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Recent experiments showing an integer quantum anomalous Hall effect in pentalayer rhombohedral graphene
have been interpreted in terms of a valley-polarized interaction-induced Chern band. The resulting many-body
state can be viewed as an anomalous Hall crystal (AHC), with a further coupling to a weak moiré potential.
We explain the origin of the Chern band and the corresponding AHC in the pentalayer system. To describe the
competition between AHC and Wigner crystal (WC) phases, we propose a simplified low-energy description
that predicts the Hartree-Fock phase diagram to good accuracy. This theory can be fruitfully viewed as
“superconducting ring” in momentum space, where the emergence of Chern number is analogous to the flux
quantization in a Little-Parks experiment. We discuss the possible role of the moiré potential, and emphasize
that even if in the moiréless limit, the AHC is not favored (beyond Hartree-Fock) over a correlated Fermi liquid,
the moiré potential will push the system into a “moiré-enabled AHC”. We also suggest that there is a range of
alignment angles between R5G and hBN where a C = 2 insulator may be found at integer filling.
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I. INTRODUCTION

In the last few years, the integer quantum anomalous Hall
(IQAH) effect has been seen in a number of moiré mate-
rials [1–6]. Microscopically, typically, the electronic bands
of many of these moiré materials have a well-defined Chern
number that is equal and opposite in the two valleys. When
the bands are nearly flat, and the total number of electrons
is an odd integer per moiré unit cell, the valley (and spin, if
present) degree of freedom polarizes spontaneously [7–10],
leading to an insulating ground state with a net Chern number
for occupied bands, and hence to an IQAH effect.

The recent discovery [11] of the IQAH [and a frac-
tional quantum anomalous Hall (FQAH)] state in pentalayer
rhombohedral graphene (R5G) nearly aligned with a hexag-
onal Boron-Nitride substrate (R5G/hBN) does not fit this
paradigm. Rather, the noninteracting band structure is such
that, even with spin and valley polarization, the many-body
state is metallic at a filling ν = 1 of the moire lattice.
However, electron-electron interaction effects, treated in a
Hartree-Fock approximation [12–15], lead to the appearance
of a single-particle gap, and an insulating many-body ground
state (see also Ref. [16]). The occupied Hartree-Fock band has
a nonzero Chern number |C| = 1, which provides an explana-
tion for the observed IQAH at ν = 1. Furthermore, numerical
calculations [12–15] of the many-body state at fractional fill-
ing, by considering the Coulomb interaction projected to the
ν = 1 Hartree-Fock band, find fractional quantum Hall states
in general agreement with the FQAH found in the experiment.
The physics of the QAH in pentalayer graphene is thus quite
different from the twisted transition metal dichalcogenide
(tTMD) system MoTe2 where the first discovery of the FQAH
was made [17–20].

In this paper, we focus on the IQAH state and provide
a deeper understanding of the emergence of the interaction-
induced Chern band at ν = 1. We will mostly limit ourselves

to the Hartree-Fock approximation, and explain why the
Chern band is stabilized. We will show that there is a range
of alignment angles for which the noninteracting band al-
ready has Berry curvature close to 2π . In this regime, with
interactions, the Fock term dominates and both opens up a
band gap and modifies the integrated Berry curvature to be
exactly 2π to yield a C = 1 Chern insulator. We give an
intuitive explanation to this phenomenon through an analogy
to flux quantization in a superconducting ring but now in
momentum space. As the alignment angle is reduced (toward
the one in the devices of the experiments of Ref. [11]), the net
Berry curvature of the noninteracting model within the first
Brillouin zone decreases to well below 2π . In this regime,
the Fock term is not enough to stabilize a C = 1 insulator.
However, we show that the combination of Hartree and Fock
terms suffice, and we explain the associated physics. Briefly,
in this regime of alignment angles, the Fock term opens up
a band gap and gives an insulator. However, the stabilization
of the C = 1 insulator over the C = 0 one is because of the
Hartree term. This is roughly because the charge distribution
in the Chern insulator is more homogenous than the trivial
insulator because of the impossibility of strongly localizing
the electrons in a Chern band.

It was noted in Refs. [13,14] (and reproduced in our own
calculations) that the Hartree-Fock calculation produces a
Chern insulator even in the absence of an explicit moiré poten-
tial. A natural interpretation is that the continuous translation
symmetry, present in the absence of the moiré potential, is
spontaneously broken to form some kind of crystalline state.
However, since the Hartree-Fock description of the crystal has
occupied bands with a net Chern number, this state should
be viewed as an “anomalous Hall crystal” (AHC); the “Hall
crystal” was originally introduced in the context of electrons
in Landau levels induced by a magnetic field [21]. The moiré
potential will, at the very least, pin the AHC. From this point
of view, our results can be viewed as an explanation (within
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Hartree-Fock) for what stabilizes the AHC over either an
ordinary Wigner crystal (WC) or a Fermi liquid (FL) metal.

To capture the competition between the AHC and the
WC in rhombohedral n-layer graphene (RnG), we propose
a complementary simplified model that focuses on the sym-
metry indices at the MBZ corners KM and KM , in the spirit
of a “Landau” theory. The ground-state energy, expressed
as a function of these indices, contains the key information
about the AHC–WC competition. To get the parameters for
the Landau theory, we first formulate a crude treatment that
focuses solely on a pseudopotential interaction between the
MBZ corners. We show that, although this correctly captures
the Hartree term, it does not faithfully describe the effect of
the Fock term in the full range of microscopic parameters. To
remedy this, we propose a modified low-energy model that
captures the physics of the entire MBZ boundary. This model
can be viewed as a superconducting ring, but in momen-
tum space, and gives an intuitive description of the physics.
This modification significantly improves our prediction of
the Hartree-Fock phase diagram. Similar momentum space
“superconducting” analogies have been invoked to understand
Hartree-Fock physics in twisted bilayer graphene problems
before [22,23].

The evolution between the Fermi liquid metal and the ordi-
nary Wigner crystal is, of course, one of the classic problems
in condensed matter physics. In the context of RnG, the Hall
crystal is another possible phase. It is well known that the
phase competition between the Fermi liquid and the ordi-
nary Wigner crystal is very poorly described by Hartree-Fock
theory, which enormously overestimates the stability of the
crystal. We might expect that a similar situation also arises
in RnG with the crystalline phases (AHC or WC) much less
stable than indicated by Hartree-Fock theory. However, we
suggest that even a very small moiré potential can induce a
phase transition between a correlated Fermi liquid and the
Hall crystal as the latter gains commensuration energy. Thus,
we expect the Hartree-Fock calculation to be more reliable
in the presence of moiré than without. We dub the result-
ing IQAH state a “moiré-enabled anomalous Hall crystal”.
Obviously, in the regime of the moiré-enabled AHC, if we
turn off the moiré potential, the system is a Fermi liquid.
In this situation, the moiré potential is important in getting
into the AHC state (through a first-order transition out of the
Fermi liquid), but ultimately the gap in the AHC is determined
by the Coulomb interaction and not by the amplitude of the
periodic potential. We comment on some implications of this
possibility.

We also consider the possibility of obtaining interaction-
induced Chern bands with higher Chern numbers. Indeed, the
naive expectation about RnG/hBN is that, for the topologi-
cally nontrivial orientation of the displacement field, the bands
have (valley) Chern number n. Although this expectation is
not borne out [1], there is a large Berry curvature in the
noninteracting band that is peaked in a ring in momentum
space. The size of the ring is set by the displacement field.
Thus, with increasing twist angle, a greater portion of this
Berry curvature will sit inside the moiré Brillouin zone. Then,
if interactions open up a band gap at moiré filling ν = 1, we
might expect a filled band with a higher Chern number. Com-
plicating this expectation, the noninteracting dispersion loses

its flatness also at the location of the ring. Hence, a detailed
calculation is required. We will show, within the Hartree-Fock
approximation for R5G/hBN, that if the strength of the moiré
potential or the Coulomb interaction strength can be tuned,
then C > 1 insulators may be obtained at ν = 1, which then
raises the possibility of exploring the physics at fractional
filling of a higher Chern band. Previously, aC = 2 QAH state
was found [1] in R3G/hBN at ν = 1 of the valence band, and
a C = 5 insulator at neutrality in spin-proximitized R5G at
neutrality [24].

To set this paper in a broader historical context, we note
that a number of previous theoretical and experimental papers
[25–29] have explored the possibility that interaction effects
can induce Chern bands and lead to an integer quantum Hall
effect in diverse situations. The mechanisms identified in this
paper are specific to RnG, and are distinct from that in this
prior literature. A particularly interesting feature of the RnG
system is the possibility that, apart from time reversal, (ap-
proximate) translation symmetry is broken spontaneously as
well, thereby realizing a (moire-enabled) AHC. The case of
continuous translation symmetry breaking, accompanied by a
quantum Hall effect, in Landau levels was discussed in Ref.
[21], which was itself motivated by the prior discussion of a
quantum Hall effect in a Wigner crystal driven by cooperative
ring exchange [30,31]. The coexistence of the quantum Hall
effect and crystal symmetry breaking is reminiscent of the
much discussed [32,33] but elusive phenomenon of superso-
lidity in helium-4. A recent experiment on bilayer graphene
has suggested evidence for an AHC phase [34]. Finally, in
moire systems, there are examples [28,29] where discrete
translation symmetry of a lattice system is broken sponta-
neously and leads to a Chern insulator. In these examples,
the folding of the Brillouin zone caused by a commensurate
charge density wave order captures the preexisting Berry cur-
vature of the bare band within the reconstructed first Brillouin
zone. As we will see, the mechanism in RnG/hBN is more
intricate than these examples.

The remainder of the paper is organized as follows. In
Sec. II we describe the continuum models for R5G, and high-
light the limitations of a simple and popular two-band model.
Specifically, it fails to capture the realistic Berry curvature
distribution at small momentum, which is critical to our un-
derstanding of the AHC. We next overview the features of the
Hartree-Fock phase diagram in Sec. III, for varied twist angles
and displacement field energies, and provide an understanding
for the interaction-driven Chern bands. We next detail the
mechanism by which the AHC is favored over the trivial WC
in Sec. IV through a careful consideration of the symmetry
indices at high-symmetry points of the mini-Brillouin zone.
We also provide a complementary argument in Sec. V via
a Landau-like effective model. In Sec. VI, we propose the
aforementioned low-energy “superconducting ring” model,
which predicts the microscopic mean-field phase diagram us-
ing the noninteracting band structure. In Sec. VII, we discuss
the competition of the AHC and the Fermi liquid state in
the moiréless setting within Hartree-Fock. In Sec. VIII, we
discuss features of the phase diagram beyond the Hartree-
Fock approximation, and comment on the fate of both the
moiré and non-moiré system depending on the interactions
and displacement field. We emphasize the presence of a
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FIG. 1. Berry curvature distribution for (a) the two-orbital (A1B5)
model, and (b) the 10-orbital model without warping (t2 = t3 =
t4 = 0), at ud = −35 meV. We mark the edge of MBZ at θ = 0.8◦

with silver lines, although no moiré potential is turned on in the
calculation.

moiré-enabled AHC, which expands (likely vastly) the rele-
vance of the physics of the AHC in the phase diagram. In
Sec. IX we discuss possible routes for higher Chern bands.
Finally, we conclude in Sec. X and provide some future direc-
tions of exploration.

II. STRUCTURE OF CONTINUUM BAND AT LARGE
DISPLACEMENT FIELD

Rhombohedral-stacked pentalayer graphene is the struc-
ture formed by five layers of graphene vertically aligned in the
(ABCAB) sequence, with the Bl sublattice of layer l aligned
with the Al+1 sublattice of layer l + 1. The continuum 10-
orbital Hamiltonian (in the basis of the Al ,Bl sublattices for
each of the five layers; for a given valley K/K ′ and spin ↑ / ↓)
involves tunneling of Dirac fermions from each graphene
monolayer (with Dirac velocity γ0) to neighboring layers via
hopping processes t1,2,3,4 [see Eq. (A1) in Appendix A] in the
presence of on-site potentials and displacement field energies
(ud ) [35]. We present in Figs. 1 and 2 the (conduction) con-
tinuum band structure, and the associated Berry curvature and
flux of the 10-band model.

The hierarchy of energy scales associated with the inter-
layer hopping processes is t1 > t3,4 � t2. This indicates the
important role of t1 in the low-energy theory. To develop
an intuitive low-energy description of this continuum model,
and its corresponding nontrivial topology, it is advantageous
to consider various effective models that are applicable in
different momenta regimes.

We will drop the moiré potential in our discussion of the
Hartree-Fock calculation, and develop an understanding of
the stabilization of the AHC as a function of the electron
density and the displacement field. We find it convenient to
parametrize the electron density in terms of the alignment
angle θ with the hBN substrate (even though we turn off the
moiré potential). If the moiré potential were to be present, the
twist angle θ determines the size of the unit cell. The charge
density of interest corresponds to a lattice filling ν = 1 of this
unit cell. Consequently, θ can be used as a parametrization of
the density even in the absence of moiré.

