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Extended quantum anomalous Hall effect in moiré structures: Phase transitions and transport
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Recent experiments on multilayer rhombohedral graphene have unearthed a number of interesting phenomena
in the regime where integer and fractional quantum anomalous Hall phenomena were previously reported.
Specifically, at low temperature (7') and low applied currents, an “extended” integer quantum anomalous Hall
(EIQAH) state is seen over a wide range of the phase diagram. As the current is increased, at low T', the EIQAH
state undergoes a phase transition to a metallic state at generic fillings, and to the fractional quantum anomalous
Hall (FQAH) state at the Jain fillings. Increasing temperature at the Jain fillings also leads to an evolution out of
the EIQAH state to the Jain state. Here we provide an interpretation of many of these observations. We describe
the EIQAH state as a crystalline state (either of holes doped into the v = 1 state or an anomalous Hall crystal of
electrons) that breaks moiré translation symmetry. At generic fillings, we show how an electric current-induced
depinning transition of the crystalline order leads to peculiar nonlinear current-voltage curves consistent with the
experiment. At Jain fillings, we propose that the depinning transition is preempted by an equilibrium transition
between EIQAH and Jain FQAH states. This transition occurs due to the large polarizability of the Jain FQAH
states, which enables them to effectively lower their energy in an applied electric field compared to the crystal
states. We also discuss the finite-temperature evolution in terms of the relative entropies of the crystalline and

FQAH states.

DOLI: 10.1103/PhysRevB.110.245115

I. INTRODUCTION

Shortly after the discovery [1,2] of correlated electron
physics in twisted bilayer graphene, it became clear [3—12]
that many moiré materials will have nearly flat bands with
Chern number making them ideal platforms to display fer-
romagnetism and integer/fractional quantum anomalous Hall
(IQAH/FQAH) effects. The integer effect, and the associ-
ated ferromagnetism, were first observed [13—15] in a few
graphene-based moiré systems, as well as in some transition-
metal dichalcogenide (TMD) moiré systems [16,17]. Very
recently, both the integer and fractional quantum anomalous
Hall effects were observed [18-21] in twisted MoTe, and in
pentalayer rhombohedral graphene [22] nearly aligned with a
hexagonal boron nitride substrate (denoted RSG/hBN).

The standard mechanism [3,5,6,23] for the quantum
anomalous Hall phenomena in moiré materials involves the
following ingredients: First, the band structure is such that the
bands in each valley have equal and opposite non-zero Chern
number. Second, the valley (and spin, if present as an inde-
pendent degree of freedom) polarizes into a ferromagnet due
to interactions, thereby breaking time reversal spontaneously.
If the electron filling is such that some bands, with a net
nonzero Chern number, of the single occupied valley are fully
filled, then an integer quantum anomalous Hall effect results.
If the topmost band is partially filled, a fractional quantum
anomalous Hall effect may be seen.

This standard mechanism accounts for the observed IQAH
state in many moiré materials as well as the FQAH state in
tMoTe,. Remarkably, however, it fails in RSG/hBN, which
makes this system particularly interesting. In RSG/hBN, the
IQAH state is seen [22] in the conduction band when the
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electrons are at a total filling v = 1. Further, the effect is
seen only in a large displacement field which drives the con-
duction electrons away from the aligned hBN layer. In these
circumstances, the noninteracting band structure of RSG/hBN
is such that, even when a single valley/spin flavor is occu-
pied, there is no band gap at filling v = 1; rather, a metallic
state results [24—26]. This is a result of the preferential oc-
cupation of the electrons in the layers furthest away from
the aligned hBN which weakens the moiré potential. The
opening of the band gap and the emergence of a Chern
number are driven by Coulomb interactions, as demonstrated
in Hartree-Fock calculations of the band structure [24-26].
Thus, even the IQAH state in R5SG/hBN is the result of
fascinating many-body physics. Further, upon rigidly doping
the Hartree-Fock band (a crude approximation) at v = 1, nu-
merical calculations [24-26] find FQAH states at v = 2/3
and other fillings, in broad agreement with experiments. Other
similar n-layer rhombohedral graphene structures (RnG/hBN
with n =4,6,7) were argued [24-26] to display similar
physics, but at different displacement field strengths. [QAH
and FQAH states have since been seen in R4G/hBN [27]
and R6G/hBN [28]. Various refinements [29-31] of this basic
theoretical picture have been explored.

As emphasized in Refs. [25,26] (see, also, Ref. [24]), the
Hartree-Fock calculations yield a band gap with a filled Chern
band even if the moiré potential is completely turned off.
The resulting state breaks continuous translation symmetry,
and hence is denoted an “anomalous Hall crystal” (AHC).
The stability of the AHC in the Hartree-Fock calculation has
been explained through simplified models [32,33]. Whether
such a state is really realized in R5G or whether a weak
moiré potential is needed to enable it to occur is not currently
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clear [33]. For further theoretical work on anomalous Hall
crystals, see Refs. [34,35].

