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Abstract
We present a major update to the Simulating eXtreme Spacetimes (SXSs)
Collaboration’s catalog of binary black hole (BBH) simulations. Using highly
efàcient spectral methods implemented in the Spectral Einstein Code (SpEC),
we have nearly doubled the total number of binary conàgurations from 2018 to
3756. The catalog now more densely covers the parameter space with precess-
ing simulations up to mass ratio q= 8 and dimensionless spins up to |χ⃗|⩽ 0.8
with near-zero eccentricity. The catalog also includes some simulations at
higher mass ratios with moderate spin and more than 250 eccentric simula-
tions. We have also deprecated and rerun some simulations from our previous
catalog (e.g. simulations run with a much older version of SpEC or that had
anomalously high errors in the waveform). The median waveform difference
(which is similar to the mismatch) between resolutions over the simulations
in the catalog is 4× 10−4. The simulations have a median of 22 orbits, while
the longest simulation has 148 orbits. We have corrected each waveform in the
catalog to be in the binary’s center-of-mass frame and exhibit gravitational-
wave memory. We estimate the total CPU cost of all simulations in the catalog
to be 480 000 000 core-hours. We ànd that using spectral methods for BBH
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simulations is over 1000 times more efàcient than previously published ànite-
difference simulations. The full catalog is publicly available through the sxs
Python package and at https://data.black-holes.org .

Keywords: binaries, numerical relativity, gravitational waves, black hole,
general relativity
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1. Introduction

Since the discovery of gravitational waves (GWs) from binary black holes (BBHs) in 2015 [1–
4], the laser interferometer GWobservatory (LIGO) [5] andVirgo [6] have observedGWs from
the inspiral, merger, and ringdown of dozens of BBHs [7–11]. Inferring the properties of the
black holes (BHs) that emitted these waves has revealed a population of stellar-mass BBHs in
a variety of different conàgurations. Understanding these black-hole properties, such as their
masses and spins, constrains stellar evolution models and enables tests of general relativity.

Achieving this understanding requires comparison of the observed GW strain with highly
accurate models of the observed BBHs and the GWs they emit. Because of the nonlinear
nature of general relativity, analytic approximations like post-Newtonian [12–24] and post-
Minkowskian [25, 26] break down near the merger. As a result, waveform models rely on
numerical-relativity simulations to provide a ground truth to build on. Following the 2005
breakthroughs in numerical-relativity calculation of the inspiral, merger, and ringdown of
two BHs [27–29], several research groups have used different codes to create catalogs of
numerical gravitational waveforms for BBHs in a variety of conàgurations. These include
the NINJA [30, 31], NRAR [32], MAYA [33, 34], RIT [35–38], NCSA [39], BAM [40], and
GR-Athena++[41] catalogs.

Since numerical relativity simulations are both computationally expensive and performed
for speciàc parameter values (e.g. mass ratio and spins), they are typically not used in data
analysis directly (although parameter estimation can directly use numerical relativity wave-
forms [42]). Instead, GWmodel makers typically use numerical-relativity waveforms to calib-
rate, validate, and build their models; speciàc examples include calibrating effective-one-body
(EOB)[43–50] models, validating phenomenological models [51–67], and enabling the con-
struction of surrogate models [68–72] that directly interpolate between numerical-relativity
waveforms across parameter space.

Future GW detectors, like cosmic explorer (CE) [73, 74], Einstein telescope (ET) [75–77],
the laser interferometer space antenna (LISA) [78], TianQin [79], Taiji [80], DECIGO [81],
and the lunar GW antenna (LGWA) [82], will detect GWs from BBHs much more often and
with much higher precision. Next-generation detectors on Earth will require waveformmodels
that are approximately one order of magnitude better than today’s [83], while detectors in space
pose an even greater challenge, possibly requiring several orders of magnitude increases in
accuracy [84]. The challenge is compounded in that numerical waveforms must also be both
longer andmore accurate. Numerical relativity alone is too computationally expensive to cover
the needed frequency bands, so waveform models will rely on hybridization procedures [59,
72, 85–91] that combine post-Newtonian and numerical relativity waveforms. And since future
detectors will see drastically more events, they might see rarer BBHs, such as those with high
eccentricity or extreme spins. Accurately modeling such conàgurations requires catalogs that
better cover the extreme corners of the BBH parameter space.

In this paper, we present a major update to the Simulating eXtreme Spacetimes
(SXSs) Catalog of BBH waveforms, accessible via a python package, sxs [92].The
previous SXS catalog update [93] has been cited by over 292 publications, including
work involving LVK data analysis, analytic waveform models, surrogate waveform mod-
els, beyond-GR studies, prospects for future detectors, and high-energy scattering studies
[10, 37, 38, 50, 54, 62, 70, 83, 94–157]

The new catalog now has a total of 3756 simulations and more densely covers the parameter
space, with precessing simulations up to mass ratio q⩽ 8 and dimensionless spins up to |χ|⩽
0.8 with near-zero eccentricity [158]. The catalog also includes some simulations at higher
mass ratios with moderate spins, and it includes over 250 eccentric simulations. Figure 1 shows
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Figure 1. An overview of some of the most extreme systems in the updated catalog.
(a) SXS:BBH:2621, a very long, 147-orbit simulation viewed from the emission dir-
ection (θ,ϕ) = (π/2,π/2). For visibility, we extend the ànal steady-state value of the
strain waveform as a dashed line to the right of t− tpeak = 0. This dashed line is nonzero
because of gravitational-wave memory that is included in this updated catalog. (b) Blue:
eccentric system SXS:BBH:2607 (eref ≈ 0.31), viewed from (θ,ϕ) = (π/3,π/2). The
faint gray trace is a circular system SXS:BBH:1153 with the same mass ratio (q= 1),
time-shifted to approximately agree in orbit-averaged frequency at tref of the eccentric
waveform. Note the asymmetry, higher amplitude, and faster merger time of the eccent-
ric system. Gravitational-wave memory is again indicated by the nonzero value of the
strain after ringdown. (c) Blue: mass-ratio q= 20 system SXS:BBH:2516, viewed from
(θ,ϕ) = (π/3,π/2). The faint gray trace is a q= 1 reference system SXS:BBH:4434.
The horizontal axis is scaled with the symmetric mass ratio ν so that the radiation-
reaction timescale is the same horizontal distance on the plot for both waveforms. Note
the smaller amplitude and the much longer inspiral time of the high mass-ratio system.

examples of some of the most extreme systems present in the updated catalog, including a
simulation of a precessing system for over 147 orbits, an eccentric system with eref ≈ 0.31,
and a system with mass ratio of 20.

The median waveform difference (which is similar to the mismatch, see section 2.4)
between resolutions over all simulations is 4× 10−4, with a median of 22 orbits, while the
longest simulation is 148 orbits. All the waveforms in the catalog are center-of-mass and
GW-memory corrected [118, 159]. We have also deprecated and rerun simulations created
with a much older version of SpEC and some simulations with anomalously high errors in the
waveform.

We estimate the total CPU cost of all the simulations in the catalog to be only 480 000 000
core-hours. Using spectral methods for long, precessing BBH inspiral-merger-ringdown simu-
lations is over 1000 timesmore efàcient than using ànite-differencemethods for a few orbits of
non-spinning BBHs at comparable accuracies; see, e.g. [41]. This performance gap is so large
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that even GPU-based ànite-difference codes have yet to prove competitive with CPU-based
codes using spectral methods.

The rest of this paper is organized as follows. In section 2, we present an overview of the
catalog, including our catalog’s coverage in terms of parameter space and length, as well as
estimates of the accuracy of the catalog’s waveforms. In section 3, we summarize the methods
that we use in the Spectral Einstein Code (SpEC), highlighting improvements since our 2019
catalog update [93]. In section 4, we discuss details of how we manage the catalog data. We
brieáy conclude in section 5. In the appendices, we document our waveform metadata format
in appendix A, describe the algorithm for determining which simulations supersede deprecated
ones in appendix B, document our current waveform format, including recent improvements,
in appendix C, and list a few individual simulations with large errors in appendix D.

For those looking for a review on numerical relativity, see, e.g. [160–163].

2. Catalog overview

2.1. Available data

The catalog currently consists of 3756 simulations. Each simulation has a unique identiàer of
the form SXS:BBH:123417. Each simulation typically includes multiple otherwise-identical
runs at different spatial resolutions, which are denoted by LevN. These resolution numbers
do not necessarily have a consistent meaning across the catalog, but for a given simulation
greater numbers represent higher resolution. See section 2.4 for how resolution numbers are
deàned for the newest simulations. The catalog currently contains 10 557 Levs, which gives
an average of 2.8 per simulation.

In the catalog, we include metadata (see appendix A for details) for each resolution, which
provides information likemasses and spins, computed both for the initial data and at a reference
time after initial transients have decayed away. We describe how we deàne the reference time
in section 3.5.

We also provide apparent-horizon data, such as trajectories and spins as functions of time,
for both the inspiral and ringdown in the same format as in earlier releases of the SXS catalog.
See [93] for details. At time t= 0, in the coordinates in which we measure trajectories and
spins, the larger BH is on the positive x axis, the smaller BH is on the negative x axis, and
the orbital angular momentum is in the positive z direction. However, at the reference time the
BHs have moved from the positions they had at t= 0, so, e.g. a reference-time spin in the x
direction does not lie along the line segment separating the BHs.

We extract gravitational waveforms on a series of spheres surrounding the binary. We dir-
ectly extract the strain h using Sarbach and Tiglio’s formulation [164] of the Regge–Wheeler
and Zerilli equations [165, 166], with implementation details described in [93, 167]. We sep-
arately extract the complex Weyl componentΨ4, as explained in detail in [93]. We emphasize
that these really are separate quantities; the extraction of h does not involve integrating Ψ4;
we sometimes compare two time derivatives of h versus Ψ4 as one of our error estimates (e.g.
àgure 8). Note that sign conventions for quantities like h and Ψ4 vary in the literature; see
appendix C. of [93] for a detailed discussion of our sign conventions. We compute the quantit-
ies h andΨ4 on multiple coordinate spheres, typically 24 of them, that are spaced roughly uni-
formly in inverse radius and extend most of the way to the outer boundary. We then extrapolate

17 These numbers are not necessarily consecutive. Also note that in this paper, we only discuss BBH systems; we will
discuss black-hole–neutron-star (BHNS) and neutron-star–neutron-star (NSNS) systems in the SXS catalog in future
work.
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the waveforms at these ànite-radius locations to future null inànity I +. See [93] for details
of the extraction and extrapolation procedure, except we now use the scri package [168]
for extrapolation. In addition to the center-of-mass correction [159, 169], we now also apply
a memory correction described in section 3.6. We no longer supply ànite-radius waveforms
since they are contaminated by gauge and near-àeld effects.

All simulations in the catalog include initial transients, including a burst of non-
astrophysical, high-frequency GWs commonly called junk radiation. Such initial transients
appear in all numerical-relativity simulations of BBHs, because all known methods for con-
structing constraint-satisfying initial data do not yield a BBH in equilibrium emitting phys-
ically correct GWs. For a recent discussion of junk radiation, see section I of [170]. Unless
speciàcally studying these transients, users of the catalog should remove them by discarding
early times from all time-dependent catalog data. Section 3.5 discusses how we compute when
junk radiation is no longer present.

There is no overall mass scale for the BBHproblem, so each of our simulations can be scaled
to any desired total mass. The units of strain waveforms in the catalog are rh/M as a function of
u/M, where rh is the product of the areal radius and the strain evaluated atI +, u is the retarded
time at I +, and M is the sum of the Christodoulou masses of the BHs at reference_time
(see section 3.5 for deànition of reference_time). The dimensionful metadata and horizon
quantities are in code units, which are slightly different from the units of the waveforms. For
example, the Christodoulou masses of the individual horizons at reference_time, which
correspond to the quantities reference_mass1 and reference_mass2 in the metadata, do
not sum exactly to unity (but the difference from unity is typically in the sixth digit). It is
straightforward to rescale the metadata or horizons to the same units as the waveforms, or to
any desired total mass.

All simulation data are available publicly [158], and we provide a Python package sxs [92]
to simplify obtaining, managing, and analyzing the data, as described in section 4.

2.2. Deprecated simulations

Because of many improvements to SpEC over the years (see, e.g. section 3.1), newer sim-
ulations in the catalog are generally more accurate than older ones. Furthermore, we and
others have identiàed problems with some older waveforms that were not evident until the
numerical-relativity community began studying waveforms in greater detail, including higher-
order modes, ringdown spectroscopy, GWmemory, etc. Many of the largest problems occur in
the 174 simulations from the àrst SXS catalog paper (published in 2013 [171]). For example,
[172] identiàed—among others—waveforms with what they described as ‘rippled-ringdown’
and ‘asymptotic-ringdown’ anomalies, all of which came from this early group. We believe
these are consistent with a lack of resolution during ringdown that we did not correct until
April 2015, well after we produced the affected simulations. As a result, we have deprecated
many early simulations. We have run newer simulations with the same physical parameters
but with improved techniques and higher resolutions.

We and others have also occasionally found problems in a few newer simulations; we have
deprecated these simulations as well. These problemswere usually issues àxed by later updates
to SpEC, but some involved missing or corrupted àles due to àlesystem problems or human
error, noticed only after uploading the simulation to the catalog. We have recently put con-
siderable effort into adding validation stages to our pipeline that postprocesses and archives
simulations, so that we can identify more problems like these automatically as they occur.
Some problematic simulations that we have deprecated or àxed have also been pointed out
by [173–175]. One simulation, SXS:BBH:1131, had an error in the metadata caused by a bug
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in SpEC’s metadata writer that was present from September–November 2014. That simulation
has been corrected in the current catalog, and remains non-deprecated.

We continue to include the deprecated simulations in the catalog, to enable interested users
to study these problematic simulations. But the sxs package will produce an error when load-
ing deprecated simulations, unless the user passes an option to ignore the deprecation. In both
cases, the sxs package will suggest to the user a newer simulation with similar parameters,
either through the error message or a warning if loading is forced. See appendix B for an over-
view of our algorithm for choosing the superseding simulation. Once a simulation has been
deprecated, we no longer put effort into keeping that simulation up to date with the rest of
the catalog. As a result, deprecated simulations may not have metadata àelds consistent with
new simulations or with other deprecated simulations. We encourage community members
who make use of our simulations to report any concerns; if necessary we can deprecate old
simulations and possibly rerun them if needed. To report a concern, open an issue at https://
github.com/sxs-collaboration/sxs/issues/new?template=catalog-data-issue-template.md.