A. Dangling edges of pentalayer graphene: k5-two-orbital model

A preliminary understanding of the continuum band near
charge neutrality is achieved by focusing on the electronic

FIG. 2. Dispersion (top), Berry curvature distribution (middle),
and Berry flux integral (bottom) for various effective models of pen-
talayer graphene. Black, red, and blue curves correspond to 10-band
[Eq. (A1) in Appendix A], two-band [Eq. (1)], and three-band models
[Eq. (3)], respectively. This plot is obtained for ud = −35 meV, and
θ = 0.9◦.

occupation of the A1 and B5 orbitals. The remaining eight
orbitals are regarded as high-energy sites, with a low-energy
model derived from perturbatively integrating out these high-
energy orbitals [35]. The justification for this simplified model
is that at small momentum k, γ0k/t1 � 1, and so the dominat-
ing interlayer hopping t1 pushes all other orbitals away from
zero energy by forming bonding and antibonding states so that
the only low-energy degrees of freedom are A1 and B5 orbitals.
The effective low-energy theory is obtained by performing
a fifth-order perturbation with small in-plane hopping γ0k,
leading to the effective model [35–37],

H =
⎡
⎣ 2ud

γ 5
0

t4
1

(kx + iky)5

γ 5
0

t4
1

(kx − iky)5 −2ud

⎤
⎦. (1)

We note that we disregard the subdominant hopping momen-
tum corrections that involve lower powers of momentum k.
This theory defines two momentum regimes:

(1) u1/5
d t4/5

1
γ0

� k � t1
γ0

, where the off-diagonal term domi-

nates, which leads to a ∼k5 dispersion; and

(2) k � u1/5
d t4/5

1
γ0

, where the displacement field dominates,
corresponds to an extremely flat band bottom (dictated by ud )
with a ∼k10 dispersion.
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The distribution of the Berry curvature associated with this
two-band model is given by

γ (k) = − 25ud
(
t4/5
1 /γ0

)8
k8[(

t8
1 /γ 10

0

)
k10 + 4u2

d

]3/2 . (2)

Indeed, the corresponding total Berry flux is −5π within
the first Brillouin zone (although there is no gap), which is
distributed in a ring-like region about k = 0 [see Fig. 1(a)].
The radius of this ring is given by the transition momentum

scale kring ∼ u1/5
d t4/5

1
γ0

, where the band starts to become highly
dispersive.

In the presence of the moiré potential, there is another
momentum scale, which depends on the twist angle θ . We will
characterize it with KM the momentum at the corner of the
moiré Brillouin zone (MBZ). At the range where the IQAH is
observed in current experiments(θ ∼ 0.77◦, ud ∼ −35 meV)
kring is slightly above KM [as seen in Fig. 1(a)]. This indi-
cates that the majority of the Berry curvature arising from the
A1 − B5 hybridization lies outside the first MBZ.

B. Failure of k5-two-orbital model to capture flat band bottom

The limitation of the k5-two-orbital model is brought to the
fore as the displacement field energy increases. We recall from
the above discussion that at relatively weak displacement field
energies (|ud | < 10 meV) and momenta, the band bottom is
relatively flat. As such, the k5-two-orbital model [in regime
(2)] faithfully captures the features of the 10-orbital model. As
the displacement field increases (see Fig. 2) and the flat-band
region expands to envelop the size of the moiré BZ, the band
bottom (i.e., near k = 0) acquires an appreciable dispersion.
This appreciable dispersion is missed by the above simplistic
two-orbital model. To see this, one notices that the hybridiza-
tion between B5 and B4 is linear in k [see the 10-orbital model
in Eq. (A1) in Appendix A] and can become much stronger
than the effect of the k5 term at small k. Therefore, it is more
appropriate to begin with the Hamiltonian projected to include
this nearest orbital, i.e., in the B5, A5, and B4 orbitals [38]

H3 =

⎡
⎢⎣

2ud γ0(kx + iky) 0

γ0(kx − iky) 2ud t1
0 t1 ud

⎤
⎥⎦. (3)

Diagonalizing this Hamiltonian in the limit of small k
and dominating t1, we find the eigenstates: |B5〉 , |A5B

+
4 〉 =

1√
2
(|A5〉 + |B4〉), and |A5B

−
4 〉 = 1√

2
(|A5〉 − |B4〉). Written in

this eigenbasis, the Hamiltonian becomes

H̃3 =

⎡
⎢⎢⎣

2ud
γ0(kx+iky )√

2

γ0(kx+iky )√
2

γ0(kx−iky )√
2

t1 + 3ud
2

ud
2

γ0(kx−iky )√
2

ud
2 −t1 + 3ud

2

⎤
⎥⎥⎦. (4)

At k = 0, the lowest conduction band state is |ψ0〉 =
(1, 0, 0) = |B5〉, as expected. For small k, the k-dependent
matrix elements can be treated within perturbation theory. The
leading correction to the eigenstate of the lowest conduction

band is

|δψ1〉 = −γ0k∗

2

(
ud

t2
1 − u2

d/4
|A5〉 + 2t1

t2
1 − u2

d/4
|B4〉

)

∼ −γ0k∗

t1
|B4〉 (5)

and its corresponding energy correction is

δE2 = −γ 2
0 |k|2

2

(
1

t1 − ud/2
− 1

t1 + ud/2

)
∼ −udγ 2

0 |k|2
2t2

1

.

(6)
The leading correction to the dispersion in Eq. (6) suggests
a negative effective mass that scales with displacement field.
As such, the band bottom is not as flat in the large displace-
ment field energy as the k5-two-orbital model would seem to
indicate. We present in Fig. 2 the conduction band bottom
dispersion for the k5-two-orbital model and the above per-
turbation theory modified effective three-orbital model (with
the 10-orbital model’s dispersion shown for comparison). As
seen, the k5-two-orbital model is “too flat” in the small mo-
mentum region; the effective three-orbital has the required
dispersion, consistent with the full 10-orbital model.

In addition to the modified dispersion, the correction to the
|B5〉 eigenstate by Eq. (5) indicates that the Berry curvature
in the small k regime resembles that of a massive Dirac cone.
This entails a Berry phase of approximately −π distributed in
the small region of k ∼ t1/γ0. This is corroborated by the full
10-orbital model, where γBZ , the Berry flux inside the MBZ,
is slightly stronger than −π (see Fig. 2); recall that at the
larger displacement fields discussed here, the “ring” of Berry
curvature lies just outside the MBZ. While the ring-shaped
feature at larger momentum arising from B5 − A1 mixing also
contributes to γBZ , the described −π flux is predominantly
caused by the massive Dirac cone physics at small k because
of B5 − B4 mixing. In the following section, we will see that
this massive Dirac cone feature is crucial since the γBZ of the
noninteracting band, to a large extent, determines the Hartree-
Fock phase diagram.

III. OVERVIEW OF THE HARTREE-FOCK
PHASE DIAGRAM

In this section, we overview the phenomenology of the
mean-field findings of pentalayer graphene and explain the
physics for some parts of the phase diagram. In particular,
we focus on the conduction band in the regime of strong
displacement field (ud ∼ −35 meV) relevant to current ex-
periments on R5G. We consider the evolution as twist angle
θ (i.e., the charge density) decreases, and ignore the moiré
potential. The twist angle dependency is a useful axis to con-
sider, especially when comparing to experiments where moiré
is required to observe the quantum anomalous Hall phases
[39]. The Hartree-Fock and Fock phase diagrams are shown
in Fig. 3 [40]. We focus on a simplified model with no warp-
ing t2 = t3 = t4 = 0; the warping effects are readily included
and do not affect the physical understanding we develop. We
note that we also include the corresponding electronic density
associated with the twist angle in Fig. 3.

Extremal twist angle θ > 1.5◦. In this limit, KM > kring,
and so the majority of the continuum band Berry curvature is
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(a) (b) (c)

FIG. 3. Phase diagrams in θ − ud space. In (a) the colors show
the closest integer to γBZ/2π , where γBZ is defined in the main text.
Colors in (b) and (c) mark the Chern number of mean field bands,
obtained with Fock term only and full Hatree-Fock, respectively.
Here the metallic region is left uncolored. Comparing (a) and (b),
the boundary between C = 0 and C = −1 region in the Fock phase
diagram closely tracks that of the noninteracting phase diagram.
The comparison between (b) and (c) shows that the Hartree term
extends the stability of the C = −1 Hall crystal. These results are
obtained for the 10-orbital model with no warping term, and with
the moiré potential turned off. The angle θ should then be viewed as
a parametrization of the charge density. This result is obtained with
24 × 24 momentum mesh and projecting to four lowest conduction
bands. In Appendix G, we show the results including seven-bands.
These results are consistent except for the regime of large ud and
small θ , where the “Mexican hat” dispersion is deep enough so that
the wavefunction at �M point is a linear combination of six MBZ
neighboring the first MBZ, thereby it is crucial to include seven
bands.

contained within the first MBZ. We recall that kring also marks
the momentum scale at which the continuum band becomes
dispersive. As a result, given that the band gap opening at
the mean-field level is bounded (from above) by the scale of
interactionU ∼ 20 meV, the energy of the second conduction
band at the MM point may drop well below the energy of the
first conduction band at KM , which leads to a metallic phase
even when the translation symmetry is spontaneously broken.

Large twist angle 0.9◦ < θ < 1.5◦. In this case, where the
twist angle is larger than the experimental regime, the MBZ
boundary intersects the Berry curvature ring, where the −5π

Berry flux is concentrated. We find the Berry flux enclosed by
the first MBZ varies between −3π and −π as θ decreases.
With Fock term alone turned on, the band gap opens, and
we find the lowest conduction band has C = −1, which is
exactly the Chern number expected from rounding γBZ/2π to
its closest integer. The inclusion of the Hartree term does not
modify the result qualitatively.

We note that in this regime an AHC with a higher Chern
number is potentially possible. For this to happen, we need
the twist angle to be large enough to enclose more than −3π

flux, but at the same time not so large that the band becomes
too dispersive to be gapped out by interaction. Whether or not
such a higher Chern AHC exists then depends on details of the
model. Within the current simplified model, no |C| > 1 phase
is observed in Fig. 3(c). Nonetheless, it is conceivable that
some modification to the noninteracting model parameters
(such as including trigonal warping, or tuning the strength of
the Coulomb interaction) can favor the higher Chern AHC.
In addition, we can also contemplate tuning the strength of

the moiré potential to stabilize an interaction-induced higher
Chern band. We will explore these phenomena in Sec. IX.

Intermediate twist angle 0.6◦ < θ < 0.9◦. This is the
regime most relevant to existing experiments [11]. Because
of the smaller MBZ, the enclosed Berry flux in the first BZ
is less than −π . With the Fock term alone, we find a trivial
insulator (WC), consistent with the smaller Berry flux in the
noninteracting band structure. However, with the inclusion of
the Hartree term, theC = −1 AHC state is once again favored
(as seen in Fig. 3). We emphasize that this Hall crystal state
is not a straightforward expectation from the noninteracting
theory. In Sec. IV, we will describe a mechanism, according to
which the Hartree term generically (for various displacement
fields, number of graphene layers, etc.) favors |C| = 1 AHC at
a moderate interaction strength (strong enough to gap out the
band, but not as strong compared to the dispersion in higher
MBZs, which is the regime most relevant to the experiments).

Small twist angle θ < 0.6◦. Finally, at a very small twist
angle, the MBZ is shrunk significantly and is unable to enclose
any substantial Berry curvature. As a result, the low-energy
degrees of freedom in the continuum band are almost entirely
trivial and featureless, i.e., the Bloch function is almost com-
pletely polarized to |B5〉. With the spontaneous breaking of
translational symmetry, a Wigner crystal develops.

Small θ and higher displacement field |ud | > 40 meV. At a
small twist angle, the ring-like feature is in the second MBZ.
Naively one may conclude that the Chern number will be zero
since |γBZ | < π . However, the situation is more subtle as seen
in Fig. 3(c). According to Eq. (6), a large displacement field
leads to strong negative dispersion at small k. As a result, the
lowest conduction band is now mainly formed by the second
MBZ, which contains a significant part of the Berry curvature
“ring”. Then the Berry flux in the second MBZ may well be
close to −2π , which will get quantized to −2π when the Fock
term is turned on. So a C = −1 band is again expected at the
level of the mean-field calculation.

IV. ROLE OF HARTREE TERM: A PHYSICAL PICTURE

The prevalence of the |C| = 1 AHC in the phase diagram
of Fig. 3 warrants an explanation for the mechanism by which
the Coulomb interaction favors |C| = 1 AHC overC = 0 WC.

As noted above, when the underlying band has a total Berry
curvature close to 2π within the area of the first Brillouin
zone, the Fock term alone yields a Chern-1 band, i.e., the
Berry curvature is rounded to exactly 2π in the Hartree-Fock
band. We will explain this phenomenon in a later section. In
this section, however, we focus on the role of the Hartree term
in selecting the AHC. To examine it in isolation, we compare
the mean-field phase diagrams with both Hartree and Fock
and Fock-only in Figs. 3(b) and 3(c). The inclusion of the
Hartree term expands the |C| = 1 region of the phase diagram
to include the experimentally relevant twist angle θ ≈ 0.77◦
and displacement field ud ≈ 30 meV. It is therefore essential
to understand the mechanism by which the Hartree term favors
the AHC over the WC.