Very recent experimental results [27] on RnG/hBN show
a very interesting phase diagram as a function of displace-
ment field D, electron density measured through the moiré
filling v, the current bias /, and temperature 7. At v =1,
the IQAH state reported earlier is reproduced. However, at
1 <y <1, and at small I and T, in a tilted stripe region
in the (D, v) plane, there is an “extended” IQAH (EIQAH)
state. A somewhat similar observation of an IQAH state was
reported in Ref. [36], but just near v = % For the EIQAH
state of Ref. [27], when [ is increased at low T, there is a
transition either to a metallic state (at generic v) or to the
FQAH state reported earlier (at the Jain fillings). Further, upon
increasing the temperature 7 at low I at the Jain fillings, the
EIQAH phase reverts to the FQAH phase. Similar results are
also found [27] in four-layer rhombohedral graphene on hBN
(R4G/hBN).

At generic fillings, the longitudinal differential resistance
as a function of I has an unusual shape: it is zero at low I (as
expected) and has a sharp peak at the critical current before
settling to a finite value at large /. This shape is suggestive
of some kind of depinning transition, though it is seen in the
resistance rather than the conductance. Interestingly, the low-
T critical current for the EIQAH state is smaller [27] at the
Jain fillings than at generic fillings, despite the possibility of
commensuration effects strengthening any pinning processes
in the former.

The purpose of this paper is to develop an explanation of
these facts based on our current theoretical understanding of
RnG/hBN. At first sight, it is tempting to interpret the EIQAH
state in terms of an AHC that is stabilized in a range of filling,
and we will explore this below. However, a less exotic state
is one where holes doped into the v = 1 state localize by
forming a crystal that is pinned either by impurities or (at
commensurate fillings) by the moiré potential itself. We will
show that such a hole crystal provides a natural explanation of
many of the observations of Ref. [27] (and, to a large extent,
so does the AHC).

The AHC may be thought of as a crystal formed by the
electrons (counting from neutrality) with a period set by the
electron density. In contrast, the hole crystal will have a pe-
riod set by the hole density. We will argue that the electron
and hole crystals are generically different and thus the two
explanations are distinct. Thus, based on what is known so
far, it is not possible to unambiguously advocate either for
or against the AHC scenario for the EIQAH state. However,
we present some (admittedly not very strong) arguments that
suggest that the hole crystal may, in fact, be what is actually
realized.

Our work clarifies the precise sense in which the observed
current-voltage characteristics at generic filling are the result
of depinning phenomena. In particular we show that due to
the presence of a Hall component, the measured differen-
tial longitudinal resistance is proportional to the differential
longitudinal conductance of the crystal without the Hall com-
ponent. This leads to an understanding of the qualitative shape
of the observed current-voltage curves. For the Jain fillings
however, we propose that the depinning transition out of the
EIQAH state is preempted by an equilibrium phase transition

between crystal and FQAH states, and we present arguments
for why the Jain state is favored by the current.

The remainder of the paper is organized as follows. In
Sec. II, we describe the two possible classes of crystalline
states that are pertinent to the EIQAH state: hole crystal and
anomalous Hall crystal. In Sec. III, we discuss the transport
signatures of the depinning transition of the hole crystal (at in-
commensurate fillings) and the field-induced EIQAH-FQAH
transition at Jain fillings of the hole crystal. In Sec. IV, we
discuss the transport and phase transitions from the perspec-
tive of the anomalous Hall crystal. In Sec. V, we consider the
finite-temperature transitions between the EIQAH and FQAH
states (at the Jain fillings) and discuss the possibility of an
explanation in terms of the higher entropy of the FQAH state.
Finally, we conclude in Sec. VI and provide some future
directions of exploration.

II. EXTENDED INTEGER QUANTUM
ANOMALOUS HALL REGION

We begin with some simple general considerations on the
EIQAH state at fillings % < v < 1. Generically, forany v < 1,
the partial filling of the moiré unit cell will naturally break
the moiré translation symmetry unless there is either frac-
tionalization and the associated topological order or there are
gapless charge excitations. The former happens in, e.g., the
FQAH state and the latter happens in, e.g., a Fermi-liquid
metal. Clearly, the EIQAH state is not metallic and has in-
teger Hall conductance. While exotic gapped states without
any fractional Hall conductivity are possible [37] at fractional
rational filling, we will be content to explore the simpler and
more likely possibility that the EIQAH state breaks moiré
translation symmetry. With this assumption, there still are two
possible classes of crystalline states [38]:

(i) Hole crystal. The first possibility is a [Wigner or charge
density wave (CDW)] crystal of holes forming on top of the
v = 1 state at a hole filling of v, = 1 — v. This hole crystal
(henceforth referred to as CDW) has its period set by v,. At a
generic vy, this crystal will be pinned by impurities in the de-
vice. At commensurate fillings, it will lock to the moiré lattice.
Note that the holes not only observe the bare moiré potential,
but also the self-consistently generated electronic potential
from the many-body state at v = 1. Thus the effective periodic
potential seen at the moiré period will be enhanced over the
bare moiré potential, and we expect the locking to be strong.
An example of a commensurate hole crystal at v = 2/3 (i.e.,
vy = 1/3) is shown in Fig. 1: the hole crystal forms a tri-
angular lattice, where the charge density resides on select
sites of the moiré unit cell and gains commensuration energy
from the underlying moiré potential. For other rational fillings
v =3/5 (i.e., v, = 2/5), the hole crystal may not necessarily
be a triangular lattice, but instead may be determined by the
Coulomb interactions on the lattice.

