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Incompressible insulating phases of electronic systems at partial filling of a lattice are often associated with
charge ordering that breaks lattice symmetry. The resulting phases have an enlarged unit cell with an effective
integer filling. Here we explore the possibility of insulating states—which we dub “quantum charge liquids”
(QCLs)—at partial lattice filling that preserve lattice translation symmetry. Such QCL phases must necessarily
either have gapped fractionally charged excitations and associated topological order or have gapless neutral
excitations. We establish some general constraints on gapped fermionic QCL phases that restrict the nature of
their topological order. We prove a number of results on the minimal topological order that is consistent with
the lattice filling. In particular we show that, at rational fillings ν = p/q with q an even integer, the minimal
ground-state degeneracy on a torus of the fermionic QCL is 4q2, four times larger than that of the bosonic QCL
at the same filling. We comment on models and physical systems which may host fermionic QCL phases and
discuss the phenomenology of these phases.
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I. INTRODUCTION

The competition between interelectron Coulomb repul-
sion and electronic kinetic energy is at the heart of many
interesting phenomena in condensed-matter physics. If the
electrons live on a crystalline lattice, then at any fractional
filling ν, defined as the mean number of electrons per unit cell,
metallic Fermi-liquid phases will occur if the kinetic energy
dominates. When the Coulomb energy dominates, and the
filling ν is rational, an insulating state is expected where the
electrons are localized in a spatial pattern that breaks lattice
translation symmetry. These states are known as Wigner-
Mott insulators. Recent experiments [1–4] on moiré transition
metal dichalcogenide (TMD) materials have found evi-
dence for Wigner-Mott insulating phases at many fractional
fillings ν.

How does the Wigner-Mott insulator evolve into the Fermi
liquid as the bandwidth is increased at fixed Coulomb in-
teraction? Are there new phases stabilized at intermediate
bandwidth that are distinct from both the Wigner-Mott insula-
tor and the Fermi liquid? Remarkably, questions such as these
may be experimentally accessible in the moiré TMD systems
where the bandwidth can be simply controlled by tuning a
perpendicular electric field.

In this paper we focus on insulating states at fractional
lattice filling. We explore the possibility of states which
preserve the translation symmetry of the lattice and are there-
fore distinct from Wigner-Mott insulators. The well-known
Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH) theorem
[9–11] tells us that such states necessarily have fractional-
charge excitations and associated topological order (TO), or
have gapless neutral excitations. We refer to these as “quan-
tum charge liquids” (QCLs). We specifically focus on the

case where the intervening phase is fully gapped, and hence
topological, as indicated in Fig. 1.

Although this paper is focused on the experimentally rele-
vant case of fermionic QCLs, we note that the concept, if not
the name, of QCLs has arisen before in bosonic systems. One
early example is the triangular lattice quantum dimer model,
which can be mapped to a hopping problem of hardcore
bosons on a kagome lattice [12]. Other tractable microscopic
models for bosonic fractionalized phases have also been con-
structed [13–16]. More fractionalized states of bosons can be
accessed theoretically either through parton constructions [17]
or through vortex condensation from a proximate superfluid
phase [17–20].2

1In the extended Hubbard model t/U ≈ 0.1 in numerical studies of
the insulator-metal transition [5].
2We note that many of these constructions are linked to closely

related states [21–24] that occur as gapped quantum spin liquid
(QSL) phases of quantum magnets with, at least, a U(1) spin sym-
metry [25]. One key difference between quantum magnets and the
charge-frustrated systems of interest in this paper is the action of
time-reversal symmetry. Electrical charge is even under time reversal
while the spin is odd under time reversal. Thus, time reversal acts
differently on the generator of global U(1) in the two cases. The
incompressible insulating states of interest in this paper where the
lattice filling of particles is a generic rational fraction correspond, in
the quantum magnet analog, to magnetization plateau states which,
except in the special case of zero magnetization, are not time-reversal
invariant. Thus we can even have chiral TO as a possibility for
magnetization plateau states [26] while they are not allowed at
fractional filling of a time-reversal invariant charge system. Apart
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FIG. 1. A possible evolution between the Wigner-Mott insulator
and a Fermi liquid at a fixed fractional lattice filling. t sets the scale
of the bandwidth, and U is a measure of the electron-electron inter-
action strength. We consider an intermediate phase where the charge
order is lost before the insulator-metal transition.1 This is displayed
in the cartoon, where the dimensionless charge gap is �c/U and
the dimensionless charge density wave order parameter is ρ√

3×√
3.

It goes to zero before the charge gap closes. General constraints tell
us that this insulating phase can be fully gapped but must exhibit
TO and have excitations that carry fractional charge. For a treatment
of the possibility of a continuous phase transition between the metal
and the Wigner-Mott insulator without this intervening topologically
ordered phase, see Refs. [6–8].

In contrast, fermionic QCLs have gotten surprisingly lit-
tle attention despite their relevance to the aforementioned
experiments in moiré TMDs. Early works [27–29] suggest
that spinless fermions at ν = 1/2 on a lattice can form a Z2

TO insulating state that preserves charge conservation, lattice
translation, and time-reversal symmetries. Contrary to these
suggestions and to the familiar bosonic case, we show that
such a state is not allowed to exist on general grounds. Instead,
a filling ν = 1 is needed to observe Z2 TO in this system, as
recently found in exactly solvable models [30,31].

For concreteness we now specialize to spinless fermions.
This is relevant to the TMD materials where the spin-
exchange scale is very small compared with the charge-
exchange scale [4]. The spins are thus easily polarized in a
small magnetic field, or become incoherent at small tempera-
tures between the spin- and charge-exchange scales. With this
assumption, we present general results about the possible TOs
the spinless fermions can form by extending the LSMOH con-
straints to the fermionic case where: U(1), lattice translation,
and time-reversal symmetries are respected. We remark that
fractionalized states of fermions on a lattice in the absence
of time-reversal symmetry (either due to explicit or sponta-
neous breaking) occur in fractional quantum anomalous Hall
and fractional Chern insulator states that have been observed
recently [32–34]. As a warm-up we also obtain some results
on these time-reversal-broken fractionalized states. We show
that, in general, the “minimal order,” which we define below,
realized by spinless fermions is larger than that of bosons.

Given that LSMOH requires nontrivial TO, we can ask
what the simplest or minimal TO is consistent with the lat-

from this conceptual distinction, the natural microscopic interactions
of charge-frustrated systems and quantum magnets are of course
different. Finally, the concept of a fermionic QCL discussed in this
paper has no analog in a spin system.

tice filling and symmetries. We propose using ground-state
degeneracy (GSD) on the torus to define3 minimal TOs rather
than quantum dimension, as done in a recent paper [36]. We
then show that, for fillings of ν = p/q per unit cell with p, q
relatively coprime integers, and q even, the minimal fermionic
TO that does not break either translation or time reversal has a
GSD on the torus of at least 4q2, larger by a factor of four than
the minimal GSD of a bosonic TO at the same filling. This was
discussed using dual vortex and fermionic tensor network ar-
guments for the special case of ν = 1/2 in Ref. [37], although
it was not proven. In contrast, for fillings of ν = p/q with q an
odd integer, the minimal fermionic TO will have a GSD of at
least q2, exactly the minimal GSD of a bosonic TO at the same
filling. We give a proof of these statements, and physically
justify the emergence of such TOs using parton arguments. We
then prove that there is only a single minimal TO consistent
with lattice translation, charge conservation, and time reversal
at these fillings, so the minimal TO is unique.

While our focus in this paper is on gapped QCLs, where
we can establish some rigorous results, it is also interesting
to contemplate the physics of gapless QCL phases. If we
are interested in insulating QCLs, the charge must be fully
gapped. Thus the gapless sector, if present at all, must consist
entirely of electrically neutral excitations.4 A specific example
of such a gapless insulating QCL with an emergent Fermi
surface of neutral fermions is described in Appendix B. These
may well also appear as intermediate phases between the
Wigner-Mott insulator and a Fermi liquid. Finally we could
also consider metallic QCLs. The Fermi liquid itself could be
thought of as a familiar example; non-Fermi-liquid metallic
states that preserve the symmetries and filling constraints will
surely qualify as metallic QCLs.

Where might we expect to see fermionic QCLs? In the
better understood bosonic systems, fractionalized insulators
typically occur in the “intermediate” correlation limit where
the kinetic energy leads to ring exchange processes. By anal-
ogy and as motivated above, two-dimensional moiré TMD
materials evolving betweenWigner-Mott insulators and Fermi
liquids might be an interesting platform to observe frac-
tionalized QCL insulators. There has also been a recent
suggestion [38] that twisted bilayer graphene at 1/3 filling
might realize a fractionalized phase. Our results on the al-
lowed TO phases at fractional filling should inform further
explorations of this suggestion. Finally, we note that the
physics of charge frustration appears in a few traditional solid-
state systems as well, e.g., in triangular lattice quarter-filled
organic materials [39]. Although not as tunable as moiré ma-
terials, QCL phases might occur in some such systems as well.

The outline of the rest of the paper is as follows: In Sec. II
we give a brief review of the mathematical theory of TO
and define different classes of “minimal” orders. In Sec. III
we find the minimal orders at a fixed fractional filling of a
lattice ν = 1/q with and without the presence of time-reversal

3The notion of minimal TO has appeared before in other contexts;
see Ref. [35].
4This is yet another difference with QSL states of interest in

quantum magnetism. Insulating quantum spin liquids may well have
gapless spin excitations.
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symmetry. With time-reversal symmetry we show that there is
a unique minimal TO, Z2q (Zq) gauge theory for q even (odd).
Finally in Sec. IV we discuss areas of further study in three
related directions: (1) finding microscopic models that realize
gapped fermionic QCLs, (2) describing the phenomenology
of such QCLs, including their response to doping, and (3)
other scenarios where the concept of minimal order could
prove clarifying, as well as theoretical questions raised by the
concept of minimal order.

II. DEFINITION OF “MINIMAL” SYMMETRY ENRICHED
TOPOLOGICAL ORDER

We first give a brief review of the theory of To to establish
some common definitions. For a more comprehensive review,
see Refs. [40] and [41]. A TO C is characterized by its anyon
types and the chiral central charge c−. We focus on the anyons,
since c− must be 0 in time reversal invariant systems, which
is the main subject of the work. Two anyons a, b ∈ C can
be fused, resulting in a direct sum of other anyons a × b =∑

c N
c
abc, whereN

c
ab � 0 are integers known as the fusion mul-

tiplicity. The fusion rules determine the quantum dimensions
da � 1 for the anyons, through the equation dadb = ∑

c N
c
abdc.

If da = 1 then a’s fusion outcome with any other anyon is
unique and it is thus an Abelian anyon. One important Abelian
anyon is the unique “identity” anyon 1, which corresponds to a
local bosonic excitation. It has the property that 1 × a = a for
all a ∈ C. The set of Abelian anyons A ⊆ C forms an Abelian
group where the group multiplication is defined by fusion and
the identity element is given by 1. If A = C then we refer to
C as an Abelian TO. The total quantum dimension DC of C is
defined as

DC =
√∑

a∈C
d2
a . (1)

We thus see that D2
C � |C|, where |C| is the number of anyons

in C, with equality if and only if C is an Abelian TO.
In addition to the fusion rules for anyons in C a TO also

needs to specify the exchange and braiding statistics of the
anyons. The exchange statistics of an anyon a is denoted
by eiθa , where θa is referred to as the topological spin of a.
The effect of braiding an anyon a around b is captured by
the monodromy Mab. If either a or b is an Abelian anyon
then Mab = eiθa,b , where θa,b is referred to as the braiding
phase. Restricted to A ⊆ C the function θa,b is a symmetric
bilinear form on A, i.e., a map from A × A to R/2πZ = S1

that satisfies θa,b = θb,a and θa×b,c = θa,c + θb,c. Moreover,
θa,a = 2θa, i.e., the braiding phase of an anyon with itself
is twice its topological spin. The identity anyon is a boson
which braids trivially with all other anyons, and thus θ1 = 0
and θ1,a = 0 for all a ∈ C. In a bosonic TO, 1 is the only
anyon type with this property. A fermionic TO will have
an Abelian anyon c ∈ C corresponding to a local fermion,
i.e., the electron. This anyon obeys c × c = 1, θc = π , and
θa,c = 0 for all a ∈ C. In a fermionic TO, 1 and c are the only
anyons which braid trivially with everything else. We note
that physically the electron is a local particle, and as such is
sometimes not counted as an anyon in C. However, keeping
c ∈ C will prove to be a useful bookkeeping device for us, so

we adopt this convention throughout. With this convention, a
trivial fermionic insulator5 is described by the theory {1, c}.

We further note that a bosonic TO Cb can be trivially turned
into the fermionic TO, Cb � {1, c}, where � means stacking
of two anyon theories. Physically, it means that the TO Cb is
made of bosonic degrees of freedom in a fermionic system.
However, not all fermionic TOs can be written in this form,6

although Abelian ones can (see Theorem C5 in Appendix C).
Consistency of the fusion and braiding rules establishes

constraints on the possible TOs. For a comprehensive review,
see Appendix E of Ref. [40]. If, in addition, the TO is required
to respect a symmetry G, this will impose further constraints,
ruling out some symmetry actions and enrichments of G on
the TO [42–45]. Those that are consistent with a symmetry
action of G are referred to as symmetry-enriched TOs (SETs).

In addition to a symmetry G a system may have a “frac-
tional topological response” [46] that requires a nontrivial
TO. The example explored in this paper is fractional filling
of a lattice, ν, which requires nontrivial TO by the LSMOH
theorem [9–11]. Another familiar example is the fractional
quantum Hall effect [47]. A natural question is what the “least
complicated,” or minimal, SETs are given a symmetry G and
a fractional topological response ν. Surprisingly, despite the
well-developed study of SETs, the question of minimality is a
relatively recent one. Answering it first requires one to define
what is meant by minimal. A recent paper [36] endeavored
to do this by defining a minimal SET to be one which has
the smallest quantum dimension possible, given that it must
respect G and have the appropriate fractional topological re-
sponse. We propose another definition of minimal. We say that
a SET is minimal if it has the smallest GSD on a torus, given
that it must respect G and ν. We prefer our definition for two
reasons. The first is that a lower bound on GSD provides a
more useful tool for numerics such as exact diagonalization,
where GSD on a torus is easily assessed.7 The second reason
to prefer our definition is that it is more powerful when prov-
ing results about minimal Abelian SETs. We make this more
precise below.

Let SETG,ν be the set of all SETs respecting G and ν. Then
define

mG(ν )
D = {C ∈ SETG,ν | DC � DC′ ∀ C ′ ∈ SETG,ν}, (2)

this forms the set of minimal SETs according to the definition
of Ref. [36]. Now the GSD of a TO is equal to the number
of distinct anyon types [40], which is |C| for bosonic TOs and
|C|/2 for fermionic TOs, where this factor of two compensates
for our including c ∈ C.8 Therefore, achieving the smallest

5Here we refer to fermionic invertible states as trivial because they
have no nontrivial anyons.
6A familiar example of a fermionic TO that is not equivalent to a

bosonic TO stacked with {1, c} is the Moore-Read Pfaffian state.
7Note that in electronic systems the GSD may have size depen-

dence [48,49]; when we discuss GSD of these systems we refer to
those with an even number of electrons.
8The GSD is independent of the periodic or antiperiodic boundary

condition. As mentioned before, we assume an even number of
electrons.
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FIG. 2. A cartoon picture of the minimal order classes. The top
black box is the set of SETs consistent with the symmetry G and
filling fraction ν, SETG,ν . Contained within SETG,ν , illustrated by
bags, are the SETs SET1 and SET2 along with other possibilities.
Each of these SETs contains anyons, illustrated by the colorful balls.
The radius of each anyon is a proxy for its quantum dimension, with
the smaller balls therefore being Abelian and the larger light blue
ball being non-Abelian. The bottom-left illustrates the minimal class
mG(ν )

D , containing all SETs in SETG,ν with the smallest quantum
dimension. This will correspond to the total “weight” of the balls in
the bag, so SET2 is excluded because of its large non-Abelian anyon.
The bottom-right illustrates the minimal class mG(ν )

GSD, containing
all SETs with the smallest number of anyons. The large number of
anyons in SET1 thus rules out its inclusion. This illustration makes it
clear that mG(ν )

D will tend to be biased in favor of Abelian theories,
while the reverse is true of mG(ν )

GSD.