We recall from topological band theory [41,42] that the
Chern number is determined by the symmetry indices at the
invariant momentum under the point group. In R5G, the corre-
sponding point group isC3, with the invariant momentum �M ,
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FIG. 4. Real-space B4 and B5 density profile for Bloch functions
at high-symmetry momentum. With the Hartree term included, the
B5 orbitals repel and the density profile is spread out to different
regions of the moiré unit cell, while the B4 orbitals overlap. Without
the Hartree term, the Fock energy is reduced by overlapping B5

orbitals. These results are obtained for θ = 0.7◦, ud = −30 meV,
and with a very weak moire potentialCAA = CBB = 1 meV to pin the
wavefunction to high-symmetry positions in the unit cell.

KM , and K̄M . Therefore the real question is how the interaction
selects a particular set of symmetry indices (I�M , IKM , IK̄M

).
We first note that the Bloch function at �M almost com-

pletely comes from the first MBZ, and is thus almost fully
polarized to the B5 orbital—the rapidly increasing kinetic en-
ergy beyond the first MBZ prohibits substantial hybridization
with higher MBZs. Therefore, I�M = 0 if we define the C3

axis through the B5 site, which will be our convention. This
allows us to focus on the remaining symmetry indices IKM

and IK̄M
, and ask how they affect the Hartree energy. At these

two momenta, the kinetic energy again makes higher MBZs
irrelevant and only allows significant hybridization among
three equivalent corners of the first MBZ.

To develop some intuition for the Hartree energy, it is in-
structive to consider the wavefunction amplitude in real space.
The full Bloch function in Eq. (7) possesses two levels of
structure

ψKM (r, s) =
∑
G

αGe
iG·rus(KM + G). (7)

First is the structure in 10 atomic orbitals us, which controls
the profile at the scale of the pentalayer graphene unit cell.
The second is from the hybridization of different MBZ αG,
controlling the profile at the scale of the moiré unit cell.
For simplicity, let us consider the case where the 10-orbital
Bloch functions of KM and K̄M get polarized to B5. Then the
angular momentum (or C3 index) is completely attributed to
the hybridization of three plane wave components at the three
equivalent KM or K̄M points.

Now, we define the real-space hexagonal unit cell centered
at theC3 axis. The Wyckoff positions are A,B,C, respectively
corresponding to the center and two corners of the unit cell
(see Fig. 4). Since the wavefunction is symmetric under C3,
the peak of the Bloch function must be on A, B, or C. For a
wavefunction with an angular momentum of 0 under C3, its

density may peak at A, the symmetry center. (In fact, this
is the only possibility since the Bloch function at KM and
K̄M must vanish at two of the three Wyckoff positions. See
Appendix B.) In contrast, for a wavefunction with nonzero
angular momentum under the C3, the wavefunction must be
zero at A. The intuition is that the angular momentum pushes
density away from the symmetry center, just like the effect of
centrifugal force. In Appendix B, we show that there is a one-
to-one correspondence between the peak position Rs = 0, 1, 2
corresponding to A,B,C, and the C3 index Is = 0, 1, 2 at a
MBZ corner KM and K̄M labeled by s = +1 and −1,

Rs ≡ sIs (mod 3). (8)

We also discuss the general scenario without B5 polarization
in Appendix B. Thus, the Chern number is given by

C ≡ IKM + IK̄M
≡ RKM − RK̄M

(mod 3). (9)

Since the Hartree term always tends to keep the electrons
apart, RKM �= RK̄M

or C �= 0 state always gets favored by
Hartree energy. In Fig. 4 we demonstrate this picture by plot-
ting the density profile of Bloch function for a C = −1 AHC
and a C = 0 WC.

Finally, it is important to note that our above arguments are
valid in a relatively narrow range of twist angle 0.6◦ < θ <

0.9◦. When θ is too large, the first MBZ is no longer com-
pletely within the flat region. Therefore, at MBZ boundaries,
the Bloch function no longer has its weight concentrated on B5

orbitals. On the other hand, at a small θ and relatively large ud ,
the Bloch functions near � may acquire strongly nonuniform
density profiles in real space, since ck and ck+G are not far
away in energy and can hybridize strongly. In this case, it is
no longer justified to consider the subsystem of only K and K̄
points.

V. SIMPLIFIED “LANDAU” MODEL FOR
COMPETING INSULATORS

In this section, we reformulate the story in the Sec. IV in
a more elegant way, in the spirit of a Landau theory. We will
focus on the interplay between Bloch states at MBZ corners
KM and K̄M , and show explicitly how the C3 eigenvalues at
these two high-symmetry points are chosen to be nontrivial
by the Coulomb interaction.

For any insulating state, the filling is nk = 1 at both KM and
K̄M points. Therefore, at the mean-field level and assuming
a C3-preserving ansatz, the low-energy degrees of freedom
describing the competition between AHC and WC are two an-
gular variables (classical rotors), θ1 and θ2, associated with the
two MBZ corners KM and K̄M . Each rotor variable may take
a value from {0, 2π/3, 4π/3}, corresponding to C3 symmetry
index of 0, 1, and 2. Note that, in our setting, the �M point of
the MBZ has a trivial C3 index. Thus it is sufficient to focus
on the two MBZ corners KM and K̄M .

Here, we would like to add two remarks: (1) Although C3

indices are only well-defined at the high-symmetry points KM

and K̄M , their values also determine the surrounding measure-
nonzero regions since the Bloch function is continuous in
k space. Therefore, it is conceivable that these indices may
be associated with the energy of many-body state. (2) Al-
though the C3 indices cannot directly be thought of as order
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parameters since they are not associated with symmetry
breaking, they carry sufficient information to distinguish the
WC and AHC phases. Therefore, as we focus on the compe-
tition between the two phases, we can still follow the spirit
of Landau, by treating C3 indices θ1,2 as the relevant “macro-
scopic” variables for our simplified model, and then study how
the symmetry of the system constrains the ground-state energy
as a function of θ1,2.

Note that theC3 index is defined modulo 3. The angular na-
ture of θ1,2 demands that the ground-state energy be invariant
under θ1 → θ1 + 2nπ , θ2 → θ2 + 2mπ , which constrains the
effective model to be of the form of a two-site and three-state
classical Potts model,

Heff = − J+ cos(θ1 + θ2 − φ+) − J− cos(θ1 − θ2 − φ−)

+ h1 cos(θ1 − φ1) + h2 cos(θ2 − φ2). (10)

In the absence of moiré potential, the Hamiltonian is fur-
ther constrained by a translational symmetry that translates
the center of the hexagonal moiré unit cell to its corner
(see Fig. 11 below). This translation alters the C3 indices at
two MBZ corners in opposite directions, namely, θ1 → θ1 +
2π/3, θ2 → θ2 − 2π/3. The proof is detailed in Appendix C.
Therefore, the only term allowed by symmetry is

Heff = −J cos(θ1 + θ2 − φ) = −J cos

(
2πC

3
− φ

)
. (11)

We note that in more generic settings, where all high symme-
try momenta are “activated” (meaning hybridization between
k and k + G is strong), the model should involve three sites,
which may have richer physics because of frustration. But in
this paper, we will stick to this simple and experimentally
relevant two-site model. We emphasize again that the sim-
plified model Eq. (11) is different from the standard Landau
framework. This is not a theory for low-energy fluctuations;
rather it only captures the competition between the nine local
minima of energy topography, which appear whenC3 symme-
try is enforced. In the usual Landau framework, high-energy
fluctuations are integrated out to generate a low-energy effec-
tive Landau energy function. Here, in the same spirit, we find
energy minimum in the space of the C3 indices.

VI. APPROXIMATE CALCULATIONS OF “LANDAU
THEORY” PARAMETERS USING SIMPLIFIED MODELS

In this section, we discuss methods to extract the Landau
theory parameters from microscopics. We begin with the sim-
plest treatment, which only considers the MBZ corners, and
study the pseudopotential that directly couples the respective
“order parameters” θ1,2. We show this treatment is insufficient
to understand the microscopic phase diagram, as it fails to
account for the role of the MBZ edges. In fact, the interaction
mediated by the connecting edges dominates over the direct
coupling between corners. We demonstrate this through a
modified low-energy model, which resembles a superconduct-
ing ring in momentum space.

A. Pseudopotential interactions for MBZ corners

Focusing on the direct interaction between MBZ corners,
we derive the Landau parameters J and φ within Hartree-Fock

FIG. 5. Hartree, Fock and Hartree+Fock phase diagrams based
on the simplified pseudopotential Eq. (12).

theory. This procedure amounts to rewriting the interaction in
terms of pseudopotential in angular momentum channels for
the MBZ corners. The resulting Hartree-Fock energy is

HHF = −2

3
�[(−V (G)λ2

K0,K1
+V (K )λ2

K0,K̄1

)
ei(θ1+θ2 )] (12)

where V (q) is the interaction amplitude, and λk,k′ = 〈uk|uk′ 〉
is the form factor for the noninteracting continuum band. �G is
a vector that connects two C3 related K points in the MBZ
while �K is a vector that connects two adjacent corners of
the MBZ. These two terms come from Hartree and Fock,
respectively. Eq. (12) leads to a Chern number

C ≡ −
3 arg

(−V (G)λ2
K0,K1

+V (K )λ2
K0,K̄1

)
2π

(mod 3). (13)

We leave the details of this calculation to Appendix D. Using
this, we confirm the intuition from Sec. IV that the Hartree
term favors AHC over WC throughout the phase diagram [see
Fig. 5(a)], which explains the shift of phase boundary between
Figs. 3(b) and 3(c).

However, this model turns out to make poor predictions for
the role of Fock terms. As we show in Fig. 5, the predicted
Fock and Hartree-Fock phase diagram from this simplified
model is far from the microscopic mean-field calculations in
Figs. 3(b) and 3(c).

B. Modified treatment for the Fock term: Superconducting ring
in momentum space and Berry curvature rounding

The pseudopotential model in Sec. VI A fails to correctly
describe the microscopic phase diagram. Meanwhile, we have
not yet provided a concrete explanation for the Berry curva-
ture rounding, which we invoked to explain the Fock phase
diagram [Fig. 3(b)]. In this section, we kill two birds with
one stone by proposing a modified low-energy model, which
enables us to derive the phenomenon of Berry curvature
rounding. Therefore, this modified model captures the rele-
vant physics and predicts the microscopic Hartree-Fock phase
diagram to a significantly improved precision.

To make progress, we reflect on the approximations in
Sec. VI A and Appendix D. This treatment is crude in the
sense that we focused on the MBZ corners, and approximated
the Bloch function in their neighborhood to be uniform. This
is incorrect since the microscopic low-energy degree of free-
dom is the phase of the crystalline order parameter �G(k) =
〈c†

kck+G〉, which is not restricted to the corner regions, but
instead remains appreciable around the entire MBZ boundary.
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In the approximation of Sec. VI A, the small momentum scat-
tering contributes completely trivial Fock energy, i.e., does not
lift the degeneracy between AHC and WC. This statement is
again risky: The Fock term is in fact dominated by the small-q
scattering, since both the Coulomb potential and the form
factor may decay rapidly with q.

In the following, we propose a modified effective model to
study the competition between AHC and WC by accounting
for all the edges of MBZ. This model demonstrates the crucial
role of small-q scattering. We show that the model can be
viewed as a momentum space analog of a superconducting
ring in a magnetic field, which gives an intuitive understand-
ing of the Berry curvature rounding phenomenon.

Within each edge, there is one specific order parameter
�G(k), which is treated as an XY field on a 1D wire. The Fock
term couples XY fields at different k’s, which is identified
as a Josephson coupling. In Appendix F, we show that this
coupling is local in k space. Crucially, the Berry gauge con-
nection of the continuum band enters the Fock term through
the form factor, so that this k-space Josephson coupling is
gauge invariant,

HFock = −
∑
k,q

Ṽ (q,k)�∗
G(k + q)�G(k)

× ei
∫ k+q
k dq′·(A(q′ )−A(q′+G)) (14)

where Ṽ (q,k) is k dependent because it has absorbed the
magnitude of form factor.

As a result, we identify this model as essentially a nar-
row superconducting ring under a background magnetic field.
Note that the effective gauge field is defined by the noninter-
acting band, and is therefore not dynamical. This situation is
analogous to the Little-Parks experiment where a supercon-
ducting thin cylinder is pierced by a background magnetic
field, such that the winding of the superconducting order
parameter is given by the rounding of the piercing flux.