(ii) Anomalous Hall crystal. The second possibility is that
of an anomalous Hall crystal (AHC), which is formed by
electrons at filling v. Here the subscript denotes that the
period of the electronic crystalline state is determined by
the electronic density. Clearly, this state also breaks moiré
translation symmetry for any v # 1. However, the electrons
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FIG. 1. Hole crystal forming on top of IQAH state at rational
fillings of the moiré unit cell. Here, a hole crystal is depicted for
v = 2/3. The holes shown by red triangles (of filling v, = 1/3) can
form a triangular lattice, which locks to the moiré lattice.

forming this state see only the weak bare moiré potential.
Thus, we expect it can be essentially described as the (AHC),
of the continuum system that is only weakly perturbed by the
moir€ potential. The crystal structure of (AHC),, will hence be
triangular, and such that each unit cell of this triangular lattice
has one electron. It is easy to see that the fillings at which
this triangular lattice is commensurate—and, in the process,
gain some commensuration energy—with the moiré lattice are
v = (n* + m? + nm)~", where n, m € Z [39]. This entails that
the only fillings where the (AHC), is commensurate with the
moiré lattice are either at v =1 or at v < 1/3. Thus, in the
range of interest, v <1, the (AHC), is an incommensu-
rate triangular lattice that “floats” on top of the moiré lattice.
It will only be pinned by impurities.

The crystal states we are concerned with in this paper
should be distinguished from the “parent” (possibly moiré-
enabled [33]) anomalous Hall crystal discussed for the v = 1
state itself. This parent crystal has a period set by the moiré
lattice spacing. At v = 1, this crystal period is the same as the
period set by the electron density, but is different at other v.
To emphasize this, we denote this parent crystal as (AHC),,.
If such a parent crystal forms at v # 1, there will inevitably
be extra holes or electrons to make up the right density. These
will then form many-body states of their own. Thus, the IQAH
component of the hole-crystal state envisaged above should be
viewed as (AHC),,. Similarly, the FQAH states (at least for
v > 1/2) are most usefully discussed in the hole picture, and
hence thought of as a combination of (AHC),, and an FQAH
state of holes. Beyond setting the stage for these many-body
states to form at v # 1, the (AHC),, does not play a direct
major role in this paper, and hence we will not discuss it
further.

At v # 1 and low current bias, either the hole or elec-
tron crystals discussed above will stay pinned, due either to
impurities or to commensuration or both, and will have an
integer quantum anomalous Hall effect. We identify these
with the EIQAH state seen in experiments. In the following,
we analyze their properties in more detail, focusing on the
depinning phenomenon at generic filling and their transition
to FQAH states at the Jain fillings.
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FIG. 2. Depinning transition of hole crystal (CDW). Left:
Schematic of sample illustrating the interplay of the CDW and
IQAH component at the hole-crystal depinning transition, where a
counterpropagating fjgan current cancels the Icpw sliding current. In
actuality, the CDW component slides at an angle 6y with respect to
the X direction, with the generated IQAH current component in the
direction perpendicular to the CDW current direction to yield a net
current flowing along .. Right: CDW current (blue) as a function of
Hall voltage and differential resistance (red) as a respective function
of Hall voltage (V) and bias current (/,) depicting the depinning
transition for critical exponent 8 = 2/3.

III. TRANSPORT AND PHASE TRANSITIONS
OF THE HOLE CRYSTAL

In this section, we focus on the hole crystal and discuss the
transition out of this state induced upon increasing the electric
current.

A. Depinning transition at incommensurate fillings

At incommensurate fillings, the many-body state can be
imagined as being segmented into an integer quantum anoma-
lous Hall component (v = 1) and a hole crystal (v;). We
consider running a current I, along the ¥ direction in a sample
of dimensions L, x Ly, as depicted in Fig. 2. The sample
geometry is such that leads are connected in the & direction
with an open circuit in the y direction. The hole crystal, as
discussed in Sec. II, is pinned by the disorder (at low currents).
Then the current is carried by the IQAH component, which
leads to a Hall voltage, V, = eﬁz[x. The corresponding electric
field is felt by the hole crystal. As is well known, a pinned
crystal will, when subject to a large enough electric field, start
sliding. The evolution to the sliding state at 7 = 0 happens
through a sharp dynamical phase transition. We discuss below
the subsequent longitudinal differential resistance.

We first give a simplified treatment that captures the es-
sential physics. As the electric field is along J, the crystal
component will slide along §. (Here we are ignoring any
anomalous velocity of the sliding hole crystal.) Just above
the threshold electric field, the sliding crystal will thus lead
to a small electric current I, cpw along the § direction, which
must be canceled by an equal and opposite current I, jgan =
—I, cpw from the IQAH component due to the open circuit
along 3. In turn, I, joan generates a voltage along £,

h h h
Velly) = _;Iy.IQAH = e_zly,CDW V= e_zlx , M

where the minus sign in the first equality is due to the direction
of the current flow, and in the last equality we have used the
aforedescribed Hall relation. We thus arrive at the differential
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(longitudinal) resistance,

2
avy <h> dl, cpw(V) @)

dar, — \e& dv

e V=241,
Strikingly, the differential resistance of the combined IQAH
state and hole-crystal state is proportional to the differential
conductance of the hole crystal.