2.3. Parameter space

Since the release of the 2019 catalog [93], most of our effort for expanding the catalog has
focused on higher mass ratios and spins. The BBH parameter space is quantiàed by the
Christodouloumasses of the individual BHsm1 andm2 withmass ratio q= m1/m2 ⩾ 1, dimen-
sionless spins χ⃗1 and χ⃗2, eccentricity e, and mean anomaly ℓ (see section 3.4). The dimension-
less spins have magnitudes |χ⃗i|⩽ 1; see section 2.2 of [93] for the deànitions of masses and
spins. Figure 2 shows mass ratios of all systems in the catalog, along with projections of the
spins into the orbital plane

χ1⊥ =
∣

∣

∣
χ⃗1 × L̂

∣

∣

∣
χ2⊥ =

∣

∣

∣
χ⃗2 × L̂

∣

∣

∣
, (1)

and the effective spin [53, 58, 59]

χeff ≡
(m1χ⃗1 +m2χ⃗2) · L̂

m1 +m2
=
m1χ1∥ +m2χ2∥

m1 +m2
, (2)

where L̂ is the direction of the instantaneous Newtonian orbital angular momentum.We extract
all quantities at reference_time. The difference between reference_time and the time
of merger varies widely between different simulations, both because the reference_time
varies and more importantly because different simulations have different numbers of orbits.
Therefore the points in the àgure do not compare the parameters of all simulations at the same
time relative to merger. Comparing simulation parameters at different times is most signiàcant
for spin directions in precessing cases. In particular, àgure 2 shows that we now have dense
coverage in mass ratios up to q= 8, including large spins and signiàcant precession. We have
also performed over 100 simulations between q= 8 and q= 20—most with essentially no spin
on the smaller BH, but signiàcant (usually precessing) spin on the larger BH.

We have continued to increase the number of cycles of our simulations, even for com-
putationally challenging cases with high mass ratios and spins. A new subset of about 1000
precessing simulations with q⩽ 8 has approximately 33 orbits per simulation, corresponding
to≈ 66GW cycles. Figure 3 shows, for all simulations in the catalog, a histogram of the num-
ber of simulations binned by the number of GW cycles. Compared to the previous catalog, the
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Figure 2. Distribution of reference mass ratios q and spins χ in the catalog. Each panel
shows a projection of the 7-dimensional space. Each point is one simulation. We plot
the effective spin χeff (a combination of spins that has a strong effect on the phasing
of the gravitational waves; deàned in equation (2)) and the magnitudes of the spins in
the orbital plane. Blue circles correspond to simulations that were released as part of
the 2019 catalog, while orange triangles correspond to simulations new in this release.
Darker regions are more densely covered. Deprecated simulations are omitted.

àgure highlights an increase in the number of simulations that have 50–70GW cycles18. There
are also a number of new simulations with very few orbits that represent nearly-head-on colli-
sions and scattering scenarios that are now in the catalog. We have produced a small number
of simulations with even more cycles, but we have primarily focused on improved parameter-
space coverage rather than on producing longer waveforms. This is for several reasons: àrst,

18 We deprecated the longest simulation in the 2019 catalog, SXS:BBH:1110, because the waveform was contamin-
ated with a center-of-mass acceleration as reported in [176].
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Figure 3. The number of orbits (top axis) and number of cycles (bottom axis) of the ℓ=
m= 2 GWs from the start of the simulation until the formation of a common apparent
horizon for the simulations in the catalog, as determined by the coordinate trajectories
of the black holes. Bin edges are multiples of àve orbits and ten cycles. Deprecated
simulations are omitted.

50–70GW cycles is sufàcient for most GW applications today, especially for systems with
higher total masses (≳ 50M⊙) where LIGO-virgo-KAGRA (LVK) detectors are not sensit-
ive enough at low frequencies to detect a longer inspiral. Second, for low-mass systems that
can have many more GW cycles in band than would be feasible for us to simulate, altern-
ative approaches (e.g. hybridizing numerical relativity and post-Newtonian models) can yield
waveformswith sufàcient length, although it remains unclear how long the numerical relativity
waveforms must be for accurate hybridization, especially for precessing systems [91]. Finally,
as demonstrated in [177] and discussed in section 2.4 below, the mismatch and waveform dif-
ference increase as ∼t2, meaning longer simulations require signiàcantly higher resolution to
maintain reasonable phase errors. Nonetheless, in àgure 4 we plot the reference dimension-
less orbital angular frequencyMΩorb for our simulations to showwhat our low frequencies are.
The top axis shows the dimensionful frequency of the (2, 2) mode at the reference time for a
system with a total mass of 50M⊙. Only simulations with reference eccentricities < 10−2 are
shown in àgure 4, since for eccentric cases the instantaneous reference frequency Ωorb does
not necessarily correspond to the lowest frequency in the waveform.

Figure 5 shows a histogram illustrating the number of simulations with different orbital
eccentricities. In section 3.4, we describe the algorithm we use to measure the eccentricities,
which is based on the BH trajectories, not thewaveforms. Because themethod uses trajectories,
and because of the lack of a unique deànition of eccentricity in general relativity (though
efforts have been made to relate and understand different deànitions, e.g. [100, 178, 179]), we
recommend using the ‘reference eccentricity’ value in the simulation metadata, as computed
according to section 3.4, only as a rough estimate. For more detailed analyses that depend on
precise values of eccentricity, users should choose a deànition of eccentricity and consistently

10
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Figure 4. The reference dimensionless orbital angular frequencyMΩorb for the simula-
tions in the catalog. The top axis is the frequency of the (2, 2) mode at the reference time
for a binary with a total mass of 50M⊙. Only simulations with a reference eccentricity
< 10−2 are shown. Deprecated simulations are omitted.

measure it from the gravitational waveform. In general, we intend simulations with reference
eccentricity below 10−3 in àgure 5 to be quasi-circular; for these, we have used an iterative
eccentricity-reduction scheme. In contrast, we intend simulations with reference eccentricity
above 10−3 to represent eccentric systems. Figure 5 shows that the majority of waveforms in
the catalog are quasi-circular, as in our 2019 catalog. However, we are continuing our efforts
to extend the catalog to more eccentric and precessing systems [145, 180]. We will include
more eccentric waveforms in future updates and releases of the catalog.

In summary, since 2019, we have nearly doubled the size of the catalog, with most new
simulations having precessing spins with mass ratios q> 4. We also include a signiàcant num-
ber of eccentric systems, as well as some simulations of hyperbolic encounters and scattering
scenarios.

2.4. Waveform comparison

For measuring the accuracy of our waveforms, we compare the strain computed by (at least)
two different resolutions for each simulation. For the newest simulations, we deàne different
resolutions such that the target relative truncation error of the metric and its derivatives in
the wavezone for Levk is given by 2.17× 10−4 × 4−k, and near the BHs it is approximately
two orders of magnitude smaller. We set the projected constraint error (see [181]) tolerance
to be four orders of magnitude smaller than the wavezone truncation error tolerance. Note
that resolution numbers should be directly compared only for the same simulation. Resolution
numbers for different simulations do not necessarily correspond to the same ànal errors, since
different simulations (even newer ones) sometimes vary in choices of initial data or gauge (see
section 3), as well as masses, spins, and number of orbits.

11
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Figure 5. The number of simulations at different reference eccentricities eref in the cata-
log. The main population shows simulations using eccentricity reduction, while we have
also completed several campaigns targeted at high eref, yielding the tail. Deprecated sim-
ulations are omitted.

When presenting errors, we consider two quantities. The àrst is the waveform difference19

∆(h1,h2) =
1
2

∥h1 − h2∥2
√

∥h1∥2∥h2∥2
, (3)

where

||h1||=
√

ˆ t2

t1

ˆ

S2
|h1|2 dΩdt. (4)

The second is the waveform mismatch averaged over the two-sphere (which we hereafter refer
to as the averaged mismatch)

M(h1,h2) = 1− ⟨h1,h2⟩
√

⟨h1,h1⟩⟨h2,h2⟩
, (5)

where the inner product ⟨h1,h2⟩ is

⟨h1,h2⟩= Re

[

ˆ ∞

f1

ˆ

S2

h̃1 ( f) h̃2 ( f)
∗

Sn ( f)
dΩdf

]

. (6)

In equation (4), t1 is the relaxation time deàned in section 3.5, and t2 = tmerger + 0.6(tend −
tmerger), where tmerger is the time at which the strain’s L2 norm over the two-sphere achieves

19 We choose this form so that the difference and mismatch agree in the limit of a áat power spectral density and
inànite numerical resolution.
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its maximum value and tend is the end time of the simulation. For those simulations without
mergers (e.g. hyperbolic encounters), we choose t2 = tend − 100M. In equation (6), h̃1( f) is the
Fourier transform of h1(t), ∗ represents complex conjugation, f 1 is twice the orbital frequency
at the relaxation time, and Sn( f) is the power spectral density (PSD) of a GW detector. Note
that M differs from the mismatch used in [93] and in typical LVK analyses, which instead
compute mismatches at various points on the two-sphere, minimizing the mismatch over time
and phase shifts at each point on the sky independently, and then report the largest mismatch.
The averaged mismatch in equation (5), however, corresponds to an average mismatch over the
whole two-sphere since no point evaluation is performed. We use this new quantity because it
better quantiàes our waveform differences by including correlations between different points
on the two-sphere that are important for getting spherical-harmonic modes of the waveform
correct for modeling purposes. All of the code to compute mismatches and reproduce the sub-
sequent analysis is available via the sxs.simulations.analyze.analyze_simulation
function.

It is customary to consider two waveforms to be equal if they differ only by an overall phase
or time shift, since the two waveforms represent the same physics. Similarly, two waveforms
should also be considered equal if they differ only by an SO(3) rotation, Lorentz boost, or
supertranslation. There are a few ways in which one can incorporate these frame freedoms
into a comparison between waveforms at different resolutions. First, one could àx the frame
freedom of the waveform at each resolution independently, e.g. make t= 0 correspond to the
time at which the strain’s L2 norm achieves its maximum value and àx the other Bondi-van
der Burg–Metzner–Sachs (BMS) freedoms in a well-prescribed way (for a review of the BMS
group in relation to numerical relativity simulations, see, e.g. [169, 182]); we call this option
the ‘independent alignment’ method. Second, one could ànd the optimal BMS transformation
that makes the waveform from one resolution best agree with the waveform from the other res-
olution; we call this the ‘minimal difference’ method since the optimization yields the smallest
difference.

For the majority of our convergence tests, we use the independent alignment method, as
it àxes the coordinate freedom of each resolution independently and will still converge in the
limit of inànite resolution. This method is appropriate for waveform models that claim to be in
some well-deàned coordinate frame, because failures of the model to accurately àx that frame
will translate into differences between waveforms. However, because no optimization over the
coordinate transformations is performed, the difference produced by the independent align-
ment method will be larger than the difference resulting from methods that do optimize over
these transformations. Thus, for illustrative purposes, for some cases we will compare with
the minimal difference method, for which we perform a four-dimensional optimization over
a time translation and SO(3) rotation to minimize the waveform difference (see equation (3)).
Note that we do not optimize over Lorentz boosts and supertranslations, since these optimiza-
tions can be very expensive and tend to be less important than optimizing the time and rotation
freedoms, which are more directly related to the phase error of the simulation. Nonetheless,
methods for efàciently optimizing over all of the BMS freedoms are in development and will
be performed for future catalog analyses.

For the independent alignment method, we àx the frame freedom as follows. First, we
perform a time translation so that t= 0 of each waveform corresponds to the merger, which
here we deàne as the time at which the strain’s L2 norm over the two-sphere achieves its
maximum value. Then, we ànd the rotation that aligns the angular velocity with the positive z
axis [183], which makes the phase of the (2, 2) mode zero and the real part of the (2, 1) mode
positive. We do this at the time that is 10% the length of inspiral (not including the times before
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Figure 6. Waveform difference (see equation (3)) between strain waveforms for dif-
ferent simulation resolutions. Blue corresponds to the difference between the two
highest resolutions available, using the minimal difference alignment method. Orange is
identical to blue, but with the waveform truncated so that it starts 8 orbits before merger.
Green is identical to blue, but with the independent alignment method. Red and purple
are identical to green, but for the next two highest pairs of resolutions. Vertical lines
show the quartiles of each distribution. The number of simulations in each distribution
is shown in the legend. While some simulations have differences as low as 10−10, we
truncate the horizontal axis to make the àgure more readable.

the relaxation time) before t= 0. For example, if the post-relaxation time inspiral is 5000M
long, then we àx the frame at −500M.

In àgure 6 we show the waveform difference between the resolutions available for each sim-
ulation. All waveform differences and mismatches used to produce àgures 6–9 are available
in the supplementary material [184]. Note that we have a handful of simulations with a single
resolution, which do not contribute to this àgure. The blue (green) curve in àgure 6 shows the
difference between the two highest resolutions when using the minimal difference (independ-
ent alignment) method, while the red and purple curves show the differences between the next
highest resolutions with the independent alignment method. The vertical dashed lines show
the quartiles of each distribution. As can be seen by comparing the blue and green curves,
the minimal difference method improves the median difference by a factor of two and lessens
the high-difference tail, which results from some of the more precessing systems requiring
a much àner tuning of the rotation transformation. The reason why the purple distribution
appears to have smaller differences than the red distribution is simply because there are fewer
data points for the purple distribution, since we have fewer simulations that have four separate
resolutions. Also, those simulations with four separate resolutions tend to be in less extreme
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Figure 7. Waveform difference (per ℓ) (see equation (3)) between strain waveforms for
the two highest-resolution simulations. In blue we show waveform differences normal-
ized by the full waveform, while in orange we show differences normalized by only the
ℓ ′ harmonics with ℓ ′ = ℓ. The waveforms used for these errors have been aligned using
the minimal difference method. Vertical lines show the quartiles of each distribution.

regions of parameter space, where computational cost is lower and where it is easier to obtain
higher accuracy. This àgure shows that the relative error in our waveforms over the entire cata-
log, on average, is O(1%). In terms of mismatches (see also àgure 9), this median waveform
difference corresponds to a averaged mismatch of O(10−4).

The differences shown in àgure 6, as well as in àgures 7 and 9 below, are taken between
simulations at the two highest resolutions, and thus should be dominated by the numerical
truncation error of the second-highest resolution simulation. The differences shown in the
àgures therefore represent an upper bound on the numerical truncation error of the highest-
resolution simulation, so we expect the accuracy of the highest-resolution simulations to be
better than what is shown.

An important note regarding these waveform differences, however, is that they are highly
dependent on the length of the simulation. In particular, in [177] it was shown that themismatch
(and therefore also the waveform difference) between numerical relativity waveforms from
different resolutions, whose relative error is dominated by some phase difference δϕ, tends to
scale as

M
(

h,eiδϕ th
)

∼ δϕ2|t2 − t1|2. (7)

Therefore, while the differences in the blue curve àgure 6 may seem high compared to other
catalogs’, this is mainly because our simulations tend to be very long (see àgure 3 for an over-
view of our lengths). In particular, any numerical relativity waveform dominated by phase
error can be made to have a smaller difference simply by shortening it by removing the begin-
ning of the waveform. We demonstrate this with the orange curve, for which we truncate our
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Figure 8. Top panel: waveform difference (see equation (3)) between different extra-
polation orders. Bottom panel: difference between Ψ4 and −ḧ/2, which are computed
independently by different methods but which should agree. Differences are taken for
the highest resolution for each simulation.Waveforms are aligned using the independent
alignment method. Vertical lines show the quartiles of each distribution.

simulations to be 8 orbits before computing waveform differences using the minimal differ-
ence method. In the most extreme case, by truncating one of our simulations to only be 8
orbits, we can improve the waveform difference between resolutions by four orders of mag-
nitude. The remaining high tail in the orange curve is due to a few highly precessing systems
that are underresolved, so that the two resolutions end up describing systems that are slightly
physically different (e.g. different spin directions).