Finally, the effective model defined on the Hilbert space
of MBZ corner can be extracted by integrating out the fluc-
tuations in “superconducting” wires connecting them [see
Fig. 6(b)]. We leave the detailed derivation of this model to
Appendix F and simply state the resulting effective Hamilto-
nian

HFock[C] = J̃

(
C − 3m − 
BZ

2π

)2

(15)

where m always takes the integer value that minimizes EFock,
which makes the Hamiltonian periodic under C → C + 3.
This shows that the Chern number is always rounded to
the closest integer to 
BZ

2π
, and also predicts the analogous

Little-Parks oscillation when 
BZ is tuned. Note that Eq. (15)
is consistent with the C dependence predicted by the phe-
nomenological model in Eq. (11).

The theory of Berry curvature rounding is indeed a general
statement one may make to determine the Chern number
of an interaction-renormalized band from its parent non-
interacting band structure. Indeed, this is not restricted to
R5G/hBN. For example, one can understand the observed
reduction of the noninteracting Chern number to |C| = 2 in
R3G/hBN at ν = −1 [1] as an intermediate regime between

FIG. 6. Superconducting ring model. (a) The crystalline order
parameter is distributed in a ring-shaped region in momentum space.
The low-energy theory is effectively a superconducting ring subject
to a background magnetic field, defined by the Berry curvature of the
unfolded band. (b) The interaction between corners is generated by
integrating out the “superconducting wire” connecting them.

the strongly interacting (where one obtains |C| = 1) and
weakly interacting regime (where one obtains |C| = 3). This
entails that the moiré potential is not completely dominated by
the interaction energy scale in this intermediate regime. The
strong-interacting limit can in fact be understood in a similar
fashion to R5G/hBN, where the size of the moiré unit cell
ensures that the central π flux of the parent noninteracting
band lies within the MBZ. Microscopically, this intermediate
regime may occur in R3G since the moiré potential can be
significant enough to compete with interaction; in R3G/hBN
the displacement field energy is not as large (as compared to
R5G/hBN) to expel the electrons completely away from the
hBN layer.

VII. COMPETING FERMI LIQUID AND HALL
CRYSTAL PHASES

In the absence of the moiré potential, a natural candi-
date for the ground state (in addition to the aforementioned
Wigner/Hall crystal states) is the Fermi liquid, which pre-
serves translational symmetry. To provide a quantitative
comparison of the crystal and liquid states in the moiréless
setting, we examine their competition within the framework of
Hartree-Fock theory. To that end, the Hall crystal is signified
by the breaking of the translational symmetry by selecting (in
momentum space) a reciprocal lattice vector G. As a standard,
we take the reciprocal lattice vector to correspond to that of a
moiré unit cell with hBN aligned at the experimentally rele-
vant twist angle 0.77◦. In the framework of mean-field theory,
this corresponds to 〈c†

α,k+Gcβ,k〉 �= 0, where the Greek indices
indicate a generalized spin/valley/band degree of freedom.
The Fermi liquid, on the other hand, preserves continuous
translation symmetry; this corresponds to the mean-field den-
sity matrix 〈c†

α,kcβ,k〉 �= 0.
At the level of Hartree-Fock, the Fermi liquid state is

found to be higher in energy than Hall crystal by ∼5 meV
per unit cell (see Fig. 18 in Appendix H). This may naively
suggest that the moiré-less setting is partial to the formation
of the electronic crystal phase. However, it is important to
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emphasize that the above quantitative comparison is within
the framework of Hartree-Fock theory, and it is important to
re-evaluate the FL-AHC competition beyond Hartree-Fock as
we elaborate below.

VIII. BEYOND HARTREE-FOCK: COMMENTS ON THE
TRUE PHASE DIAGRAM AND ON PHENOMENOLOGY

In jellium, Hartree-Fock theory famously severely overes-
timates [43,44] the stability of the Wigner crystal. It predicts
that the WC crystal forms at an rs ≈ 1.2 − 1.4 (rs = l

a0
is the

ratio of the interelectron spacing l with the Bohr radius a0, and
is the standard measure of the ratio of kinetic and Coulomb
energies for quadratically dispersing bands). Detailed Monte
Carlo calculations [45,46], however, show that the true tran-
sition to the WC does not occur till an rtrue

s ≈ 30. For large
values of rs < rtrue

s , the ground state is a strongly correlated
Fermi liquid. This state is stabilized relative to the WC by
a very small energy [46] [about a fraction of O(10−3) over
a large range of rs ]. This tiny stabilization energy can be
rationalized by noting that, at short distances and short times,
the liquid behaves essentially the same as the solid and thus
the two states have the same potential energy. At late times,
however, the liquid can flow, and this presumably leads to a
slight lowering of the kinetic energy compared to the crystal.
This observation underlies a picture of the strongly correlated
Fermi liquid as an “almost localized” or “nearly frozen” liquid
[47,48], as appreciated a long time ago for ordinary liquids
[49].

Moiré-enabled AHC. Returning to R5G, we expect a sim-
ilar situation. Consider the phase diagram at a density where
the Hall crystal is stabilized in the Hartree-Fock approxima-
tion. Let g be a dimensionless parameter that measures the
ratio of Coulomb (U ) and kinetic (W ) energies. The Coulomb
scale is U = e2

εl where ε is the dielectric constant, and l is
the interelectron spacing. The scale W for the kinetic energy
can be taken to be the bandwidth within the first MBZ with
the moiré potential turned off. Then we expect that the true
gtrue
c at which the transition [50] to the Hall crystal occurs

to be (substantively) larger than the Hartree-Fock gHF
c . This

is depicted schematically in Fig. 7. For gHF
c < g < gtrue

c , we
expect that the ground state is a correlated Fermi liquid that
is “almost localized”. Further, we expect that the ground-state
energy per particle of the Fermi liquid is smaller by only a
small amount compared to that of the Hall crystal.

We leave the precise phase diagram as an interesting target
for future numerical work using, say, variational Monte Carlo
methods. For now, consider the phase diagram in the presence
of a periodic moiré potential. The expected small stabilization
energy of the Fermi liquid over the Hall crystal implies that
even a weak moiré potential will induce a transition from
Fermi liquid to a Chern insulator. This is because the Hall
crystal gains commensuration energy in the moiré potential,
which will overcome the small energy by which the Fermi liq-
uid is stabilized. To see this, consider the energy (per particle)
of both the Fermi liquid and the Hall crystal. We denote these
EFL(g,VM ) and EHC (g,VM ) respectively. At the (first order)
FL-HC transition at VM = 0, we have

EFL
(
VM = 0, gtrue

c

) = EHC
(
VM = 0, gtrue

c

)
. (16)

gHF
c gtruec

0

� 1

VM

W

g ∼ U/WCorrelated
Fermi Liquid

Hall
Crystal

Moiré-enabled
Hall Crystal

R5G/hBN

FIG. 7. Schematic phase diagram showing the competition be-
tween the Fermi liquid and the Hall crystal, both at zero and nonzero
moiré potential strengthVM . The parameter g is a measure of the ratio
of Coulomb (U ) to kinetic (W ) energies. Even if the Hall crystal is
not the true ground state (beyond Hartree-Fock), it can be stabilized
by a weak moiré potential, a state we denote the moiré-enabled Hall
crystal. A possible location of R5G/hBN is indicated by the green
star at a not-too-high displacement field. The dashed-green lines in-
dicate the possible fate of the system under increasing displacement
field. The evolution may either move the system into the pristine
AHC phase g > gtrue

c weakly pinned by the moiré potential, or fall
short and land in the FL phase with g < gtrue

c .

As g decreases slightly below gc, we will have

EFL(VM = 0, g) = EHC (VM = 0, g) − a
(
gtrue
c − g

) + · · ·
(17)

with a > 0, and the ellipses represent higher-order terms in
(gtrue

c − g). Now let us consider the energies when a small VM
is turned on. The crystal will lower its energy at linear order
in VM ,

EHC (VM, g) = EHC (VM = 0, g) − bVM + · · · (18)

where now the ellipses represent higher order terms inVM , and
b > 0. However, the Fermi liquid will only have a change at
quadratic order in VM ,

EFL(VM, g) = EFL(VM = 0, g) − c(VM )2 + · · · (19)

with c > 0. Thus the Hall crystal will win over the Fermi
liquid when

bVM − cV 2
M > a

(
gtrue
c − g

)
. (20)

It follows that the phase boundary will have the shape shown
in Fig. 7. (For a recent numerical study [51] of a similar phase
competition between the FL and the ordinary WC in TMD
moire materials, see Ref. [52]). Further, we expect that even
somewhat far below gtrue

c , the critical VM needed to stabilize
the Hall crystal is small. The moiré induced FL to (pinned)
Hall crystal state will be first order (at least with a screened
Coulomb interaction).

We call the Chern insulating state induced byVM a “moiré-
enabled AHC”. This state is likely stable over a much wider
range of the phase diagram than the pristine AHC, which
exists in the strictly translation-invariant system.

We do not of course know where R5G/hBN sits in this
phase diagram, but it is conceivable that in a range of displace-
ment fields, it is in the moiré-enabled AHC regime (denoted
by green star in Fig. 7). If that is the case, the moiréless
(i.e., unaligned R5G) will be a Fermi liquid metal (with
spin/valley polarization). Aligning with hBN will, in a range
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of twist angles, push the system across the phase boundary to
the moiré-enabled AHC. So long as the effective VM felt by
the electrons in the occupied layers is small (as is expected
at the large displacement fields needed to stabilize the QAH
states in R5G), the charge gap of the moiré-enabled AHC state
will be determined by the strength of the Coulomb interaction,
and not by the strength of the moiré potential. Thus, even if the
moiré is needed to stabilize the Chern insulator, the physics is
still primarily determined by the Coulomb interactions. The
sole role of the moiré potential is to tip the delicate balance of
energy between the Fermi liquid and Hall crystal.

Note that increasing the displacement field has a number of
different effects: It changes the ratio of kinetic and Coulomb
energies and thus increases g; it also reduces the effective VM
as the conduction electrons get driven further away from the
aligned hBN side; finally, it also changes the Berry curvature
distribution. Changing Berry curvature is not included in the
schematic phase diagram Fig. 7; we have already discussed
its role in determining the selection between the AHC and the
ordinary WC. In the context of Fig. 7, increasing |ud | thus
corresponds to both increasing g and decreasing VM , which
thus pushes the system closer to the pristine AHC, but may
also take it back to the FL.

Doping away from commensuration. It is also very interest-
ing to ask what happens at densities that are not commensurate
with the moiré potential, assuming we are at g < gtrue

c . For
instance, consider decreasing the density so that if any crystal
forms it will have a larger lattice spacing than the moiré po-
tential. If the density deviation from the commensurate value
is small, we may expect that the crystal pays the cost of the
extra elastic energy to lock its period to the moiré lattice so
as to gain commensuration energy. The density deficit will
then be accommodated by a nonzero density of vacancies
(equivalent, in a weak-coupling picture, to “doping the Chern
band”). Such a state may still overcome the Fermi liquid if the
commensuration energy is big enough. These vacancies (i.e.,
the doped holes) can then form FQAH states at the suitable
fillings. Alternately, if g is not close enough to gtrue

c , the Fermi
liquid may win out at the lower density and the system forms
a metallic state. The locking to the moiré potential becomes
less likely the lower the density is. Thus at low densities
(well below ν = 1) the primary competition will be between
the Fermi liquid and a crystal (either AHC or WC) that has
its natural intrinsic period. However, from the Hartree-Fock
calculations, we also know that at low density (i.e., low θ ),
the WC is favored over the AHC as the Berry curvature in
the first MBZ of the noninteracting band is small. Thus at
densities well below ν = 1, the two main players will be the
Fermi liquid and the WC with the latter winning at the lowest
densities. These expectations are qualitatively consistent with
the phase diagram reported in Ref. [11].

A more radical possibility is that of a fractional AHC,
where even for g > gtrue

c and in the absence of moiré, the sys-
tem prefers to lock in a specific density and accommodate any
density deficit through vacancies that form an FQAH state.
While we are not aware of a strong reason forbidding such a
state to exist, it is likely not stable energetically at densities so
low that half the lattice is empty. Thus, this possibility may not
be supported in the current experiments where FQAH states
are seen down to filling ν = 2/5; however, it is an interesting

possibility that could be relevant as more RnG systems are
studied.

Disorder effects. Finally, we briefly discuss what we might
expect in moiré-less R5G in the presence of weak disorder.
If the ground state in the clean limit is an AHC, then it
will be randomly pinned by the impurities (and long-range
crystalline order will be lost). The resulting state will be a
disordered IQAH insulator. If g < gtrue

c , and the ground state is
a correlated Fermi liquid, then locally near each impurity, we
might expect, for the same reason as above, that the delicate
balance between FL and AHC is tipped in favor of the AHC
beyond a nonzero but small value. Thus, we expect puddles
of randomly oriented AHC to nucleate within the metallic
state (ignoring Anderson localization effects, which will not
set in up to parametrically larger scales for weak disorder).
At stronger disorder strength, there will be a transition to the
disordered IQAH insulator.