GSD will mean achieving the smallest number of anyons. We
thus define

mG(ν )
GSD = {C ∈ SETG,ν | |C| � |C ′| ∀ C ′ ∈ SETG,ν}, (3)

as the set of SETs with minimal GSD on a torus. We can think
of these as classes of minimal SETs. For a given G there is a
priori no reason for these two classes to have any relationship
to one another. However, a useful heuristic is that the minimal
class mG(ν )

D is more likely to contain Abelian TOs than the
class mG(ν )

GSD. This is illustrated in Fig. 2.
We make this more precise by stating a result proven in

Appendix A. It follows from the inequality |C| � D2
C , which

we noted earlier. If there is an Abelian TO in mG(ν )
GSD, then all

TOs in mG(ν )
D are Abelian and, moreover, mG(ν )

D ⊆ mG(ν )
GSD.

On the other hand, there is no reason for there to be any
Abelian TOs in mG(ν )

GSD even if one of the TOs in mG(ν )
D is

Abelian. We give an example of this in Appendix A. It is thus
more powerful to establish results about the minimal orders of
mG(ν )

GSD being Abelian, than about those of mG(ν )
D . Likewise, it

is more powerful to establish results about the minimal orders
of mG(ν )

D being non-Abelian.
For our choice of G, specified in the next section, we see

that all TOs in mG(ν )
GSD are Abelian and thus that mG(ν )

GSD =

mG(ν )
D . Thus in this case the two classifications of minimal

order turn out to be equivalent. However, it is nonetheless
more powerful to work with mG(ν )

GSD since this will imply
things about mG(ν )

D , but not the other way around. We thus
henceforth use the term minimal to refer to a SET in mG(ν )

GSD,
unless otherwise specified. Note that we often discuss mini-
mal TOs rather than minimal SETs, here a minimal TO is the
underlying TO of a minimal SET.

III. MINIMAL ORDER AT FRACTIONAL FILLINGS

We consider a general system of spinless fermions that
respect U(1) fermion number conservation and are at a frac-
tional filling ν = 1/q per unit cell; all of our arguments also
easily generalize to the case ν = p/q with p relatively prime
to q. For our purposes we henceforth take the symmetry group
to be given by

G = Z2 × [
U(1) f � ZT

2

]
, (4)

where the first Z2 is translation in the x and y directions, the
U(1) f is U(1) charge with the restriction that the charge mod
2 is equal to the fermion parity, and ZT

2 is the order-two time-
reversal operation which does not change the U(1) charge.
In what follows we also take the electron to be a Kramers
singlet, i.e., we assume that T 2 = 1. This is appropriate in
thinking about the possibility of the fractionalized states in
TMD moiré heterostructures, where, as we emphasized, the
electron spin exchange is very small compared with other
energy scales. Thus the spin may be easily fully polarized in a
small magnetic field without affecting the orbital motion.

As will become clear in the following sections the in-
clusion of time-reversal symmetry in G proves to be very
restrictive on the possible minimal theories. However, it also
makes proving results about the minimal order more chal-
lenging. As a warm-up we thus begin by supposing that the
system breaks time reversal, meaning its symmetry group is
now given by

H = Z2 × U(1) f . (5)

We review some generalities about TOs respecting H and ν in
Sec. III A. We demonstrate in Sec. III B that the minimal TOs
in both mH (ν )

D and mH (ν )
GSD are Abelian with 2q anyons when q

is odd, and 4q anyons when q is even. The proof is relatively
straightforward and illustrative of how we tackle the full G.

Having warmed up we dive into a discussion on constraints
on the minimal TOs consistent with time reversal as well, i.e.,
the full G. In Sec. III C we construct a fermionic Abelian TO
which preservesG and has a GSD of 4q2 (q2) for q even (odd).
We then prove a number of results. First, in Sec. III D, we
show that any TO at filling ν = 1/q which respects G and
has a GSD equal to or smaller than our construction must
be Abelian. Moreover, we show that all such possibilities
must have exactly the same GSD as our construction, so our
construction is minimal. Then, in Sec. III E, we show that
our construction is the unique minimal TO that obey all the
requirements. We defer a full classification of the symmetry
enrichments of this minimal TO to future work.
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We briefly remark that we have thus demonstrated a hi-
erarchy of lower bounds on torus GSD when the system is
gapped.

(1) If all symmetries are unbroken then we see that we
must have a GSD of at least 4q2 for even q, and q2 for odd q.

(2) However, if the time reversal is spontaneously broken
but the translation symmetry is preserved, then we must have
a GSD of at least 2×2q = 4q for even q, 2q for odd q. The
extra factor of two is due to the fact that time reversal is broken
spontaneously.

(3) If our GSD is even smaller than this, then we can
conclude that translation symmetry must be spontaneously
broken. This will allow us to have a GSD as small as q,
e.g., in a stripe order. Note that the GSD of q in this case
is not topological but arises from the breaking of translation
symmetry.

A. Generalities about TOs at fractional filling

We now discuss a few general results about TOs at frac-
tional filling [50], which form the basis of our arguments.

In any gapped TO, bosonic or fermionic, with U(1) sym-
metry, there exists an anyon v called a vison,9 which is
nucleated by flux insertion, whose braiding with other anyons
detects their (fractional) U(1) charge:

θv,b = 2πQb (mod 2π ), (6)

where Qb is the charge carried by b. Physically, v can be
understood as resulting from the adiabatic insertion of a 2π
U(1) flux. It is important to keep in mind that in a fermionic
system with U(1) f symmetry, all bosonic (fermionic) local
excitations carry even (odd) charges. This means we can take
Qb to be defined modulo two.10

In addition, the classic Laughlin argument shows that
Qv = σH (the Hall conductance in units where electronic
charge and Planck’s constant are set to 1). It follows from
Eq. (6) that θv,v = 2πQv = 2πσH . The topological spin of
v must therefore be θv = πσH or πσH + π . If continuous
rotation symmetry is assumed then it can be shown that
θv = πσH [51,52]. This can also be shown without continuous
rotation symmetry [53], so we always have θv = πσH .

In a translation-invariant state with fractional charge per
unit cell ν = 1/q, there should be a background anyon a
which has U(1) charge Qa = ν. The presence of such an
anyon can be argued using the aforementioned vison which
detects the background U(1) charge per unit cell [37,50].
However, it can also be understood to arise naturally from
the requirement that the TO be translation invariant; the most
natural way to do this is to fractionalize the fundamental

9The name “vison” is used here as a generalization of its original
use [17] to denote an Ising vortex in a Z2 gauge theory. In the special
situation in which the low energy physics is described by a Z2 gauge
theory with a charge-1/2 [under the global U(1)] chargon, and a
charge-neutral vison, the latter is indeed nucleated by such a flux
insertion.

10The U(1) charge respects fusion, so Qz = Qx + Qy (mod 2) for
any z in the fusion product of x and y.

FIG. 3. A cartoon picture of the easiest way to construct a gapped
state at fractional filling without breaking translation. Panel (a) con-
siders bosons at ν = 1/2 filling per unit cell on the square lattice.
The bosons, illustrated by a blue circle, can fractionalize into a back-
ground anyon a with charge 1/2 which will be placed on each lattice
site. In panel (b) we now consider spinless fermions at ν = 1/2.
By the arguments in the main text the same fractionalization cannot
occur for the fermions. However, if the fermions pair into Cooper
pairs at ν/2 = 1/4 filling per unit cell, then they may fractionalize
into a quarter of the Cooper pair on each site.

particle into q anyons with charge 1/q and place one in every
unit cell. This is depicted in Fig. 3(a).

We note that the background anyon a must be Abelian.
This was shown more formally in Ref. [50], but we sketch
two complementary arguments here. First suppose that a
is non-Abelian, with quantum dimension da > 1. Then the
Hilbert-space dimension associated with having non-Abelian
anyons on every site will scale as∼dN

a , where N is the number
of sites [40]. This macroscopic degeneracy must be lifted
by some interaction, meaning that this description is at best
useful at an intermediate energy scale and does not correspond
to the true infrared (IR) limit. Flowing towards the true IR, any
further macroscopic degeneracy will continue to be broken
until we have fully broken it, at which point we must have
a background anyon with da = 1, i.e., a must be Abelian.

Another complementary perspective can show the same
conclusion. Operationally, the background anyon is defined
by the following thought experiment: (1) excite some anyon
pair x and x, (2) adiabatically transport x around a unit cell,
(3) and annihilate the pair. This will return the system to its
ground state, so it can only lead to a global phase ϕx for the
wave function. We can think of this phase as the braiding of
x around the background anyon a. Importantly, this phase is
additive under fusion: if z ∈ x × y, then ϕz = ϕx + ϕy. Via
a result in Ref. [42] [see Eq. (45)], this is then enough to
establish that ϕx = θa,x for some Abelian anyon a, which we
identify as the background anyon.

B. Time-reversal broken minimal order

For bosons at 1/q filling, with q even, U(1)q (the TO of the
bosonic 1/q Laughlin state) is a natural candidate for time-
reversal breaking TOs in bosonic QCLs. We now demonstrate
that, for q even, U(1)q � {1, c} cannot be a fermionic TO at
filling 1/q. First we note that for even q U(1)q by itself is a
bosonic TO, and local operators in the theory are all bosons. It
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FIG. 4. Our proof strategy for demonstrating the number of
anyons a minimal theory must have. Using Cooper pairing we con-
struct a theory in SETG,ν . This theory’s anyon count must upper
bound the anyon count of any minimal SET. We further consider
all possible powers of the Abelian anyons we know our theory
must possess. This will lower-bound the anyon count. Any putative
minimal SET will be caught in the vice between these two bounds.

follows that the local excitation with minimal nonzero charge
in U(1)q is a charge-2 Cooper pair. Since every anyon in this
theory has order q, the minimal fractional charge in this theory
is 2/q. But this means this theory does not have a background
anyon of charge Qa = ν = 1/q, contradicting the presence of
U(1) f symmetry and the filling constraint.

We can construct a possible fermionic TO by pairing two
fermions into Cooper pairs. The Cooper pairs are bosons
at a filling ν/2 = 1/2q per unit cell. We then make a TO,
C, which is translation invariant by considering U(1)2q, the
bosonic Laughlin state of the Cooper pairs. Strictly speaking
we have U(1)2q � {1, c}, where c is the fundamental fermion.
This will be a fermionic TO in SETH,ν , and is depicted in
Fig. 3(b). This theory has a GSD of 2q. Of course if q is odd
the theory U(1)q is a fermionic TO in SETH,ν with a smaller
GSD, |U(1)q|/2 = q.

We now prove that these two constructions belong to
mH (ν )

GSD for the respective choice of q. We do this by showing
that the Abelian sector in any fermionic TO in SETH,ν is at
least as large as our constructions. So then if our theory is to be
minimal according to mH (ν )

GSD it must be Abelian with exactly
the same anyon count as our constructions. This will prove
that every TO in mH (ν )

GSD is Abelian and thus that mH (ν )
GSD =

mH (ν )
D , so the two definitions of minimality coincide. Our

proof strategy is illustrated in Fig. 4.
In addition to the background anyon a we know that the

fundamental fermion is an Abelian anyon with integer charge,
so a 	= c and we have two Abelian anyons a, c ∈ A. Let us
now consider how many different anyons we can generate
from the powers of a and c. We start with the case of q odd.
The order of a must be a multiple of q due to its U(1) charge
being 1/q. Since we have already constructed a theory with
2q anyons, U(1)q, it must be the case that if our theory is to
be minimal the order of a is either q or 2q. However, the order
of a cannot be q because aq has charge one, which cannot be
identified with the vacuum. Thus the order of a is 2q. Then
for our theory to be minimal, i.e., have at most 2q anyons, it
must be the case that c ∈ 〈a〉. The only possibility consistent
with charge conservation is c = aq. Then we see that our
theory is Abelian and A = 〈a〉. Here we use 〈·〉 to represent

an Abelian group in terms of its generators. It is useful to
write A = A′ � {1, c}, where A′ = 〈ac〉 has q anyons and is
in fact a bosonic TO because (ac)q = 1. All such bosonic
TOs are completely classified [41,54] and can be labeled by
θa = 2πn/q with n coprime to q. Note that U(1)q corresponds
to n = 2.

Although we have determined the possible minimum TOs,
we can still ask whether there are distinct symmetry enrich-
ments by Z2 × U(1) f . To that end, we need to specify the
vison anyon. It is easy to see that v = ak , where k is such
that 2nk = 1 (mod q). Since n is coprime with q and q is
odd, such k always exists and is uniquely fixed. Thus the
possible minimal orders in the time reversal breaking case
have Hall conductances of σH = k/q (mod 1) where k can
take all values relatively prime to q. It is worth noting that
we can (trivially) modify the TO by stacking copies of in-
vertible topological states11 of charge-neutral local bosonic
excitations, which does not change the anyon content.

Next we tackle q even. In this case we again must have that
aq 	= 1. So then a must have order a multiple of 2q. Suppose
now that aq = c, then aq must braid trivially with a. This
means that θa,aq = 2qθa = 0. Since q is even we multiply by
the integer q/2 to see that 0 = q2θa = θaq and thus aq is a
boson, a contradiction with aq = c. So c /∈ {1, a, . . . , a2q−1}
and we must have that there are at least 4q anyons in our
theory. For our theory to be minimal it must thus be Abelian
with A = 〈a〉 � {1, c} where a has order exactly 2q. All such
theories are again classified [41,54], with θa = πn/2q for any
n such that n is coprime with q. In particular this means n
must be odd. We can then choose v = ak , where k is such
that nk = 2 (mod 2q). This means k must be even, and more
specifically that k = 2k′ with k′ relatively prime to 2q. Note
n = 1 corresponds to the U(1)2q theory, where we can choose
v = a2. Thus when q is even the minimal orders have Hall
conductances σH = 2k′/q (mod 1), where k′ can take all val-
ues relatively prime to q.

This general proof strategy will prove useful in dealing
with the full G. We first construct a theory in SETG,ν , then
show that all minimal theories must be at least as big as
our construction. We again refer to reader to Fig. 4 for an
illustration of this strategy. Having obtained the anyon count
of each minimal theory we then show that in the presence of
time-reversal symmetry the minimal TO is in fact unique.

C. Construction of a fermionic SET of G

Let us briefly review the construction of a bosonic TO
which preserves the symmetries of the full group G in Eq. (4),
when the system is bosonic. We know from the discussion in
the last section that we must possess an Abelian background
anyon a, with Qa = ν. A natural bosonic TO which has such
a background anyon and preserves the symmetries of G is Zq

gauge theory with the usual action of time reversal. It will
be a consequence of our later arguments that this is in fact
the minimal bosonic TO that preserves the symmetries of G.
However, for even q, one can again see that the Zq TO must

11In two dimensions, the basic such state is the so-called E8 state
with chiral central charge c = 8.
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have excitations with minimal fractional charge 2/q, and thus
cannot be a fermionic TO at ν = 1/q without breaking any
symmetries.

We can again turn to Cooper pairing to construct fermionic
TOs, as illustrated in Fig. 3 and the previous section. The
Cooper pairs are bosons at a filling ν/2 = 1/2q per unit cell.
We then make a TO C which is time-reversal and translation
invariant by considering the Z2q gauge theory12 of the Cooper
pairs. This state is a fermionic Abelian TO with a GSD of
|C|/2 = 4q2.

We can achieve a smaller quantum dimension if q is odd,
i.e., q = 2k + 1. Consider a band insulator which is made up
of a state with one electron per site, and holes at a filling νh =
1 − ν = 2k/(2k + 1). We then Cooper-pair the holes to make
a bosonic insulator at filling νh/2 = k/(2k + 1). A symmetry
preserving bosonic insulating state can then be made with a
Z2k+1 = Zq gauge theory of these paired holes. Thus for q
odd we have found a fermionic TO with GSD |C|/2 = q2.

While the use of Cooper pairs to construct these states may
not seem energetically natural if the dominant interaction is
repulsive, in Appendix B we provide an alternate construction
of these TOs using a parton construction which may yield a
more natural route.

D. Any minimal TO is Abelian

Having constructed a possible fermionic TO via Cooper
pairing, we now prove that this is a minimal order consistent
with G in Eq. (4). We do this by again following the strategy
of Fig. 4. We begin by reviewing the basic Abelian anyons we
know our theory possesses.