The depinning behavior near threshold of an incommensu-
rate crystal is an old and much studied problem in statistical
mechanics. For reviews, see Refs. [40—-43]. The details depend
on whether the sliding is in the elastic regime or in a plastic
regime (where topological defects of the ordering pattern are
nucleated), whether the interactions are short range or long
range, and the pattern of charge ordering. It is expected that
for weak disorder, plastic deformations of the crystal may be
ignored (except perhaps at very long length scales [41-43]).
In that case, near the threshold, Icpw(V > V) ~ (V — V),
where 8 < 1 [43].

This can lead to a singular peak in the differential resis-
tance (for B < 1), as shown in Fig. 2, in agreement with
the experimental observation of the sharp transition feature
at generic fillings. The combination of the depinning of the
hole crystal in conjunction with the interplay with the IQAH
component leads to this feature.

The above treatment, though capturing the essentials of
the interplay of the hole-crystal and IQAH components, ig-
nored the sliding of the hole crystal along the % direction
by the Hall voltage V,. We define the electric field compo-
nents E, , =V, /L, ,, where V, , are the voltage drops along
the X, § directions, and the corresponding current densities
Jey = I y/Ly . The total current density is composed of the
IQAH and CDW components, J= jCDW + fIQAH, such that
Jy, =0 due to the open circuit in the § direction. The net
electric field is generated by the IQAH component and is
thus perpendicular to the total JTQAH, i.e., E = 6%2 X leAﬂ,
where J_iQAH is the current density associated with the IQAH
component. When the CDW component slides, there will be a
current along the electric field direction [44]: Jeow || E.

Defining the Hall angle 6y (angle between total electric
field and current) and projecting the total current J, along and
perpendicular to the direction of the electric field yields

leow| = Jepw = Jy cos(B), )

ligan| = Jigan = J sin(@p). “)

The incommensurate hole crystal will have a nonlinear
current-voltage relationship Jepw = f(E), where the func-
tion f will be nonzero only beyond a sharp threshold value
of its argument. Using |E | = %JIQAH, we arrive at the self-
consistent equation for the total current,

Jycos(By) = f|::l—2Jx sin(fy )i|. 5)

Equation (5) permits the Hall angle to be extracted from the
magnitude of the total current, 6y = 0y (J;).

For small currents, f =0, which leads to 0y = %
For currents just above the depinning threshold, we take

f(E)~ A(E — E.)?, where E, is the depinning electric field,
B < 1 is the critical exponent defined above, and A is a
constant. Since the critical current just above the threshold
is small, we can assume 6y =~ 7w /2 — §, where § is taken
to be small. Expanding Eq. (5) in the small-§ limit yields
V, = A(I, — )P, where A is a constant. We thus arrive at the
same singular form of the differential longitudinal resistivity
as in the simplified treatment. Similarly, we can obtain the
correction due to the sliding of the hole crystal to the Hall
resistivity of ~[(h/e?)J — x.]*#~1.

B. Current-induced EIQAH-FQAH transition at Jain fillings

At the specific Jain fillings of the moiré unit cell, the
current-driven transition from the IQAH state to the FQAH
state occurs at a smaller critical current than at the generic
incommensurate fillings. This is surprising because, as de-
scribed in Sec. II, due to the enhanced role of the moiré
potential at rational fillings, commensuration effects, and
hence the depinning thresholds, are expected to be larger.
Thus, we propose that the current-induced transition at the
Jain fillings is not a depinning of the hole crystal, but rather
is an equilibrium transition where the IQAH component is
unchanged, while the ground state of the holes changes from
the commensurate crystal to an FQAH state.

Consider the Jain FQAH state at filling v = p/(2p + 1),
where for v > 1/2 this entails p < 0. This state can be re-
garded as the particle-hole conjugate of the Jain state of holes
at filling vy, =1—p/Q2p+1)=(p+ 1)/2p+ 1). This al-
lows us to regard the FQAH state at the Jain fillings as an
IQAH + hole-Jain state. For example, the v = 2/3 Jain state
is equivalent to the IQAH + (v, = 1/3) hole-Jain state; sim-
ilarly, the v = 3/5 Jain state is equivalent to the IQAH +
(vp = 2/5) hole-Jain state. Thus, at low bias currents, the two
competing many-body states at these fillings are (a) IQAH +
hole-crystal and (b) IQAH + hole-Jain states. It is important
to reiterate that the v = 1 IQAH state is the same in both
many-body states.

Since the current in a quantum Hall liquid is carried by
its edge state (and has no dissipation), the many-body state
at a nonzero current is an equilibrium state [45] and we can
ask about its ground-state energy. Thus our proposal is that
the depinning transition at incommensurate fillings is pre-
empted at the Jain fillings by the transition to the Jain FQAH
states.

The transition between a hole-crystal and hole-Jain state
may occur under the tuning of external knobs, such as dis-
placement field, even at zero-bias current. This transition may
even be allowed to be continuous [46], but here we will con-
sider the more conventional possibility that it is a first-order
transition. Let g be a parameter (e.g., a displacement field)
that tunes across this first-order transition at 7 =1 = 0. At
the transition point g = g, the ground-state energy per hole is
equal between the two states, Ecpw(g = g¢) = Ehole-Jain(g =
g.). For g < g, (the evident state of the experimental sample
at lowest temperatures), Ecpw(g < 8¢) < Ehole-Jain(g < &¢)-
Nonetheless, we expect the two energies (per hole) to be close
to each other, as is known from the competition between
crystal and liquid states in standard Landau levels, as well
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FIG. 3. Schematic of the current- (J,) induced phase transition
from IQAH + hole-crystal to FQAH state. g denotes a parameter
that tunes across a first-order transition at 7 = I = 0. The first-order
phase boundary bends towards the IQAH + hole-crystal state, in-
dicative of the enhanced dielectric susceptibility of the Jain states.

as other contexts (see, e.g., the discussion in Ref. [33], and
references therein).