For building waveform models, the errors in individual spherical-harmonic modes of the
strain are often of interest. In àgure 7 we show the waveform difference between the two
highest resolutions when restricted to spherical-harmonic modes with a certain ℓ. In blue we
show the difference normalized by the norm of the entire waveform while in orange we show
the difference normalized by the norm of only the modes with that particular value of ℓ. All
of the errors are calculated from waveforms aligned with the minimal difference method. As
may be expected because of their higher frequency andmore complicated sourcing, the larger ℓ
modes exhibit larger errors relative to their amplitudes. However, the larger ℓmodes contribute
much less to the overall strain, so the errors in these modes have a small contribution to the
overall waveform. Comparing àgure 7 to the blue distribution in àgure 6 makes it apparent
that our dominant source of error in the overall waveform is still from the ℓ= 2 modes.

The procedure [93] used to extrapolate a series of ànite-radius waveforms to produce a
waveform at I + uses a polynomial àt of order N to extrapolate in 1/r. Varying this order N
can be used to quantify the error of the extrapolation procedure. When downloading wave-
forms from the catalog, the sxs package chooses N= 2 by default, but can also download
N= 3 or N= 4 if requested. In àgure 8, we show the waveform difference between different
extrapolation orders for the highest resolution. The blue curve shows N= 2 vs. N= 3 and the
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Figure 9. Number of simulations with flow ⩽ fdetectorlow vs. averaged mismatch
(equation (5)) between the strain waveforms for the two highest resolutions of
that simulation. Here flow is twice the orbital frequency at the simulation’s relaxation
time and fdetectorlow is the low-frequency cutoff of each detector. The top horizontal axis
represents the signal-to-noise ratio (SNR) at which the corresponding mismatch will
not bias data analyses, according to equation (8). All simulations to the left of a speciàc
mismatch have truncation error sufàciently small to not bias data analyses of signals
with SNR smaller than ρ on the top axis. Different colors correspond to different total
masses, logarithmically spaced from 50M⊙ to 300M⊙ for ground-based detectors. The
vertical dotted lines indicate the SNR of typical loud events observed/expected in each
detector [10, 74, 77, 84]. Only simulations with reference eccentricities < 10−2 are
shown.

orange curve shows N= 2 vs. N= 4. Waveforms are aligned using the independent alignment
method in this àgure. When comparing orders N= 2 and N= 3, the differences peak near
O(10−6) with a tail that extends to ∼1. Overall this result demonstrates that by this meas-
ure, errors in our extrapolation procedure are on average unimportant when compared to the
numerical truncation error. That is, the extrapolation errors in Figure 8 are typically an order
of magnitude less than the errors shown in Figure 6 and are therefore not our dominant source
of waveform error. The high-∆ tail is due to a few nearly-head-on or scattering simulations,
which we list in appendix D. One reason for the large waveform differences is junk radiation,
which causes large differences between extrapolation orders. The actual amount of junk radi-
ation is similar to that in inspiral waveforms, but in these short simulations we do not have the
luxury of waiting longer for junk to decay before the interesting physics occurs, so the relative
contribution of the initial transient junk radiation to the waveform difference is larger. Another
reason for the large waveform difference is that some of these runs have waveform-extraction
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radii that are very close together resulting in an inaccurate extrapolation. Simulations with
narrow distributions of extraction radii will be deprecated and rerun in the future.

In the bottom panel of àgure 8, we also show the difference between − 1
2 ḧ and Ψ4, two

quantities that we compute independently in our code by completely different methods, but
which should agree. The agreement between − 1

2 ḧ and Ψ4 shows how well our simulations
respect the Bianchi identity for Ψ4 on future null inànity I +.

Finally, we assess the readiness of our catalog for next-generation detectors, speciàcally,
LIGODesign, CE, ET, and LISA. In àgure 9, we show the number of simulations in the catalog
whose lowest frequency—taken to be twice the reference orbital frequency—is below the low-
frequency cutoff of each detector. Only simulations with reference eccentricities < 10−2 are
shown in àgure 9, since for eccentric cases the instantaneous reference frequency does not
necessarily correspond to the lowest frequency in the waveform. On the bottom horizontal
axis of àgure 9 we plot the averaged mismatch (see equation (5)) between the two highest
resolutions when using the PSDs for the four detectors, while on the top horizontal axis we
plot the signal-to-noise ratio (SNR) at which the corresponding mismatch is sufàcient to not
bias data analyses. Speciàcally, we use the well-known sufàcient condition for two waveform
models to be indistinguishable [185–190],

M<
D
2ρ2

, (8)

where M is the averaged mismatch (see equation (5)), D is the number of intrinsic para-
meters with D= 9, and ρ is the SNR of the observation the models are describing. Note that
equation (8) is a sufàcient, but not necessary, condition; i.e. theremay be some situationswhere
an averaged mismatch larger than the right hand side of equation (8) will still not lead to large
biases in data analyses [190]. In àgure 9, different colors correspond to different total masses
and vertical dotted lines show SNRs of typical loud events expected for each detector. The
PSDs for the four detectors come from the following: For aLIGO, we use the PSD presented
in [191] and published in [192]; for CE, we use the PSD presented in [193, 194] and published
in [195]; for ET, we use the ET-D PSD presented in [77] and published in [196]; and for LISA,
we use the PSD presented in [197] and published in [198].

To interpret the àgure, choose a SNR for a given detector, and choose a total mass. Then all
simulations to the left of that SNR in the àgure have enough cycles to cover the frequency band
of the detector, and sufàciently small truncation error so as to not bias data analysis of a signal
with that SNR, or with any smaller SNR. For example, for a CE event with SNR ∼200, the
corresponding mismatch is about 2× 10−4, there are hundreds of simulations in the catalog
sufàciently long and accurate for a total mass of 165M⊙ and larger, but for that SNR there are
no simulations in the catalog sufàcient for a total mass of only 91M⊙.

The àgure shows that, for LIGO, which has a much higher low-frequency cutoff, the major-
ity of our catalog has a sufàciently small averaged mismatch for events with Mtot > 90M⊙.
However, for lower total masses or for future detectors with lower low-frequency cutoffs, many
of our simulations are too short to span the entire frequency band, and most of the simulations
that do span the entire frequency band may have mismatches too large to not bias the data
analysis. In particular, for ET, which has a low-frequency cut off 2Hz, we ànd that we have
very few simulations long enough to span the frequency band for Mtot < 300M⊙, while for
LISA we have no simulations long enough for to span the frequency band for Mtot < 106M⊙.
While hybridization with post-Newtonian waveforms may reduce the need for extremely long
numerical relativity waveforms, the exact requirements for hybridization at next-generation
accuracies have yet to be fully determined [59, 72, 85–91]. Understanding this is crucial to
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prepare the community for the large number ofMtot < 106M⊙ binaries that are expected to be
observed by LISA [199].

3. Numerical methods

All the simulations in the catalog are performed using the SpEC [200].We construct constraint-
satisfying initial data using the extended conformal thin sandwich (XCTS) [201, 202] formu-
lation. In the XCTS formulation, the conformal three-metric and the trace of the extrinsic
curvature, as well as their time derivatives, can be freely chosen. Typically we choose these
quantities to be weighted superpositions of the analytic solutions for two single BHs in Kerr–
Schild coordinates [203], in time-independent horizon-penetrating harmonic coordinates [204,
205], in time-independent damped harmonic coordinates [206], or in a spherical version
of Kerr–Schild coordinates [207]; each of these choices has its own advantages and draw-
backs [207, 208]. A few simulations in the catalog are conformally áat and have a vanishing
trace of the extrinsic curvature (i.e. maximal slicing) [209]. We choose the time derivatives
of the conformal metric and trace of extrinsic curvature to be zero. We then solve the XCTS
equations on a grid with two excised regions using a spectral elliptic solver [210]. The bound-
ary conditions on the excision boundaries are chosen to ensure that these boundaries are either
apparent horizons (AHs) [203, 209], or that they are surfaces of constant expansion with a
small negative value [208] and thus are slightly inside AHs. The outer boundary is at a radius
around∼109M, and the boundary conditions are derived by requiring asymptotic áatness. The
solution of the XCTS equations provides constraint-satisfying initial data on the initial slice.

The initial data depend on a set of input parameters, such as the spin vectors and masses
associated with the analytic single-black-hole solutions used to build the conformal metric,
and also the initial coordinate positions and velocities of the BHs. After the constraints are
solved, we compute physical parameters such as the spin vectors and masses of the BHs, and
frame quantities such as the initial total linear momentum and center-of-mass of the binary.
These computed physical and frame quantities are not the same as the input parameters, and
cannot be computed from the input parameters without solving the nonlinear XCTS equations.
After measuring the physical and frame quantities, we adjust the input parameters and re-solve
the XCTS equations. This process is iterated until the BHs have the desired masses and spins,
the initial linear momentum is zero, and the initial center-of-mass is at the origin [211, 212].

For most of the simulations in the SXS catalog, we carry out an additional iteration that
brieáy (typically for a few orbits) evolves the initial data, and adjusts the initial coordinate
velocities to yield a BBH with small orbital eccentricity [213–216], typically e0 ∼ 10−3 −
10−4. For some simulations in the catalog, we intentionally omit the eccentricity-reduction
iteration, to obtain initial data for BBHs with non-negligible orbital eccentricity. For other
simulations we include an eccentricity iteration to tune the eccentricity to desired nonzero
values [217, 218]. See section 3.4 for details of eccentricity measurement.

For the evolution, we use a àrst-order version of the generalized harmonic formula-
tion [219–222] of Einstein’s equations [221–223]. For most simulations we choose an ini-
tial gauge that approximates a time-independent solution in a co-rotating frame, and then we
smoothly change to damped harmonic gauge [224–226], which works well near merger. A
few simulations start in harmonic gauge at t= 0 and smoothly change to damped harmonic
gauge. Some simulations start in damped harmonic gauge and remain in that gauge for the full
evolution [208].

We evolve Einstein’s equations using a multidomain spectral method [222, 226–229],
with a method-of-lines timestepper that uses a àfth-order Dormand–Prince integrator and a
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proportional-integral adaptive timestepping control system [230]. The computational domain
extends from excision boundaries, located just inside the AHs and conforming to their
shapes [226, 228, 229, 231], to an artiàcial outer boundary. No boundary conditions are
needed or imposed on the excision boundaries. On the outer boundary we impose constraint-
preserving boundary conditions [222, 232, 233] on most of the àelds, we impose an approxim-
ate no-incoming-wave condition on two physical degrees of freedom by freezing the Newman–
PenroseΨ0 at the boundary [222], and we impose a Sommerfeld condition on the four remain-
ing (gauge) degrees of freedom [222]. The outer boundary is typically placed at a radius of
order 1000M, but this varies for different simulations. For extremely long simulations, the
outer boundary is automatically placed farther outward to avoid the center-of-mass gauge
effect reported in [176]. We also impose boundary conditions on the incoming characteristic
àelds at each inter-domain boundary using an upwind penalty method [234, 235]. After a com-
mon AH forms, the simulation automatically stops, interpolates onto a new grid with a single
excision boundary inside the new common horizon [228, 229], and continues evolving until
after ringdown.

Spectral methods are exponentially convergent, meaning that spatial truncation errors
decrease exponentially with the number of grid points in a particular subdomain, if the size and
shape of the subdomain remain àxed. However, our spectral adaptive mesh reànement (AMR)
procedure [181, 236] dynamically changes the size, shape, and the number of subdomains
during the simulation. In addition, we choose the resolution not by choosing a number of grid
points, but by specifying an error tolerance that governs when grid points should be added
or subtracted in a given subdomain (p-reànement), and when different subdomains should be
split and joined (h-reànement). Because of this complicated AMR procedure, we should not
expect strict convergence as a function of the AMR tolerance parameter. To see why, consider
two otherwise-identical simulations with different AMR tolerances. These simulations may
happen to have the same number of grid points in a particular subdomain at a particular time,
because their local truncation errors happen to be within the appropriate thresholds. In this case
they will not exhibit strict convergence. Similarly, strict convergence will be lost if these two
simulations happen to have entirely different subdomain boundaries (because of h-reànement)
at the same time. Strict convergence can also be lost because our adaptive control system that
adjusts the size and shape of the excision boundaries [229] involves thresholds. One way that
this can happen is if two otherwise-identical simulations with different AMR tolerances end
up with excision boundaries in slightly different locations. Finally, decisions by both AMR
and by the control system exhibit hysteresis. Despite these issues, most of our simulations do
exhibit convergence with AMR tolerance, as shown in section 2.4.

3.1. Recent improvements to SpEC

Since the time of the previous catalog paper [93], there have been numerous improvements to
SpEC, with approximately 2000 new commits in the git history. SpEC has a total of about 700k
lines of code, excluding blank lines and comments. While some of these recent improvements
have been rather mundane (like upgrading to C++17 or providing support for additional com-
pute clusters), many of the changes have targeted performance, robustness, and new features.

All changes in SpEC are submitted as GitHub pull requests. These undergo code review,
where each pull request is reviewed by a senior developer considering correctness, clarity,
documentation, and efàciency. Before merging to the main branch, a pull request must pass a
test suite (currently 422 tests) run on different compilers and different build options. Many of
these tests are small unit tests: for example, checking that transforming points through a com-
plicated coordinatemap and then transforming back recovers the original points. Some tests are
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more comprehensive: for example, a checkpoint/restart test runs a BBH for four timesteps, and
compares the result to another BBH run for two timesteps, is checkpointed, restarted, and run
for two more timesteps; the results must be bitwise identical. There are also many regression
tests that demand, for example, that a few timesteps of a BBH give bitwise-identical results
when run before the pull request compared to when run after the pull request; if the pull request
is expected to change the output of a regression test, then as part of the pull request the user
áags that test and writes a brief explanation of why the output of that test should change.

SpEC includes code that does not legally allow us to distribute it as open source. A newer
code SpECTRE [237], under development, is open source, and will eventually include all rel-
evant features of SpEC plus a large number of improvements, especially in scalability.

Many of the performance improvements have focused on reducing SpEC’smemory usage by
eliminating a large number of temporary variables. Given that memory bandwidth is the lim-
iting factor on today’s HPC systems, we have also worked on eliminating memory allocations
and data copying. Other improvements sped up computations that were prohibitively slow for
certain edge cases. An example of this kind is the code that computes the spin of an AH using
the method of [238]. This method requires solving a generalized eigenvalue problem involving
matrices of size ∼L2 × L2, where L is the maximum ℓ retained in the spherical-harmonic Yℓ,m
expansion of the horizon surface. Formerly, all eigenvalues and eigenvectors were found dir-
ectly, but this was prohibitively slow for simulations with large mass ratios where L of a highly
distorted horizon could be 80 or more. This is now done with an iterative method that ànds only
the eigenvectors with the three smallest eigenvalues, which are the ones needed to compute
the spin of the AH.

Robustness improvements were mostly driven by the need to simulate BBHs with larger
mass ratios and spins. At the time of [93], most simulations had mass ratio less than 4, with
higher mass ratio simulations being expensive and not infrequently failing. Mass ratios up to
about 8 are now straightforward even with spin magnitudes of 0.8 and precession. Some of the
improvements include better eccentricity measurement [216, 217] that handles cases where
our previous algorithm failed to robustly measure the eccentricity of the system, especially if
the eccentricity was small.