First, we have a background anyon a with charge Qa =
1/q. As a consequence, the order na must be an integer multi-
ple of 2q. Here the order na is defined as the smallest nonzero
integer such that ana = 1.

We further know that there exists another Abelian anyon v

nucleated by 2π flux threading. Since θv,a = 2π/q, the order
of v must be an integer multiple of q.

Lastly, we know that θv = πσH (mod 2π ). Since our the-
ory is time-reversal invariant the Hall conductivity must be
zero and thus θv = 0, i.e., v is a charge-neutral boson.

1. If q is odd then the minimal order must be Abelian
with a GSD of q2

We start with q odd as a warm-up. By our earlier argu-
ments we know that the subset of Abelian anyonsA ⊆ C must
contain at least three distinct anyons a, v, c ∈ A. We consider
all possible powers of these anyons in A; the size of |A| is
lower-bounded by the number of their unique powers, as in
Fig. 4. We see that there are 2q2 Abelian anyons generated,
proving that our earlier construction was minimal. Note again
that we are counting the electron as an anyon.

One approach to showing the number of distinct powers
of a, v, c is 2q2 is by simply checking this manually. Con-
sider the set S = {akvl |0 � k, l � q − 1}. Let us show that
all anyons in this set are distinct. Otherwise, it means that
there exists some r, s ∈ {0, 1, . . . , q − 1} with arvs = 1 other

12Stacked with {1, c}.

than r = s = 0. Since v is a boson, θarvs,v = 2πr/q, so we
must have r = 0. But then for r = 0 we have θvs,a = 2πs/q,
which forces s = 0, a contradiction. Our argument also shows
that any anyon in this set braids nontrivially with at least one
other anyon, so the electron c /∈ S. We thus conclude that
the minimal number of anyons in C is at least 2q2, which is
saturated by the Zq toric code.

2. If q is even then the minimal order must be Abelian
with a GSD of 4q2

We use a very similar argument as above, but we need
to be a little more careful since the upper bound on our
minimal number of anyons is now 8q2, where we are again
counting the electron as an anyon for bookkeeping purposes.
In the main text we first make the simplifying assumption
that translation does not permute anyons unlike, e.g., Wen’s
plaquette model [48]. We show in Appendix D that under
this assumption the time-reversal invariance of our state will
imply that a = T a, and a is thus a boson or fermion. We can
then show that if a = T a there must be at least 8q2 Abelian
anyons. In Appendix D we further allow for the possibility
that translation permutes anyons and hence a may not be the
same as T a, but nonetheless show that there must be at least
8q2 Abelian anyons.

We begin by noting that our logic for the case of q odd
revealed that there are 2q2 unique anyons in the set S =
{vmanck | 0 � m, n � q − 1, k = 0, 1} ⊆ C. Furthermore, the
only anyons in S which braid trivially with all other anyons
in S are 1, c. Now consider aq. Since a is a boson or fermion
it must be the case that aq braids trivially with all powers of
a. Moreover, since aq has integer charge, then it must braid
trivially with all powers of v as well. So then aq braids trivially
with all anyons in S. However, aq 	= 1, because it has odd
charge and the vacuum does not in a fermionic theory. Addi-
tionally aq 	= c since aq is a boson. So then we see aq /∈ S .

We can now conclude that there are 4q2 anyons con-
tained in S ′ = {vmanck | 0 � m � q − 1, 0 � n � 2q − 1,
k = 0, 1}. Suppose now that a2q /∈ S ′. Then there are at least
8q2 anyons in the powers of a, v, c. For our theory to be min-
imal we can have at most this many anyons, so this must be
all the anyons in the theory. But this is clearly a contradiction,
since aq 	= 1, c but braids trivially with all anyons. Thus we
must have a2q ∈ S ′. Since a2q is a boson that braids trivially
with all other anyons in S ′ it must be the case that a2q = 1 or
aq. The latter is not possible since aq 	= 1. So then a2q = 1.

Next we know that since aq 	= 1, c but braids trivially with
all anyons in S ′ there must exist some γ ∈ C \ S ′ which braids
nontrivially with aq. Furthermore, since a2q = 1, we must
have that

θaq,γ = π. (7)

At this stage, the anyon γ can then either be Abelian or non-
Abelian. Suppose that it is Abelian. Since γ was not contained
in the powers of a, v, c, we conclude that there are at least 8q2

unique powers of a, γ , c and we are done.
Suppose then that γ is non-Abelian. In Appendix D we

prove that γ can be taken to have the fusion products:

γ × γ = v + vaqc and aqc × γ = γ . (8)
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We first sketch the argument for these fusion rules, with full
proofs in Appendix D. Since γ has π braiding with aq we
can always choose v to be in the fusion product of γ with
itself. But since γ is non-Abelian there must be some other
anyon in this fusion product. By minimality the only possi-
bilities are powers of v, a, c. Then the only other possibility
by charge assignment is vaqc. This gives us the first fusion
rule up to multiplicities of the fusion products, which we
show in Appendix D must be one. The second fusion rule is
a consequence of minimality as well; if it were not true there
would be more than 8q2 anyons. Finally in Appendix D, we
use a result in Ref. [55] to show that time-reversal invariance
will require that γ have θγ = 0.

Now we condense the vison v to produce a TO with the
three anyons 1, γ , aqc that has the same fusion rules as the
Ising TO, but with a non-Abelian anyon γ with θγ = 0. But all
TOs with Ising-like fusion rules have 8θγ = π [40]. We thus
obtain a contradiction and conclude that γ must be Abelian.
As noted earlier we are now done.

We can reach the conclusion that γ must be Abelian
through a different logic that does not directly rely on knowing
that θγ = 0. Consider first the action of time reversal on v and
its powers. Clearly v will transform to vq−1. However, for even
q, v

q
2 will map to itself. We can then ask if it is a Kramers

singlet or a Kramers doublet. Both possibilities are allowed
and correspond to different SET states. First consider the case
where it is a Kramers singlet. Then the state obtained by
condensing v will preserve time reversal. However, as we have
just seen, with a non-Abelian γ , this state will have the fusion
rules of the Ising TO which is certainly not time-reversal
invariant, and we have a contradiction. Next consider the case
where v

q
2 is a Kramers doublet. Now time reversal will have a

complicated action on v, and the state obtained by condensing
v will not be time-reversal invariant. Instead we first argue that
for every TO where v

q
2 is a Kramers doublet, there is a partner

TO where it is a Kramers singlet. To see this, we note that v
q
2

has a π braiding phase with a. If a is a boson or a Kramers
doublet fermion, we form a topological insulator of these
particles. As is well known [56], this has the effect of toggling
the π flux seen by this particle between Kramers singlet and
Kramers doublet. If instead a is a Kramers singlet fermion, we
repeat the same procedure with ac which is a boson that has π

braiding with v
q
2 . Importantly, this procedure will not alter the

quantum dimension of γ . Thus since we already argued that
a phase with non-Abelian γ and a Kramers singlet v

q
2 does

not exist, it follows that such a phase also cannot exist with a
Kramers doublet v

q
2 .

E. Uniqueness of the minimal TO

We have established that all minimal TOs consistent with
the symmetry group G of Eq. (4) must be Abelian and have
an anyon count of 8q2 (2q2) for q even (odd). As men-
tioned earlier this means that the definitions of minimality
by either quantum dimension or ground-state degeneracy will
coincide, i.e., mG(ν )

D = mG(ν )
GSD. We now show that our con-

struction is always the unique minimal TO. We also comment
on whether there is a unique symmetry enrichment of this
TO. Throughout we assume that translation does not permute
anyons, so a must be a boson or fermion. In Appendix E

we present more general proofs without relying on this
assumption.

1. The case of q odd

This case is very straightforward. We know that a is a
particle with charge 1/q and aq must braid trivially with
everything. So then a must be a fermion and aq = c by charge
constraints. We further know that the vison is a charge-zero
boson and that all anyons in the minimal theory are powers
of these two. Since the braiding of a and v is given by θa,v =
2π/q the topological spin and braiding of all the anyons are
then fully specified. It is simple to check that this will just be
Zq gauge theory.

In fact, this theory will not just be the unique minimal TO,
but the unique minimal SET as well. To see this note that the
charge assignment is totally fixed by the charges of a and
v. It is easy to see that the time reversal acts as T v = v−1,
T a = a. Because aq = 1 and q is odd, a must be a Kramers
singlet. Furthermore, translation on v is projective, and the
corresponding phase is fully fixed by the mutual braiding
between a and v. Finally, we note that translation action on
a cannot be projective. For a projective translation we have to
place a background v or some power of it at each plaquette
center, as was considered in a time reversal breaking context
in Ref. [57]. However such a background is not time-reversal
invariant. Thus the translation action on a (and its powers) is
also totally fixed.

2. The case of q even

When q is even we know that a is an order-2q boson or
fermion with charge 1/q. Furthermore, as discussed in the
previous section there must exist some Abelian anyon γ that
has π braiding with aq and all anyons in our theory must be
made up of powers of a, γ , c. To fully specify the topological
spin of our theory, we only need to know the topological spin
of the Abelian γ . Without loss of generality we can assume
that γ 2 = v, so θγ = 0,±π/2, π ,13 and θγ ,a = π/q. We can
further take γ to have charge zero; if it did not we could
consider γ aq which would have the same braiding with a and
would also square to the vison.

We can now use a result from Ref. [55] that

e2π i(c−−σH )/8 = 1√
2D

∑
b∈C

d2
b e

i(θb+πQb) (9)

for a U(1) f symmetry enriched fermionic TO. Since the the-
ory is time-reversal invariant, both c− and σH must vanish and
the left-hand side will be equal to one. The right-hand side can
then be evaluated using the fact that 4θγ = 0 and θa,γ = π/q.
The end result is

1 = 1
2

(
1 − eiθaq + eiθγ + ei(θγ +θaq )

)
, (10)

and since aq must be a boson this tells us that θγ = 0. It is
then simple to check that the braiding of the powers of a, γ , c
is just that of Z2q gauge theory.

13Note that earlier in Sec. III D we found θγ = 0 under the assump-
tion that γ was non-Abelian; having ruled out that scenario we now
must determine θγ when γ is Abelian.
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However, we note that in this case we have many choices
of symmetry enrichment, as already alluded to in the pre-
vious section. Without loss of generality take the e particle
in Z2q gauge to have charge 1/q and the m particle to be
charge neutral. Since a is allowed to be a charge 1/q boson
or fermion there are two possibilities: a = e, or a = emq.
The vison in this theory will always be given by v = m2. In
addition since we saw that the charge-neutral γ had to be a
boson, then γ = m. It is also possible that a or mq, or both,
may be a Kramers doublet since we have a Kramers singlet
fermion.14 Besides these possibilities we will not attempt to
classify all possible SETs in this case but will leave it to future
works.

IV. DISCUSSION

Here we explored the possibility of a gapped quantum
charge liquid (QCL) at a fractional filling of the underlying
lattice which nevertheless does not break translation or time-
reversal symmetries. Such a QCL must display topological
order (TO) and have excitations carrying fractional charge due
to LSMOH constraints. Thus fractionalization can appear as
an alternate to charge ordering at fractional lattice filling. Here
we raised the question of the minimal topological order that
is consistent with the symmetries and filling constraints, and
established rigorous results. We showed that a fermionic QCL
will generically be more complicated than the bosonic QCL at
the same filling. A simple illustration of our arguments is that
a system of spinless fermions at ν = 1/2 cannot form a Z2

TO, but can form a Z4 TO. Thus the change in the statistics of
the particles at filling ν = 1/2 must result in a dramatic shift
in the TOs realized. Below we discuss a number of questions
related to the physics of QCLs that naturally follow from our
work.

A. Microscopic models for fermionic QCLs

It would be interesting to explore microscopic models that
realize gapped fermionic QCLs. A natural strategy is to start
with existing models for bosonic QCLs and replace the bosons
with fermions. Our results show that, if the model continues
to fractionalize, there will be a drastic shift of the ground-state
degeneracy on a torus. Concretely, one possible route to take
is to study fermionic realizations of the bosonic quantum
dimer [12] and Balents-Fisher-Girvin [13] models. Both mod-
els can be mapped to hardcore boson models on the kagome
lattice with a fixed cluster charge per kagome hexagon [59].
They are at fillings ν = 1/2 and ν = 3/2 of the kagome
unit cell, respectively. Thus the minimal bosonic TO they
can realize is Z2 gauge theory, and both models realize this.
Suppose that the hardcore boson is replaced with a spinless
fermion. Our proof above demonstrates that the minimal TO
that can be realized in such a system is Z4 gauge theory. More
generally, it will thus be interesting to study fermionic models
of charge frustration and search for gapped QCL insulating
phases.

14In particular for Kramers singlet fermions with U(1) f � ZT
2 sym-

metry, the anomaly structure [58] does not prevent this possibility.

FIG. 5. A temperature T vs bandwidth t/U schematic phase dia-
gram showing the possibility of an intervening QCL phase. For small
bandwidths a Wigner-Mott insulator is stabilized at a fixed fractional
ν; here a cartoon of a possible

√
3×√

3 charge order is displayed.
As the bandwidth is increased, the transition temperature to this
phase, Tco, vanishes. However, below a crossover temperature, T ∗,
the system continues to be nearly incompressible. Then, following
our discussion, a gapped QCL must be stabilized at zero tempera-
ture, even though TO cannot be stabilized at finite temperature in
(2 + 1)d. As the bandwidth is increased further the gapped QCL will
transition into a compressible metal, shown by T ∗ going to zero. The
metal’s Fermi surface is shown below the axis.

Of particular interest in the context of moiré TMD materi-
als is to explore the physics of microscopic models of these
systems in an intermediate coupling regime where neither
the Coulomb interaction nor the bandwidth is overwhelm-
ingly strong. This can possibly be pursued with density-matrix
renormalization-group methods [5,60]. Some caution is re-
quired in reaching conclusions about experiments because
there is still some uncertainty in the details of the microscopic
models of these systems due to poorly understood effects of
lattice relaxation.

B. Phenomenology of QCLs

One could also ask, for instance in the TMD setting,
about the physical properties of QCLs, should they occur,
and their experimental manifestation. Choosing a filling with
many closely degenerate charge ordered states would promote
charge fluctuations, possibly allowing us to realize the inter-
vening QCL phase in this experimental setting. The charge
order has been imaged directly in scanning tunneling mi-
croscopy experiments deep in the insulator [61]. If the QCL is
present, then as the displacement field used to tune the phase
diagram is increased, the charge order will vanish before the
transition to the metal. Alternately, since, at rational ν, the
charge order will be described by a discrete order parameter,
there will be a finite-temperature phase transition which could
be detected experimentally. If the corresponding transition
temperature vanishes within the regime where the ground state
is incompressible, then an intervening QCL phase must exist,
as depicted in Fig. 5.

The phase transitions at a fixed lattice filling out of the
gapped QCL, assumed to be in the minimal Zq or Z2q TO,
are also interesting. The transition between the QCL and the
Wigner-Mott insulator is simply driven by condensing the m
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particle of the gauge theory.15 This confines the TO but, as
m has projective translation symmetry, will lead to a charge
ordered insulator. The transition will be in the universality
class known [62] as XY ∗ with known critical exponents.16 The
transition from the gapped QCL to the Fermi-liquid metal is
mysterious though, and could be a target for future work.

We could also ask about the effects of doping the QCL.
A simple possibility is that the cheapest charged excitation in
the insulator is the e-particle which will then have a nonzero
density at a small doping. If the e-particle is a boson, an
allowed possibility in the minimal TO, then a natural doped
state is a condensate of e, which is a superconductor that
breaks the global U(1) symmetry. The e condensation will
completely destroy all the anyons in the theory so that, as is
known from other contexts, this state is smoothly connected
to a BCS superconductor though it is stabilized by a differ-
ent mechanism. Note that this superconductor will be fully
gapped because it evolves out of a gapped insulator and will
have odd parity pairing (because this is the only possibility for
spinless fermions).