We now consider the relative stability of the hole-crystal
and hole-Jain states in the presence of an electric current,
J= JX. The induced Hall electric field will lead to an electric
polarization which will lower the energy of either state and
will affect their relative stability, as we discuss below. We
provide a schematic phase diagram of the current-induced
phase transition from the IQAH + hole-crystal to FQAH state
in Fig. 3.

1. IQAH + hole-crystal state

The IQAH background component is the sole carrier of the
current, which gives rise to a perpendicular Hall electric field
E, = eﬁzlx. Since the applied bias current is smaller than the
depinning threshold current, the hole crystal does not slide,
but instead develops an electric polarization. The modification
of the ground-state energy due to this polarization will (for
small currents) be

2
X h
Ecpw(Jy) = Ecpw(Jx = 0) — C;W (;) 26

where xcpw is the dielectric susceptibility of the hole crystal.
We expect xcpw to be a smooth function of the filling v.

2. IQAH + hole-Jain state

For the IQAH + hole-Jain state, the current (and, conse-
quently, conductivity) is composed of the contribution from
both IQAH and the hole-Jain components,

_ _IQAH hole-Jain
Oxy = ny + ny

= - s (7)

where the negative sign in the second line is due to the hole
charge. We thus obtain the corresponding electric field, E, =

E%ZP—:]JX. The hole-Jain state will also develop an electric

polarization due to this Hall electric field,
Ehole—Jain(Jx) = Ehole—]ain(-]x = O)

ole-Jain h 2 2 1 :
() o

where Xnole-Jain 1S the corresponding dielectric susceptibility.
For large |p| (i.e., fillings closer to v = 1/2), the electric field
responsible for the polarization of the hole-Jain state is two
times larger than the electric field polarizing the hole crystal
due to the reduced Hall conductivity.

Unlike the hole crystal’s dielectric susceptibility, the
dielectric susceptibility of the Jain state will grow with in-
creasing |p|, and eventually diverge. Thus the hole-Jain state
for large |p| can lower its energy in the presence of a current
more effectively than the hole crystal can. It then follows
that for g < g., there will be a transition at a nonzero current
where the ground state flips from the EIQAH to FQAH states.
To understand the Jain state’s susceptibility, first recall that
the termination of the Jain series as |p| — oo is the v =
1/2 compressible composite Fermi liquid (CFL) where the
static wave-vector-dependent dielectric function x(g) = ;‘—7
for small g (here, « is the electronic compressibility). If the
electron density changes by §p to move away from v = 1/2,
the composite fermions see an effective magnetic field B* =
—478p. There is a corresponding length scale /.2 = 1%. The
small-g divergence of x(g) will be cut off at a momentum
scale IBLZ = B*, leading to a dielectric susceptibility,

Xhole-Jain = K13 ~ |pl, )

where we have employed the fact that |B*| = B/(2p+ 1) at
the Jain fillings. Thus, as promised, for Jain fillings close to
v =1/2 (i.e., large |pl|), the dielectric susceptibility is very
large. This ensures that the hole-Jain state will always be
stabilized by a small J, over the hole crystal for Jain fillings
sufficiently close to v = 1/2. A detailed energy comparison
away from this asymptotic limit ultimately requires an accu-
rate model for the hole-crystal and hole-Jain states, and is
beyond the purview of our study. We demonstrate, in Ap-
pendix A, a mean-field composite fermion treatment for the
energy decrease of the Jain state, which confirms the above-
presented argument. We emphasize that the above argument
for the dielectric susceptibility is beyond the mean-field treat-
ment.

IV. TRANSPORT AND PHASE TRANSITIONS
OF THE ANOMALOUS HALL CRYSTAL

Next we turn to the (AHC), state, which is an electron
crystal (with a period determined by the charge density) and
whose occupied bands have nonzero Chern number C = 1. At
low current strengths J = J.%, the (AHC),, will stay pinned
by impurities. The nonzero Chern number leads to a Hall
electric field, E, = e%Jx. With increasing current, this electric
field will also increase and, like in any other pinned crystal,
will eventually lead to a sharp depinning transition at 7 = 0.
Beyond the threshold, the AHC will slide, but now in a di-
rection that is different from that of the electric field. This
is because the sliding AHC will have an anomalous velocity
(just like it does in the pinned state). We analyze the transport
properties across the depinning transition below and show that
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it will have the same qualitative behavior as the incommensu-
rate hole crystal (and the experiments). Subsequently, we will
discuss the situation at the Jain fillings.