In transport experiments, the sliding motion of the ideal,
clean AHC will lead to an infinite longitudinal conductivity,
and a finite Hall conductivity (so that the Hall resistivity is
zero). Once the AHC is pinned, either by a periodic poten-
tial, or by disorder, the DC longitudinal conductivity at low
bias voltage will be zero while the Hall conductivity will be
quantized, exactly as expected of an IQAH insulator. In the
clean Fermi liquid metallic state, with very weak disorder,
the Berry curvature enclosed within the Fermi surface (
B)
will lead to an anomalous Hall conductivity σ FL

xy = e2

h

B
2π

but
this will be much smaller than the longitudinal conductivity
σ FL
xx = e2

h (KF lm f ) (KF is the Fermi momentum and lm f is the
mean free path) so that the Hall resistivity will be small. As the
disorder increases, there will be the puddles of AHC nucleated
by the disorder, which will presumably lead to an enhanced,
but not quantized, Hall resistivity.

IX. ROUTES TO HIGHER CHERN BANDS IN
ELECTRON-DOPED RNG

The discussion of the interaction-induced Chern
band/AHC in RnG has primarily focused on fully/partially
filling a |C| = 1 band [12–14]. In this section, we
examine the possibility of finding (within Hartree-Fock)
similar interaction-induced IQAH states with |C| > 1 for
electron-doped RnG. We explore two routes where such a
|C| > 1 state may occur. In the calculations below, we have
included the warping terms that have been ignored so far.

Firstly, we consider the Hartree-Fock phase diagram in
R5G/hBN as a function of the twist angle (θ ) and the strength
Vm of the moiré potential. Although naively the microscopic
moiré potential is fixed by the alignment to the hBN, there
is uncertainty on details like the lattice relaxation that may
modify it. Thus, we simply take the overall magnitude of
VM as a tuning parameter to illustrate the possibilities. We
present in Fig. 8 the HF-phase diagram for these moiré tuning
parameters, where we depict the Chern number, bandwidth,
and gaps of the active band. As seen, for the naive moiré
strength, the |C| = 1 state is the only state that is well iso-
lated; the ‘’crossed” out yellow boxes in the Chern number
indicate cases where the global bandgap is zero (<0.5 meV),
while the direct band gap is still nonzero (i.e., there is an
indirect band gap and the system is metallic). However, with
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FIG. 8. Hartree-Fock bands indicating Chern number and band-
width of the active band, global band gap, and direct band gap to
nearest conduction band for twist angles (θ ) and moiré potential
strengths (Vm) of the full 10-orbital model (including all warping
terms). The displacement field energy is ud = −36 meV, and the
dielectric constant is ε = 8. The Chern number is well defined when
the direct band gap is nonzero (�0.5 meV). The “crossed” out yellow
boxes in the Chern number indicate cases where the global bandgap
is zero (< 0.5meV), while the direct band gap is still nonzero (i.e.,
there is an indirect band gap—the system is metallic). Phase dia-
grams are for a mesh of 21 × 21, with four conduction bands in total
(one active band and three remote bands above), and constructed
using 19 moiré Brillouin zones, and generated using at least six
distinct initial mean-field ansatzes for a given parameter point.

an enhanced moiré potential to open up the band gap, we can
obtain high Chern number bands that are well isolated. In
these regions, the mean-field bandwidth is ∼20 meV, with a
direct gap of ∼5 − 10 meV (and a global gap of 3 − 6 meV).
In particular, topologically nontrivial bands of |C| = {2, 5}
are formed.

Secondly, we examine the regime of strong interactions
(enabled by imagining decreasing the dielectric constant
ε) without warping terms. We present in Fig. 9 the pos-
sible Chern numbers as a function of twist angle and
displacement field energy for enhanced electron-electron in-
teractions. Once again, in addition to |C| = 1 state, higher
Chern bands are found to develop, for increasing twist
angles.

These routes that lead to bands with enhanced Chern num-
ber provide the intriguing possibility to realize incompressible
states by fully/partially filling these higher-Chern bands. We
hope that these results provide enough motivation for future
experimental studies of the higher twist-angle region, and
more detailed theoretical modeling.

X. DISCUSSION

In this paper, we examined the origins of the interaction-
induced IQAH in R5G/hBN, and the closely related AHC in

FIG. 9. Phase diagrams in θ − ud space indicating the Chern
number, obtained with the same noninteracting parameters as in
Fig. 3, but with an enhanced interaction ε = 2 (as compared to
ε = 6). This result is obtained for the simplified model without
warping terms. We use a momentum mesh of 18 × 18, and include
four conduction bands.

moiréless R5G. Focussing on an effective continuum model
of R5G, we trace the origin of |C| = 1 band to the appre-
ciable flux contained about the zone center and the crucial
but differing roles played by the Hartree and Fock interaction
terms. At a slightly larger alignment angle (or equivalently
charge densities corresponding to lattice filling ν = 1) than
in current experiments, the Fock term alone is enough to
both open a band gap and to endow the occupied band with
Chern number. At lower alignment angles, including the one
in current devices, the Fock term opens the gap while the
preference for the nonzero Chern number comes from the
Hartree term.

We reiterate that, although the “dangling edge” model of
pentalayer graphene (effective k5-two-orbital model) captures
the ring-like feature of the continuum Berry curvature, it
importantly misses on the approximately −π -Berry flux con-
tained about k = 0, that becomes ever-increasingly important
at large displacement fields.

Examination of the continuum model, in the absence of
trigonal warping terms (that are included in quantitative stud-
ies of multilayer graphene) and the moiré potential, provides
a remarkably intuitive understanding of the Hartree-Fock re-
sults. For large (0.9◦ < θ < 1.5◦) twist angles, where the
MBZ boundary intersects the Berry-curvature ring, the MBZ
contains appreciable Berry flux (between π and 3π ), leading
the Fock term to merely introduce band gaps and shunt the
subsequent flux to the closest integer. The rounding of Berry
curvature is analogous to the vortex quantization in the Little-
Parks experiment, as is made explicit by the “superconducting
ring” model.

At the intermediate twist-angle regime, relevant for the
existing experiments [11], the importance of the Hartree
interaction in developing a |C| = 1 band is understood heuris-
tically in terms of the topologically nontrivial band possessing
more spread-out charge distribution. Our simplified model
provides a quantitative justification for this conclusion.

The ultimate fate of the non-moiré and the moiré R5G
relies on the competition of correlated Fermi liquid, Wigner
crystal, and anomalous Hall crystal states. In addition
to Hartree-Fock estimates of the energy differences, we
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discussed simple expectations for what may happen beyond
Hartree-Fock. Specifically, even if a correlated FL, rather than
the AHC, is the true ground state in moiréless RnG, even
a very weak moiré potential can tip the Hall crystal to be
lower in energy over the Fermi liquid state. This is because
we anticipate that, in the moiréless setting (by analogy with
the usual two-dimensional electron fluid), the FL and AHC
will likely have very similar ground-state energy, and the AHC
can gain commensuration energy from the periodic potential.
This simple observation allows us to envision the possibility
that such a moiré-enabled AHC (if not the pristine AHC itself)
occupies a wide region of the phase diagram (at the fixed
density corresponding to ν = 1, as a function of interaction
strength and moiré potential strength), even beyond Hartree-
Fock. It is clearly important to study these questions with
robust numerical methods (such as variational Monte Carlo)
in the future.

Finally, by exploring the phase diagram at slightly larger
alignment angles than in current devices, we suggest that it
may be possible to stabilize interaction-induced higher Chern
bands/AHCs in electron-doped RnG, which too will be inter-
esting to study further in the future.

Recently, three interesting papers that overlap with ours—
Refs. [53–55]—appeared. Reference [53] studies the compe-
tition between AHC and WC through a pseudospin model
defined in k-space. Reference [54] studies a toy model with

constant Berry curvature where the Fock term alone stabi-
lizes an AHC. Reference [55] considers the specific setting
appropriate to RnG, and introduces a hot-spot model for the
MBZ corners to discuss the stability of the AHC with some
rough similarities to our discussion.
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APPENDIX A: FULL-10 BAND TIGHT-BINDING MODEL
FOR PENTALAYER GRAPHENE

For clarity, we present the full-10 band tight-binding model
(for a given valley K/K ′ and spin ↑ / ↓) for pentalayer
graphene (see also Ref. [12]),

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ud v
†
0 v

†
4 v3 0 γ2

2 0 0 0 0
v0 2ud + δ γ1 v

†
4 0 0 0 0 0 0

v4 γ1 ud + ua v
†
0 v

†
4 v3 0 γ2

2 0 0
v

†
3 v4 v0 ud + ua γ1 v

†
4 0 0 0 0

0 0 v4 γ1 ua v
†
0 v

†
4 v3 0 γ2

2
γ2

2 0 v
†
3 v4 v0 ua γ1 v

†
4 0 0

0 0 0 0 v4 γ1 −ud + ua v
†
0 v

†
4 v3

0 0 γ2

2 0 v
†
3 v4 v0 −ud + ua γ1 v

†
4

0 0 0 0 0 0 v4 γ1 −2ud + δ v
†
0

0 0 0 0 γ2

2 0 v
†
3 v4 v0 −2ud

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where we employ the basis of (A1,B1,A2,B2,A3,B3,A4,B4,

A5,B5). We have also used the notation of vi =
√

3
2 tl (±kx +

iky) for the monolayer graphene form factors, where kx,y are
small momenta expanded about the valley of interest, and the
layer is denoted by l . Note that γl ≡

√
3

2 tl . In the main text,
γ1,2,3,4 are referred to as “warping terms”, which correspond
to the trigonal warping of rhombohedral graphene. We direct
the reader to Ref. [12] for the model parameter values.

APPENDIX B: DENSITY PROFILE OF BLOCH FUNCTION
AT HIGH-SYMMETRYMOMENTUM

In the following, we formulate a theory by estab-
lishing connections between the symmetry indices at the
high-symmetry momenta and the density profile of the cor-
responding Bloch functions.

To begin with, the eigenstate for the mean-field Hamilto-
nian at the KM point is

ψKM (r) =
∑

i=1,2,3

αiψKi (r) (B1)

where KM is the moiré K point measured from the graphene
Dirac point KD corresponding to valley +, and Ki’s are
the three equivalent moiré K points. The 10-component
wavefunction ψk(r) = ei(k+KD )ru0

k(r) is the plane wave corre-
sponding to the lowest conduction band (denoted by 0) of the
continuum model. Expressed in the 10-orbital basis described
in Sec. II, the periodic Bloch function is u0

k(r) = (uA1k, uB1k,

uA2k, uB2k, uA3k, uB3k, uA4k, uB4k, uA5k, uB5k )T . Alternatively,
one can express the Bloch function u0 in real space, instead
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of the 10-orbital basis,

u0
k(r) =

∑
n

u0
n,k(r) =

∑
n,R

un(k)δ2(r − rn − R), (B2)

where r is a three-dimensional position vector, R labels the
R5G unit cell, and rn is the displacement of the nth of the
orbital (in the 10-orbital basis) within the R5G unit cell.

The prominentC3 axis is defined to run through a B5 site at
r = 0, and its corresponding operation is

r → C3 ◦ r. (B3)

This operation transforms ψKM (r) into

C3 ◦ ψKM (r) = ψKM (C3 ◦ r) =
∑

i=1,2,3

αiψKi (C3 ◦ r). (B4)

We note that there is a gauge degree of freedom ψk → ψkeiθk .
To fix a gauge, we demand that the plane wave solution for
the continuum model preserves C3, explicitly

ψk(C3 ◦ r) = ψC−1
3 ◦k(r), (B5)

so that there is no ambiguity for k = �. With this gauge
choice, from Eq. (B4) we immediately get

C3 ◦ ψKM (r) =
∑

i=1,2,3

αiψKi (C3 ◦ r) =
∑

i=1,2,3

αi+1ψKi (r)

(B6)
where we have made the convention Ki+1 = C3 ◦ Ki. The con-
clusion from Eq. (B6) is striking: The C3 operation cyclically
permutes the coefficients (α1, α2, α3). TheC3 permutation has
an eigenvalue of −1, 0, 1.

The eigenvalues of theC3 operation provide the location of
the peak of the Bloch function (of KM) in the moiré unit cell.
For this purpose, we separate out the fastly varying momen-
tum KD from the global phase,

ψKM =
∑
i

αiψKi (r) = eiKDr
∑
i

αie
iKiru0

Ki
(r), (B7)

to obtain the amplitude on orbital n,

∣∣ψn
KM

(r)
∣∣ =

∣∣∣∣∣
∑
i

αie
iKirunKi

∣∣∣∣∣. (B8)

From the gauge choice of Eq. (B5), the C3 transformation on
the periodic part of the Bloch function (unKi for i = 1, 2, 3)
generates a relative phase,

C3 ◦ ψKi (r) = ei(Ki+KD )·(C3◦r)u0
Ki

(C3 ◦ r)

= eiC
−1
3 ◦(Ki+KD )·ru0

Ki
(C3 ◦ r)

= ei(Ki−1+KD )·r(eiGg·ru0
Ki

(r)
)

(B9)

≡ ψC−1
3 ◦Ki

(r)

= ei(Ki−1+KD )·ru0
Ki−1

(r). (B10)

To obtain Eq. (B9), we have used the periodic nature of
u0
Ki

(r), and C3 ◦ r = r(mod R), and C−1
3 ◦ KD = KD + Gg,

where Gg is a reciprocal lattice vector for the graphene
lattice. Then it becomes clear that the bracketed term in

FIG. 10. Real-space B4 and B5 density profile for Bloch func-
tions at high-symmetry momentum. With the Hartree term included,
the B5 orbitals repel and the density profile is spread out to different
regions of the moiré unit cell, while the B4 orbitals overlap. Without
the Hartree term, the Fock energy is reduced by overlapping B5

orbitals. These results are obtained for θ = 0.7◦, ud = −30 meV,
and with a very weak moire potentialCAA = CBB = 1 meV to pin the
wavefunction to high-symmetry positions in the unit cell.