If, instead the e particle is a fermion, a natural doped state
is a non-Fermi-liquid metal where the charge carriers are “or-
thogonal” to the physical electrons, known as an “orthogonal
metal” [64]. If the electron filling is changed to ν = p

q + δ,
the doped e particles are at a filling qδ due to their fractional
charge. Thus the e particles will form a Fermi surface with
an area that is q times larger than what would be inferred
from the density of doped electrons. The increased Fermi
momentummay be measured in a local experiment by looking
for 2KF signatures (Friedel oscillations) in the charge density
around impurities. The fractional charge of the carriers in this
orthogonal metal can also be directly evinced through shot
noise measurements.

Finally, it is possible that despite the fractionalization in
the QCL, the cheapest charged excitation is actually just the
electron. Then upon doping the charge will just go in through
doping electrons on top of the TO of the QCL. The resulting
state will have a conventional Fermi surface of electrons with
an area set by the doping density in the usual way. However,
the TO of the QCL will remain unchanged, and we will
have a fractionalized Fermi liquid [65] (FL∗) that violates the
conventional Luttinger theorem.

While other possibilities, e.g., a first-order transition to a
conventional Fermi liquid, are not ruled out, these observa-
tions show that a QCL, if stabilized at the rational filling, can
also lead to fascinating physics in a nearby doping range.

We note that throughout our discussion we have assumed
the electrons are spinless, but if the electron spin is not polar-
ized then there are additional phenomenological possibilities.
These include the possibility of phases which are both QCLs
and QSLs.

15m can be identified as the v anyon in the odd-q case, and the γ

anyon in the even-q case in Sec. III E.
16Although not directly pertinent to the present context, interesting

multicritical confinement transitions out of Zn TO, where both e
and m attempt to simultaneously condense, have been described
recently [63].

C. Theoretical questions on minimal TO

On the more theoretical front, one might also be able to
apply the proof strategy we used to determine the minimal
TO of other symmetry groups. We highlight a few situations
where this question is pertinent. Electronic quantum Hall bi-
layers at a total Landau level filling ν = 1/2 + 1/2 have long
been studied, both in experiment and in theory. The standard
fate is the development of interlayer coherent order (an ex-
citon condensate) accompanied by an integer quantum Hall
effect. References [35,66] discussed an alternate symmetric
gapped phase, which could be stabilized for some range of
microscopic parameters, that hasZ4 TO. The global symmetry
of this system has two U(1)s for each layer, as well as an
anti-unitary symmetry that flips particles to holes in both the
layers. Reference [35] further conjectured that the Z4 TO is
minimal (in terms of GSD). A proof of this conjecture is
accessible with our techniques [47].

The quantum Hall bilayer system has an anomaly involv-
ing charge conservation and particle-hole symmetries [35,66].
More generally, the (2 + 1)d surface state of a symmetry pro-
tected topological (SPT) phase in (3 + 1)d has an anomalous
symmetry realization and cannot be trivially gapped. In a large
class of states, a symmetric gapped state with TO is, however,
possible. What then is the minimal TO for a system with a
global symmetry G that has an anomaly?

Another quantum Hall bilayer system where the minimal-
ity question arose recently is discussed in the paper [36] which
considered a system with a quantized fractional spin Hall
response. The symmetry group is then a product of two U(1)s
for each spin (equivalently valley) along with time reversal
that interchanges them [67]. With time reversal, the authors of
Ref. [36] were able to show that the minimal order according
to quantum dimensionwas also Z4 gauge theory at a fractional
spin Hall coefficient of one half.17 However, their proof leaves
open the possibility that there might exist a non-Abelian SET
with a smaller anyon count but larger quantum dimension. We
suspect that some variant of the proofs used here can rule out
such a possibility. Indeed, the proofs here should be useful
to demonstrate the minimal size of the subset of Abelian
anyons in any SET which respects an order two anti-unitary
symmetry.

Finally, the concept and definition of minimal order raises
some other interesting theoretical questions. First, to what
extent should we expect minimal order to be realized in a
physical system respecting a symmetry group G? Ultimately,
whatever order is stabilized will depend sensitively on en-
ergetics. A recent example is illustrated by the numerical
identification of nonminimal non-Abelian quantum spin Hall
states in twisted MoTe2 [36,68]. In this situation minimal or-
der only seems to be energetically favored if pairing between
spin species is sufficiently strong [69,70]. However, it might
nonetheless be the case that minimal order is generically
favored in other situations, e.g., if the interactions are short-
ranged in real space. Second, one could ask if there are other

17Although the Z4 gauge theory appears in both problems, there
is a slight difference in the action of the anti-unitary symmetry
in this system and the quantum Hall bilayer system considered in
Refs. [35,66].
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sensible classes of minimal order and what their relationship
to mG(ν )

D and mG(ν )
GSD is. Finally, one could ask if it is possible

to pick any TO in SETG,ν and “flow” to a minimal order by
successive condensation of anyons which do not break the
symmetries G. If this is true then minimal orders could be
regarded as the “fixed points” of all TOs in SETG,ν .
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APPENDIX A: RESULTS ABOUT MINIMAL CLASSES

To make this section maximally readable we define the
minimal SET classes again.

Definition A1. Let SETG,ν be the set of all SETs that re-
spect a symmetry G and fractional topological response ν.
Then define

mG(ν )
D = {C ∈ SETG,ν | DC � DC′ ∀ C ′ ∈ SETG,ν}, (A1)

and

mG(ν )
GSD = {C ∈ SETG,ν | |C| � |C ′| ∀ C ′ ∈ SETG,ν}, (A2)

where |C| is the number of anyons in the TO C.
Lemma A1. Suppose that there exists some SET C ∈

mG(ν )
GSD such that A = C, i.e., C is Abelian. Then every SET

in mG(ν )
D is Abelian. In fact mG(ν )

D is precisely the subset of
Abelian TOs in mG(ν )

GSD.
Proof. Consider C ′ ∈ mG(ν )

D , by definition we know that
D2

C′ � D2
C = |C| since C is Abelian. Since |C ′| � D2

C′ we see
that |C ′| � D2

C′ � |C|. But since C ∈ mG(ν )
GSD we must have

|C| � |C ′|. These inequalities are thus equalities. This means
D2

C′ = |C ′|, so C ′ is an Abelian TO. It also means that |C ′| =
|C|, so C ′ ∈ mG(ν )

GSD as well.
On the other hand, if C ′ ∈ mG(ν )

GSD is Abelian, then we see
that D2

C′ = |C ′| � |C ′′| � D2
C′′ for every C ′′ ∈ SETG,ν . Thus

C ′ ∈ mG(ν )
D . We therefore conclude that mG(ν )

D is precisely the
subset of Abelian TOs in mG(ν )

GSD. �
Remark A1. Note that an obvious corollary of this is that

if mG(ν )
GSD contains only Abelian TOs, then mG(ν )

GSD = mG(ν )
D .

Remark A2. The opposite direction is not true, i.e., it may
be the case thatmG(ν )

D contains an Abelian SET, but every SET
in mG(ν )

GSD is non-Abelian. An example of this is fermionic
TOs with U(1) f symmetry, with the requirement that the

Hall conductivity σH = 1/2. The setmG(σH )
D contains multiple

theories including the Moore-Read state, U(1)8 and others,
all with D2 = 16. However, one can show that all theories in
mG(σH )

GSD have anyon count 12, saturated by the Moore-Read
state. Moreover, as the next proof will make clear, all of these
theories must be non-Abelian.

Corollary A1. Suppose that there exists some SET C ∈
mG(ν )

D such that D2
C > |C|, i.e., C is non-Abelian. Then every

SET in mG(ν )
GSD is non-Abelian.

Proof. This follows from the negation of Lemma A1. �

APPENDIX B: PARTON CONSTRUCTION

The use of Cooper pairs to construct the states in Sec. III C
may not seem energetically natural if the dominant interaction
is repulsive. However, alternate constructions of states with
the same SET exist. We consider a standard parton decompo-
sition of the physical spinless fermion annihilation operator cr
at each lattice site r

cr = fr�r . (B1)

Here fr and�r are fermionic and bosonic partons. We take the
boson to have the physical electric charge and the fermions to
be electrically neutral. As usual these partons are coupled to a
dynamical U(1) gauge field. Both f and � will be at the same
mean filling ν as the electrons. Now consider a state where the
bosons have formed a gapped Zq topologically ordered state.
A simple option for the fermions is that they form a Fermi sur-
face. The resulting state is a gapless incompressible insulator
with a neutral Fermi surface which is closely analogous to the
spinon Fermi surface of spinful electronic Mott insulator at
half filling. It is readily seen that the low-energy theory of this
state is described by a field theory with the structure

L = L[ f , a] + 1

2π
(a + A)db− q

2π
bdc. (B2)

Here L[ f , a] is the Lagrangian of a Fermi surface coupled to
a dynamical U(1) gauge field18 a. This theory is coupled to a
topological sector [described by the internal U(1) gauge fields
b and c] associated with the Zq gauge theory formed out of the
� partons.

We can now use this gapless theory as a parent state to
construct gapped topological states. The simplest option is
to imagine pairing the f fermions. The resulting state is de-
scribed by a topological quantum field theory (TQFT) with
the action

L = − b̂da

π
+ 1

2π
(a + A)db− q

2π
bdc, (B3)

where b̂ is a new dynamical U(1) gauge field.19 This TQFT
actually is exactly the same phase as the Z2q gauge theory
constructed earlier out of Cooper pairs. We now demonstrate
this.

18To be precise, we should regard a as a spinc connection to sig-
nify that fields that couple to it with unit charge are fermions. The
internal gauge fields b and c are ordinary U(1) gauge fields while the
background gauge field A is a spinc connection.

19b̂ is an ordinary gauge field and not a spinc connection.
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The simplest way to see this is to integrate out the gauge
field a, leaving a constraint b = 2b̂. Then we find

L = − 2q

2π
b̂dc − 2

2π
Adb̂. (B4)

This is exactly the Lagrangian for the Z2q gauge theory
formed out of Cooper pairs with physical electrical charge 2.

This parton construction does not give us the Zq gauge the-
ory that we argue is possible at odd q. However, we can access
that state by a different parton construction. We illustrate this
at a filling ν = 1/3. We (schematically) write the fermion as
a product of three other fermions:

cr = d1rd2rd3r . (B5)

We assign physical charge 1/3 to each of these three fermions.
This representation comes with an SU(3) gauge redundancy.
Now consider a “Higgs” condensate where

Tab = 〈d†
ardbr〉 	= 0 (B6)

such that the SU(3) is broken down to Z3. Then the low-
energy theory will be a deconfined Z3 gauge theory where
the elementary gauge charge is a fermion, and the gauge flux
is a boson. The Higgs condensation also implies that the three
fermion species da (with a = 1, 2, 3) can all be identified with
each other, and therefore there is just a single fermion species.
These d fermions are then at integer filling and can form a
band insulator. Thus we get a gapped deconfined Z3 gauge
theory with fermionic charges that carry physical electric
charge 1/3.

The state just described is actually identical to the topolog-
ically ordered state constructed out of Cooper pairs of holes
earlier. To see this note that we can always bind the local
fermion to flip the statistics of the Z3 gauge charge between
boson and fermion. Thus if we start with the Z3 gauge theory
with fermionic charges with physical charge 1/3, binding the
local fermion gives us a theory where the Z3 charge is a
boson and carries physical charge −2/3. The square of this
is another bosonic anyon with physical charge −4/3, and the
local excitation created by fusing three Z3 charges is just a
charge −2 Cooper pair. Thus we get precisely the Z3 TO of
the Cooper pair of holes.

APPENDIX C: RESULTS ABOUT ABELIAN TOS

In this section we prove a number of results about Abelian
TOs. Most of the proofs rely only on basic facts from group
theory, i.e., the first isomorphism theorem and Lagrange’s
theorem. They are as self-contained as possible. We later find
these proofs useful even when we consider non-Abelian TOs
C because we will be able to make arguments to apply them to
the subset of Abelian anyonsA ⊆ C. Moreover, once we have
proven that all minimal TOs are Abelian all of these results
will be able to be used in full to constrain the possible Abelian
TOs.

The structure of this Appendix is as follows: In
Appendix C 1 we introduce our group-theoretic approach by
discussing condensation in an Abelian TO. In Appendix C 2
we introduce a single symmetry, time reversal, and give some
results about the size of a time reversal invariant Abelian

TO. In Appendix C 3 we introduce a second symmetry, and
consider Abelian SETs of U(1) f � ZT

2 .

1. Results about Abelian TO and anyon condensation

Let A be a (bosonic or fermionic) parent Abelian TO. We
suppose that there is a boson v ∈ A which has order nv . We
then want to form a child TOA′ fromA by condensing v. We
give a more precise definition of condensation and show that
|A| = n2v|A′|. Much of this section follows ideas discussed in
Ref. [71], but we reformulate them in terms of group-theoretic
language to build fluency. The tools developed here will prove
useful once we introduce symmetries.

We now give a number of definitions. We have implicitly
used some of them before, but we restate every necessary fact
here for completeness.

Definition C1. The braiding phase θ : A × A → S1 is a
symmetric bilinear form, i.e., it has the properties that

θab,d = θa,d + θb,d and θa,b = θb,a (C1)

for all a, b, d ∈ A. Additionally θa,a = 2θa, where θa is the
topological spin of a ∈ A.

Definition C2. We call A a bosonic TO if braiding is non-
degenerate onA, i.e., if θa,b = 0 for all b ∈ A implies that a =
1, where 1 is a boson. We callA a fermionic TO if θa,b = 0 for
all b ∈ A implies that a = 1, c where c2 = 1 and θc = π , i.e.,
if braiding is nondegenerate up to the fundamental fermion.

Definition C3. LetA be an Abelian TO. Then take S ⊆ A
to be a subgroup of A. We define the complement of S to be
given by

S⊥ = {a ∈ A | θa,b = 0 ∀ b ∈ S} ⊆ A. (C2)

Remark C1. We note that if a, d ∈ S⊥ then ad ∈ S⊥ since
θad,b = θa,b + θd,b = 0 for all b ∈ S. Thus S⊥ is a subgroup.
In particular we note that ifA is a fermionic TO, then {1, c} ⊆
S⊥ will be a normal subgroup of S⊥.

We further note that S⊥ looks very similar to the com-
plement of a vector space equipped with an inner product,
with the braiding phase playing the role of the inner product.
However, it can behave differently. For example, if we take
A to be the usual Z2 gauge theory and S = {1, e} ⊆ A, then
we can see that S⊥ = S. It will never be the case that the
complement of a nontrivial vector space is equal to the vector
space, but this behavior is allowed for the complement as we
define it here.

Theorem C1. If A is a bosonic Abelian TO then for any
subgroup S ⊆ A we must have

|A| = |S||S⊥|. (C3)

Proof. We use a result from character theory to establish
this. First we recall that a character χ of a finite Abelian
group A is a homomorphism χ : A → S1. The set of char-
acters of A is labeled as Hom(A,S1), where this can be
treated as an Abelian group under pointwise addition, i.e.,
(χ1 + χ2)(a) = χ1(a) + χ2(a) for χ1, χ2 ∈ Hom(A,S1) and
a ∈ A. A result from character theory tells us that the number
of distinct characters of a finite Abelian group A is precisely
|A| [72].

We know that θa,· : A → S1 is a homomorphism for ev-
ery a ∈ A. Furthermore, because A is a bosonic TO the
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braiding phase is nondegenerate. Thus if a, b ∈ A and a 	= b
then there exists some d ∈ A such that θa,d 	= θb,d . Then we
see that θa,· = θb,· as an element of Hom(A,S1) if and only
if a = b. This means that we have found |A| distinct elements
of Hom(A,S1), and by the logic above we see that for ev-
ery character χ ∈ Hom(A,S1) there exists one and only one
a ∈ A such that χ = θa,·.

We now want to consider a function B : A → Hom(S,S1),
i.e., B(a) : S → S1 is a homomorphism for every a ∈ A. We
define it as B(a)(b) = θa,b, where b is restricted to lie in the
subgroup S. We note that B(ad ) = B(a) + B(d ) for a, d ∈ A
so B is a homomorphism from A to Hom(S,S1). Now sup-
pose that a ∈ Ker(B), then B(a)(b) = 0 for all b ∈ S. But then
we see that Ker(B) � S⊥. Now consider χ ∈ Hom(S,S1) ⊆
Hom(A,S1), then by the logic above we know that there is
some a ∈ A such that χ = B(a). Thus Im(B) � Hom(S,S1).
The first isomorphism theorem tells us that

A/S⊥ � Hom(S,S1). (C4)

From character theory we know that |Hom(S,S1)| = |S| and
the theorem follows immediately. �

Example C1. One simple example of this is the usual Z2

gauge theory. If S = {1, e} ⊆ A then S⊥ = S. Clearly, |A| =
4 = |S||S⊥|.