1. Depinning transition of anomalous Hall crystal (AHC),,

Consider the current response of the (AHC), to an electric
field E. In general, we can write this as

J =0 (E)E + 0(E)Z x E. (10)

Here, oy, 0,, are the (nonlinear) longitudinal and Hall
conductivities (not the differential conductivities) that are
functions of E = |E|. For E below some threshold E7, we
have

2
o(E < Er) = 0; oy(E) = % (11)

What happens beyond the threshold? We expect that the
longitudinal current is similar to an ordinary sliding crystal.
We therefore focus on the anomalous (i.e., Hall) current. To
understand this, consider a sliding AHC in the complete ab-
sence of any impurity pinning which is appropriate deep into
the sliding phase. In this limit, we can use a semiclassical
framework for the many-particle system to obtain an effective
equation of motion for the center-of-mass motion. This is
detailed in Appendix B. We find an anomalous center-of-mass
velocity,

d’p
(2m)?

(Bom) = E x z< Ba<ﬁ>c;ﬁcaﬁ>, (12)

where B,(p) is the microscopic Berry curvature of a mi-
croscopic electron of flavor o with corresponding fermionic
operators c. The average is evaluated in the many-body
state (for vanishing electric field, E = 0). We computed this
averaged Berry curvature within Hartree-Fock theory for
R5G/hBN; it lies in the range ~1-50 for displacement field
energies u, ranging from 10 to 50 meV at a range of twist
angles 6 € [0°, 1.5°]. The center-of-mass anomalous velocity
of the AHC determines the Hall current fHaH = p(Vcm), Where
p is the charge density. The crucial point is that o, (E >
Er) = p # 0, but is also not quantized. Across the continuous
dynamical transition at E7, we expect that o,,(E) will evolve
continuously from its quantized value for E < Er to its un-
quantized value for £ >> E7. However, we will not attempt to
describe the details of the critical behavior of the anomalous
velocity near the threshold. Once we accept that o, (E ~ E7)
is close (or exactly equal) to e?/h, the analysis of the lon-
gitudinal differential resistivity becomes identical to that in
Sec. III for the incommensurate hole crystal. Thus there will
be a peak in the longitudinal differential resistance at low E,
and pass through a peak at the threshold, before settling to a
finite nonzero value in the sliding phase.

Thus we see that the (AHC),, possesses both a longitudinal
conductivity qualitatively similar to the incommensurate hole
crystal. The distinction with the IQAH + hole-crystal picture
is that here the (AHC), contains both longitudinal and Hall
components in one electronic entity.

The detailed behavior of the Hall component near the
threshold is an interesting theoretical problem for the future.

2. Current-induced transition to Jain FQAH state

The discussion on the current-induced transition from the
hole-crystal to the Jain FQAH state can be taken over without
any modification to the (AHC), as well, and we will mainly
highlight some differences. In short, we propose that the
depinning transition of the (AHC),, is preempted by a current-
induced first-order transition to the Jain FQAH state. In the
presence of a current J;, the pinned (AHC), will experience
the Hall electric field and will develop a polarization that low-
ers its energy of O(J2). The coefficient is proportional to the
dielectric susceptibility, which will be a smooth nondiverging
function of v. Thus the large susceptibility of the Jain FQAH
state can help stabilize it over the (AHC),, as detailed in the
discussion on the hole crystal.

However, we find this proposal somewhat less compelling
in the (AHC), than in the hole crystal. As we emphasize
below, in the latter, the effect of the moiré potential is expected
to be enhanced, and hence the depinning thresholds at the Jain
fillings may be large enough that they can be preempted by
the transition to the FQAH state. In contrast, in the (AHC),,
there is nothing special about the Jain fillings as far as
pinning thresholds go. They are expected to evolve smoothly
across these fillings. It is then not clear that the depinning
transition can be preempted in the manner described in the
previous paragraph. A second concern is that while the hole-
crystal and the Jain states can reasonably be expected to have
a close competition (i.e., have close energies/particle) even
away from the first-order transition point, this is less clear for
the (AHC), and the Jain states. These two states are rather
different from each other and any closeness of their energies
may be specific to a narrow region near their presumed first-
order transition.

V. FINITE-TEMPERATURE TRANSITIONS BETWEEN
EIQAH AND FQAH STATES AT THE JAIN FILLINGS

The EIQAH state is stabilized at the base temperature
[27] (~10 mK). As the temperature rises to 7. ~ 100 mK, a
transition from EIQAH to FQAH states is observed for the
Jain fillings v = %, 2. It is possible that this phenomenon has
a mundane explanation due to experimental artifacts such as
equilibration issues between the contacts and the edge modes
at low T [47]. Here, however, we will explore the possibility
of an explanation where such a transition is an intrinsic bulk
phenomenon. Then the experimental observation suggests that
the FQAH state is slightly higher in energy than the EIQAH
state, but it also has higher entropy, which at higher tempera-
tures reduces its free energy.