A change that helps both efàciency and robustness is improvements in the coordinate
maps that connect the grid frame to the inertial frame. In particular, several coordinate maps
described in [229] were inverted numerically because they involved functions like Gaussians.
The numerical inversion occasionally failed for edge cases (e.g. unlucky machine roundoff
caused the wrong root to be found), and more of these failures happened for high mass
ratios, eccentric systems, and hyperbolic encounters, when the map parameters became more
extreme. Although these failures were rare, we often run hundreds of simulations at once, so
diagnosing and àxing each new edge case took considerable human time. The solution was to
replace these maps with newmaps that use piecewise linear functions with kinks at subdomain
boundaries so that the maps are quicker to compute, more accurate, and can be inverted ana-
lytically. Restricting the kinks to subdomain boundaries retains spectral convergence, since
the map inside each subdomain remains smooth. Additionally, several bugs and inaccuracies
in the time-dependent coordinate maps were àxed. These issues do not appear to impact the
waveforms.

A failure mode that rarely but regularly appeared either at the beginning of the simulation
(for high spins) or at the beginning of ringdown was caused by a mismatch between the shape
of the excision boundaries and the shape of the horizons. The origin of this problem is the use
of different grids before and after the transition, either from initial data to inspiral or inspiral
to ringdown. This mismatch sometimes prevented the control system from locking and the
simulation failed after a few timesteps. Now, if such a failure occurs, the horizon shape is
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measured during the àrst few timesteps and then the simulation is automatically restarted with
new excision boundaries that better match the horizon shapes. This process is repeated several
times if necessary, typically up to three.

There have also been many improvements to the initial data solver since [212], primarily to
make the solver more robust for very large initial distances between the two BHs. Among the
changes are (i) a radial split of the inner spherical shells surrounding either excision boundary,
if the radial coverage is too large; (ii) streamlining the criteria used to decide when to increase
the AMR resolution and how to measure the error in root-ànding; (iii) àxes to bugs that are
triggered by initial data sets with particularly large separations or BH velocities; (iv) changes
to the preconditioning that lead to more robust and more efàcient solution of the discretized
linear system; (v) the possibility to specify ADM energy and angular momentum of the initial-
data set instead of orbital frequency and radial velocity; and (vi) various code-cleanup and
refactoring to improve maintainability. In addition, because SpEC was originally written and
tested with binaries on quasicircular orbits in mind, running simulations of highly eccentric
and hyperbolic-like orbits required many adjustments, which we outline in section 3.3.

We have also implemented different initial data that provide improvements for reducing
junk radiation and improving performance of high-spin simulation. For newer simulations we
typically use SHK [208] initial data for spins below 0.8 and SphSKS [207] for larger spins.
Which type of initial data was used is available in the metadata àeld initial_data_type
(see appendix A for metadata details). We also typically use a negative expansion boundary
condition in the initial data. This allows us to place the excision boundary inside the AH in
the initial data and eliminates the need to extrapolate to the horizon interior when starting the
evolution [208].

New features include a new method for measuring spin directions based on [239], and new
methods of constructing free àelds for initial data [206, 207]. Additionally, we have tuned
AMR tolerances to produce a more uniform error across the grid and throughout the sim-
ulation. In particular, we have increased the resolution in the wavezone spherical shells to
ensure that they are not the dominant source of error. As part of this, we improved the way
we handle spherical harmonic àltering. SpEC uses a scalar spherical harmonic decomposition,
which causes aliasing errors when involving higher rank tensors. A tedious but straightforward
derivation shows that this aliasing can be eliminated by transforming to a tensor spherical har-
monic basis, zeroing the top four ℓ modes, and then transforming back to the scalar spherical
harmonic basis [240]. We precompute and cache the transformation rules on disk, then load
them for the current L in each spherical shell. This storage algorithm has seen several improve-
ments, including copying the cache on disk to node-local SSDs to reduce load time.

Improvements to the feedback control systems [228, 229, 241] were required for robustly
simulating higher mass ratio conàgurations, mostly requiring tightening control system toler-
ances to avoid drift from the optimal solution. A major overhaul of the rotation control system
was also done, so that it now has the same interface as the other control systems. This elim-
inated many special cases in the control system code, reducing the complexity of that code
considerably.

Extracting all the Weyl components and extrapolating them to inànity is extremely inac-
curate unless junk radiation is very small. We can signiàcantly reduce the junk radiation by
allowing the initial junk radiation pulse to evolve to the outer spherical shells, and then drop-
ping the shells containing the junk radiation [242]. This causes a discontinuous change in the
outer boundary, but drastically reduces junk radiation reáections off the outer boundary. While
effective, this procedure is not done by default in our simulations.
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Finally, two key new features are a way to reduce the effect of junk radiation on errors,
as explained in detail in section 3.2, and a new algorithm for determining the end of the junk
phase (the relaxation time), as described in section 3.5.

3.2. Perform branching after junk

Assessing the convergence of numerical relativity simulations is complicated by the presence
of initial transients, usually referred to as junk radiation. We intentionally conàgure AMR so
that it does not resolve the initial junk transients. This is for two reasons: First, the junk radi-
ation is not astrophysically interesting, so the beginning of the simulation that contains signi-
àcant junk is eventually discarded. Second, resolving the junk is computationally expensive
because the transients have small wavelengths and large frequencies.

Because the junk is not resolved, two otherwise-identical simulations starting at t= 0 with
different AMR tolerances have different, nonconvergent junk transients. As a result, they have
slightly different masses, spins, and orbital parameters even at t= tjunk, where tjunk is some time
after which the primary junk transients are deemed to have sufàciently decayed away, though
residual reáections may remain (see section 3.5). In other words, the unresolved junk transi-
ents leave behind an effectively random small change in the physical observables. Because of
this, otherwise-identical simulations starting at t= 0 with different AMR tolerances can fail to
converge even at times t> tjunk.

Our solution to this problem is to modify the way in which we specify simulations with
multiple resolutions. We call this method ‘perform branching after junk’ (PBandJ). Instead of
starting multiple simulations with different AMR tolerances at t= 0, we start a single sim-
ulation with one AMR tolerance at t= 0. We then choose some time tPBandJ > tjunk, which is
independent of the reference time chosen by the algorithm in section 3.5.When that simulation
gets to t= tPBandJ we fork several copies of that simulation, each copy having a different AMR
tolerance for t> tPBandJ. Effectively, a snapshot of the àrst simulation at t= tPBandJ serves as
initial data for the copies. This procedure provides better convergence results and error estim-
ates, by simply ignoring the initial part of the simulation that is astrophysically uninteresting
and that we will discard anyway for waveform analysis. Most simulations in the catalog car-
ried out after year 2020 use this procedure, and tPBandJ is typically chosen to be about 2.5 orbits
after t= 0. Typically, the àrst simulation that evolves from t= 0 to t= tPBandJ is the highest-
resolution simulation, and the forked copies are at lower resolution. However, occasionally we
decide that our resolution is insufàcient after the àrst simulation has ànished, and in this case
we fork an additional copy at higher resolution starting at t= tPBandJ.

3.3. Adjustments for highly eccentric and hyperbolic-like orbits

To evolve highly eccentric (eref ≳ 0.5) BBHs and hyperbolic-like encounters in SpEC, several
adjustments are made to resolve the fast dynamics characteristic of these systems. Because
eccentric binaries emit pulses of GWs, the algorithm to choose the output frequency of
extracted GWs was changed to be proportional to the highest instantaneous orbital frequency
achieved during the entire past of the simulation. For hyperbolic events, it is not possible to
meaningfully deàne an orbital frequency, so instead waveforms are exported in timesteps of
0.5M, which we ànd to be sufàcient to capture the characteristic burst of radiation emitted
during the periastron passage.

Junk radiation requires special care for these types of simulations, since we usually do not
have extra early orbits that we can discard. Instead, scattering and highly eccentric encounters
start at very large initial distance (typically, D0 = 250M) to make sure that junk radiation has
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sufàciently decayed before the àrst periastron passage. Junk radiation is also what necessitated
some of the changes to the initial data code detailed above. Previous versions of SpEC sup-
pressed AMR in the outer spherical shell grids until the pulse of junk radiation passed through
the outer boundary. However, because of the fast dynamics of hyperbolic or extremely eccent-
ric cases, inner shells need reànement already fairly early on, usually before the pulse crosses
the outer boundary. To allow inner shells to reàne as soon as possible, AMR is no longer sup-
pressed globally, but individual spectral elements are allowed to reàne as soon as the junk
pulse passes through them.

Another adjustment for these systems is the choice of shorter time scales to trigger AMR,
which is necessary for AMR to adapt quickly enough to the rapid change in the radial separ-
ation. Furthermore, signiàcant reànement is needed during the close periastron passage. We
have therefore added the ability for AMR to split (i. e. h-reàne) hollow cylindrical elements in
the angular direction.

The gauge source functions in SpEC start from an initial gauge that is slowly rolled off
towards the damped harmonic gauge. If the initial separation between the BHs is very small,
we shorten this rolloff time to make sure the system is in purely damped harmonic gauge
well before the àrst periastron passage. Likewise, the time for PBandJ (see section 3.2) is
chosen such that it occurs before the àrst periastron passage. Typically, junk radiation is still
present in the outer shells at the PBandJ time, but the most severe impact of junk radiation is
mitigated. More details on the adjustments for highly eccentric and hyperbolic-like orbits will
be presented in [243].

3.4. Eccentricity and mean anomaly

Each simulation in the catalog contains metadata àelds for eccentricity and mean anomaly
(see appendix A for a list of all metadata àelds.). Because there are multiple deànitions of
eccentricity in general relativity, and because both eccentricity and mean anomaly vary as the
simulation proceeds, we emphasize that users who care about particular deànitions and pre-
cise values of these quantities should compute eccentricity and mean anomaly themselves in a
consistent manner, using either waveforms or trajectories according to whatever method they
choose. In particular, when comparing the eccentricities and mean anomalies of a series of
simulations, those comparisons are most physically meaningful when the eccentricities and
mean anomalies are computed at some time relative to merger. In contrast, here we compute
eccentricities and mean anomalies at some time early in the inspiral after junk, since the num-
ber of orbits in our simulations varies widely from case to case.

Nevertheless, we describe here how we compute eccentricities and mean anomalies. We
use three methods. The àrst is the method described in [216], where a post-Newtonian-based
functional form (equation (10) of [216]) is àt to the time derivative of the angular frequency
of the orbital trajectory. This functional form is based on an expansion in small e, and includes
spin-spin corrections and radiation reaction.

The second method is the one described in [217], which is similar to the àrst method,
except that the functional form (equation (9) of [217]) allows for general e that can be large.
For general e, it is usually necessary to invert the Kepler equation to solve for the eccentric
anomaly u(t) as a function of time t. Here the Kepler equation at 1PN order reads

t− tref = a3/2M−1/2

(

1+
9− η

2aM−1

)[

u(t)− e

(

1+
3η− 8
2aM−1

)

sinu(t)− ℓ

]

, (9)

where e is the (Newtonian) eccentricity, ℓ is the mean anomaly at time t= tref, a is the
(Newtonian) semimajor axis, M is the total mass m1 +m2, and η is the symmetric mass ratio
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m1m2/(m1 +m2)
2. Here we use geometric units G= c= 1. However, in [217] the inverse of

the Kepler equation is approximated as the closed-form expression

u(t) = a−3/2M1/2

(

1− 9− η

2aM−1

)

(t− tref)+ ℓ, (10)

which is a reasonable approximation for e≲ 0.5, but not for larger eccentricities.
The third method works best for large eccentricities, when eccentricity dominates the tra-

jectory. This method is the same as the second method, except the functional form that is àt
to the trajectory omits spin-spin terms and radiation-reaction terms, and the Kepler equation
is inverted numerically. In other words, the functional form is equation (9) of [217] with
C1 = C2 = C3 = C4 = 0, with u(t) determined numerically from equation (9).

We use the àrst method for all cases with e< 0.01. For very small eccentricities the mean
anomaly is degenerate and has no physical meaning. For larger eccentricities e> 0.01, we try
both the second and third method, and choose the result with the smallest value of the L2 norm
of the àt residual divided by the number of àt parameters.

Note that there are some simulations with empty eccentricity or mean anomaly metadata
àelds, and other simulations where the eccentricity metadata àeld is a string (where the string
describes a reason for lack of a numerical eccentricity such as ‘simulation too short’). These
simulations are either head-on or nearly-head-on collisions, hyperbolic encounters where the
objects are unbound and escape to inànity, or simulations with too few orbits to reliably meas-
ure an eccentricity.

3.5. Junk radiation, relaxation time, and reference time

Although users are free to use their own methods to remove initial ‘junk radiation’ transients
from simulations, we provide several metadata àelds to assist with this. The metadata provides
a suggested relaxation_time in units of total massM. This is our estimate of the amount of
time that should be removed from the beginning of the time series so that junk remains accept-
ably small. Note that relaxation_time is simulation-dependent and resolution-dependent.
Users with applications that are particularly sensitive to junk are encouraged to measure the
junk themselves in a manner of their choosing and truncate the time series appropriately for
their use case.

We recently presented a new algorithm for determining relaxation_time [170]. This
method, which we call HHT for Hilbert–Huang Transform [244], involves constructing and
analyzing the empirical mode decomposition [244] of a signal and determining when high-
frequency content has decayed to a desired tolerance. In our case, the signal we use is the
irreducible horizon mass as a function of time, because it exhibits junk effects and settles to
a constant at late times. This HHT method is used for most of our simulations. However,
the new algorithm sometimes fails for some shorter and older simulations. For example,
sometimes the simulation is so short that junk does not fully decay before the simulation
ends; this is especially problematic for head-on and scattering simulations. When the HHT
method fails, we revert back to the old RMS (root-mean-squared) algorithm to determine the
relaxation_time (see [170] for a description of failure modes and a description of the RMS
algorithm).

The metadata for each simulation provides another àeld called reference_time. This is
the time at which we measure quantities that parameterize the simulation, such as the indi-
vidual black-hole masses and spins, and orbital parameters such as coordinate separations
and orbital eccentricity. The values of these quantities at reference_time are different from
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their values at t= 0 both because of junk radiation and because some of these quantities (e.g.
spin directions and eccentricity) have non-negligible time-dependence even early in the sim-
ulation. Typically we choose reference_time equal to relaxation_time. However, for
some simulations (typically very short ones such as nearly head-on collisions) we choose
reference_time by hand. The catalog metadata for each simulation now includes inform-
ation as to which algorithm was used to determine the relaxation and reference times, in the
metadata àeld t_relaxed_algorithm.

3.6. Memory correction

An important prediction of Einstein’s theory of relativity is that whenever a system emits grav-
itational radiation, that radiation will permanently change the spacetime that it propagates
through. This permanent change is called the GW memory and predominantly manifests in a
GW as a net change in the strain between early and late times. Waveforms that are extrac-
ted at future null inànity from numerical relativity simulations using extrapolation, however,
fail to naturally capture memory [245]. Fortunately, [118] showed that these waveforms can
be corrected to include memory by computing and adding certain contributions to the strain
that seem to be missing by using the BMS balance laws. With this correction, extrapolated
waveforms respect the Bianchi identities to a much higher degree and agree much more with
waveforms extracted using Cauchy-characteristic evolution (CCE) [111, 120, 246–249] that
naturally contain the memory. Consequently, we have updated the waveforms in our catalog
to include memory, using the technique outlined in [118].