Example C2. Now consider the Abelian bosonic TO
U(1)q � U(1)−q for q even. If we take S to be U(1)q then
we see that S⊥ will be U(1)−q and we obviously have that
|S||S⊥| = q2 = |A|.

Lemma C1. If A is a fermionic Abelian TO and S ⊆ A is
a subgroup then we have

|A| = |S||S⊥| ×
{
1 if c /∈ S
1/2 if c ∈ S.

(C5)

Proof. We prove this by cases. Suppose that c /∈ S. This
means that we can freely quotient by {1, c} to obtain a bosonic
TO Ab with S ⊆ Ab. Then using Theorem C1 we see that
|Ab| = |S||S⊥

b |, where S⊥
b = {a ∈ Ab | θa,b = 0 ∀ b ∈ S} ⊆

Ab. For every a ∈ S⊥
b we must have that ac also braids triv-

ially with every element of S, and thus S⊥ = S⊥
b × {1, c}.

We thus see that |A| = 2|Ab| and |S⊥| = 2|S⊥
b |, so we have

|A| = 2|S||S⊥
b | = |S||S⊥|.

Now suppose that c ∈ S, we again quotient by {1, c}. Using
Theorem C1 we then see that |Ab| = |Sb||S⊥

b |. By the logic
above we have that |S⊥| = 2|S⊥

b |, |A| = 2|Ab|. Now we also
have that |S| = 2|Sb|. Thus we see that |A| = |S||S⊥|/2. �

Corollary C1. Let A be a bosonic Abelian TO with a sub-
group S ⊆ A. Then (S⊥)⊥ = S. If instead A is a fermionic
Abelian TO then (S⊥)⊥ = S × {1, c}.

Proof. Let a ∈ S, then 0 = θb,a = θa,b for every b ∈ S⊥ by
definition. So S ⊆ (S⊥)⊥ by definition. Thus we must have
that |(S⊥)⊥| � |S| with equality if and only if (S⊥)⊥ = S.

Now suppose thatA is a bosonic TO. Then by Theorem C1
we know that |A| = |S||S⊥| and |A| = |S⊥||(S⊥)⊥| since
S⊥ is a subgroup of A. Equating these and dividing by |S⊥|
reveals that |(S⊥)⊥| = |S|. From earlier we see this must
mean that (S⊥)⊥ = S .

Suppose now that A is a fermionic TO. Then we automati-
cally see that S × {1, c} ⊆ (S⊥)⊥. If c /∈ S then this means
that |(S⊥)⊥| � 2|S|, with equality if and only if (S⊥)⊥ =
S × {1, c}. If c ∈ S then we have that S × {1, c} = S and

thus |(S⊥)⊥| � |S| with equality if and only if (S⊥)⊥ = S =
S × {1, c}.

Suppose first that c /∈ S, then from Lemma C1 we have
that |A| = |S||S⊥|. Now since S⊥ is a subgroup of A
with c ∈ S⊥ then we also know by Lemma C1 that |A| =
|S⊥||(S⊥)⊥|/2. Equating these we see that |(S⊥)⊥| = 2|S|
and thus (S⊥)⊥ = S × {1, c}. On the other hand if c ∈ S
then Lemma C1 shows that |A| = |S||S⊥|/2 and that |A| =
|S⊥||(S⊥)⊥|/2. Equating these reveals that |(S⊥)⊥| = |S| and
thus (S⊥)⊥ = S = S × {1, c}. �

Definition C4. Let A be a bosonic Abelian TO with two
subgroups S and R. Further suppose that braiding is nonde-
generate when restricted to these subgroups and that θr,s = 0
for all r ∈ R and all s ∈ S. Then we say that A factorizes as
a TO and write A = S �R.

Theorem C2. Suppose A is a bosonic Abelian TO, and S
is a subgroup. If the braiding restricted to S is nondegenerate,
then A = S � S⊥.

Proof. First, we show that the braiding on S⊥ is also
nondegenerate. If it is not, then there exists x ∈ S⊥, x 	= 1
such that x ∈ (S⊥)⊥. However, by Corollary C 1 (S⊥)⊥ = S ,
thus x ∈ S as well, which contradicts the assumption that S
has nondegenerate braiding. The argument also shows that
S ∩ S⊥ = {1}.

Next, consider the Abelian TO A′ generated by S and S⊥.
It is easy to see that A′ = S � S⊥, and |A′| = |S||S⊥|. On
the other hand, A′ is a subgroup of A, but from Theorem C1
we know |A| = |S||S⊥|. We thus conclude that A′ = A and
we are done. �

Remark C2. The theorem is a special case of a more gen-
eral result about factorization of modular tensor categories
(MTCs), Theorem 3.13 in Ref. [73]. Namely, if an MTC C
has a modular subcategory B, then the MTC can be factorized
as C = B � B⊥, where B⊥ is the “complement” of B in C.

Definition C5. Let A be a bosonic or fermionic Abelian
TO. Furthermore, take v ∈ A to be a boson and let 〈v〉 =
{1, v, . . . , vnv−1} ⊆ A. Then define A′ = 〈v〉⊥/〈v〉 as the TO
formed from A by condensing v.

Remark C3. Let us discuss the logic of this definition in-
formally. Since we want to identify v with the vacuum (after
all this is what it means to condense v [71]) we need to make
sure our TO does not contain anything that braids nontrivially
with v. Thus we must consider 〈v〉⊥, the subgroup of all
anyons that braid trivially with v. This obviously is not yet
a TO since every element of it will braid trivially with every
power of v. We thus consider the group 〈v〉⊥/〈v〉 which will
identify v with the vacuum. We formally prove this is a proper
TO below.

Theorem C3. If A is a bosonic (fermionic) Abelian TO
with a boson v ∈ A then the TO formed from A by condens-
ing v is a bosonic (fermionic) Abelian TO. Moreover, we have

|A| = n2v|A′|, (C6)

where nv is the order of v ∈ A.
Proof. First suppose thatA is a bosonic Abelian TO. Since

v is a boson it braids trivially with itself, and thus will with
all of its powers. So we have that 〈v〉 is a subgroup of
〈v〉⊥ ⊆ A. Thus A′ = 〈v〉⊥/〈v〉 is well defined. Now we use
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Corollary C 1 to see that (〈v〉⊥)⊥ = 〈v〉. Thus if a ∈ A braids
trivially with every element of 〈v〉⊥ it must lie in 〈v〉. Since
in A′ every element of 〈v〉 is identified with the vacuum, we
must then have that braiding is nondegenerate on A′. Thus A′
is a bosonic TO.

Since we have that A′ = 〈v〉⊥/〈v〉 we know that |〈v〉⊥| =
|〈v〉||A′| = nv|A′|. From Theorem C1 we must have that
|A| = |〈v〉||〈v〉⊥| = nv|〈v〉⊥| = n2v|A′|. We therefore have the
proof.

Suppose now that A is a fermionic Abelian TO. We first
note that since v is a boson no power of v can be a fermion
and hence c /∈ 〈v〉. For the same reasons as above we have that
A′ = 〈v〉⊥/〈v〉 is well defined. By Corollary C 1 we see that
(〈v〉⊥)⊥ = 〈v〉 × {1, c}. Then we see that braiding is nonde-
generate on A′ up to the fundamental fermion c. Thus A′ is a
fermionic TO. By Lemma C1 we see that |A| = |〈v〉||〈v〉⊥| =
n2v|A′|. �

Example C3. A simple example of this is given by Zn

gauge theory. There we have a boson e ∈ Awith order n. If we
condense e then the resulting theory is trivial, i.e., A′ = {1}.
We then have that |A| = n2|A′|.

2. Time reversal invariant Abelian TOs

A particularly powerful algebraic result about time reversal
invariant Abelian bosonic TOs was given in Ref. [74]. We
state this result as a theorem, although we must first give a
definition of time-reversal invariant Abelian TOs. At the end
of this section we extend the results of Ref. [74] to include
fermionic Abelian TOs as well as strengthen the bounds on
anyon count for Abelian bosonic TOs.

Definition C6. Let A be an Abelian TO. We call A a time
reversal invariant Abelian TO if it has an automorphism T :
A → A with the following properties: First, T 2 is the identity
on A. Also, if a ∈ A then θT a = −θa so time reversal takes
the topological spin to its negative. Finally, ifA is a fermionic
TO then T c = c, i.e., time reversal sends the fundamental
fermion to itself.

Remark C4. In this section we have not specified whether
c is a Kramers doublet under T , although the anomaly struc-
ture of our theory will depend on this [55]. We further note
that other studies of the action of time reversal on Abelian TOs
have allowed T 2 = C, where C is charge conjugation [75].
However, this action of time reversal is not consistent with
U(1) charge symmetry. Thus we restrict T 2 to be the identity
on A.

Theorem C4. Suppose that Ab is a time-reversal invariant
Abelian bosonic TO. Then |Ab| = l2 for some integer l .

Proof. This proof follows immediately from (3.11) of
Ref. [74], which showed that |Ab| = l2 for some integer l .

We will review the derivation of |Ab| = l2 for clarity, since
only part of the discussion in Ref. [74] is necessary for our
purposes. Define

f : Ab → Ab, a �→ a × T a. (C7)

Further define

g : Ab → Ab, a �→ a × T a, (C8)

where a = a−1 is the dual of a. Suppose that a ∈ Im( f ), i.e.,
a = b× T b for some b ∈ Ab. Then we see that T a = a since
T squares to the identity. Thus we see that a ∈ Ker(g) and
hence that Im( f ) is a subgroup of Ker(g). We can thus define

C = Ker(g)/Im( f ). (C9)

Now suppose a ∈ Ker(g), then T a = a by definition. Then
we see that a2 = a × T a and thus a2 ∈ Im( f ). Thus every
nontrivial element of C must have order two and hence C = Zn

2
for some integer n.

We now use the fact that θT a,T b = −θa,b for all a, b ∈ Ab.
Note that this means that θa,T b = −θT a,b = θT a,b. If we add
θa,b to both sides then we can use its bilinearity to see that
θa,b×T b = θa×T a,b, i.e., that θa, f (b) = θg(a),b. Then consider
a ∈ Ker(g); we see that 0 = θ1,b = θg(a),b = θa, f (b) for every
b ∈ Ab. Similarly we see that for b ∈ Ker( f ) we have 0 =
θg(a),b for all a ∈ Ab. We thus have

Ker(g) ⊆ Im( f )⊥ and Ker( f ) ⊆ Im(g)⊥. (C10)

We then see that

|Ker(g)| � |Im( f )⊥| by above (C11)

= |Ab|
|Im( f )|by Theorem C.5, (C12)

|Ker( f )| � |Ab|
|Im(g)| similarly. (C13)

Now we know by the first isomorphism theorem that |Ab| =
|Ker(g)||Im(g)| = |Ker( f )||Im( f )|. Substituting these into
the above relations reveals that the above inequalities are
equalities and thus we have that

Ker(g) = Im( f )⊥ and Ker( f ) = Im(g)⊥. (C14)

Then we see that C = Im( f )⊥/Im( f ). By Theorem C1 we
know that |Ab| = |Im( f )||Im( f )⊥| = |Im( f )|2|C|. Thus to
prove that |Ab| is a square, all we need to show is that |C|
is.

By Corollary C 1 we know that (Im( f )⊥)⊥ = Im( f ). Thus
the only elements a ∈ Ab that braid trivially with all elements
of Im( f )⊥ are those in Im( f ). This means that since C =
Im( f )⊥/Im( f ) we must have that braiding is nondegenerate
on C.

We next want to argue that θa,a = 0 for every element in
a ∈ C. First consider a ∈ Ker(g), where T a = a. Then we
have that

θa = θT a = −θa (mod 2π ), (C15)

and thus 0 = 2θa = θa,a modulo 2π . We thus have that θa,a =
0 for every a ∈ C = Ker(g)/Im( f ). Now we note that 2θa,b =
θa2,b = 0 since a ∈ C has order two.20 Thus θa,b = 0, π for
every a, b ∈ C.

Now take some a ∈ C, then θa,a = 0 as demonstrated
above. Since braiding is nondegenerate on C there must be
some b ∈ C such that θa,b = π . Then take S = {1, a, b, ab} ⊆
C. Then by Theorem C1 we see that |C| = |S||S⊥| = 4|S⊥|.
We further know by Corollary C 1 that (S⊥)⊥ = S, so the only

20Note that here we are working in C so a2 = f (a) ≈ 1.
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elements which braid trivially with everything in S⊥ lie in S.
But every nontrivial element of S braids nontrivially with at
least one other element of S and thus S ∩ S⊥ = {1}. We con-
clude that braiding is nondegenerate when restricted to S⊥.
Thus S⊥ ⊆ C is itself a bosonic TO. We can then find some
S ′ = {1, a′, b′, a′b′} ⊆ S⊥ where θa′,b′ = π and again apply
Theorem C1 to see that |S⊥| = 4|S ′⊥|, where S ′⊥ ⊆ S⊥ is
another bosonic TO. Continuing to apply this logic until we
have exhausted the finite set C reveals that |C| = 4m = 22m for
some m. Thus |C| is a square and we see |Ab| = |Im( f )|2|C|
must also be a square. �

Lemma C2. Suppose that A is a time reversal invariant
fermionic Abelian TO. Then we either have that |A| = l2

or 2l2. Additionally, if there is no anyon a ∈ A such that
T a = ac then |A| = 2l2 for some integer l .

Proof. If A is a time-reversal invariant fermionic Abelian
TO then we write Ab = A/{1, c}. Braiding will become non-
degenerate on this TO. This is thus a bosonic TO with a π

ambiguity in the topological spin, since we have identified the
fundamental fermion c with the vacuum. However, there is no
ambiguity of braiding.

We can now repeat the initial arguments of Theorem C4
to see that |Ab| = |Im( f )|2|C|, where C = Ker(g)/Im( f ). We
continue to have that every element of C is order two, so
C = Zn

2 for some n. These results did not rely on topological
spin, only on braiding, so they continue to hold in Ab. Then
we know that |A| = 2|Ab| = |Im( f )|22n+1. If n is odd then
|A| = l2 for some l , while if n is even then |A| = 2l2 for
some l .

We need to work a little harder to prove the second re-
sult since Eq. (C15) did rely on topological spin. We now
revisit the argument surrounding this equation. Suppose that
a ∈ Ker(g), i.e., that T a = a (modulo c). Then we have that

θa = θT a = −θa or − θa + π (mod 2π ), (C16)

since we have a π ambiguity in the topological spin. Then we
see that θa,a = 2θa = 0, π (mod 2π ). Clearly, θa,a = π if and
only if T a = ac. Suppose then that there is no a ∈ A such
that T a = ac, then θa,a = 0 for every a ∈ C. We thus repeat
the same argument as in Theorem C4 to see that |C| = 22m

for some m. We then conclude that |Ab| = |Im( f )|2|C| = l2

for some l and hence that |A| = 2l2. �
Example C4. Consider the semion-fermion fermionic

Abelian TO, A = U(1)2 � {1, c}. If the semion in this theory
is referred to as a then a consistent action of time reversal is
T a = ac. Thus by the above theorem the size can be a square,
and indeed |A| = 4.

Remark C5. We note that the semion-fermion fermionic
Abelian TO is well known to be anomalous [76,77]. Even
more clearly, if we impose U(1) f � ZT

2 symmetry then we
know that Qa = QT a = Qa + Qc = Qa + 1 (mod 2), which
is a contradiction. Thus we conclude that every fermionic
Abelian TO with symmetry group U(1) f � ZT

2 must have
size |A| = 2l2 for some l . We nonetheless see that the other
possibility will be useful when we generalize some results to
the non-Abelian case.