Certainly, this entropy difference should be attributed to
low-energy excitations. The pertinent excitations are those at
an energy scale that is lower or at least similar to the tran-
sition temperature 7, ~ 100 mK ~ 0.01 meV, so that they
contribute significant entropy at 7,. Candidate excitations
are charged quasiparticles or neutral collective modes. The
charged gap of the hole-crystal and the (AHC), state should
be of the order of the Coulomb repulsion. For the FQAH state,
at least close to v = 1/2, the charge gap will become small
(order I_;\ in composite fermion mean-field theory). Away
from this limit, the gaps are not accurately known, but we
can take guidance from existing calculations. According to
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numerics, within the approximation that the interaction-
induced Chern band is treated as frozen, the FQAH state at
V= %, % has a gap of ~1 meV [24-26]. The most important
neutral modes are the phonons of the broken translation sym-
metry. At Jain fillings, there are three competing states: (1)
electron-crystal (AHC),, (2) IQAH + hole-crystal, and (3)
IQAH + hole-Jain states. In (2) and (3), the IQAH component
really is (AHC)y. In the absence of a moiré potential, all
of these break continuous translation symmetry and therefore
have gapless phonons. In the presence of a moiré potential,
a phonon gap is opened of size determined by the effective
moiré potential strength. Note, in particular, the enhancement
of the moiré potential by the underlying IQAH state for
(2). However, the phonon for (1) remains gapless since the
(AHC),, lattice is incommensurate with the moiré€ lattice.

Armed with this understanding, we can discuss the finite-7
evolution of the EIQAH phase. Due to its gapless phonon, the
(AHC),, will have a high entropy at low T" compared to the
other two states. Thus, if it is already the preferred ground
state, it is unlikely to yield to the FQAH state on the scale of
100 mK. However, in the experiment, the EIQAH transitions
into FQAH state at higher temperatures. This suggests that
the underlying low-temperature EIQAH state is more likely
to be the IQAH + hole-crystal state, as it does not manifestly
overwhelm the FQAH state at higher temperatures, unlike
the (AHC), state. The high-temperature stabilization of the
FQAH state relative to the hole crystal is easy to understand
for v close to 1/2, where the charged excitations of the former
have increasingly small gaps. Well away from v = 1/2, based
on the estimates above, the charged excitations are unlikely
to play a role at the 10 mK scale. Evaluation of the relative
stability of the hole-crystal and FQAH states at nonzero T will
have to await a better understanding of the excitation spectrum
of either state.

VI. DISCUSSION

In this work, we examined the nature of the extended
integer quantum anomalous Hall (EIQAH) phase [27,36]
realized at low bias currents and temperatures in rhombohe-
dral graphene moiré structures. For very general theoretical
reasons, the EIQAH state away from v = 1 breaks moiré
translation symmetry. Thus the main question is the nature of
the resulting crystalline state, its depinning transition, and its
competition with the FQAH state at Jain fillings. We explored
two possible crystalline states away from v = 1: (a) a crystal
of holes doped into the v =1 state (IQAH + hole-crystal
state) and (b) an electron crystal with a quantized anomalous
Hall effect (in its pinned state), known as the anomalous Hall
crystal (AHC),. The hole crystal experiences an enhanced
moiré potential (due to the self-consistently generated elec-
tronic potential from the v = 1 background) which enhances
the commensuration effects. In contrast, the natural (AHC),,
state (with one electron per unit cell) is incommensurate for
any filling 1/2 < v < 1 where the EIQAH state is seen. Thus
the moir€ lattice is expected to play a more important role in
the hole crystal compared to the (AHC), crystal.

At generic fillings, either crystal is pinned by impuri-
ties. The current-induced transition out of the EIQAH state
observed at generic fillings in the experiments [27] can be

understood as a depinning of the crystal. For the IQAH +
hole-crystal state, the interplay of the sliding hole-crystal and
the IQAH component leads to a sharp peak in the differential
resistance at threshold. In the (AHC), picture, the threshold
behavior can similarly be understood, with the only difference
being that the Hall and longitudinal components are due to the
same electrons.

At the Jain fillings, we proposed that the current-induced
transition out of the EIQAH state is not a depinning transition
of the crystal. Rather the depinning transition is preempted by
a ground-state phase transition to the Jain FQAH state. For the
hole crystal, it is natural to expect that it closely competes with
the FQAH state (which can be viewed as a hole-Jain state) at
the same filling. Thus even if the hole crystal wins at zero
current, the energy balance can be tipped in an electric field
depending on which of these states has a higher dielectric
susceptibility. We analyzed this effect and showed that for
fillings close to v = 1/2, the Jain state will have a strongly
enhanced susceptibility (inherited from the proximity to the
compressible composite Fermi liquid at v = 1/2). The hole
crystal does not have any such enhancement and, hence, an
external current (and the associated Hall electric field) can
drive a transition from the hole-crystal to the Jain FQAH
state. In principle, a similar picture may also apply to the
competition between (AHC), and the FQAH state. However,
it is less clear if these states are close competitors.

Finally, we discussed the finite-temperature transition to
the FQAH state in the framework of entropy gain of the FQAH
states relative to the EIQAH state. We suggested that the per-
tinent excitations for the entropy may be phonon modes of the
various crystals as they are likely to have lower energy than
the charged excitations. Unlike the hole-crystal and the Jain
FQAH state, the (AHC),, being incommensurate with moiré,
will have an ungapped phonon spectrum even at the Jain
fillings, and hence have a higher entropy than the FQAH state.
This makes it harder to understand the stabilization of the
FQAH state at higher temperatures if the (AHC),, is realized
in the EIQAH state. The relative thermal stability of the IQAH
hole-crystal and the FQAH states is hard to evaluate without
a more detailed understanding of the excitation spectrum of
either state than is currently available. Thus we do not have a
good explanation of the finite-7 evolution at present, and this
is a target for future work.