Eq. (B9) is

eiGg·ru0
Ki

(r) = eiGg·r
∑
n,R

unKiδ
2(r − rn − R)

=
∑
n,R

eiGg·rnunKiδ
2(r − rn − R), (B11)

where we employ the delta-function constraint. Comparing
Eq. (B9) with (B10), and combining with Eq. (B11), we find
the relation between the 10-component Bloch state vector unk
to its C3 transformed counterpart (un(C3◦k)),

un(C3◦k) = Snnunk (B12)

where S is a diagonal matrix S = e−iGg·rn = diag(ω2, ω1,

ω1, 1, 1, ω2, ω2, ω1, ω1, 1), with ω = ei2π/3. This leads to

unKi+1 = SnnunKi . (B13)

Thus, for a Bloch state withC3 symmetry index L, we have the
corresponding eigenvalues α = (1, ωL, ω2L ). The correspond-
ing amplitude is

ρn
KM

(r) = ∣∣ψn
KM

(r)
∣∣2 ∼

∣∣∣∣∣∣
∑

j=1,2,3

ω jLS j
nne

iK jr

∣∣∣∣∣∣|unK1 |2. (B14)

The peak location is where the three plane waves construc-
tively interfere.

For example, for a state with C3 index L = 0, the density
profile on orbital B5 (meaning Snn = 1) peaks at origin r =
0, while for L = 1, the peak of B5 density shifts to a corner
of the hexagonal moiré unit cell r1, which satisfies eiK jr1 =
ω− j , so that the j-dependent phase e jL gets canceled at r1.
Similarly, the peak of density for orbital B5 and B4 are located
at different high-symmetry locations in the hexagonal moiré
unit cell (see Fig. 10).
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FIG. 11. Definition for translation vectors.

Finally, note that KM and K̄M are connected through a C2

rotation. As their symmetry indices interpolate from L = 0 to
L = 1, the peaks for ρn

KM
(r) and ρn

K̄M
(r) get shifted from the

origin to opposite corners of the hexagonal moiré unit cell.
As a result, nontrivial C3 indices at KM and K̄M would reduce
the Hartree energy between these two Bloch states, because of
minimizing the wavefunction overlap. This is why the Hartree
term selects the set of symmetry indices to be (L�,LK,LK̄ ) =
(0, 1, 1), which gives C = −1.

APPENDIX C: EFFECT OF TRANSLATION ON
THEC3 INDICES

In this Appendix, we explain how the translation operation
transforms the C3 indices at KM and K̄M points. This data
is useful in containing the possible terms in the simplified
model for competing crystalline states (see Appendix D).
Under C3 rotation, the wavefunction for moiré band
transforms as

C3

∣∣ψKM

〉 = ωl
∣∣ψKM

〉
, (C1)

C3

∣∣ψK̄M

〉 = ωs
∣∣ψK̄M

〉
, (C2)

where l and s are the C3 indices for KM and K̄M . Under
translation,

Ti
∣∣ψKM

〉 = ωi
∣∣ψKM

〉
, (C3)

Ti
∣∣ψK̄M

〉 = ω−i
∣∣ψK̄M

〉
, (C4)

where Ti+3 = Ti, C3TiC
−1
3 = Ti+1, i = 0, 1, 2 corresponds to

the three equivalent corners of the moiré unit cell (see Fig. 11).
Note

C3Ti = C3TiC
−1
3 C3 = Ti+1C3. (C5)

FIG. 12. Labeling for MBZ corners.

Therefore,

C3
(
Ti
∣∣ψKM

〉 ) = Ti+1C3

∣∣ψKM

〉 = ωl+i+1
∣∣ψKM

〉
= ωl+1

(
Ti
∣∣ψKM

〉 )
, (C6)

C3
(
Ti
∣∣ψK̄M

〉 ) = Ti+1C3

∣∣ψK̄M

〉 = ωs−i−1
∣∣ψK̄M

〉
= ωs−1(Ti ∣∣ψK̄M

〉 )
. (C7)

We have seen that the translations transform the C3 indices at
(KM, K̄M ) into

Ti : (l, s) → (l + 1, s − 1). (C8)

APPENDIX D: PSEUDOPOTENTIAL IN ANGULAR
MOMENTUM CHANNELS

Continuing from Sec. V in the main text, in this section we
detail the derivation of constants J and φ in the simplified
model Eq. (11). We first provide a deliberately careful deriva-
tion. For readers who favor a more compact derivation, we
direct them to start from Eq. (D17).

We begin with the interacting term of Hamiltonian pro-
jected to the lowest conduction band of the continuum model

H =
∑
q,k,k′

Vqλk,k+qλk′,k′−qc
†
kc

†
k′ck′−qck+q (D1)

where λk,k′ = 〈uk|uk′ 〉 is the form factor. We focus on the
terms within the Hilbert space of two MBZ corners KM

and K̄M . In the following, we will denote the two sets of
equivalent momentum at two corners of BZ as Ki and K̄i,
where i = 0, 1, 2 and Ki+1 = C3Ki, Kn+3 = Kn (see Fig. 12),

H =
∑
nn′mm′

VKn−Kn′ λKn,Kn′ λKm,Km′ δ
2(Kn − Kn′ + Km − Km′ )c†

Kn
c†
Km
cKm′ cKn′

+ VKn−Kn′ λKn,Kn′ λK̄m,K̄m′ δ
2(Kn − Kn′ + K̄m − K̄m′ )c†

Kn
c†
K̄m
cK̄m′ cKn′

+ VKn−K̄n′ λKn,K̄n′ λK̄m,Km′ δ
2(Kn − K̄n′ + K̄m − Km′ )c†

Kn
c†
K̄m
cKm′ cK̄n′

+ VKn−K̄n′ λKn,K̄n′ λKm,K̄m′ δ
2(Kn − K̄n′ + Km − K̄m′ )c†

Kn
c†
Km
cK̄m′ cK̄n′ + (K ↔ K̄ )

=
∑
nn′mm′

VKn−Kn′ λKn,Kn′ λKm,Km′ (δnn′δmm′ + δnm′δn′m − δnn′mm′ )c†
Kn
c†
Km
cKm′ cKn′

+ VKn−Kn′ λKn,Kn′ λK̄m,K̄m′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′ )c†
Kn
c†
K̄m
cK̄m′ cKn′

− VKn−K̄m′ λKn,K̄m′ λK̄m,Kn′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′ )c†
Kn
c†
K̄m
cK̄m′ cKn′ + (K ↔ K̄ ) (D2)

205130-14



STABILITY OF ANOMALOUS HALL CRYSTALS IN … PHYSICAL REVIEW B 110, 205130 (2024)

where δnn′mm′ = 1 when n = n′ = m = m′ and δnn′mm′ = 0 otherwise. Now we transform to the angular momentum basis

cl,+ = 1√
3

∑
n=0,1,2

cKnω
ln, cl,− = 1√

3

∑
n=0,1,2

cK̄n
ωln, (D3)

where ω = ei
2π
3 . The Hamiltonian becomes

H = 1

9

∑
ll ′ss′,nn′mm′

VKn−Kn′ λKn,Kn′ λKm,Km′ (δnn′δmm′ + δnm′δn′m − δnn′mm′ )ωln+sm−s′m′−l ′n′
c†
l+c

†
s+cs′+cl ′+

+ VKn−Kn′ λKn,Kn′ λK̄m,K̄m′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′ )ωln+sm−s′m′−l ′n′
c†
l+c

†
s−cs′−cl ′+

− VKn−K̄m′ λKn,K̄m′ λK̄m,Kn′ (δnn′δmm′ + δnmδn′m′ − δnn′mm′ )ωln+sm−s′m′−l ′n′
c†
l+c

†
s−cs′−cl ′+ + (K ↔ K̄ ). (D4)

To get the effective two-site and three-state Potts model, in the following, we will focus on the terms that conserve the fermion
number in each corner. The first term of Eq. (D4) becomes

H1 = 1

9

∑
ll ′ss′,nn′

VKn−K ′
n
|λn′−n,+|2ωn(l−s′ )+n′(s−l ′ )c†

l+c
†
s+cs′+cl ′+

+ 1

9

∑
ll ′ss′,nm

V (0)ωn(l−l ′ )+m(s−s′ )c†
l+c

†
s+cs′+cl ′+ − 1

9

∑
ll ′ss′,n

V (0)ωn(l+s−s′−l ′ )c†
l+c

†
s+cs′+cl ′+

= − 1

3

∑
ls,�n,αβ

V�nρα,+ρβ,+ω(Rα−Rβ+l−l ′ )�nδ3(l + s − s′ − l ′)c†
l+c

†
s+cs′+cl ′+

+
∑
ls

V (0)c†
l+c

†
s+cs+cl+ + 1

3

∑
ll ′ss′

V (0)δ3(l + s − s′ − l ′)c†
l+c

†
s+cs′+cl ′+ (D5)

where we have used

λKi,Ki+n = 〈u(Ki )|u(Ki+n)〉 =
∑

α

u∗
α (Ki )uα (Ki+n) =

∑
α

|uα (K0)|2ωRα (n) =
∑

α

ρα,+ωRα (n) ≡ λn,+, (D6)

here α = 0, 1, 2, . . . , 9 labels the 10 orbitals (B5,A5,B4,A4, . . . ,B1,A1), while Rα = (0, 1, 1, 2, 2, 3, 3, 4, 4, 5) is the in-plane
displacement of the 10 orbitals from B5 and

Vn = V (|K0 − Kn|) = V (G − Gδn0) = V (G) + (V (0) −V (G))δn0. (D7)

As well, we have assumed that the mean-field ansatz to which this term is acted on has a conserved angular momentum (leading
to l = s). This term does not lift the degeneracy between different angular momentum channels.

The second term of Eq. (D4) is

H2 = + 1

9

∑
ll ′ss′,n�n

V�nλ�n,+λ�n,−ω(l+s)�nωn(l+s−s′−l ′ )c†
l+c

†
s−cs′−cl ′+

+ 1

9

∑
ll ′ss′,nm

V (0)ωn(l−l ′ )+m(s−s′ )c†
l+c

†
s−cs′−cl ′+ − 1

9

∑
ll ′ss′,n

V (0)ωn(l+s−s′−l ′ )c†
l+c

†
s−cs′−cl ′+

= + 1

3

∑
ll ′ss′,�n,αβ

V (G)ρα,+ρβ,−ω(Rα+Rβ+l+s)�nδ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

+ 1

3

∑
ls,αβ

(V (0) −V (G))δ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

+
∑
ls

V (0)c†
l+c

†
s−cs−cl+ − 1

3

∑
ll ′ss′

V (0)δ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+, (D8)

after a mean-field decoupling, only the first line is nontrivial

H2 =
∑
ls,αβ

V (G)ρα,+ρβ,−δ3(Rα + Rβ + l + s)〈c†
l+cl+〉〈c†

s−cs−〉 + const.

= 2

3
V (G)

∑
αβ

ρα,+ρβ,− cos

(
θ1 + θ2 + 2(Rα + Rβ )π

3

)
+ const. (D9)
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This is the Hatree term for inter-MBZ-corner interaction. When the orbital weight ρα is polarized to B5 (α = 0), this term
is maximized for l + s ≡ −(α + β ) ≡ 0 (mod 3). Note that l + s (mod 3) is associated with the Chern number. So this term
penalizes C = 0. As soon as the orbital weights shift to B4(α = β = 1), this term penalizes s + l ≡ 1(mod 3) instead.