Lemma C3. Let A be a time reversal invariant Abelian
bosonic TO. Suppose that it has an anyon a ∈ A which has
order n, i.e., n is the smallest integer such that an = 1. Then

we have that

|A| = (kn)2 (C17)

for some positive integer k. In particular this means |A| � n2.
Proof. We first establish something simple. Suppose that

1 = (T a)m = T am, then we can use the fact that T 2 is the
identity and T 1 = 1 to see that am = 1. Thus m must be a
multiple of n. We further note that (T a)n = T an = T 1 = 1.
We may then conclude that the order of T a is exactly n, i.e.,
equal to the order of a.

Next we note that θa,T a = 0, π since θb,d = −θT b,T d for
b, d ∈ A.

Suppose that 0 = θa,T a. This will mean that θan,T am =
nmθa,T a = 0, so every power of a will braid trivially
with every power of T a. Then if S = {1, a, . . . , an−1} ⊆
A is the subgroup of powers of a, we see that R =
{1, T a, . . . , T an−1} ⊆ S⊥. Moreover, since R is a subgroup
of S⊥ we know that |S⊥| must be a multiple of |R| by
Lagrange’s theorem, i.e., |S⊥| = mn for some nonzero integer
m. By Theorem C1 we then have that

|A| = |S||S⊥| = mn2. (C18)

By Theorem C4 we must have that |A| = l2 for some l ∈ Z.
Thus we must have that l2 = mn2. Then

√
m = l/n, but the

only integers whose square root is a rational number are the
squares, so m = k2 and thus |A| = (nk)2.

Now suppose that θa,T a = π . Then we must have that
θa,T a2 = 2θa,T a = 0, so a braids trivially with T a2. Next
suppose, by contradiction, that n is odd, then n + 1 is even
and (n + 1)/2 is an integer. Then we can see that 0 = [(n +
1)/2]θa,T a2 = θa,T an+1 = θa,T a since T an = 1. This contra-
dicts θa,T a = π , however. Thus if θa,T a = π then n is
even. Then the set R = {1, T a2, T a4, . . . , T an−2} is a sub-
group of A with |R| = n/2. Furthermore, if we take S =
{1, a, . . . , an−1} ⊆ A then we can see that R ⊆ S⊥. Since R
is a subgroup of the group S⊥ this tells us that |S⊥| must be
a multiple of n/2 by Lagrange’s theorem, i.e., |S⊥| = mn/2
for some nonzero integer m. By Theorem C1 we have that
|A| = mn2/2. Then by Theorem C4 there must be some in-
teger l such that l2 = mn2/2. Since n is even we can write
n = 2n′ for some integer n′. Then we see that l2 = 2mn′2 and
thus

√
2m = l/n′. Since the only integers whose square root

is a rational number are the squares, we know that 2m = k′2
for some integer k′. Then we see that k′2 is even and thus k′ is
even. Thus k′ = 2k for some integer k and m = 2k2. We thus
have |A| = mn2/2 = (nk)2. �

Example C5. Consider Zn gauge theory. We know that it
is time-reversal invariant under the standard action of time
reversal. Furthermore, we know that there exists e ∈ A which
has order n. We also know that |A| = n2. Thus there is at least
one time reversal invariant theory which saturates the lower
bound given by Lemma C3.

Lemma C4. Let A be a time reversal invariant fermionic
Abelian TO. Suppose it has an anyon a ∈ A with order n such
that ak 	= c for any k. Then we have that

|A| = (kn)2 or 2(nk)2 (C19)

for some positive integer k. If there is no anyon a ∈ A such
that T a = ac then |A| = 2(nk)2.
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Proof. First we note that since ak 	= c for any k then S =
{1, a, . . . , an−1} forms a subgroup ofAb = A/{1, c} of size n.
We work in this quotient for the rest of the proof. Recall that
topological spin is then only defined modulo π , but braiding
is unchanged. Now we must have that

θa,T a = −θT a,a = −θa,T a (mod 2π ), (C20)

so we conclude that θa,T a = 0, π .
Suppose first that θa,T a = 0, then by the same logic as

above we see thatR = {1, T a, . . . , T an−1} ⊆ S⊥. Now since
R is a subgroup of S⊥ we must have that n divides |S⊥| (by
Lagrange’s theorem). So then |S⊥| = mn for some integer m.
By Theorem C1 we see that |Ab| = mn2 and hence |A| =
2mn2. But then by Lemma C2 there must be some integer
l such that l2 or 2l2 = 2mn2, and hence m = k2, 2k′2 for some
integer k. Thus we see |A| = (nk)2 or 2(nk)2 where k′ = 2k.

Suppose instead that θa,T a = π . Then by the same logic
as above we see that R = {1, T a2, . . . , T an−2} ⊆ S⊥ and n
is even. Thus n/2 must divide |S⊥| so we can write |S⊥| =
mn/2 for some m. By Theorem C1 we see that |Ab| = mn2/2
and thus |A| = mn2. Then by Lemma C2 we see that |A| = l2

or 2l2 for some l . We conclude that m = k2 or 2k2 and thus
that |A| = (nk)2 or 2(nk)2.

If there is no a ∈ A such that T a = ac then we know from
Lemma C2 that |A| = 2l2 and we thus conclude that |A| =
2(nk)2. �

Remark C6. Note that there would have been an easier
proof of these statements had a ∈ A been a boson such that
T a = ak . First, since T a and a must have the same order, we
note that k must be relatively prime to n. Then we see that
T 〈a〉 = 〈a〉. Further suppose that b ∈ T 〈a〉⊥, then b = T d
for some d such that θd,a = 0. We see this means 0 = θd,ak =
−θT d,T ak = −θb,a and hence b ∈ 〈a〉⊥. Since T is invertible
we see that T 〈a〉⊥ = 〈a〉⊥. Thus T will restrict to an automor-
phism on the TO formed by condensing a, A′ = 〈a〉⊥/〈a〉.

From Theorem C3 we know that |A| = n2|A′|. Since A′
is a time-reversal invariant Abelian TO then we can use the
earlier results to finish the proof.

The case where a ∈ A is a boson which is mapped to one
of its powers under time reversal may seem a little restrictive.
However, we saw in the main text that this can often be
accomplished in a time reversal invariant theory if a is taken
to be the vison.

3. U(1) f � ZT
2 conserving fermionic Abelian TOs

We review some powerful results about U(1) f � ZT
2 con-

serving fermionic Abelian TOs that were given in Ref. [55]
and conclude by extending them slightly. First we state a very
useful theorem about fermionic Abelian TOs.

Theorem C5. Every fermionic Abelian TO A can be writ-
ten as A = Ab � {1, c}, where Ab is an Abelian bosonic TO.
In particular, Ab is closed under fusion and c /∈ Ab.

Proof. The proof of this is given in Corollary A19 of
Ref. [73] and discussed in Ref. [55]. �

Remark C7. Note that this theorem is totally general, and
does not rely on any underlying symmetries.

Example C6. This can be demonstrated with a simple
example. Consider U(1)q, where q is odd. We can ex-
press this as A = {1, a, . . . , a2q−1}, where θa = π/q. We see

that θaq,an = 2nqθa = 2nπ = 0 (mod 2π ) and θaq = q2θa =
qπ = π (mod 2π ) since q is odd. So aq = c is a transpar-
ent fermion. Thus we can write A = {1, a2, a4, . . . , a2q−2} ×
{1, c}. The even powers of a are closed under fusion and
braiding is nondegenerate on this set.

Lemma C5. Let A = Ab � {1, c} be a fermionic Abelian
TO which respects U(1) f . Then there exists a unique γ ∈ Ab

such that

θγ ,b = πQb for all b ∈ Ab. (C21)

Moreover, γ 2 = v or γ 2 = vc, where v is the vison.
Proof. We repeat the arguments of Ref. [55]. Since U(1)

charge is defined modulo two in this fermionic theory, then
we must have πQa + πQb = πQd (mod 2π ) if ab = d . If
we restrict to the bosonic TO Ab, then we can use arguments
about the nondegeneracy of the S matrix [42] [see Eq. (45)] to
see that there must be a unique γ ∈ Ab such that θγ ,b = πQb

for every b ∈ Ab.
Then since every element of b ∈ Ab × c is such that b = dc

for some d ∈ Ab and c braids trivially with γ we must have
that

θγ ,b = πQb +
{
0 if b ∈ Ab

π if b ∈ Ab × c.
(C22)

We then have that θγ 2,b = 2πQb for all b ∈ A. Thus γ 2 has
identical braiding to the vison, and since braiding is non-
degenerate up to fusion with c we must have that γ 2 = v

or vc �.
Lemma C6. Let A = Ab � {1, c} be a fermionic Abelian

TO which respects U(1) f � ZT
2 . Then the γ discussed in

Lemma C5 also has the properties that 4θγ = 0. This will im-
ply that γ 2 = v, so v ∈ Ab. Moreover, Qγ will be an integer,
so the charge of v will be even.

Proof. We want to consider the braiding of γT γ with
some anyon b ∈ Ab. We see that

θγT γ ,b = θγ ,b + θT γ ,b (C23)

= πQb − θγ ,T b (C24)

=
{
0 if T b ∈ Ab

π if T b ∈ Ab × c.
(C25)

Since γ ∈ Ab this will mean that

0 = 2θγT γ ,γ (C26)

= 4θγ + 2θT γ ,γ . (C27)

We know from time reversal that θT γ ,γ = −θγ ,T γ , so
2θT γ ,γ = 0. From the above we thus conclude that 4θγ = 0.
Then we conclude γ 2 is a boson.

Now from Lemma C6 we know that γ 2 = v or vc. Since
γ 2 is a boson, we must have γ 2 = v.

We finally have that 2πQγ = θγ ,v = θγ ,γ 2 = 4θγ = 0. So
then γ has integer charge. Since v = γ 2, v must have even
charge. �

Example C7. Consider Z2 gauge theory stacked with the
fundamental fermion. Every anyon in this theory will square
to the vacuum. Since the vacuum has even charge, this means
every particle will have integer charge. In particular, the vison
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must braid trivially with every particle, so v = 1. Given the
natural charge assignment of the theory, we have γ = m. We
see that γ has integer charge and γ 2 = v as it must.

APPENDIX D: RESULTS ABOUT NON-ABELIAN TOS

We begin in Appendix D 1 by arguing a result about braid-
ing with translation-invariant anyons in a SET C which is
assumed to be symmetric under the full symmetry group G
of Eq. (4). We see in the special case that translation does not
permute anyons a = T a, where a is the background anyon.
This result will also later prove useful when we consider the
uniqueness of Z2q gauge theory even if translation is allowed
to permute anyons.

We then switch gears to prove some results bounding the
numbers of anyons in a non-Abelian theory. In Appendix D 2
we first use the results of Appendix C to prove a few things
about the size of the subgroup of Abelian anyons A ⊆ C
when C is a time reversal invariant TO. Since |C| � |A| with
equality only when C is an Abelian TO this gives us a powerful
tool to bound the size of |C|. Finally in Appendix D 3 we use
the results of Appendix D 2 to demonstrate that every minimal
order which satisfies the full symmetry group G of Eq. (4) at
filling ν = 1/q with q even must contain exactly 8q2 anyons.

1. SETs of G

In this section we offer an argument for the following
result: Suppose that C is a SET of the full group G in Eq. (4).
Then the background anyon and its time-reversal partner must
braid identically with all translation-invariant anyons, i.e.,

θa,d = θT a,d ∀ d ∈ C such that Txd = d = Tyd. (D1)

Before giving our argument we note an obvious corollary of it.
If translation does not permute anyons then this result means
that a = T a or a = c × T a since the two braid identically
with every anyon. Only the former has the correct charge
assignment modulo two, however, so a = T a. This means that
θa = θT a = −θa so θa = 0, π and a is a boson or fermion.

The argument for Eq. (D1) is very straightforward and
relies on the fact that our state must be invariant under time
reversal. Suppose that we think of our state as possessing a
background anyon a at the center of every plaquette. Then
under time reversal the state will be transformed to a state with
T a at the center of every plaquette. Since we have not broken
time-reversal symmetry we should not be able to detect the
difference between these two states. As the way we detect
differences between anyons is via braiding, naïvely we should
expect that this means a and T amust braid identically with all
anyons. However, there is a subtlety to consider if translation
is allowed to permute anyons.

Let us then be careful about defining the braiding of an
anyon with the background anyon. First we create a pair of
anyons d and d . Now we want to take d around a plaquette,
thus braiding it with a, but leave d in place. This will require
first defining a string operator which is able to translate only
the anyon d by one lattice site in either direction. Let us
specialize to the x direction and suppose such an operator
exists. The existence of such a local operator will imply that
d and d translated by one lattice site, call this Txd , must be

FIG. 6. An illustration of the requirement that a and T a must
braid identically with translation invariant anyons. We consider first
creating d , shown as a light green ball, and d , shown as a dark green
ball. If d is translation invariant then it is possible to construct a
string operator T −1

y T −1
x TyTxd which will take it around the plaquette

as shown. In the original state, panel (a), there is a background anyon
a in each plaquette so this process will cause the wave function to
acquire a phase θa,d . In the time-reversed state, panel (b), this will
lead to a phase θT a,d . Since time reversal is unbroken these phases
must be identical.

in the same superselection sector. But, this is precisely the
definition of anyon type [40], so the existence of such an
operator implies that d = Txd . The same will be true in the
y direction. Thus we see that our ability to take d around
a plaquette and leave d in place is exactly equivalent to the
statement that Txd = d = Tyd .

For an anyon d which is left invariant by translation this
process is possible, and we can find a string operator which
takes d around a plaquette. This will lead to the wave function
acquiring a phase of θa,d . Doing the same thing in the time
reversed state will lead to a phase of θT a,d . Since we have not
broken time-reversal symmetry, these two phases should be
identical and we have the result. This is illustrated in Fig. 6.

2. Bounds on time reversal invariant TOs

In this section we focus on proving results about a generic
time reversal invariant TO; we assume no other symmetries.

Remark D1. We note that when restricted to A ⊆ C the
braiding phase θ : A × A → S1 is still a symmetric group
homomorphism. However, we no longer know that braiding
is nondegenerate, even up to the fundamental fermion. Indeed
it may be the case that there is some a ∈ A which braids
trivially with all other anyons inA, but nontrivially with some
non-Abelian anyon in C \ A. Having noted that we make the
following definition:

Definition D1. Define N ⊆ A as

N = {a ∈ A | θa,b = 0 ∀ b ∈ A}. (D2)

Lemma D1. The set N ⊆ A forms a subgroup of A. Fur-
thermore, all elements of N are bosons or fermions. If we
consider A/N as a group, then braiding is nondegenerate on
this group and |A| = |A/N ||N |.

Proof. Suppose that a, b ∈ N , then θa,d = 0 = θb,d for all
d ∈ A. We then have 0 = θa,d + θb,d = θab,d so ab ∈ N . Thus
N is a subgroup.
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Now suppose a ∈ N ⊆ A, then we must have that 0 =
θa,a = 2θa. Thus a must be a boson or fermion.

SinceN is precisely the subgroup ofA that braids trivially
with every element in A we see that braiding must be nonde-
generate on A/N .

The relation |A| = |A/N ||N | follows immediately from
Lagrange’s theorem. �

Remark D2. We note that if any a ∈ N is a fermion then
topological spin inA/N will only be defined mod π . This fol-
lows because, for b ∈ A, we see that θab = θa + θb + θa,b =
θb + π . This is clear even if C = A is a fermionic Abelian
TO, where N = {1, c}. Then Ab = A/{1, c} is a bosonic TO
where the topological spin is only defined mod π .

Lemma D2. If C is a time reversal invariant TO then T
restricts to an automorphism on A ⊆ C.

Proof. We assume that T : C → C is such that T 2 is the
identity on C and that θT ψ = −θψ for every ψ ∈ C.

Now suppose that a ∈ A, then da = 1. Since T is a sym-
metry of C we must have that dT a = da = 1 [42]. Thus we see
that T (A) ⊆ A. Since we take T 2 to be the identity we must
then have that T (A) = A. Thus T restricts to a bijection on
A. Furthermore, since T is a symmetry of C we must also
have that the fusion data of C is left invariant by action of
T [42]. Thus we must also have that T (ab) = (T a)(T b) for
a, b ∈ A. Since T : A → A is a bijective homomorphism it
must restrict to an automorphism on A. �

Theorem D1. Let C be a time reversal invariant TO. Sup-
pose further that there is an Abelian anyon a ∈ A ⊆ C such
that a ∈ A/N has order n. Then |A/N | = (kn)2 or (kn)2/2
for some integer k. If there are no anyons a ∈ A such
that T a = a f for some fermion f ∈ N then we have that
|A/N | = (kn)2.