The procedure consists of calculating the null memory contribution to the strain via

hmemory =
1
2
ð̄
2
D

−1

[

1
4

ˆ u

−∞
|ḣ|2du

]

, (11)

where

ðf(θ,ϕ)≡−(sinθ)+s (∂θ + icscθ∂ϕ)
[

(sinθ)−s f(θ,ϕ)
]

(12)

is the Geroch–Held–Penrose spin-weight operator (here represented when acting on a spin-
weight s function f in spherical coordinates) [250] and

D≡ 1
8

(

ð̄ð
)(

ð̄ð+ 2
)

. (13)

For each of our simulations, we correct each waveform by computing hmemory via
equation (11) and adding it to the strain. Note that we take the lower limit of integration to
be the relaxation time of the simulation. We also correct Ψ4 by adding − 1

2 ḧ
memory.

4. Data archive, versioning for reproducibility, and user interface

As the number of simulations in the SXS catalog continues to grow, the management of the
data becomes increasingly complex and challenging. To support new analyses and to ensure
reproducibility of existing results, the data must be made available to the scientiàc community
in ways that are easy to search and access, while scaling to accommodate the growing number
of simulations in the catalog, yet remaining accessible over the long term. To balance these
sometimes conáicting objectives, we have developed a user interface that provides consistency
while transparently handling a variety of data formats and storage locations.
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4.1. Archiving and versioning data

We assign a unique ‘SXS ID’ to each simulation in the catalog, of the form SXS:BBH:1234.
The numerical portion is—as yet—always a four-digit number, zero-padded if necessary. The
numbers are not always consecutive, and may not correspond to when the simulations were
performed. Each simulation is deposited as a separate record in a long-term open-access digital
repository—originally Zenodo [251], and more recently CaltechDATA [252]. Corresponding
to the ID, each simulation is also given a digital object identiàer (DOI) that is simply the
SXS ID combined with the SXS Collaboration’s DOI preàx, 10.26 138. Thus, for example,
SXS:BBH:1234 will always be accessible at https://doi.org/10.26138/SXS:BBH:1234, which
redirects to whichever digital repository holds that simulation.

However, the data for a simulation may be updated over time, as improvements are made
to the post-processing methods, as conventions change, or as bugs are àxed. We have made
such updates a number of times in the past. One of the more signiàcant changes was an overall
sign change to the deànition of the strain, introduced just before the 2019 catalog [93] and
applied retroactively to simulations run before 2019. That update to the catalog also introduced
center-of-mass corrections [159]. The update of the catalog associated with the current paper
introduces memory corrections to the waveforms, as discussed in section 3.6. We have applied
memory corrections and center-of-mass corrections to all simulations, not only newer ones.
There have been numerous less signiàcant changes, such as small corrections to metadata.

Any time a àle changes in any way, it could potentially alter the results of some analysis.
To ensure true reproducibility, we now use version numbers for each simulation, which are
incremented whenever any àle is changed20. As of this release of the catalog, all simulations
have version number 3.0; prior releases have also been speciàed with lower version numbers.
These numbers can be appended to the SXS ID to specify the version. In particular, each ver-
sion of each simulation is also given a DOI, such as 10.26 138/SXS:BBH:1234v3.0. While
the unversioned DOI will always be updated to point to the most recent version, the versioned
DOIs will always point to the speciàc data associated with that version. For reproducibility, it
is best to specify the version number whenever possible.

Referring individually to versioned SXS IDs can be cumbersome. Therefore, we also
provide an overall version number for the collection of the most recent versions of all simula-
tions at any time. As of the release of this paper, the catalog version is 3.0.0, and is archived on
Zenodo [158]. This version number will be incremented whenever any simulation is updated.
By referring to the catalog version, the version of any particular simulation—unless otherwise
stated—is implied by what is stored in that version of the catalog. We recommend that users
specify the catalog version when discussing analyses that use simulations from a single ver-
sion the catalog, or speciàc simulation versions otherwise. These versions should also be cited,
for which we provide a convenient function sxs.cite which can provide the citation for a
particular catalog version, as with [158], or citations for speciàc simulations and the papers
that introduced them. We also provide a user interface that directly uses these SXS IDs, with
or without versions, and the versioned catalog.

4.2. User interface

In constructing the user interface, we begin by considering the perspective of a new user
approaching the catalog. First, the user needs to know what data are available, and be able

20 The number of versions varies between simulations, ranging from 8 for some older simulations to just 1 for the
newest simulations.
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to easily sort through the simulations to ànd those that are relevant to a particular analysis.
While this paper provides a high-level aggregate survey, the user will need detailed inform-
ation about each simulation individually, and means of selecting them both interactively and
algorithmically. Having selected the simulations to analyze, the user will then need to know
where and how to obtain the data, as well as how to load and use the data. Ideally, the proced-
ure should be as simple and uniform as possible, remaining constant over time so that analyses
can be reliably reproduced—or expanded and reused—in the future.

To meet these needs we provide the sxs Python package21, which can automatically obtain
and load the metadata for the entire catalog, as well as data for each simulation individu-
ally. The metadata can be loaded into a single table, which can be àltered and sorted using
standard pandas queries to ànd simulations of interest. We provide an interactive interface to
the metadata at https://data.black-holes.org22. The metadata can be loaded, for example, with
sxs.load("simulations", tag = "3.0.0"), where the optional tag argument speciàes
the version of the catalog to load. Because the metadata are heterogeneous and not necessarily
ideal for searching or sorting, it is also possible to load a "dataframe" with homogeneous
data types for each àeld. In either case, the chosen version of the catalog will then provide the
default version of simulations throughout the Python session.

Any particular simulation can be loaded by SXS ID—for example as
sxs.load("SXS:BBH:1234") or sxs.load("SXS:BBH:1234v3.0"). Data available for
each simulation include horizon information as well as strain and Ψ4 waveforms, and can be
‘lazily’ obtained and loaded only when needed, simply by accessing attributes of the simula-
tion object. This frees the user from having to download and manage the data manually—or
even know where or in what format the data are stored. By default, the highest available
resolution is used. In the case of extrapolated waveforms, a default extrapolation order of
N= 2 is chosen. However, different choices can easily be speciàed by the user. The package
also caches data locally, speeding up subsequent accesses, though this behavior can also be
overridden by the user. See listing 1 for an example of using the sxs package.

Partly because of the number of versions of each simulation, and partly just because of the
increasing number of simulations, the sheer size of the catalog has become difàcult to sustain.
The total size of all simulations prior to this data release was 12 TiB. For the previous version
of the catalog, a user who wanted the highest-resolution default-extrapolated strain waveform
for all simulations needed to download and/or store over 180 GiB of data which includes all
2018 simulations.

We use several techniques to deal with this problem. First, we are limiting the types of
data we publish to Zenodo or CaltechDATA—though we retain all data locally. Previously,
we included ànite-radius waveforms from the simulations, alongside the extrapolated wave-
forms. We have always advised against using ànite-radius waveforms, as we expect the extra-
polated waveforms to be more physically relevant. Moreover, there are roughly 7 times more
ànite-radius waveforms than extrapolated, making the catalog far larger than it needs to be.
Therefore, we no longer publish ànite-radius waveforms as part of the catalog. Second, we
have introduced a new waveform format that compresses each waveform by an average factor
of 7 compared to the old (compressed but wasteful) format. As described in appendix C, the
new format applies a number of complicated non-standard transformations to the data.

21 The sxs package can be installed either using pip/uv or conda/mamba/pixi. The source code and documentation
are available at https://github.com/sxs-collaboration/sxs. Each release is archived at https://doi.org/10.5281/zenodo.
13891077.
22 This interface is based on a marimo notebook [253], which uses Pyodide [254] to run a simpliàed version of the
sxs package in a Python session directly in the browser.
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Listing 1. An example of using the sxs Python package to load data. Note that the user
does not have to download any data; the package will automatically manage download-
ing and caching data

Together, these changes have reduced the size of this most recent version of the catalog to
just 410 GiB in total. A user wanting the highest-resolution default-extrapolated strain wave-
form for all simulations would need to download and/or store just 14 GiB which includes all
3756 simulations—23 times less space compared to the previous version of the catalog. As
before, a user who wants only a single waveform from a single simulation can download only
that waveform, and not the entire catalog. Because of the admittedly cryptic waveform format,
it is unrealistic to expect the user to load the data directly from the supplied àles. Instead, the
sxs package is designed to insulate the user from this challenge and other inconveniences such
as changes to àle names and locations, or even future changes to formats.
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5. Conclusion

In this paper, we have presented an update to the SXSs BBH catalog. Using the highly efàcient
spectral methods implemented in the SpEC, we have increased the total number of conàgura-
tions from 2018 to 3756. The catalog now more densely covers the parameter space with pre-
cessing simulations up to mass ratio q= 8 with dimensionless spins up to |χ|⩽ 0.8 with near-
zero eccentricity. The catalog includes some simulations at higher mass ratios with moderate
spin and more than 250 eccentric simulations. We have also deprecated and rerun older sim-
ulations and ones with anomalously large errors in the waveform. The median waveform dif-
ference between resolutions over all 3756 simulations is 4× 10−4, with a median of 22 orbits,
while the longest simulation is 148 orbits. All the waveforms in the catalog are center-of-mass
and GW-memory corrected [118, 159]. We provide a python package, sxs [92], to simplify
accessing the catalog. Because of a new compression algorithm and deprecation of lower-
quality simulations, the sxs package is by far the best method for users to access the catalog.
We estimate the total CPU cost of all the simulations in the catalog to be only 480 000 000
core-hours. Using spectral methods for long, precessing BBH inspiral-merger-ringdown sim-
ulations is over 1000 times more efàcient than using ànite-difference methods for a few orbits
of non-spinning BBHs at comparable accuracies; see, e.g. [41]. To date GPU-based ànite-
difference codes have yet to prove competitive with CPU-based codes using spectral methods.
The full catalog is publicly available at https://data.black-holes.org .

We assess the readiness of our catalog for use in current and next-generation detectors in
section 2.4. We ànd that for simulations long enough to span the entire signal in the detector
band, most simulations are accurate enough for current detectors, but signiàcant improve-
ments need to bemade, both in terms of accuracy and length, for next-generation ground-based
and space-based observatories. Signiàcant improvements will also need to be made for next-
generation detectors in hybridizing post-Newtonian and numerical relativity waveforms [59,
72, 85–91] in order to have waveform models that span the entire signal that will be in band.

In the future, we will expand the catalog towards higher mass ratios and focus on àlling out
the eccentric parameter space. More challenging will be increasing the accuracy to meet the
requirements of next-generation detectors, especially since the required length of numerical-
relativity waveforms depends on how late one can hybridize them with post-Newtonian wave-
forms. A major challenge for increasing accuracy is signiàcantly reducing the spurious ‘junk’
gravitational radiation generated by imperfect initial data (see, e.g. [208] for some progress
in this direction). Finally, in the near term we will release a catalog of all of the simulations
presented here, but using CCE [120, 246–249] to extract the GWs. This has several advant-
ages, such as naturally producing the correct GW memory and independently producing all
àve complex Weyl components, the news, and the strain at future null inànity without any
need to differentiate or integrate quantities.

Data availability statement

The data that support the àndings of this study are openly available via a python package at
the following URL/DOI: https://zenodo.org/doi/10.5281/zenodo.15412737 [92].
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Appendix A. Metadata fields

Using the sxs package, metadata àelds can be obtained as a python dictionary via
sim.metadata for an individual simulation sim, or as entries in a pandas DataFrame for all
simulations via sxs.load(`dataframe'), as illustrated in listing 1. The ‘introduced’ version
marks the àrst metadata_format_revision in which a metadata àeld is available. Metadata
àelds that describe spatial vector quantities, such as positions, spins, and linear and angular
momenta, are of type list[float] and are expressed in Cartesian components (x,y,z) in the
inertial frame.

Metadata àeld group: Identiàcation

simulation_name (type: str; introduced: v0)
A non-unique SXS-assigned identiàer chosen before the simulation has been run. Useful
only for SXS members building and debugging the catalog.

alternative_names (type: list[str]; introduced: v0)
Comma-separated array of alternative names, longer, more descriptive, and/or indicating
the speciàc series of simulations this conàguration belongs to. One of these alternative
names is the ‘SXS:BBH:dddd’ id-number, which is guaranteed to be unique.

keywords (type: list[str]; introduced: v0)
List of free-form keywords. Presence of the keyword ‘deprecated’ means that this
simulation has been deprecated.

job_archiver_email (type: str; introduced: v2)
Email of person who archived this simulation into the catalog; usually the person who ran
the simulation. Useful only for SXS members building and debugging the catalog.

Metadata àeld group: References

citation_dois (type: list[str]; introduced: v2)
DOIs to cite when using this simulation.

Metadata àeld group: Input parameters for initial data

object1 (type: str; introduced: v0)
Keyword description to identify the object 1 type. One of {bh, ns}.

object2 (type: str; introduced: v0)
Keyword description to identify the object 2 type. One of {bh, ns}.

initial_data_type (type: str; introduced: v0)
Type of initial data. One of BBH_CFMS—conformally áat, maximal slice; BBH_SKS—
superposed Kerr–Schild; BBH_SHK—superposed harmonic Kerr–Schild [208];
BBH_SSphKS—superposed spherical Kerr–Schild [207]; BHNS; NSNS.

initial_separation (type: float; introduced: v0)
Coordinate separation D0 between centers of compact objects, as passed to the initial data
solver [212, 214, 261] (code units).

32



Class. Quantum Grav. 42 (2025) 195017 M A Scheel et al

initial_orbital_frequency (type: float; introduced: v0)
Initial orbital frequency Ω0 passed to the initial-data solver [212, 214] (code units).

initial_adot (type: float; introduced: v0)
Radial velocity parameter ȧ0 passed to the initial data solver [213, 214].

Metadata àeld group: Measurements of initial data

initial_ADM_energy (type: float; introduced: v0)
ADM energy of the initial data (code units).

initial_ADM_linear_momentum (type: list[float]; introduced: v0)
ADM linear momentum of the initial data (code units).

initial_ADM_angular_momentum (type: list[float]; introduced: v0)
ADM angular momentum of the initial data (code units).

initial_mass1 (type: float; introduced: v0)
Christodoulou mass of apparent horizon 1 at initial data (code units).

initial_mass2 (type: float; introduced: v0)
Christodoulou mass of apparent horizon 2 at initial data (code units).

initial_dimensionless_spin1 (type: list[float]; introduced: v0)
Dimensionless spin of object 1 in the initial data.

initial_dimensionless_spin2 (type: list[float]; introduced: v0)
Dimensionless spin of object 2 in the initial data.

initial_position1 (type: list[float]; introduced: v0)
Initial coordinates of the center of body 1.

initial_position2 (type: list[float]; introduced: v0)
Initial coordinates of the center of body 2.