The third line of Eq. (D4) becomes

H3 = − 1

9

∑
ll ′ss′,nm

VKn−K̄m

∣∣λKn,K̄m

∣∣2ωn(l−l ′ )+m(s−s′ )c†
l+c

†
s−cs′−cl ′+ − 1

9

∑
ll ′ss′,nn′

VKn−K̄n′ λKn,K̄n′ λK̄n,Kn′ ω
n(l+s)−n′ (l ′+s′ )c†

l+c
†
s−cs′−cl ′+

+ 1

9

∑
ll ′ss′,n

VKn−K̄n

∣∣λKn,K̄n

∣∣2ωn(l+s−s′−l ′ )c†
l+c

†
s−cs′−cl ′+ = −1

3

∑
ll ′ss′,�n

V ′
�n|λ′

�n|2ω(s−s′ )�nδ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

− 1

3

∑
ll ′ss′,�n

V ′
�nλ

′2
�nω

(l ′+s′ )�nδ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+ + 1

3

∑
ll ′ss′

V ′
0 |λ′

0|2δ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

= −
∑
ll ′ss′

V (K )|λ′
1|2δ(s − s′)δ3(l + s − s′ − l ′)c†

l+c
†
s−cs′−cl ′+ − 1

3

∑
ll ′ss′

V (K )
∑
�n

λ′2
�nω

(l ′+s′ )�nδ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

− 1

3

∑
ll ′ss′

(
2V (2K )|λ′

0|2 −V (K )|λ′
1|2 −V (K )λ′2

0

)
δ3(l + s − s′ − l ′)c†

l+c
†
s−cs′−cl ′+

+ 1

3

∑
ll ′ss′

V (2K )|λ′
0|2δ3(l + s − s′ − l ′)c†

l+c
†
s−cs′−cl ′+ (D10)

where

V ′
n = V (Ki − K̄n+i ) = V (Ki + Kn+i ) = V (K ) + (V (2K ) −V (K ))δn0, (D11)

λKi,K̄i+n
= 〈u(Ki )|u(K̄i+n)〉 =

∑
α

u∗
α (Ki )uα (K̄i+n) =

∑
α

u∗
α (K0)uα (K̄0)ωRαn =

∑
α

ρ ′
α (−1)RαωRαn ≡ λ′

n. (D12)

At the mean-field level, only the second line of Eq. (D10) is nontrivial, which reduces to

H3 = −1

3
V (K )

∑
ls,�n

λ′2
�nω

(l+s)�n〈c†
l+cl+〉〈c†

s−cs−〉 + const.

= −1

3
V (K )

∑
ls,αβ

ρ ′
αρ ′

β (−1)Rα+Rβ

∑
�n

ω(s+l+Rα+Rβ )�n〈c†
l+cl+〉〈c†

s−cs−〉

= −V (K )
∑
ls,αβ

ρ ′
αρ ′

β (−1)Rα+Rβ δ3(s + l + Rα + Rβ )〈c†
l+cl+〉〈c†

s−cs−〉

= −2

3
V (K )

∑
αβ

ρ ′
αρ ′

β (−1)Rα+Rβ cos

(
θ1 + θ2 + 2π (Rα + Rβ )

3

)
+ const. (D13)

This is the Fock term between KM and K̄M .
The total Hamiltonian

H = 2

3

∑
αβ

(V (G)ραρβ −V (K )ρ ′
αρ ′

β (−1)Rα+Rβ )

× cos

(
θ1 + θ2 + 2π (Rα + Rβ )

3

)
+ const. (D14)

At a large displacement field and small twist angles, al-
though there is significant hybridization between B5 and B4

at BZ corners, the density is still predominantly on B5 or-
bital. As a simple consideration, consider the extreme scenario
where the charge is polarized to the B5 orbital, ρ0 = ρ ′

0 = 1,
then

H2 = 2
3 (V (G) −V (K )) cos(θ1 + θ2) + const. (D15)

Since V (K ) > V (G), Fock term dominates. Then C ≡ l +
s = 3(θ1+θ2 )

2π
≡ 0 (mod 3) is lower in energy than C = 1 and

C = −1. We note that this finding is inconsistent with Berry
curvature rounding. Since for layer-polarized Bloch function,
the Berry flux in MBZ is zero. This issue will be resolved in
the Appendix F.

At slightly larger twist angles, density starts to leak into the
B4 orbital. The leading correction comes from the ρ0ρ1 term.
We take the assumption of approximate C6 symmetry, which
means

ρ ′
a = |u∗

a(K0)ua(K̄0)| = ρa. (D16)

As a result, the Fock term gets suppressed by the interlayer
terms with a �= b (mod 2), which may allow the Hartree term
to take over and favor C = ±1. This corresponds to the in-
termediate twist angle regime (0.6◦ < θ < 0.9◦), as seen in
Fig. 14 below.
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FIG. 13. Hartree and Fock terms in the pseudopotential model.
The red and orange arrows are nontrivial intercorner scattering pro-
cesses. The dotted arrows are scattering processes that do not lift
degeneracy between different angular momentum channels.

The important terms that determine the Chern number
can be seen more explicitly, by considering the responsible
terms with the form factors intact. From Fig. 13 the Hartree
term is

H2 =VKn−Kn′ λKn,Kn′ λK̄m,K̄m′ δnmδn′m′ωln+sm−s′m′−l ′n′

× c†
l+c

†
s−cs′−cl ′+

= 1

9

∑
ll ′ss′

∑
n,�n=±1

V�nλ�n,+λ�n,−ω(l+s)�nωn(l+s−s′−l ′ )

× c†
l+c

†
s−cs′−cl ′+ + const.

∼ 1

3

∑
ll ′ss′

V (G)(λ0,1λ0̄,1̄ω
(l+s) + H.c.)δ3(l + s − s′ − l ′)

× c†
l+c

†
s−cs′−cl ′+

= 1

3

∑
ls

V (G)2�(λ2
0,1ω

(l+s)
)〈c†

l+cl+〉〈c†
s−cs−〉, (D17)

and the Fock term is

H3 = −VKn−K̄m′ λKn,K̄m′ λK̄m,Kn′ δnmδn′m′ωln+sm−s′m′−l ′n′

× c†
l+c

†
s−cs′−cl ′+

= − 1

9

∑
ll ′ss′

∑
n,�n=±1

V ′
�nλ

′2
�nω

(l ′+s′ )�nωn(l+s−s′−l ′ )

× c†
l+c

†
s−cs′−cl ′+ + const.

∼ − 1

3

∑
ll ′ss′

V (K )
(
λ0,1̄λ0̄,1ω

(l ′+s′ ) + H.c.
)

× δ3(l + s − s′ − l ′)c†
l+c

†
s−cs′−cl ′+

= − 1

3

∑
ls

V (K )2�(λ2
0,1̄ω

(l+s)
)〈c†

l+cl+〉〈c†
s−cs−〉. (D18)

Thus, the total Hamiltonian becomes

HMF = H2 + H3 = − 2
3�[(−V (G)λ2

0,1 +V (K )λ2
0,1̄

)
ei(θ1+θ2 )

]
.

(D19)

The ground state of Potts model has a corresponding Chern
number

C ≡ 3(θ1 + θ2)

2π
≡ −

3 arg
(−V (G)λ2

0,1 +V (K )λ2
0,1̄

)
2π

(mod 3).

(D20)

We present in Fig. 14 the Hartree, Fock, and Hartree+Fock
phase diagrams of this simplified pseudopotential model. As
seen, the Hartree solution favorsC = −1 over a wide range of
parameter space, while the Fock term, prefers C = 0.

APPENDIX E: FAILURE OF THE
PSEUDOPOTENTIAL TREATMENT

In the previous Appendix, we only consider the degree
of freedom at the MBZ corners K and K̄ . This treatment is
justified by asserting that the wavefunction evolves smoothly
so that in a small region close to each corner of MBZ, the
wavefunction of the normalized band is roughly the same
as that on the exact corner. The extension of this region
is defined by the relative strength of interaction and ki-
netic energy, namely the radius q ∼ U/v(K ), where U is the
Coulomb interaction and v(K ) is the velocity at the corner.
Within this region, the Coulomb energy dominates over ki-
netic energy, so that the Bloch function is approximately an
equal-weight superposition of three continuum band wave-
functions cK0+k, cK1+k, cK2+k.

The Chern number is eventually determined by symmetry
index on the exact K and K̄ points. So, we focus on the mean-
field Hamiltonian for these momenta

HFock(K0) = −
∑
k′,G

V (K0 + G − k′)λk′,K0+GλK0,k′−G

× 〈c†
k′ck′−G〉c†

K0
cK0+G. (E1)

To show the correction to the pseudopotential model, we
focus on the scattering matrix element between K0 and K1.
This corresponds to the process marked by orange arrows in
Fig. 13(b). Therefore, we restrict to k′ = K̄0 + q′, K0 + G =
K1,

HFock(K0,K1) = −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′

× 〈
c†
K̄0+q′cK̄1+q′

〉
. (E2)

Now rewrite this using the basis of the Fock-renormalized
band

ψn
k =

∑
G

vn∗
G (k)ck+G ≡

∑
G

vn∗(k + G)ck+G (E3)

so that ψn
k+g = ψn

k . Here, n is the band index, which will be
suppressed since we are focusing on the mean-field ansatz of
an insulator, where only the lowest band is filled. Then using
the inverse transform

ck+G =
∑
n

vn
G(k)ψn

k =
∑
n

vn(k + G)ψn
k , (E4)
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FIG. 14. Comparison between microscopic mean field and simplified model based on MBZ corners. (Top row) Phase diagram from
microscopic mean-field. (Same as Fig. 3 in main text.) (Bottom row) Hartree, Fock and Hartree+Fock phase diagrams based on the simplified
pseudopotential model Eq. (D19).

the Fock Hamiltonian (associated with these two corners) becomes

HFock(K0,K1) = −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′v∗(K̄0 + q′)v(K̄1 + q′)

〈
ψ

†
K̄0+q′ψK̄1+q′

〉

= −
∑
q′

V (K1 − K̄0 − q′)λK̄0+q′,K1
λK0,K̄1+q′v∗(K̄0 + q′)v(K̄1 + q′)

= −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

v∗(K̄0 + q′)u∗
α (K̄0 + q′)uα (K1)u∗

β (K0)uβ (K̄1 + q′)v(K̄1 + q′)

= −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

ξ ∗
α (K̄0 + q′)uα (K1)u∗

β (K0)ξβ (K̄1 + q′)

≡ −
∑
q′

V (K1 − K̄0 − q′)
∑
αβ

Fαβ (q)uα (K1)u∗
β (K0) (E5)

where we have used the Bloch function of the renormalized
band

ξα,G(k) = vG(k)uα (k + G) for k ∈ BZ, (E6)

which has been extended to k beyond BZ by defining
ξα,G(k) ≡ ξα (k + G),

ξα (k) = v(k)uα (k) for ∀k. (E7)
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Expanding F (q′) around q′ = 0,

Fαβ (q′) = ξ ∗
α (K̄0 + q′)ξβ (K̄1 + q′)

≈ 〈ξ (K̄0 + q′)|ξ (K̄0)〉〈ξ (K̄1)|ξ (K̄1 + q′)〉ξ ∗
α (K̄0)

× ξβ (K̄1)

= λ̃K̄0+q′,K̄0
λ̃K̄1,K̄1+q′ξ ∗

α (K̄0)ξβ (K̄1)

= ∣∣λ̃K̄0+q′,K̄0

∣∣2ξ ∗
α (K̄0)ξβ (K̄1)

≈ e−g̃μνq′
μq

′
ν ξ ∗

α (K̄0)ξβ (K̄1) (E8)

where λ̃ and g̃ are the form factor and quantum metric of the
normalized band. In the second line, we made the approx-
imation by only keeping the projection of the two vectors
ξ∗
α (K̄0 + q′) and ξβ (K̄1 + q′) to their counterpart at q′ = 0.

The result should be interpreted as the “fidelity” of represent-
ing a corner region with Bloch function exactly on the high
symmetry points. The exponential suppression shows that this
treatment is crude for the ansatz that violates Berry curvature
rounding.

APPENDIX F: k-SPACE SUPERCONDUCTING RING
MODEL AND CONNECTION TO BERRY

CURVATURE ROUNDING

Although we aim to eventually derive a simplified model
defined on the BZ corners, the microscopic low-energy de-
grees of freedom are not restricted to the corners. Instead,
they live on the entire BZ boundary. We demonstrate in this
Appendix, that the emergent theory for these fluctuations is
essentially an XY field coupled to a background gauge field,
analogous to a superconducting ring (along BZ boundary)
under a background magnetic field (parent Berry curvature).
Then, the rounding of Berry curvature is analogous to the
Little-Parks effect, where the winding of XY order parameter
around a narrow superconducting ring is given by rounding
the magnetic flux piercing the ring. This analogy becomes
exact when the long-wavelength component of interaction
dominates.

Consider the mean-field phase diagram as the interaction is
turned up. At weak interaction, we get a fermi liquid with no
translation symmetry breaking. With moderate interaction, the
translation breaks weakly, and we find a semimetal with com-

pensating particle and hole pockets. The mean-field periodic
potential is not strong enough to open a global(indirect) band
gap. Nevertheless, the Chern number for the lowest mean field
band is still well defined in this regime. If we keep increasing
the interaction, no gap closing happens until the band gap fully
opens. Unless there is a discontinuous transition at the mean-
field level, the resulting insulating phase at strong interaction
must have the same Chern number as in the semi-metal phase
at moderate interaction. Therefore, one can predict the fate
of Chern number at strong interaction regime by studying the
intermediate regime, where interaction is just enough to open
a direct band gap.