Proof. Suppose that a ∈ N , then we must have that 0 =
θa,T b for every b ∈ A, since T b ∈ A. But then we see that
0 = −θT a,b for every b ∈ A, so T a ∈ N . Thus we conclude
that T also restricts to an automorphism on N . Hence it must
also restrict to an automorphism on A/N .

We further know that A/N is an Abelian group where
braiding is nondegenerate. Then we can run the same argu-
ments of Appendix C to show that if there is some element
of A/N that has order n then |A/N | = (kn)2/2 or (nk)2 for
some k. Furthermore, if there are no anyons a ∈ A such that
T a = a f for some fermion f ∈ N , then we know that every
time reversal invariant anyon in A/N must have 0 = 2θa =
θa,a. Thus the arguments of Lemma C2 reveal that |A/N |
must be a square and hence |A/N | = (nk)2. �

Remark D3. Note that Lemma C4 actually follows from
TheoremD1. IfA is a fermionic Abelian TO thenN = {1, c}.
Furthermore, if a ∈ A has order n and is such that ak 	= c for
any k, we conclude that a ∈ A/N has order n. Then we see
that Theorem D1 will tell us that |A| = |N |(kn)2 = 2(kn)2 or
|A| = |N |(kn)2/2 = (kn)2 for some integer k.

3. Proof by contradiction when q is even

In this Appendix we show that |A| = 8q2 for any putative
minimal order when q is even. In the main text we assumed
that T a = a in order to show this; here we do not assume this.

Suppose that C ∈ mG(ν )
GSD is the minimal TO for the group

G in Eq. (4). Then let A ⊆ C be the group of Abelian anyons

and N ⊆ A be the subgroup of A containing all anyons that
braid trivially with every anyon inA. Let c be the fundamental
fermion.

Since we have already constructed a TO with 8q2 anyons
(including the fundamental fermion), we must have |A| �
|C| � 8q2.

Lemma D3. If c is the electron, then there does not exist
b ∈ A such that bn = c for even n.

Proof. If bn = c then it must braid trivially with b, so 0 =
θb,c = nθb,b = 2nθb. We can then multiply by the integer n/2
to see that 0 = n2θb = θbn . But this is a contradiction since
θc = π . �

Lemma D4. One of the following two is true:
(1) |A/N | = 4q2,N = {1, c} and C = A.
(2) |A/N | = q2 and

N = {1, aq, aqc, c}. (D3)

In addition, aq is a boson with order exactly two in A, and v

has order exactly q in A.
Proof. First, it is evident that the order of v in A/N is a

multiple of q because θv,a = 2π/q. Suppose the order of v in
A/N is kvq with kv > 1. Then |A/N | is at least k2vq2, for the
following reason: without loss of generality, we can assume
there is an Abelian anyon x with θx,v = 2π/kvq. Consider
the set S = {xkvl |0 � k, l � kvq − 1}. For any l , xkvl braids
nontrivially with v as long as k 	= 0. If k = 0, then vl braids
nontrivially with x if l 	= 0. Thus the braiding on S is nonde-
generate, and S must be fully contained inA/N . Because |N |
is at least 2 (it contains {1, c}), we find |A| � 2k2vq

2 > 8q2 if
kv > 2. Thus from the minimality assumption, we conclude
kv = 1, 2. If kv = 2, then the minimality assumption requires
|A| = 8q2 and A = S � {1, c}, which is entirely Abelian.
This is the first case in the statement. Thus in the following
we set kv = 1.

First we consider the case N = {1, c}. We then recall by
Theorem D1 that if there are no anyons b ∈ A such that T b =
b f for some fermion f ∈ N then |A/N | is k2q2 for some k ∈
Z. But the only fermion in N is c and charge conservation
forbids T b = bc for any b. Thus we have |A/N | = k2q2. If
k > 2, then

|A| = |A/N ||N | > 4q2 × 2 = 8q2, (D4)

contradicting the minimality assumption. We conclude that
k = 1 or 2 are the only possibilities. If k = 1, then S =
A/N , which means aq ∈ N = {1, c}. Since Qaq = 1, aq 	= 1.
Lemma D3 shows that aq 	= c. Then N 	= {1, c}, contradict-
ing our initial assumption. Thus we conclude that if N =
{1, c} we must have |A/N | = 4q2, and minimality requires
C = A.

Next we assume N 	= {1, c}, which implies |N | � 4. If
aq /∈ N , then |A/N | � 2q2 (since A/N already contains S).
Together |A| � 2q2 × 4 = 8q2. However, in this case there
has to be at least one (non-Abelian) anyon in C to braid
nontrivially withN /{1, c}, so |C| must be strictly greater than
8q2, violating the minimality assumption. We thus conclude
that aq ∈ N .

Now we show that in this case |A/N | = q2. Because
|N | � 4 and |A| � 8q2, it follows that |A/N | � 2q2. The
equality is impossible, since then |A| = 8q2 so C = A but
we would have a transparent anyon aq 	= 1, c. So accord-
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ing to Theorem D1 the only possible value of |A/N | is q2
(|A/N | = 1

2q
2 is impossible because |A/N | � |S| = q2).

In the following we focus on the case |A/N | = q2, and
prove the rest of the claim about the orders of a and v in A.

Because aq has charge 1 (mod 2), the order of aq ∈ N ⊆
A must be a multiple of two, i.e., na = 2qr for some integer
r. Furthermore, we find

θaq = q2θa = q

2
2qθa = q

2
θaq,a = 0, (D5)

since aq ∈ N it must braid trivially with itself. So aq is a
boson. This means that no power of aq will be equal to c.
Thus {1, aq, . . . , aq(2r−1)} × {1, c} ⊆ N is a subgroup of N
with size 4r. Then |A| = |A/N ||N | = 4rq2. If r > 2, then
this cannot be a minimal TO since A has more anyons than
our construction. Suppose then that |N | = 8, then we see that
|A| = 8q2. For this to be a minimal TO we must then have
that it is an Abelian TO and A = C. But then aq ∈ A will
braid trivially with every other anyon, but aq 	= 1, c. This is
a contradiction. So we conclude that |N | = 4. This tells us
that r = 1 so na = 2q.

Next, we know that v has order exactly q in A/N . This
means that vq ∈ N . Since vq is a boson it must be that vq =
1, aq. But v had an integer charge so vq must have even charge,
since q is even. However, we know that aq has odd charge. So
vq 	= aq and vq = 1. Thus v has order q in A. �

Lemma D5. If |A/N | = q2, then for every σ ∈ C \ A we
must have θaq,σ = π . Furthermore, for every pair of non-
Abelian anyons σ, σ ′ ∈ C \ A we must have that

σ × σ ′ = b+ baqc, (D6)

for some b ∈ A. Thus d2
σ = 2 for every non-Abelian anyon.

This will further imply that the number of non-Abelian anyons
must be precisely 2q2 and aqc × σ = σ for every non-Abelian
anyon σ .

Proof. We know that a2q = 1, so C has a Z2 grading given
by braiding with aq. Namely, C = C0 ⊕ Cπ , where C0 and
Cπ contains anyons with 0 and π braiding phase with aq,
respectively. We know that A ⊂ C0 since aq ∈ N . Now let us
prove that all non-Abelian anyons must be in Cπ .

Suppose on the contrary that there is a non-Abelian anyon
γ ∈ C0. Consider the size of the set A × γ . If b× γ 	= γ for
every b ∈ A, then this set has 4q2 anyons all different from
A, which means |C0| � 8q2 and |C| > 8q2 since Cπ cannot be
empty, contradicting the minimality assumption. Thus there
must exist some nontrivial b ∈ A such that b× γ = γ . It
means that γ and b× γ must braid identically with all anyons
in A. Thus

θx,γ = θx,b×γ = θx,b + θx,γ ∀ x ∈ A. (D7)

Thus θb,d = 0 for every d ∈ A so b ∈ N . We cannot have
that b = c, aq since b× γ has charge Qγ + 1 	= Qγ (mod 2).
Thus we see that b = aqc is the only option. But aqc is a
fermion, so aqc × γ = γ means θaqc,γ = π , a contradiction.

Thus we have shown that C0 = A, and Cπ is entirely non-
Abelian. For any σ, σ ′ ∈ Cπ , suppose β is contained in their
fusion product σ × σ ′. Clearly β ∈ C0, so β ∈ A. The braid-
ing of β with anyons in A is fixed by σ and σ ′, thus β is
unique up to fusion with an anyon in N . However, only two
of these anyons have even charge, 1 and aqc. The requirement

that the fusion products have the same charge (modulo two)
means that

σ × σ ′ = Nb
σσ ′b+ Nbaqc

σσ ′ baqc, (D8)

for some b ∈ A, where we have included fusion multiplicities.
But we must have that Nb

σσ ′ = Nσ ′
σb (see Ref. [40]). We further

know that the fusion multiplicities for σ × b are always zero
or one since b is an Abelian anyon, and thus Nσ ′

σb = 0, 1. This
tells us that the above are either zero or one. Using Eq. (21) of
Ref. [42] we further see that this means

Nb
σσ ′ + Nbaqc

σσ ′ = dσdσ ′ > 1, (D9)

since these are non-Abelian anyons. So each of these fusion
multiplicities must be exactly one. This immediately implies
the fusion rule (Nb

σσ ′ = Nbaqc
σσ ′ = 1) and that d2

σ = 2.
Now we invoke a theorem in Ref. [42] [see Eq. (244)],

that, because of the Z2 grading on C, we must have D2
C0

=
D2

Cπ
= 4q2. Thus there are precisely 2q2 anyons in Cπ . For

any σ ∈ Cπ , all anyons of the form A × σ are still in Cπ ,
so to get 2q2 anyons instead of 4q2, there must be precisely
one nontrivial anyon x ∈ A such that x × σ = σ , and we have
shown earlier that charge conservation implies x must be aqc.
We thus conclude that σ × aqc = σ . �

Lemma D6. If |A/N | = q2 then there is a single non-
Abelian anyon γ that satisfies

Qγ = 0 (mod 2),

θa,γ = πQa,

θγ = 0,

γ × γ = v + vaqc.

Proof. From the previous lemma we know that all non-
Abelian anyons in C lie in A × γ , where γ is some
non-Abelian anyon such that θaq,γ = π . Let us now use that
fact to prove this theorem.

First we know that vq = 1. This means we must have

0 = θvq,γ = 2πqQγ (mod 2π ). (D10)

Thus we conclude that Qγ = l/q (mod 1) for some 0 � l �
q − 1. We also know that Qa = 1/q, so the charge of a−l × γ

is zero modulo one. Furthermore, since aq ∈ N we have

θaq,a−l×γ = θaq,a−l + θaq,γ = π. (D11)

So without loss of generality we take γ to have charge zero
modulo one, where θa,γ = π p/q for some odd p = 2p′ + 1.
We then consider vk × γ , we see that

θa,vk×γ = 2πk

q
+ 2π p′ + π

q
. (D12)

Taking k = −p′ will ensure that the above is equal to π/q =
πQa. Thus we see that there is a single non-Abelian anyon
in A/N × γ such that Qγ = 0 (mod 1) and θa,γ = πQa.
To conclude we note that the two21 anyons in N × γ both
braid identically with a but have charge that differs by 1
(mod 2). Thus without loss of generality we can choose

21There are only two since aqc × γ = γ .

235108-19



SETH MUSSER, MENG CHENG, AND T. SENTHIL PHYSICAL REVIEW B 111, 235108 (2025)

Qγ = 0 (mod 2). We thus see that there is a single non-
Abelian anyon in A × γ such that

Qγ = 0 (mod 2) and θa,γ = πQa. (D13)

Next, we prove θγ = 0. For this we need the following
relation:

e2π i(c−−σH )/8 = 1√
2DC

∑
σ∈C

d2
σ e

i(θσ +πQσ ), (D14)

which was shown in Ref. [55] for any fermionic TO us-
ing arguments about gauging the fermion parity. Since we
have assumed time-reversal invariance the left-hand side must
equal one.

We then need to compute the sum on the right-hand side.
Recall that in the previous proofs we have established that if
|A/N | = q2 then A = {1, c} � 〈a, v〉, where a has order 2q,
aq is a boson in N , and v has order q. We further showed
that C = A ∪ A × γ where we can take γ to have zero charge
modulo two and θa,γ = πQa. We also had that aqc × γ = γ

and d2
γ = 2.

We now do some algebra, building off of our previous
results. First we have

D2
C = |A| + d2

γ |A × γ | = 8q2. (D15)

For compactness let us write θ̃σ = θσ + πQσ for an anyon
σ ∈ C. Then we can easily find

θ̃akvl cn = 2πklQa + πkQa + k2θa,

θ̃akvl cn×γ = 2πklQa + 2πkQa + k2θa + θγ .

Then we see that

1 = 1

4q

⎛
⎝∑

k,l,n

eiθ̃ak vl cn + 2
∑
k,l

eiθ̃ak vl×γ

⎞
⎠

= 1

2q

2q−1∑
k=0

eik
2θa

(
eiπkQa + eiθγ e2π ikQa

) q−1∑
l=0

e2π iklQa .

Note that in the second sum we do not need to sum over n
because aqc × γ = γ .

The sums over l will be zero unless k is a multiple of q, so
k can only take two values k = 0, q and the sum over l gives
q. Note that q2θa = θaq = 0. With Qa = 1/q,

1 =
∑
k=0,q

(
eiπk/q + eiθγ

) = eiθγ .

Therefore θγ = 0.
Now consider the fusion product of γ × γ , we know that it

is equal to b+ baqc for some b ∈ A = 〈a, v〉 × {1, c}. Since
Qγ = 0 (mod 2) this means θγ ,v = 0. This, along with the
fact that θγ ,a = πQa, means that any fusion product b ∈ γ ×
γ must be such that θb,v = 0 and θb,a = 2πQa. Thus b braids
identically to the vison, which implies b = v or b = vc by
braiding nondegeneracy. In addition, Qγ = 0 mod 2 implies
Qv = 0 mod 2, which shows b = v. �

Remark D4. After all of this work we have found that all
non-Abelian anyons are of the form A × γ , where γ can be
thought of as the non-Abelian square root of the vison. Indeed
this is what we might have guessed! We needed to find some

particle that had π braiding with aq, which one might guess
looks like the square root of the vison. Given this guess it is
good we found something that agrees with our intuition.

Lastly, we rule out the |A/N | = q2 case.
Theorem D2. |A/N | = 4q2, |N | = 2 and hence C = A is

an Abelian TO.
Proof. Suppose that |A/N | = q2. Then we established

that C = A ∪ A × γ , where γ is an anyon with the following
properties given in Lemma D6. It will turn out that this theory
is not consistent with time reversal.

We can see this by condensing the bosonic vison v, forming
a child TO C′. This will confine any anyon which braids
nontrivially with v, i.e., has charge not equal to an integer.
It will further identify all powers of v with the vacuum. It is
then clear that

C ′ = C ′′ × {1, c} where C ′′ = {1, aqc, γ }, (D16)

and where

γ × γ = 1 + aqc, aqc × γ = γ , (D17)

and (aqc)2 = 1 so C ′′ is closed under fusion. We note that C ′′
has the fusion rules of the Ising TO, but the Ising anyon γ

has θγ = 0. However, all TOs with these fusion rules were
classified in Ref. [40], and in all of them the non-Abelian Ising
anyon satisfies 8θγ = π (mod 2π ).

We have arrived at a contradiction and thus conclude that
|A/N | 	= q2. �

APPENDIX E: UNIQUENESS RESULTS

In this section we prove a number of uniqueness results.
Here we allow translation to permute anyons, so it may no
longer be the case that a = T a.

In the proofs we need the following fact:
Theorem E1. Let A be a fermionic Abelian TO of size

|A| = 2N2 and A has an order-N boson. Then A is a twisted
ZN gauge theory and can be represented by the following K
matrix:

K =
⎛
⎝0 N 0
N −n 0
0 0 1

⎞
⎠. (E1)

Proof. To prove this theorem, consider the braiding with
the boson b. Since bN = 1, denote by Ak the set of anyons
with θ·,b = 2π

N k. Clearly, each of them must have 2N anyons.
Since θb,b = 0, we must have A0 = {1, b, . . . , bN−1} � {1, c}.