Metadata àeld group: Reference quantities

relaxation_time (type: float; introduced: v0)
Time at which we deem junk radiation to have sufàciently decayed (code units).

reference_time (type: float; introduced: v0)
Time at which reference quantities are extracted from the evolution (code units).

reference_mass1 (type: float; introduced: v0)
Christodoulou mass of black hole 1 at reference time (code units).

reference_mass2 (type: float; introduced: v0)
Christodoulou mass of black hole 2 at reference time (code units).

reference_dimensionless_spin1 (type: list[float]; introduced: v0)
Dimensionless spin of object 1 at reference time.

reference_dimensionless_spin2 (type: list[float]; introduced: v0)
Dimensionless spin of object 2 at reference time.

reference_position1 (type: list[float]; introduced: v0)
Coordinates of the center of body 1 at reference time.

reference_position2 (type: list[float]; introduced: v0)
Coordinates of the center of body 2 at reference time.

reference_orbital_frequency (type: list[float]; introduced: v0)
Orbital angular frequency vector at reference time (code units).

reference_mean_anomaly (type: float; introduced: v0)
Mean anomaly at reference time.

reference_eccentricity (type: float; introduced: v0)
Orbital eccentricity at reference time [262].
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Metadata àeld group: Properties of merger/ànal quantities
number_of_orbits_from_reference_time (type: float; introduced: v2)

Number of orbits from reference time until formation of a common apparent horizon.
number_of_orbits_from_start (type: float; introduced: v2)

Number of orbits from start of simulation until formation of a common apparent horizon.
common_horizon_time (type: float; introduced: v0)

Evolution time at which common horizon is àrst detected.
remnant_mass (type: float; introduced: v0)

Final Christodoulou mass of the remnant black hole after merger.
remnant_dimensionless_spin (type: list[float]; introduced: v0)

Dimensionless spin of the remnant black hole after merger.
remnant_velocity (type: list[float]; introduced: v0)

Linear velocity of the remnant black hole after merger.

Metadata àeld group: Code information

spec_revisions (type: list[str]; introduced: v0)
Array of git revisions of the evolution code.

spells_revision (type: str; introduced: v0)
Git revision of initial data solver.

date_link_earliest (type: str; introduced: v2)
Earliest link time of code used to perform this simulation.

internal_changelog (type: dict; introduced: v2)
Text describing changes made in different internal_minor_versions of this local
simulation. Always starts empty for new simulations.

internal_minor_version (type: int; introduced: v2)
Incremented when anything changes in this local simulation that is not tracked
by the àelds metadata_format_revision, metadata_content_revision,
or postprocess_revision. No relation to DOI revision numbers. Always starts at 0 for
new simulations.

metadata_content_revision (type: int; introduced: v2)
Incremented when values in the metadata change (which should seldom happen). Updated
for all (non-deprecated) simulations at once. No relation to DOI revision numbers. At the
time of this catalog release, all non-deprecated simulations carried
metadata_content_revision = 1.

metadata_format_revision (type: int; introduced: v2)
Incremented when keys in the metadata change (which should seldom happen). Updated
for all (non-deprecated) simulations at once. No relation to DOI revision numbers. At the
time of this catalog release, all non-deprecated simulations carried
metadata_format_revision = 2.

postprocess_revision (type: int; introduced: v2)
Incremented when anything changes that is not a raw SpEC output, such as re-computation
of extrapolation, center-of-mass-correction, or memory-correction using newer algorithms
or different parameters. Should not occur often. Updated for all (non-deprecated)
simulations at once. No relation to DOI revision numbers. At the time of this catalog release,
all non-deprecated simulations carried postprocess_revision = 1.

t_relaxed_algorithm (type: dict; introduced: v2)
t_relaxed_algorithm is a dict. It contains àelds:
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• algorithm: either ‘HHT’ or ‘RMS’.
• reason: present only for ‘RMS’ method; text explaining why HHT method failed and

we fell back to RMS.
• reference_time_method: usually absent, but ‘set_by_hand’ for certain simulations

(almost head-on) where a reference time was explicitly set by hand and is not correlated
with relaxation_time.

pbj_info (type: dict; introduced: v2)
This is a dict that contains {base_lev : str, transition_time : float,
base_lev_bitwise_identical : str }

• base_lev is the Lev that is shared between all PBandJ Levs. It is a string like ‘Lev3’.
• transition_time is the time at which PBandJ happens. That is, before

transition_time, all the Levs should be identical. If there is no PBandJ, then
transition_time is 0.0 and base_lev is the same as the Lev that the metadata.json
àle is in.

• base_lev_bitwise_identical is either the string ‘true’ or the string ‘false’. If ‘true’,
this means that the current Lev (the one the metadata.json àle is in) and its base_lev
actually are bitwise identical up to (approx) transition_time. The ‘false’ case occurs
when someone ran an additional Lev at a later time, but base_lev had been deleted
by the sysadmins, so the user reran base_lev and then did PBandJ to start the new
lev. But the rerun of base_lev is not always bitwise identical to the original base_lev
because something changed (timing-based stuff in SpEC, compiler version, libraries on
the cluster, etc).

Metadata àeld group: Time stamps information

date_postprocessing (type: str; introduced: v2)
Timestamp of the most recent postprocessing of the raw simulation data to compute
extrapolated, COM-corrected, memory-corrected waveforms.

date_run_earliest (type: str; introduced: v2)
Timestamp of when this simulation was started.

date_run_latest (type: str; introduced: v2)
Timestamp of when the last segment of this simulation started.

A.1. Deprecated metadata àelds

For completeness, below are the metadata àelds that are deprecated and no longer available.
The ‘deprecated’ version marks the àrst metadata_format_revision in which a metadata
àeld is no longer available.

Metadata àeld group: Identiàcation

point_of_contact_email(type: str; introduced: v0; deprecated: v2)
Contact information for questions.

authors_emails(type: list[str]; introduced: v0; deprecated: v2)
List of authors’ emails.

Metadata àeld group: References

simulation_bibtex_keys(type: list[str]; introduced: v0; deprecated: v2)
References which should be cited if this simulation is used.
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code_bibtex_keys(type: list[str]; introduced: v0; deprecated: v2)
List of bibtex keys which are references about the evolution code.

initial_data_bibtex_keys(type: list[str]; introduced: v0; deprecated: v2)
List of bibtex keys which are references about the initial data code.

quasicircular_bibtex_keys(type: list[str]; introduced: v0; deprecated: v2)
List of bibtex keys which are references about creating quasicircular initial data.

Metadata àeld group: Properties of merger/ànal quantities

number_of_orbits(type: float; introduced: v0; deprecated: v2)
Number of orbits until formation of a common apparent horizon. Replaced by
number_of_orbits_from_reference_time and number_of_orbits_from_start.

Metadata àeld group: Code information

metadata_version(type: int; introduced: v0; deprecated: v2)
This àeld has been replaced by the àelds metadata_format_revision and
metadata_content_revision. The 2013 catalog [171] implicitly carried metadata
version 0. The 2019 catalog [93] carried metadata version 1.

Appendix B. Algorithm for superseding simulations

Since we are now deprecating simulations that we believe are not trustworthy, some auto-
mated way of ànding new, similar simulations must be available. The sxs package provides
the following algorithm as the default for ànding a new simulation that is similar to the reques-
ted, deprecated simulation—although a different algorithm can be passed as an option. Our
approach is very simplistic: we measure the distance between simulations in terms of their
metadata parameters at their respective reference times. Since the SXS catalog also contains
some simulations with neutron stars, systems of different types of compact objects are con-
sidered inànitely far apart in parameter space. We call the two systems we are comparing s
and s′. We compare their mass ratios and dimensionless spin vectors, as well as their eccent-
ricities. Because of the varying thresholds involved in eccentricity reduction, we set a pair of
thresholds on the eccentricity magnitudes, ϵ= 10−2 and ϵ ′ = 10−3, as well as a single length
threshold N ′ = 20. We ignore the eccentricities (essentially, setting e= e ′ = 0) if

(i) the reference eccentricity of system s is below ϵ,
(ii) the reference eccentricity of system s′ is below ϵ ′, and
(ii) the length of system s′ is greater than N′ orbits.

We choose two different thresholds because our eccentricity-reduction methods have
improved over the years [213–216], and the àrst system will generally be an older simulation
in which eccentricities as high as 10−2 would have been considered non-eccentric, whereas
newer simulations will need to have eccentricity below 10−3 to be considered non-eccentric,
and thus a good match for the àrst system.

Finally, we compute the distance by summing the differences of all parameters in quadrature
and taking the square-root:

δm=

√

(q− q ′)2 + |χ⃗1 − χ⃗ ′
1|

2
+ |χ⃗2 − χ⃗ ′

2|
2
+ |eexp [iℓ]− e ′ exp [iℓ ′]|2, (B.1)

where q and q′ are the reference mass ratios of the two systems, χ⃗1, χ⃗ ′
1, χ⃗2, and χ⃗ ′

2 are
the reference dimensionless spins of the two black holes in the two systems, e and e′ are

36



Class. Quantum Grav. 42 (2025) 195017 M A Scheel et al

the reference eccentricities, and ℓ and ℓ ′ are the reference mean anomalies. Users may pass
auto_supersede = True to the sxs.load function to load the ‘closest’ simulation by this
measure, or choose a threshold such as auto_supersede = 0.01 to raise an exception if no
system with δm⩽ 0.01 can be found. It is also possible to deàne a custom MetadataMetric
and pass that as an argument to sxs.load.

Appendix C. Waveform format

Data published by the SXS collaboration prior to this publication occupies more than 12 TiB
of storage on the open-access Zenodo repository—which currently constitutes over 1% of the
total data storage on Zenodo [251]. This is a problematic amount of data for a single project,
already inducing resistance from the maintainers of Zenodo. This paper more than doubles the
number of simulations to be hosted, making the situation untenable. Limiting the types of data
we publish will reduce the size of the catalog signiàcantly, but still not enough.

The SXS collaboration has developed a new waveform format that compresses the data by
an average factor of 7 compared to the old format, which used standard compression. This
new format applies a number of complicated non-standard transformations to the data. The
sxs package provides an interface that insulates the user from the details of the waveform
format, and even allows for seamless compatibility between different versions of the catalog
that use different formats. Nonetheless, details of the new waveform format and comparison
to older formats may be of interest.

The fundamental idea is to manipulate the data in ways that increase the number of runs of
constant bytes, which can be efàciently compressed with a standard compression algorithm.
There are several lossless transformations for which the original data can be precisely recon-
structed, as well as one lossy step with a selectable tolerance. The ànal step is compression
with BZIP2 [263], followed by storage in a standard HDF5 [264] àle. The full sequence of
transformations is described section C.2. The results are shown in àgure C1, demonstrating
that the L2 norm of the difference between the original and compressed data is less than 10−10

times the norm of the original data at each instant of time. The resulting àles are—on average—
roughly 7x smaller than they would be if the raw data were stored without compression, and
over 5x smaller than they would be using standard compression techniques of HDF5.

C.1. Existing waveform formats

Because they represent the precious output of relatively expensive and long-running
numerical-relativity simulations, waveform data have long been stored in formats designed
to ensure that there is no information loss. The state of the art for lossless compression, used
by most numerical relativity groups, is to store the data in HDF5 àles with standard shufáe
and gzip àlters to enable compression [264]23. However, this limits the amount of compression
that can be achieved. As more and more waveforms appear in catalogs, storing and distributing
the data in lossless formats becomes increasingly difàcult. Lossy formats have also been used,
where a tradeoff is made between the accuracy of the data and the size of the àle [31, 265–
269]. As numerical relativity catalogs become more unwieldy, this becomes a more attractive
option.

23 It is important to note that ‘chunking’ must also be done properly to ensure that the shufáe and gzip àlters can
perform adequately. In short, the data should be arranged so that successive timesteps of a single mode are contiguous
in memory, so that data values change slowly as memory is traversed.
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Figure C1. Error in the strain data after compression for SXS:BBH:2019—amildly pre-
cessing system with mass ratio q= 4. The light gray curves illustrate the amplitudes of
the individual modes of the original strain. Their individual values are unimportant; we
simply wish to indicate the range of values. The upper blue curve shows the L2 norm of
the strain over the sphere at each instant of time. The smooth orange curve towards the
bottom shows 10−10 times that norm; the L2 norm of the error in the compressed wave-
form is guaranteed to be less than this value. Finally, the green curve at the very bottom
shows the actual L2 norm of the difference between the original and compressed wave-
forms. We see that this difference does satisfy the error bound at all times. It changes in
steps of roughly a factor of 2 as additional bits in the output data can be truncated as the
norm increases or must be included as the norm decreases, as described in section C.2.3.
The ragged band along the lower extent of the gray region suggests that the true error
in each mode is at least that large. The conservative error tolerance in the compressed
waveform is chosen to be signiàcantly smaller out of concern for the archival integrity
of the data.

The NINJA2 project [31, 265] created one of the earliest instances of a collection of wave-
forms from various numerical relativity groups, including ‘hybridized’ data extended with
post-Newtonian waveforms. One need that was identiàed was for a common format that could
drastically reduce the size of the data, so that waveforms could be distributed and analyzed
more easily. Speciàcally, because of the varied requirements of the many groups involved, the
format needed to be based on plain text àles, eliminating the possibility of applying standard
compression algorithms. Instead, the GridRefinement code [266] was introduced to reduce
the number of time steps stored, while still allowing the original data to be reconstructed to
within a speciàed tolerance. The essential idea was to decompose the waveform modes into
amplitude and ‘unwrapped’ phase (with branch-cut discontinuities removed through the addi-
tion of multiples of 2π), then reduce the number of time steps to store such that the original
data could be reconstructed towithin a speciàed tolerance via linear interpolation. Linear inter-
polation was chosen only for simplicity; restrictions of the project required that the code be
self-contained and simple enough that it would not require review. By default, the tolerances
were 10−5 for the (instantaneous) relative amplitude error and the absolute phase error. The
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algorithm broke up each time series into one or more time intervals. First, the entire time
series was chosen as a single interval. If the data could not be reconstructed to within the
speciàed tolerance, the midpoint between the àrst and last time steps was included, and the
process repeated on each of the two new intervals, applied recursively until the data could be
adequately reconstructed. The amplitude-phase decomposition was chosen because that early
work only considered non-precessing systems, which—because of their symmetry—exhibit
smooth variations in amplitude and phase. This would no longer be as useful for the precessing
systems in more modern catalogs. Nonetheless, for the waveforms produced for the NINJA-2
project, this approach reduced the size of waveform àles by ‘anywhere from a few percent for
short numerical data to 99% for very long hybrid waveforms.’ [267]

The LVCNR format [268] extends the NINJA-2 format by using spline interpolation instead
of linear. While it retains the amplitude-phase decomposition, it includes an option to store
real and imaginary parts if the result would be smaller. It also uses a different tolerance, error
measure, and algorithm [269] to determine the time steps to store. This format is still used by
much of the LVK Collaboration for exchanging waveforms. For comparison, when loosening
the tolerance of our new RPDMB format (described below in section C.2) to achieve the same
accuracy as the default LVCNR values (which is achieved using τ = 10−5), àles created by
LVCNR—even after eliminating all but the essential waveform data—are roughly 15 times
larger than those created by RPDMB24.

