢/1€187 communication
complexity can have an approximation ratio of any constant smaller than 3/2. |

Our lower bound applies to bipartite graphs. Our proof follows the approach of [17] who
established a similar lower bound for the maximum matching problem in bipartite graphs.
While the size of a maximum matching equals the size of a minimum vertex cover in bipartite
graphs, there is no direct reduction between the two problems in our communication model.
Indeed, though the specific graph construction we use for the vertex cover lower bound
follows the same framework as for the maximum matching lower bound, the parameters and
the specific arguments are different. Our parameters for the probability distribution over
the bipartite graphs are similar to those used in the lower bound for stochastic vertex cover
in [13].
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5 Proof of the Main Theorem

In this section, we put all the pieces together and provide a formal proof for our main result
using Lemma 7, Lemma 6, and Lemma 10.

» Theorem 1 (restated). For any k > 2 and any desirably small € > 0, there exists a
randomized MVC protocol in the k-party one-way communication model with an expected
approzimation ratio of (2 — 27*+1 4 €), in which each party communicates a message of size
Ok.,(n). This approzimation ratio is tight for k =2 up to a factor of 1 +e¢.

Proof. We prove in Lemma 7 that if all the parties use Algorithm 2 then the resulting
protocol has an approximation ratio of (2 —2!=* +5¢) for any ¢ € (0,1/5). Moreover, based
on Lemma 6, the communication cost of this protocol is (k — 1)!log;, ., 2°71O(n) which
is linear in n assuming & and ¢’ are constants. Therefore, the communication cost of our
protocol is Oy, s (n). By choosing a sufficiently small € < ¢/5 we get an approximation ratio
of (2 — 2% 4 ¢) and communication cost of O, x(n).

Finally, to prove the tightness of our approximation ratio for the two-party case, in
Lemma 10, we have a lower bound of 3/2 — ¢ for the expected approximation ratio of
two-party protocols with communication cost of O(n). This implies that our protocol for
two parties is tight within an additive error of e. <
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