In this regime, VG � KvF , the active degree of freedom is
not just on the corners of BZ, but instead on a hexagonal ring
along the BZ boundary, with a width of δ ∼ VG/vF � K . That
is to say, in the language of the pseudopotential model, the K
and K̄ corner regions are highly anisotropic. The structure of
the active hexagon ring consists of two types of regions: (1)
corners, where three momenta are hybridized, and (2) edges,
where only two momenta are hybridized significantly. Note
that region (1) has a radius of δ, which limits its area to be
O(δ2), much smaller than region (2), whose area is of O(Kδ).
Therefore we will minimize the energy in region (2) first.

For a hexagonal BZ, there are three segments in the region
(2). We will focus on one of them, the edge between K0 and
K̄1, for example. The Fock term is

HFock = −
∑
k,q

V (q)λk,k+qλ
∗
k+G,k+q+G〈c†

k+q+Gck+q〉〈c†
kck+G〉

= −
∑
k,q

V (q)λk,k+qλ
∗
k+G,k+q+G�∗

G(k + q)�G(k).

(F1)

Here for unscreened Coulomb V (q) ∼ 1/q, and G = K1 −
K0. We note this theory is a 1D superconducting wire with
Josephson coupling in k space. Now expand the form factor
for small q,

λk,k+q =〈k|k + q〉 ≈ exp

{
−1

2
gμν (k)qμqν

}

× exp

{
i
∫ k+q

k
dq′ · A(q′)

}
. (F2)

Then the small-q contribution from Fock term becomes

HFock = −
∑
k

∑
q�K

V (q) exp

{
−1

2
(gμν (k) + gμν (k + G))qμqν

}
exp

{
i
∫ k+q

k
dq′ · (A(q′) − A(q′ + G))

}
�∗

G(k + q)�G(k)

= −
∑
k

∑
q�K

Ṽ (q,k) exp

{
i
∫ k+q

k
dq′ · (A(q′) − A(q′ + G))

}
�∗

G(k + q)�G(k) (F3)

where we define Ṽ (q,k) = V (q) exp{− 1
2 (gμν (k) + gμν (k + G))qμqν}. This is essentially a 1D Josephson array under a back-

ground gauge field. Note the Josephson coupling Ṽ (q,k) decays rapidly with q as a Gaussian. Therefore, this problem is local
in momentum space. This justifies the small-q expansion in Eq. (F2). In other words, the small-q coupling in Eq. (F3) indeed
dominates the Fock term and should be minimized first. Then we find the ground-state phase configuration

�G(k) = �G(K0) exp

{
i
∫ k

K0

dq′ · (A(q′) − A(q′ + G))

}
. (F4)
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FIG. 15. Superconducting ring model. The interaction between corners is generated by integrating out the superconducting wire connecting
them.

Plugging in k = K̄1, we find a constraint between �G(K0) ≡ �(K0,K0 + G) = �(K0,K1) and �G(K̄1) = �(K̄1, K̄1 + G) ≡
�(K̄1, K̄0) = �(K̄0, K̄1)∗. Namely,

�(K̄0, K̄1)∗ = �(K0,K1) exp

{
i
∫ K̄1

K0

dq′ · (A(q′) − A(q′ + G))

}
= �(K0,K1) exp

{
i
∫ K̄1

K0

+
∫ K1

K̄0

dq′ · A(q′)

}
(F5)

So, the sum of phases of �(K̄0, K̄1) and �(K0,K1) is fixed,

Im(ln �(K̄0, K̄1) + ln(�(K0,K1)) = −
{∫ K̄1

K0

+
∫ K1

K̄0

}
dq′ · A(q′). (F6)

It is easy to show that the gauge-invariant C3 indices at high-symmetry points are given by the sum of the three phases, which is
also gauge invariant,

C3(K) = 1

2π
Im(ln �(K0,K1) + ln �(K1,K2) + ln �(K2,K0)),

C3(K̄) = 1

2π
Im(ln �(K̄0, K̄1) + ln �(K̄1, K̄2) + ln �(K̄2, K̄0)). (F7)

Then the Chern number will be

C = C3(K) +C3(K̄) (F8)

= Im(ln �(K0,K1) + ln �(K1,K2) + ln �(K2,K0) + ln �(K̄0, K̄1) + ln �(K̄1, K̄2) + ln �(K̄2, K̄0))

= − 1

2π

{∫ K̄1

K0

+
∫ K2

K̄1

+
∫ K̄0

K2

+
∫ K1

K̄0

+
∫ K̄2

K1

+
∫ K0

K̄2

}
dq′ · A(q′) = 
BZ

2π
. (F9)

To obtain this result, we do not even need to assume C2. Obviously, this result makes sense only when 
BZ/2π ∈ Z since the
Chern number must be an integer. This is because we have assumed the SC wire to be at its ground state. However, when the
Berry flux is not an integer multiple of 2π , there is frustration. The correct treatment is integrating out the phase fluctuation in
the middle of the wire and constructing a theory for the order parameter at K and K̄ [see Fig. 15(b)].

We may start by writing down the effective coupling Hamiltonian for the two endpoints of a 1D SC wire. This is done by
considering the energy cost of twisting the phases on two ends θ1,2. The leading gauge-invariant term is

HFock[�1, �2] = −J|�|2 cos

(
θ1 − θ2 +

∫ 2

1
dq′ · (A(q′) − A(q′ + G))

)

= −J

2
�1�

∗
2 exp

{
i
∫ 2

1
dq′ · (A(q′) − A(q′ + G))

}
+ H.c. = −J

2
�1�

∗
2 exp

{
i
∫ 2

1
+
∫ 2̄

1̄
dq′ · A(q′)

}
+ H.c.

(F10)

This resembles Eq. (F3), but J is a phenomenological parameter generated by integrating the degree of freedom on the 1D line.
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As an example, we explicitly derive the HFock[�1, �2] for a generic potential V (q). To do this, we start with Eq. (F3), expand
to O(q2) and carry out the q integral,

HFock[�] = −
∑
k

∑
q�K

Ṽ (q,k) exp

{
i
∫ k+q

k
dq′ · (A(q′) − A(q′ + G))

}
�∗

G(k + q)�G(k)

= −
∫

dk

2π

∫
dq

2π

Ṽ (q,k)q2

2
|n̂ · (∇ − iA(k) + iA(k + G))�|2

= −
∫

dk

2π
˜̃V (k)|(∇n − iAn(k) + iAn(k + G))�|2 (F11)

where n̂ is the unit vector along the wire. We have denoted ∇n = n̂ · ∇, and An = n̂ · A. We focus on the phase of �(k) =
ρ(k)eiθ (k),

HFock[θ ] = −
∫

dk

2π
˜̃V (k)ρ(k)2(∇nθ − An(k) + An(k + G))2. (F12)

To make progress, we ignore the k dependence of ˜̃V and ρ̃. Then, integrate out θ (k) by demanding δH
δθ

= 0,

∇n(∇nθ − An(k) + An(k + G)) = 0. (F13)

Under the boundary conditions eiθ (K0 ) = eiθ0 , eiθ (K̄1 ) = eiθ1̄ (mind the 2π ambiguity in phase), this implies

∇nθ − An(k) + An(k + G) = 1

K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk · (A(k) − A(k + G))

)
(F14)

or

θ (k) = θ0 +
∫ k

K0

dk · (A(k) − A(k + G)) + |k − K0|
K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk · (A(k) − A(k + G))

)
(F15)

where m ∈ Z . Plugging in Eq. (F3),

HFock[θ0, θ1̄] = −
∫

dk
2π

∫
dq
2π

Ṽ (q,k)ρ(k)2 exp

{
−i

q

K

(
θ1̄ − θ0 + 2mπ −

∫ K̄1

K0

dk′ · (A(k′) − A(k′ + G))

)}

= −
∫

dk
2π

∫
dq
2π

Ṽ (q,k)ρ(k)2 exp

{
−i

q

K

(
θ1̄ − θ0 + 2mπ −

(∫ K̄1

K0

+
∫ K1

K̄0

)
dk′ · A(k′)

)}

= −
∫

dk
2π

∫
dq
2π

Ṽ (q,k)ρ(k)2 exp
{
−i

q

K
�01̄

}
(F16)

where we have defined V0(q) ≡ ∫
dk
2π
Ṽ (q,k)ρ(k), and the

gauge-invariant phase difference between two corners

�01̄ = θ1̄ − θ0 + 2mπ −
(∫ K̄1

K0

+
∫ K1

K̄0

)
dk′ · A(k′) (F17)

with m taking the integer that minimizes |�01̄|. For concrete-
ness, we explicitly evaluate the integral using a toy model with
V0(q) = Vρ2e−gq2

, then

HFock[θ0, θ1̄] = −Vρ2
∫

dq
2π

exp

{
−gq2 − iq

�01̄

K

}

= −Vρ2
√

π

g
exp

{
− �2

01̄

4gK2

}

≈ Vρ2�2
01̄

4gK2

√
π

g
+ const. (F18)

We note that this leading quadratic term in �01̄ is expected for
arbitrary V0(q), which can be shown by expanding Eq. (F3).
Using C3 and combining the contribution from all edges of
MBZ, similar to the discussion in Eq. (F9), we identify the
following:

C = 3

2π
(θ0 − θ1̄ ),

φBZ = −3

(∫ K̄1

K0

+
∫ K1

K̄0

)
dk′ · A(k′). (F19)

Therefore,

�01̄ = −2πC − 
BZ

3
+ 2mπ. (F20)

The C3 symmetry demands the contribution from three edges
to be exactly the same. Then, we find the Fock energy as a
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FIG. 16. Schematic Fock phase diagram, the numbers label
(C(mod 3),m) in Eq. (F21).

function of the Chern number

HFock = H01̄
Fock + H12̄

Fock + H20̄
Fock = 3H01̄

Fock

= Vρ2π5/2

3g3/2K2

(
C − 3m − 
BZ

2π

)2

+ const. (F21)

The phase diagram is plotted in Fig. 16. We not only derive
the rounding but also predict the Little-Parks effect: The Hall
crystal/Wigner crystal becomes less stable when parent Berry
flux approaches (2n + 1)π , which may become useful when
discussing physics at lower densities. At reduced fillings and
without a moiré potential, as we discussed in Sec. VIII, the
correlated fermi liquid is almost frozen, i.e., it behaves like
a crystal at short distances and short times. It is natural to
assume that the WC/AHC short-range order has a lattice con-
stant set by electron density. However, the picture in Fig. 16
suggests a route for the Fock energy to shrink the WC/AHC
lattice so that the new BZ (with an area larger than the electron
density) encloses a Berry flux quantized to an integer multiple
of 2π . The outcome of this competition between two crys-
talline orders is unclear to us, since the energy of the shrunk
crystal also depends on the fate of the doped vacancies. We
leave this to future study.

We note that the above construction enabled the extraction
of the Chern number (mod 3), rather than the full Chern
number. To fully resolve the Chern number requires infor-
mation of the Bloch function on the entire boundary of the
MBZ. The boundary is composed of two important pieces:
the edge and the corners. On the edge of the MBZ, we may
reasonably assume that one of the aforedescribed complex
fields [say �(K0,K1) along the edge] is most prominent and
thus we can ignore the other two fields and think of the edge
in our superconducting wire analogy. Close to the corners,
however, all three complex fields are significant and as such it
is highly nontrivial to determine the precise form of the Berry
connection. In our construction, we are able to circumvent
this complication by focusing on the C3 index [Eq. (F7)],
wherein we simply need to focus on how much Berry phase
is accumulated by one single complex field from going from
one corner to the other.

APPENDIX G: 7-BAND FOCK-ONLY AND
HARTREE-FOCK PHASE DIAGRAMS

We present in Fig. 17 the Fock-only and Hartree-
Fock phase diagrams computed with a 7-conduction band

FIG. 17. Chern number of mean-field band obtained with Fock
only (left) and Hartree-Fock (right), respectively. These results are
obtained from the 10-orbital model and the same parameters as
Fig. 3, with the exception of using seven-bands in the mean-field
projection.

projection. This provides a consistency (and convergence)
check with our four-band projection results presented in the
main text. As seen, the Hartree correction to the Fock-only
phase diagram expands the region of |C| = 1 in param-
eter space, in agreement with the results in the main
text.

APPENDIX H: COMPARISON OF FERMI LIQUID AND
HALL CRYSTAL: HARTREE FOCK ENERGIES

We present in Fig. 18 the Hartree-Fock energy difference
of the translation symmetry preserving Fermi liquid and trans-
lation symmetry breaking Hall crystal for wavevector GM

associated with moiré twist angle of 0.77◦ for ud = −36 meV.
As seen, for a range of displacement field energies, the Fermi
liquid state is higher in energy than the Hall crystal. As alluded
to in the main text, this energy difference is not altogether
surprising, as the Hartree-Fock framework is biased towards
finding translation symmetry broken (and gapped) phases of
matter.
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FIG. 18. Energy difference of translation symmetry preserving
Fermi liquid and translation symmetry breaking Hall crystal for
wavevector �GM associated with moiré twist angle of 0.77◦ for
ud = −36 meV.
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