A notable feature of these lossy formats is that some data points are simply dropped
from the data, while those that remain are stored in unaltered form. This stands in contrast
to the RPDMB format, which stores all data points, but modiàes them for more effective
compression.

C.2. Compressing in RPDMB format

Here, we outline in more detail the steps involved in converting data to the new RPDMB
format. We considered and took inspiration from a number of sources dealing with
compression of data [270–276]. Note that the complete process is implemented as the
sxs.rpdmb.save function, while sxs.rpdmb.load will load the data back into the original
form.

RPDMB stands for rotating_paired_diff_multishuffle_bzip2, which describes
each element of the format per se. However, we include two additional steps in the process of
converting waveforms to this format: truncation and adding zero—the àrst of which is prob-
ably the singlemost important operation for actually reducing the size of the àle. The following
are all the steps of the conversion process, in order.

C.2.1. Corotating frame. The older waveform formatsmentioned in section C.1 decomposed
the waveform into amplitude and phase to take advantage of the fact that these quantities vary

24 This is true for LVCNR àles without the metadata—such as spins and orbital elements as functions of time—
and with the slim = True option passed to eliminate the extraneous ‘error’ data, so that only the minimal set of
waveform data are included in the LVCNR àle. Also note that one limitation of the reference implementation of the
LVCNR format is that it scales poorly—typically as the cube of the number of time steps in the waveform. Because
the waveforms presented here are relatively long compared to those the LVCNR format was designed for, converting
just the public waveforms presented in this catalog would take an estimated 20 000 CPU-hours. Using an algorithm
closer to the one used by the GridRefinement code, we can achieve equivalent results about 4000 times faster.
This improvement has been implemented in sxs.utilities.lvcnr, but is not used for these comparisons to ensure
àdelity to the reference implementation, though the results would be essentially identical.
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on a secular timescale for non-precessing systems, unlike the real and imaginary parts which
vary on the orbital timescale. For more general systems, the phase in particular can vary almost
discontinuously in time, making this a poor choice. However, even for precessing systems we
can factor out the sinusoidal dependence of the real and imaginary parts of the waveform
modes by transforming to a corotating frame. This is deàned as a rotating frame in which
the time dependence of the waveform modes is minimized [183]. The angular velocity of
this frame can be easily computed from the modes themselves, and that velocity can then be
integrated to provide the frame as a function of time [277]. The waveform is then transformed
into that frame. The entire procedure is implemented as the to_corotating_frame method
to be applied to sxs.WaveformModes objects.

This has the effect of making the real and imaginary parts of the waveform modes vary on
a slower timescale; for non-precessing systems, they vary at the same rate as the amplitude.
However, we have also introduced another piece of data that we need to store for each wave-
form: the frame itself. The calculations use a quaternion representation, in which the frame is
represented by four numbers at each instant of time. However, these numbers are not independ-
ent; the sum of their squares must be 1. Instead, we can use a more compact representation: the
logarithm of the quaternion. This is a three-vector at each instant of time, representing the gen-
erator of the rotation (roughly its axis-angle form), rather than the rotation itself. The original
rotation can be reconstructed exactly simply by exponentiating the generator, as implemented
in the quaternionic package [278], and the waveform rotated back to the inertial frame, as
implemented in the spherical package [279].

C.2.2. Paired modes. In the corotating frame, the modes of a non-precessing system will
vary on a secular timescale, but the modes of a precessing system will still vary on the orbital
timescale. This is because of spin-orbit coupling causing an asymmetry in the emission of
GWs across the orbital plane. We can further factor out the asymmetric waves into symmetric
and antisymmetric parts, each of which again varies on a secular timescale [280]. This is done
simply by combining mode (ℓ,m) with the conjugate of mode (ℓ,−m), with an appropriate
sign. For simplicity, we deàne the sum and difference:

sℓ,m =
hℓ,m+ h̄ℓ,−m

√
2

, dℓ,m =
hℓ,m− h̄ℓ,−m

√
2.

(C.1)

Which of these is symmetric and which is antisymmetric depends on the value of ℓ, but is
irrelevant for our purposes; we only care that both are slowly varying. We then deàne the
collective quantity

fℓ,m =











dℓ,−m m< 0,

hℓ,0 m= 0,

sℓ,m m> 0.

(C.2)

Note that the transformation from h to f is reversible, up to machine precision, via

hℓ,m =















f̄ℓ,−m−̄fℓ,m√
2

m< 0,

fℓ,0 m= 0,
fℓ,m+fℓ,−m

√
2

m> 0.

(C.3)

It is implemented as the convert_to_conjugate_pairs method in the sxs package, and
the resulting fℓ,m is passed on to the next step.
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C.2.3. Truncation. As is standard in computation, SpEC relies primarily on 64-bit áoating-
point numbers to represent the data—speciàcally, the IEEE 754 binary64 format—which
is accurate to a relative precision of roughly 10−16. However, due to the nature of numerical
evolutions, the results of SpEC simulations are generally accurate to signiàcantly fewer bits.
Thus, many of the lowest-signiàcance bits in the waveform are effectively random. This means
that they are essentially incompressible, and yet contribute no useful information. By discard-
ing this randomness in some way, we can improve the overall compression of the waveforms
without any real loss to the information content of the data.

The most obvious approach would be to simply use a numerical representation with lower
precision—for example by using binary32 instead of binary64. However, this would be
a very coarse approach, with no áexibility to adapt to the data, and uniform relative preci-
sion (around 10−7 for binary32) for all modes at all times. For example, in an equal-mass
non-precessing system, the largest modes will generally be (ℓ,m) = (2,±2), while the (8,±1)
modes are typically 9 orders of magnitude smaller. There would seem to be little reason to
store the (8,±1) modes to a precision of 10−7, when even its most signiàcant digits are smal-
ler than the least signiàcant digits of the (2,±2) modes. Moreover, the relative magnitude of
various modes will generally change signiàcantly over the course of a simulation. These points
suggest two important criteria for truncation:

(i) different modes should have different (relative) precision, and
(ii) the precision should depend on time.

Neither of these are satisàed by a simple change of áoating-point format.
The HDF5 speciàcation [281] includes ‘N-Bit’ and ‘scale-offset’ àlters to provide more

precise control over the precision of the data. The N-Bit àlter allows the user to specify the
number of bits of the data to be stored, which in principle would allow us to simply ignore bits
below a certain signiàcance threshold. The scale-offset àlter allows the user to specify an abso-
lute precision, below which the data will be rounded to zero. However, both of these features
must be speciàed on a per-dataset basis, leaving no possibility to adapt to time dependence in
the data.

We can easily implement a generalization of these àlters that allows us to specify a time-
dependent precision. Using the fact that our áoating-point numbers are speciàed in binary
form, we can multiply by an appropriate power of 2, then round the result to the nearest integer,
and then divide by the same power of 2. This is equivalent to setting bits in the binary repres-
entation of the number to zero below a certain signiàcance25. We can compute the L2 norm ni
of the àeld at each time ti. Then, with a tolerance δ relative to that norm, we ànd the value of
the least-signiàcant bit greater than or equal to δni, and construct pi, the smallest power of 2
such that pi times that bit’s value will be greater than or equal to 1.We then multiply each mode
by pi and round the result to the nearest integer, then divide again by pi to get the truncated
number:

ni =

√

ˆ

S2
|h(ti,θ,ϕ)|2 dΩ=

√

∑

ℓ,m

|hℓ,m (ti)|2 =
√

∑

ℓ,m

|fℓ,m (ti)|2, (C.4)

pi = 2⌊− log2(δ ni)⌋, (C.5)

25 We assume that the data are sufàciently well behaved that we can ignore any subtleties with subnormal numbers
or inànities.
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f̊ℓ,m (ti) =
round

(

fℓ,m (ti) pi
)

pi
. (C.6)

Because we have used an exact power of 2, the division in the last line will be exact in
binary64, with the result that the binary representation of f̊ℓ,m(ti) will have all bits below
the signiàcance threshold set to zero. Those zeros can be compressed very effectively, espe-
cially after application of the ‘multishufáe’ step described below. This is implemented as the
truncate method in the sxs package.

Here, δ describes the worst-case error in each component (real or imaginary) of each mode
of the fℓ,m data at each instant of time. Denoting the number of modes asNmodes, the worst-case
error in the total waveform at each instant will obey

√

√

√

√

∑

ℓ,m

∣

∣

∣
hℓ,m (ti)− h̊ℓ,m (ti)

∣

∣

∣

2
⩽ δ

√
Nmodes. (C.7)

Thus, if we have in mind some total error tolerance τ , we need to set the per-component
tolerance δ as

δ =
τ√

Nmodes.
(C.8)

For the waveforms published as part of this catalog, we chose τ = 10−10, limiting the indi-
vidual error at each instant of time in each component of each of the 77 modes to roughly
1.14× 10−11 times the norm of the waveform at that instant. This choice was made simply by
plotting the amplitude of all modes and judging the level at which numerical errors become
visually obvious, exhibiting discontinuities and noise. We expect that this choice is several
orders of magnitude more conservative than necessary, because of the numerous and cumu-
lative errors inherent in evolving numerical-relativity data. Nonetheless, to ensure the archival
quality of the data, we chose to err on the side of caution.

The particular choice of τ has a signiàcant effect on the compression ratio. For example,
we can examine the effect of changing τ on the compression ratio for a particular waveform.
Figure C2 shows the compression ratio as a function of τ for the strain from SXS:BBH:2265,
which was the last simulation in the previous SXS catalog. A compression ratio of 1 would be
equivalent to storing the exact bytes of the data. The horizontal dashed line shows the compres-
sion ratio, 1.3x, when storing in HDF5 using the best available standard options, but without
otherwise altering the data in any way. The solid blue curve shows the compression ratio
achieved by RPDMB using various levels of truncation. Note that even with τ = 10−16, smal-
ler than machine precision, RPDMB can still achieve better compression than HDF5 because
there are modes with signiàcant bits smaller than machine precision relative to the norm of the
waveform; these are truncated, resulting in a reduction in compressed àle size.

As the tolerance is increased, the compression ratio increases. For this particular waveform,
a compression ratio of 8.6x is achieved with the default value of τ = 10−10 used in the pub-
lic data. However, with less stringent tolerances, the compression ratio grows drastically. In
particular, this growth is much faster than one would expect simply from counting the num-
ber of nonzero bits to be stored—ranging from a factor of 2 improvement at small τ to an
order of magnitude at large τ . Presumably, this is because the bits being zeroed out are effect-
ively random and therefore cannot be compressed, whereas the remaining bits are increasingly
continuous and compress relatively well.

The red ‘x’ shows the compression factor, 17x, achieved by the LVCNR format with its
default settings, including only the time and waveform modes, and excluding the various spin
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Figure C2. Compression ratio relative to the size of the raw data (waveform modes and
time) as a function of tolerance τ for the strain from SXS:BBH:2265, which was the
last simulation in the previous SXS catalog. The horizontal dashed line shows the com-
pression ratio 1.3x when using standard HDF5 storage, storing one chunk per real time
series, applying the shufáe and gzip àlters. The blue curve shows the compression ratio
achieved by RPDMB using various levels of truncation τ , with the green dot emphas-
izing the tolerance τ = 10−10 used for the data described by this paper—the compres-
sion ratio for this particular waveform being 8.6x. The red ‘x’ shows the compression
ratio 17x achieved by the LVCNR format, excluding metadata and other non-waveform
information. Note that the LVCNR tolerance is speciàed as 10−6, but uses a different
error measure; we compare it here to τ = 10−5, which is sufàcient for RPDMB to repro-
duce the waveform to higher accuracy by either error measure with a compression ratio
of 84x.

and orbital time series and other metadata. By default, the LVCNR format speciàes a tolerance
of 10−6, where the error is given as the maximum of the absolute value of the difference
between the original data and the data reconstructed by a degree-5 interpolating spline [269],
applied separately to the amplitude and phase of each mode or the real and imaginary parts
of each mode—whichever one results in a smaller set of points. This differs from the error
measure used in this Paper, as we compute the error at each instant of time rather than taking the
maximum, and measure it relative to the norm of the waveform. If the norm at time ti is ni, then
we can achieve a comparable accuracy to the LVCNR format with a tolerance of τ ≈ 10−6/ni.
By choosing τ = 10−6/nmax, where nmax is themaximumnorm of thewaveform,we can ensure
that the error in the RPDMBwaveform is always less than the error in the LVCNRwaveform by
both error measures. For the waveform shown in àgure C2, this corresponds to τ = 10−5. The
actual compression ratio achieved by LVCNR with its default tolerance is shown at this value
of τ as a red ‘x’ mark, with a value of 17x. For comparison, RPDMB achieves a compression
ratio of 84x at this tolerance, while achieving smaller errors by either measure.
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C.2.4. Adding zero. At this stage, many of the paired modes will be precisely zero.
Speciàcally, for non-precessing simulations, the amplitude of half of the mode pairs should
zero by symmetry; they will generally not be exactly zero due to numerical error, but after
truncation they likely will be. However, the standard áoating-point representation of zero is
not unique; áoating-point zeros can have either sign. Because those zeros were generated by—
effectively—random noise, their signs will also be effectively random. This adds a great deal
of entropy to the data, making it difàcult to compress.

We can improve the compression by setting all zero-valued data points to a unique repres-
entation of zero. Fortunately, the IEEE áoating-point standard [282] speciàes that adding two
zeros of either sign will result in a positive zero (by default). Thus, we can simply add zero
to all the data to eliminate the sign ambiguity. Including this step reduces the total size of the
waveform data by an average of 0.5%. Though this is a tiny improvement, it is achieved by
a trivial operation, which can be combined with the truncation step above at essentially no
cost. It should be noted that this is almost surely only beneàcial because of the truncation step
and the presence of very small modes. As more modes are included, there will be more very
small modes, making them more likely to be truncated to zero, and thus making this step more
beneàcial—though likely always quite small.

C.2.5. Differencing sequential data points. For reasonably continuous data, as in a time
series, we can improve compression by storing the àrst data point as is, but thereafter only the
differences between sequential data points. Speciàcally, we store hℓ,m(t0) as is, and then store
hℓ,m(tj)− hℓ,m(tj−1) for all j> 0. Note that subtraction here is based on áoating-point numbers;
we could also reinterpret the numbers as 64-bit integers and perform integer subtraction, which
would lead to different patterns in the resulting bits. A closely related procedure reinterprets
the numbers as unsigned 64-bit integers, then uses XOR in place of subtraction. Note that the
XOR operation is precisely invertible, whereas áoating-point subtraction can accrue roundoff-
level errors. For data that have already been subject to truncation those are negligible, whereas
XOR is required for data that have not been truncated26.

We have tested the effectiveness of both forms of differences and of XOR when applied
to the waveform data. The results are similar but—at least in combination with all other steps
described here—áoating-point differencing achieves 37% better compression than integer dif-
ferencing and 60% better compression than XOR when storing the real and imaginary parts of
the waveformmodes and the components of the logarithm of the rotation quaternion. However,
to retain lossless compression for the time data, we use XOR for that part of the data.

C.2.6. Multishuffle. The HDF5 library includes a ‘shufáe’ àlter [264] that reorders the bytes
of the data to improve compression for continuous data. Conceptually, we can imagine storing
a series of numbers

12345,12346,12347,12348.