We have only attempted to provide a “broad-brush” discus-
sion of the basic physics of these crystalline states and their
transitions, and we leave open many detailed questions for the
future. First, it will be important to take a more microscopic
approach in discussing the phase competition between crystal
and FQAH states at the Jain fillings. Second, there are inter-
esting questions associated with the depinning transition in the
presence of the Hall component, including a detailed picture
of the threshold behavior of the differential Hall conductance.
Finally, our discussion of the entropy of the various competing
states highlights the need for accurate microscopic studies of
the excitations of these various competing states.

Note added. Recently, we learned of Ref. [48], which ex-
amines the thermal evolution from EIQAH to FQAH, and
argues that the disorder plays an important role. In addition,
Refs. [49,50] examine the thermal evolution from EIQAH
to FQAH states from the perspective of edge entropy, and
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Ref. [51] uses a toy model with impurities to examine the
appearance of FQAH states at finite temperature.
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APPENDIX A: DIELECTRIC SUSCEPTIBILITY WITHIN
MEAN-FIELD COMPOSITE FERMION THEORY

In this Appendix, we employ the composite fermion
mean-field framework to calculate the dielectric susceptibil-
ity. We examine the Jain state at filling v, = zpp%ll as being
constructed from occupying Landau levels with composite

fermions. The effective low-energy Lagrangian is

1 2 1
L=—AANdb— —bAdb— —bAda+ L[V, a
2 4 2
(A1)

where A is the external background gauge field, a, b are the
internal gauge fields, and L[V, a] is the Lagrangian involv-
ing the composite fermions and its respective gauge field a.
The physical electric current carried by the holes along the x
direction is
1 1
Jhole:_ b_ —d.by —
* 2 © 271( yro

The total current J, = Jl 4 JIQAH can be related to the
current carried by the holes via the background electric
field E,

doby). (A2)

1
_rtr (A3)
E, 2p+1
Varying the Lagrangian Eq. (Al) with respect to b in the
presence of the external magnetic field along the § direction
yields

b
Py

¢l = E, —2¢) (A4)
Ey
- 2p+ 1’ (43

where we have used that dA = —E, and similarly for the
internal gauge fields, and in the second equality we employed
Eq. (AS).

The composite fermions experience the electric field ef.
Within first quantization, the coupling of the electric field to
the composite fermion location is H, = —ye$. Within Landau
levels, (H,) = 0, indicating the lack of dipole moment in the
ground states. The dielectric susceptibility is computed with
second-order perturbation theory,

AG_Z

m>n

|(mly|m)|>

—hw(m —n)’ (A6)

where w] is the cyclotron frequency associated with the
effective magnetic field B* experienced by the composite

fermions. For Landau levels, only for m = n + 1 is the ma-
trix element nonvanishing (recall m > n in the summation),

and so
*

Ae a2 m
~ = @) e (A7)
= —E;|plm*c, (A8)

where ¢ is a numerical factor, and we have once again
employed Eq. (A5) for ef. It follows that the dielectric sus-
ceptibility is

(A9)

Assuming the effective mass stays constant as |p| — oo,
then dielectric susceptibility diverges as v — 1/2. Thus the
Jain state will always be stabilized by a small current J,
for sufficiently large |p|, i.e., for fillings sufficiently close
to 1/2.

Xhole-Jain ™~ |P|m*

APPENDIX B: ANOMALOUS DRIFT VELOCITY
WITHIN SEMICLASSICAL FRAMEWORK

In this Appendix, we derive the anomalous drift velocity
of the (AHC), within a semiclassical framework. Consider
the microscopic semiclassical equations of motion for an elec-
tron of the continuum rhombohedral-stacked n-layer graphene
(RnG) Hamiltonian,

H= Ze(p,)+ ZV(r,—r,)—E Zr,, (B1)

i#]

where €(p;) is the dispersion of the RnG electron, and V (7; —
7;) is the interaction between the electrons. The final term
is the microscopic electric field coupling to the electron at
location i in real space. Due to the nontrivial Berry curvature
of the microscopic model, the spatial coordinates 7; are the
gauge-invariant kinematic coordinates, 7; = X; + fl(ﬁi). This
Hamiltonian is written in first-quantized notation.
The subsequent semiclassical equations of motion are

=E — ZV V(# — 7)), (B2)
J#L
5 e - Saa
Fi = — + pi x [B(p))zl, (B3)
api

where B is the Berry curvature of the microscopic RnG con-
tinuum model.

The center-of-mass momentum pCM = ), P; satisfies the
expected equation of motion pcM = NE, where N is the total
number of electrons.

The anomalous velocity contribution to the total ve-
locity, Uiy = Z 7;, is the Berry-curvature-dependent
term,

1 =
By = v ZE x 2B(p;). (B4)

This operator equation is averaged over the many-body wave
function (at E = 0 for linear response),

- 1
(5&) = E x 2<N ZB(ﬁ,-)> (BS)

o d’p
Exz< an )ZB(p)cT(p>ca(p)> (B6)
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where, in the second equality, we have reverted to second
quantization in the noninteracting band basis in the moiré
Brillouin zone, and « labels the bands of interest. This ex-

pectation value is computed within the Hartree-Fock theory,
where one transforms the noninteracting fermionic operators
into the Hartree-Fock basis.
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