If each numeral is stored in its obvious order—the order in which it appears above—the
pattern-ànding techniques underlying many compression algorithms will not be able to take

26 These are both well known techniques, used in many compression algorithms [270–276]. Sometimes referred to as
‘delta encoding’, both can be considered simple cases of the more general technique of ‘predictive encoding’, which
uses other data points to predict a given value, and then stores only the difference between the prediction and the true
value.
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advantage of the fact that the numbers are very similar. However, if the numbers are stored as

11112222333344445678,

those longer runs of repeated digits can be encoded more efàciently. This is the basic idea
behind the shufáe àlter. When applied to much longer sequences of 64-bit numbers, the effect
can be quite dramatic. Speciàcally, the ‘shufáe’ àlter takes the most-signiàcant byte (8 bits) of
each number and stores them consecutively, followed by the second-most-signiàcant byte, and
so on. Another way to think of this is to consider a series of N 64-bit numbers as a matrix of N
rows and 8 columns, where each column represents a byte of a number. The obvious storage
scheme would be to go across each row, then down to the next row, and so on. The shufáe àlter
is essentially a transpose—it goes down all rows in the àrst column, then the second column,
and so on.

It might be helpful to describe this more speciàcally as a ‘byteshufáe’ àlter, because this
approach can be generalized to put it on a spectrum of similar àlters. Reference [275] intro-
duced the ‘bitshufáe’ àlter, which takes the most-signiàcant bit of each number and stores
them consecutively, followed by the second-most-signiàcant bit, and so on. Again, we could
think of this as a matrix transpose, except that the columns now are individual bits. We can
easily imagine using different divisions also. The ‘nibbleshufáe’ would use groups of 4 bits
(nibbles), and the ‘morselshufáe’ would use groups of 2 bits. (We will see below that groups
of sizes that are not powers of 2 are strongly disfavored.)

Each of these options has its advantages and disadvantages, depending on the scale across
which the bits can be expected to vary coherently. We would expect byteshufáe to be the best
choice when consecutive bytes correlate well with each other; bitshufáe would be best when
that correlation fails at the byte level but holds at the bit level. However, because of the nature
of the binary64 format, where different bits have different signiàcance, we would expect the
optimal choice to vary along the length of the 64 bits. This suggests that the best choice could
be to vary the width of the groups of bits that we shufáe as we progress along the number.
We call this ‘multishufáe’; it is implemented via the function of the same name in the sxs
package.

A multishufáe àlter must be speciàed by the widths of the groups of bits that are shufáed.
For example, if we group the àrst byte of each number, followed by the next 4 bits, followed by
the next 2 bits, and then individual bits after that, wewould specify the àlter as (8,4,2,1,1, . . .).
The sum of all those numbers must be 64. In this representation, no shufáing would be (64), the
standard byteshufáe is (8, . . .), nibbleshufáe is (4, . . .), morselshufáe is (2, . . .), and bitshufáe
is (1, . . .).

In general, there are 263 ≈ 1019 possible multishufáe àlters for 64-bit data, so the search is
not trivial. Because of the discrete nature of the problem, and the enormous size of the space of
possibilities, a genetic algorithm seems like a natural choice for ànding the best àlter. We used
the Evolutionary.jl package [283] to search for the shufáe widths that delivered the best
compression for a random subset of 20 simulations, using each waveform from the various
resolutions and extrapolation orders, for a total of 472 waveforms. Any form of shufáing was
always better than not shufáing at all, by at least 30%. However, among all other choices
tested, the bitshufáe algorithm was the worst, followed by morselshufáe, then the standard
byteshufáe, and nibbleshufáe. Nonetheless, it was possible to gain signiàcant improvements
by varying the shufáe widths—by 18% to 3% over the various àxed-width options, and in
particular about 6.5% over the standard byteshufáe.
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At no point throughout the optimization did the genetic algorithm ànd better results for a
multishufáe involving a width that was not a power of 2. This is presumably because the com-
pression algorithm (BZIP2, as described below) is still based on bytes, so combining groups
of bits with sizes that are not powers of 2 will not produce alignment along those bytes that
can be easily compressed. The algorithm very quickly determined that the àrst groups should
have sizes 16, 4, 2, 2, and 2. Beyond that, the results clearly favored small groups of either 1
or 2 bits, but did not depend very strongly on the exact choice of widths. The widths we have
used for the waveform data in this catalog are

(16,4,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4) (C.9)

For binary64, the àrst 16 bits represent the sign, the exponent, and the àrst 4 bits of the
signiàcand. The next 4 bits represent the next 4 bits of the signiàcand, and so on, with all
remaining bits representing decreasingly signiàcant bits.

Recalling that the previous step converted the data to successive differences, we are really
encoding the rate of change of the data between timesteps. In particular, the àrst block of 16 bits
will essentially encode the difference between successive timesteps, rounded to just the àrst
few digits. The rate of change in themodes—at least to this level of accuracy—will typically be
quite small, so we might expect that many of these values will be repeated, meaning that run-
length encoding will efàciently compress the data. This turns out to be true for the àrst 8 bits,
but not for all 16 bits. Instead, it appears that the beneàt of grouping the àrst 16 bits together
is that there are relatively few distinct patterns that appear in the data. Of the 216 = 65536
possible values that could be encoded by the àrst 16 bits, only 1000 or so actually appear in
typical waveforms, with the most common values occurring far more often than most. This
is ideal for the Huffman-coding [284] stage of compression to represent these values more
compactly than the 16 bits would27. These features are decreasingly likely to occur as we
proceed to bits with lower signiàcance, which is why it makes sense that the shufáe widths
decrease aswe proceed through the number. On the other hand, there is an increasing likelihood
that the bits will switch to being a series of 0 s, which can be compressed very effectively with
run-length encoding. We want those runs to occur as soon as possible, which is why it makes
sense that widths become 1 as that condition becomes more likely. Finally, the last 4 groups of
4 bits represent the last 16 bits of the signiàcand, which will always be less signiàcant than the
10−10 tolerance. Therefore, we can expect that these are just long runs of 0 s for every mode.
The genetic algorithm found essentially no difference in any choice of widths for these bits,
so we group them together to reduce the number of times the data must be traversed.

It is important to note that the optimal choice of shufáe widths may vary for different
datasets; the results we report here are true for our data, after the particular processing steps
described above. They may not extend to different types of datasets, or even to the same wave-
forms when preceded by different processing steps. As such, the precise set of shufáe widths
is essentially adjustable, and therefore should be stored as metadata alongside the compressed
data. As mentioned below, we choose the HDF5 àle format to organize the data, and preserve
the shufáe widths as an HDF5 attribute of each dataset. When loading the data, this attribute
is read to ensure that the data are decompressed correctly.

One caveat to note about all types of shufáe àlters is that they require multiple passes
over the data. The number of passes required is set by the length of the width speciàcation:
8 for byteshufáe, 64 for bitshufáe, and 31 for the widths chosen for this catalog. In the naive

27 Extending beyond 16 bits, this particular advantage disappears; the number of observed values grows with the
number of possible values. In that case, it is evidently better to take advantage of other features of the compression.
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application, this can lead to memory bottlenecks with numerous cache misses. When this is a
problem, the data can be divided into ‘chunks’ that àt into cache, and the shufáe àlter applied to
each chunk separately. In particular, the reference implementation of the bitshufáe àlter [275]
uses this technique. This will reduce the number of cache misses, but will also reduce the
effectiveness of the compression stage. Because we ànd the cost to be minimal compared to
the increased burden of disk access due to less-effective compression, we choose to treat each
real or imaginary part of each waveform mode as a single chunk to be shufáed as a unit.

C.2.7. BZIP2. None of the preceding stages actually reduce the number of bytes that must be
stored. In fact, the conversion to a rotating frame just adds another set of data—the logarithm
of the quaternions—to be stored. Instead, each stage has been designed to reduce the entropy of
the information in the waveform. The ànal stage is to use that reduced entropy to compress the
data. We arrange the data as a single sequence of bytes, beginning with the shufáed time data,
followed by the shufáed modes, and ànally the shufáed logarithm of the rotation quaternions.

We have tested a variety of standard compression algorithms to do so. The best results were
obtained using BZIP2 [263], which passes the data through a number of stages, including run-
length encoding, the Burrows-Wheeler transform [285], the move-to-front transform [286,
287], and Huffman coding [284]. Files created using XZ/LZMA [288] were about 1% larger;
about 3% for Brotli [289]; 12% for GZIP [290]; and 13% for Zstd.

The speed of compression varied widely—from an order of magnitude faster for Zstd, to
an order of magnitude slower for Brotli. However, the time spent compressing the data is
generally a small fraction of the time spent transforming and writing the data, so the speed of
compression is not a signiàcant concern. The speed of decompression was less varied, but also
dominated entirely by the time spent reading the data from disk—not to mention the time spent
transferring the data over the internet. Thus, the dominant factor in choosing a compression
algorithm was the size of the compressed àle, leaving BZIP2 as the clearly preferred choice.

C.2.8. HDF5 storage. The output of the BZIP2 compression stage is a single byte stream,
which could be written to disk directly. However, there are also various pieces of metadata that
are important for being able to reliably decompress the data. For example, the shufáe widths
used for the multishufáe àlter must be stored, as must the number of modes and/or the number
of time steps. Perhaps most importantly, to ensure that the àles remain useful in the future and
that the interface can be easily extended, it is important to store the name of the format used
to compress the data. It can also be helpful to organize multiple waveforms into a single àle.

The HDF5 àle format is well suited to this task, and is widely used in the scientiàc com-
munity for storing large datasets along with metadata [264]. Speciàcally, we store the data
stream as a single ‘opaque’ dataset named ‘data’, with no àlters of any kind. We then attach
‘attributes’ to that dataset:

• sxs_format
• shuffle_widths
• ell_min
• ell_max
• n_times

The àrst attribute value is rotating_paired_diff_multishuffle_bzip2, which allows
the interface to automatically detect the correct decompression steps to apply. For all wave-
forms in this catalog, the shufáe widths are as given in equation (C.9), and the minimum and
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maximum values of ℓ are 2 and 8, respectively. The number of time steps is also stored. While
this could be inferred from the length of the data after BZIP2 decompression, it is convenient to
store it directly, acting as a simple check on the integrity of the data. This dataset and its attrib-
utes can be stored in any group of an HDF5 àle, whether the root group as for Strain_N2.h5
àles, or in descriptively named subgroups as in the ExtraWaveforms.h5 àles.

C.3. Future work

By including the name of the format within the àle itself, we have left open the possibility of
changing the format in the future. There may be better choices for the multishufáe widths, or
for the compression algorithm used in the ànal stage. There is almost surely some improvement
that could be made in the predictive step. For example, the various modes could be normalized
in some way, or make use of post-Newtonian approximations. However, it is not clear that such
a change would be worth the effort. Surely the most impactful alteration would be to simply
increase the tolerance τ used in the truncation step. Regardless, all of these considerations will
remain almost invisible to the user, because the sxs interface will be able to detect the format
and apply the correct decompression steps automatically.

Appendix D. Simulations with large differences in figure 8

In àgure 8 there are long tails at large waveform difference that are caused by a handful of
simulations, which we list here for completeness.

For the plots comparing extrapolation orders, the problematic simulations are head-on,
nearly-head-on, or scattering cases. These simulations are particularly short and hence a large
fraction of the waveform still contains a considerable amount of initial transient junk radiation.
The differences between extrapolation orders are always relatively large during these initial
transients, but due to the shortness of these particular runs their relative contribution to the
waveform difference is larger. Some of these runs also have waveform-extraction radii that
are too close together, which causes unusually large extrapolation errors, especially for high
extrapolation order. These simulations are:

SXS:BBH:1110 SXS:BBH:3873 SXS:BBH:3876 SXS:BBH:3881
SXS:BBH:1363 SXS:BBH:3874 SXS:BBH:3877 SXS:BBH:3882
SXS:BBH:1544 SXS:BBH:3875 SXS:BBH:3879 SXS:BBH:3883
SXS:BBH:3884 SXS:BBH:3889 SXS:BBH:3996 SXS:BBH:4000
SXS:BBH:3885 SXS:BBH:3890 SXS:BBH:3997
SXS:BBH:3887 SXS:BBH:3995 SXS:BBH:3999 SXS:BBH:4292

ORCID iDs

Mark A Scheel 0000-0001-6656-9134
Michael Boyle 0000-0002-5075-5116
Keefe Mitman 0000-0003-0276-3856
Nils Deppe 0000-0003-4557-4115
Leo C Stein 0000-0001-7559-9597
Cristóbal Armaza 0000-0002-1791-0743
Marceline S Bonilla 0000-0003-4502-528X
Luisa T Buchman 0000-0003-3428-6003
Andrea Ceja 0000-0002-1681-7299
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Himanshu Chaudhary 0000-0002-4101-0534
Yitian Chen 0000-0002-8664-9702
Maxence Corman 0000-0003-2855-1149
Károly Zoltán Csukás 0000-0002-2408-1103
C Melize Ferrus 0000-0002-2842-2067
Scott E Field 0000-0002-6037-3277
Matthew Giesler 0000-0003-2300-893X
Sarah Habib 0000-0002-4725-4978
François Hébert 0000-0001-9009-6955
Dante A B Iozzo 0000-0002-7244-1900
Tousif Islam 0000-0002-3434-0084
Ken Z Jones 0009-0003-1034-0498
Aniket Khairnar 0000-0001-5138-572X
Lawrence E Kidder 0000-0001-5392-7342
Taylor Knapp 0000-0001-8474-4143
Prayush Kumar 0000-0001-5523-4603
Guillermo Lara 0000-0001-9461-6292
Oliver Long 0000-0002-3897-9272
Geoffrey Lovelace 0000-0002-7084-1070
Sizheng Ma 0000-0002-4645-453X
Denyz Melchor 0000-0002-7854-1953
Marlo Morales 0000-0002-0593-4318
Jordan Moxon 0000-0001-9891-8677
Peter James Nee 0000-0002-2362-5420
Kyle C Nelli 0000-0003-2426-8768
Serguei Ossokine 0000-0002-2579-1246
Robert Owen 0000-0002-1511-4532
Harald P Pfeiffer 0000-0001-9288-519X
Isabella G Pretto 0009-0001-7552-551X
Teresita Ramirez-Aguilar 0000-0003-0994-115X
Antoni Ramos-Buades 0000-0002-6874-7421
Adhrit Ravichandran 0000-0002-9589-3168
Abhishek Ravishankar 0009-0006-6519-8996
Samuel Rodriguez 0000-0002-1879-8810
Hannes R Rüter 0000-0002-3442-5360
Jennifer Sanchez 0000-0002-5335-4924
Md Arif Shaikh 0000-0003-0826-6164
Dongze Sun 0000-0003-0167-4392
Daniel Tellez 0009-0008-7784-2528
Saul A Teukolsky 0000-0001-9765-4526
Sierra Thomas 0000-0003-3574-2090
William Throwe 0000-0001-5059-4378
Vijay Varma 0000-0002-9994-1761
Nils L Vu 0000-0002-5767-3949
Marissa Walker 0000-0002-7176-6914
Nikolas A Wittek 0000-0001-8575-5450
Jooheon Yoo 0000-0002-3251-0924
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