Denote by ϕ to be an arbitrary anyon in A1. Then we may
write

Ak = ϕk × A0. (E2)

The only remaining uncertainty in the fusion rule is ϕN ,
which must belong to A0. Suppose ϕN = bsct . Then

2Nθϕ = θϕ,ϕN = θϕ,bs = 2πs

N
. (E3)

We find θϕ = πs
N2 + π l

N . In addition, because θϕN = N2θϕ =
πt , it follows that s + Nl + t is even. We can thus write
θϕ = πn

N2 where n = s + Nl . Clearly, n takes any integer value.
Together with θb = 0, θb,ϕ = 2π

N , the statistics of all anyons
are all fixed. It is easy to verify that the anyon theory agrees
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with that of the K matrix with n = 2r + t , which can take
any integer value. The precise identification is b = (0, 1),
ϕ = (1, 0). �

Remark E1. This theorem can also be deduced by gaug-
ing the 1-form symmetry generated by the order-N boson,
resulting in a fermionic SPT state protected by ZN × Z f

2 sym-
metry [78,79]. The parent TO is then obtained from gauging
the ZN symmetry in the fermionic SPT phase.

Let us elaborate on this construction. Since we require that
the parent TO is Abelian, the fermionic SPT can be described
by the following Abelian CS theory [56]:

LfSPT = 1

2π
a1da2 − n

4π
a2da2 + 1

2π
a1dA, (E4)

Here we also introduce the background gauge field A. Gaug-
ing the ZN symmetry, we add to the Lagrangian the term
N
2π AdB. We use equation of motion to integrate out a1 and
set a2 = −A, after which the theory becomes

Lgauged = − n

4π
AdA + N

2π
AdB, (E5)

which is precisely the upper 2×2 block of the K matrix given
in Eq. (E1). The lower 1 on the diagonal is due to the stacking
of this bosonic theory with {1, c}.

By a GL(3,Z) transformation we can show n ∼ n + 2N .
In addition, for odd N , one can further show that n ∼ n + N
by the following GL(3,Z) transformation:

WTKW =
⎛
⎝0 N 0
N −n − N 0
0 0 1

⎞
⎠, W =

⎛
⎝1 − 1+N

2 1
0 1 0
0 N 1

⎞
⎠.

(E6)

It follows that, when N is odd, one can always choose n to be
even.

1. The case of q odd

Theorem E2. Let A be a fermionic Abelian TO of size
|A| = 2q2 that has an order-q boson, where q is odd. If A is
further time-reversal invariant then it must be Zq gauge theory
fused with the fundamental fermion.

Proof. According to Theorem E 1, the Abelian TO can be
described by a K matrix

K =
⎛
⎝0 q 0
q −2n 0
0 0 1

⎞
⎠, n ∈ Zq. (E7)

Here we have set the diagonal element to be an even, which is
always possible for q odd. We show that the only K matrix of
this form consistent with time reversal is the one where n = 0
(mod q).

The anyons d ∈ A in this theory can be written as d =
(l,m, k) for some integers l,m, k where k = 0, 1. They will
have topological spin given by

θ(l,m,k) = π (l,m, k)K−1

⎛
⎝ l
m
k

⎞
⎠ = 2π

(
ml

q
+ nl2

q2

)
+ kπ.

Now we know that time reversal is an automorphism on this
TO. So the anyon (1,0,0) must be mapped to some (l,m, k)

under time reversal. This tells us that

2π
n

q2
= −2π

(
nl2

q2
+ ml

q

)
+ πk (mod 2π ). (E8)

Multiplying by q we see that

2π
n(l2 + 1)

q
= πk (mod 2π ), (E9)

since q is odd. Multiplying by q again we see that πk = 0
(mod 2π ) and thus k = 0. We may therefore conclude that

n(l2 + 1) = 0 (mod q). (E10)

Furthermore, we note that the anyon (0,1,0) must be
mapped to some (l ′,m′, k′) under time reversal. Then we must
have

2π

(
nl ′2

q2
+ m′l ′

q

)
+ πk′ = 0 (mod 2π ). (E11)

We can again multiply by q2 and since q is odd this tells us
that k′ = 0. Then, multiplying by q again tells us that

nl ′2 = 0 (mod q). (E12)

Now we use the fact that T is an order-two operation. This
means that

(1, 0, 0) = T 2(1, 0, 0)

= T (l,m, 0)

= lT (1, 0, 0) + mT (0, 1, 0)

= (l2 + ml ′, lm + mm′, 0).

So then we see that (l2 + ml ′ − 1, lm + mm′, 0) must be iden-
tified with (0,0,0). This means that it must braid trivially with
all other anyons. In particular the requirement that it braid
trivially with (0,1,0) means that

l2 + ml ′ − 1 = 0 (mod q). (E13)

We then multiply by nl ′ and use the fact that nl ′2 = 0 (mod q)
to simplify to nl ′(l2 − 1) = 0 (mod q). We have already seen
that n(l2 + 1) = 0 (mod q), so we must have nl ′(l2 + 1) = 0
(mod q). Subtracting these reveals that 2nl ′ = 0 (mod q).
Since q is odd this must mean that 2 does not divide q and
hence nl ′=0 (mod q). Then we can multiply l2 + ml ′ − 1=0
(mod q) by n to see that

n(l2 − 1) = 0 (mod q). (E14)

But if we now subtract this from n(l2 + 1) = 0 (mod q) we
see that we must have 2n = 0 (mod q). Since q is odd this
must mean that n = 0 (mod q).

We therefore conclude that, for q odd, the only fermionic
Abelian TO,A, which is time-reversal invariant, has an order-
q boson and is of size |A| = 2q2 and is given by the K matrix

K =
⎛
⎝0 q 0
q 0 0
0 0 1

⎞
⎠. (E15)

This is precisely the K matrix of Zq gauge theory stacked with
{1, c}. �
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Corollary E1. Let A ∈ mG(ν )
GSD for the group G in Eq. (4),

where q is odd. ThenAmust be Zq gauge theory stacked with
{1, c}.

Proof. We showed in the main text that there must exist a
bosonic vison v ∈ A which has order q. We further showed
that |A| = 2q2 and was Abelian if A ∈ mG(ν )

GSD. Applying the
results of the previous theorem gives us our proof. �

2. The case of q even

We first want to prove that there exists an order-2q boson
in this theory, γ , even if translation permutes anyons. In fact,
we will be able to do better and find a unique such boson.
Since our fermionic TO is Abelian we can decompose A =
Ab � {1, c}, where Ab is a bosonic TO which is closed under
fusion. In Appendix C 3 we reviewed the proof that there is a
unique γ ∈ Ab which has the property that:22

θγ ,b = πQb for all b ∈ Ab. (E16)

In particular, θγ ,aq = π . Moreover, there we showed that γ 2 =
v. Since v has order exactly q, this means that γ must have
order exactly 2q. Additionally, since v is a boson we must
have that 4θγ = 0. We can now fully enumerate the anyon
content of our theory.

Lemma E1. Let A ∈ mG(ν )
GSD for the group G in Eq. (4).

Then A is made up entirely of powers of a, the unique γ

discussed above, and c, i.e.,

A = (〈a〉 × 〈γ 〉)� {1, c}. (E17)

Proof. First recall from Theorem C5 in Appendix C that
A = Ab � {1, c}, where Ab is closed under fusion. We al-
ready know that γ ∈ Ab. Since q is even it must always be the
case that aq ∈ Ab. Suppose then that a /∈ Ab, then ac ∈ Ab.
Since Ab is closed under fusion, aq+1c ∈ Ab. We see that
aq+1c is an order-2q anyon with charge exactly 1/q modulo
two. Then without loss of generality we can assume a ∈ Ab,
since all we know about a are these two facts.

Now since A = Ab � {1, c} and c /∈ Ab it must be the
case that |Ab| = |A|/2 = 4q2. So if we can show there are
4q2 anyons contained in 〈γ 〉 × 〈a〉 ⊆ Ab, then we are done.
Suppose there are fewer than 4q2 anyons in 〈γ 〉 × 〈a〉, then
there are some nontrivial r and s such that ar = γ s. We know
that γ has integer charge, so r = q is the only possibility.
Squaring the relation reveals that 1 = γ 2s = vs, so s = q.
But this cannot be the case because γ q will then have even
charge, and we know that aq has odd charge. We thus have the
contradiction and the result follows. �

Lemma E2. Let A ∈ mG(ν )
GSD for the group G in Eq. (4).

Then if the unique γ discussed earlier is not a boson aq must
be a fermion. This further implies that 2qθa = π , q/2 must be
odd, and θaq+1 = θa.

Proof. To show this we again use the relation

e2π i(c−−σH )/8 = 1

4q

∑
b∈A

ei(θb+πQb) (E18)

22All results thus far about γ in Abelian orders are proven in
Ref. [55].

proven in Ref. [55] for any fermionic TO. Time-reversal in-
variance will demand that the left-hand side is equal to one.
Then it is a simple matter of evaluating the right-hand side for
all anyons; these are of the form arγ scn by Lemma E 1.

For compactness we again write θ̃b = θb + πQb. Then
since πQγ = θγ ,γ = 2θγ we have that

θ̃arγ scn = r2θa + πr(s + 1)

q
+ (s2 + 2s)θγ

= r2θa+ πr(2s′ + 1)

q
+

{
0 if s = 2s′
πr/q − θγ if s = 2s′ + 1.

(E19)

If we then sum over s′ = 0, . . . , q − 1 we see that r = 0, q are
the only options that do not evaluate to zero. The relation will
then become

1 = 1
2

(
1 − eiθaq + e−iθγ + e−iθγ +iθaq

)
. (E20)

Now we know that a2q = 1 and thus 0 = θa,a2q = 4qθa. If
we multiply by q/2 we then have 0 = 2q2θa, so aq must be a
boson or fermion. Thus if aq is not a fermion, then it must be
a boson. From the above we see this means 1 = e−iθγ , so γ

must be a boson. By negation if γ is not a boson, then aq must
be a fermion.

Now suppose that aq is a fermion. We know that 4qθa =
0, so then 2qθa = 0, π . Suppose that it equaled zero, then
multiplying by q/2 we see that q2θa = 0, a contradiction. So
2qθa = π . We can again multiply by q/2 to see that q2θa =
πq/2. Since q2θa = π this must mean that q/2 is odd. Finally
we have that θaq+1 = (q2 + 2q + 1)θa = θa, since 2qθa and
q2θa both equal π . �

Theorem E3. Let A ∈ mG(ν )
GSD for the group G in Eq. (4).

Then the unique γ discussed earlier must be a boson or
fermion and there is thus an order-2q boson in the theory.

Proof. We know from Lemma E 1 that the unique γ ∈ A
is an order-2q anyon with 4θγ = 0. Suppose by contradic-
tion that 2θγ 	= 0, then 2θγ = π . In particular since πQγ =
θγ ,γ = 2θγ = π this means that Qγ = 1. We further know
from Lemma E 2 that 2θγ = π will mean aq is a fermion,
2qθa = π , q/2 is odd, and aq+1 has the same topological spin
as a.

We now want to establish the possibilities that a can be
mapped to under time reversal. By Lemma E 1 we know that
all anyons in A can be written as

anγ mck, where 0 � n, m � q − 1, k = 0, 1. (E21)

The only anyons with the same U(1) charge modulo two as
a are aγ m or aq+1cγ m for m even, and aγ mc or aq+1γ m for m
odd. Since time reversal preserves the U(1) charge of anyons it
must be the case that T a is equal to one of these possibilities.

It must also be the case that −θa = θT a. We now show
that none of the possibilities mentioned above can satisfy this
property.

(1) Suppose T a = aγ m for some even m. Then

0 = q(θa + θT a)

= q

(
2θa + πm

q

)
since m2θγ = 0 for m even,

= π since 2qθa = π and m even,
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which is clearly a contradiction.
(2) Suppose that T a = aq+1cγ m for m even. Then

0 = q(θa + θT a)

= q

(
π + 2θa + πm(q + 1)

q

)
since θaq+1 = θa,

= π since 2qθa = π and m even,

which is again a contradiction.
(3) Suppose that T a = aγ mc for some odd m. Then

0 = q(θa + θT a)

= q

(
π + 2θa + πm

q
+ θγ

)
since m2θγ = θγ for m odd,

= π + π + qθγ since 2qθa = π and m odd,

= π,

since qθγ = q/2(2θγ ) = qπ/2 and q/2 must be odd. So we
have again arrived at a contradiction.

(4) Finally, suppose that T a = aq+1γ m for some odd m.
Then

0 = q(θa + θT a)

= q

(
2θa + πm(q + 1)

q
+ θγ

)
since θaq+1 = θa,m

2θγ = θγ ,

= π + π + qθγ since 2qθa = π and m odd,

= π,

since qθγ = π . We have arrived at another contradiction.
We thus see that, if 2θγ = π there is no possible choice

of time reversal action that is also consistent with charge
conservation. By contradiction we conclude that 2θγ = 0. It
follows that either γ or γ c is an order-2q boson. �

Lemma E3. Let A be a fermionic Abelian TO of size
|A| = 8q2 that has an order-2q boson. If A is time-reversal
invariant then it must either be Z2q gauge theory or U(1)2q �
U(1)−2q (stacked with {1, c}).

Proof. According to Theorem E1, we know that A can be
described by a K matrix:

K =
⎛
⎝ 0 2q 0
2q −n 0
0 0 1

⎞
⎠, n ∈ Z2q. (E22)

The anyons d ∈ A in this theory can again be written as
d = (l,m, k) for some integers l,m, k where k = 0, 1. They
will have topological spin given by

θ(l,m,k) = π

(
ml

q
+ nl2

4q2

)
+ kπ. (E23)

We can now repeat a very similar argument to the case of
q odd. Suppose that T (1, 0, 0) = (l,m, k), then we see that

π
n

4q2
= −π

(
nl2

4q2
+ ml

q

)
+ πk (mod 2π ). (E24)

If we multiply by 2q then we see that

n(l2 + 1) = 0 (mod 4q). (E25)

Similarly if we have that T (0, 1, 0) = (l ′,m′, k′), then we
have that

π

(
nl ′2

4q2
+ m′l ′

q

)
+ πk′ = 0 (mod 2π ). (E26)

If we now multiply by 2q then we see that

nl ′2 = 0 (mod 4q). (E27)

Because T 2 is the identity, T 2(1, 0, 0) = (l2 + ml ′,
lm + mm′, lk + k) should be equivalent to (1,0,0). Thus
(l2+ml ′−1, lm + mm′, lk + k) must braid trivially with all
anyons. The requirement that it braid trivially with (0,1,0) will
imply that

l2 + ml ′ − 1 = 0 (mod 2q). (E28)

If we multiply by 2nl ′ then the fact that nl ′2 = 0 (mod 4q)
will tell us that

2nl ′(l2 − 1) = 0 (mod 4q). (E29)

We can then multiply n(l2 + 1) = 0 (mod 4q) by 2l ′ and
subtract to see that 4nl ′ = 0 (mod 4q), which implies nl ′ ≡ 0
(mod q). We can thus multiply l2 + ml ′ − 1 = 0 (mod 2q)
by n to see that

n(l2 − 1) = 0 (mod q). (E30)

Subtracting n(l2 + 1) = 0 (mod 4q) gives us that 2n = 0
(mod q).

Suppose that n = q/2, 3q/2, 5q/2, 7q/2 (mod 4q), then
the requirement that n(l2 + 1) = 0 (mod 4q) will mean that
l2 + 1 = 0 (mod 8). Similarly, if n = q, 3q, then we need
l2 + 1 = 0 (mod 4). Both obviously imply l must be odd,
i.e., l = 2l ′ + 1 for some integer l ′. But then it can easily be
checked that l2 + 1 = 2 (mod 8) and thus l2 + 1 	= 0 either
modulo 4 or 8. So then we must have that n = 0, 2q. Clearly
n = 0 is simply Z2q gauge theory, which is consistent with
time reversal.

Suppose now that n = 2q. Then our K matrix is given by

K =
⎛
⎝ 0 2q 0
2q −2q 0
0 0 1

⎞
⎠. (E31)

Applying the transformation

W =
⎛
⎝1 0 0
1 1 0
0 0 1

⎞
⎠, W ∈ GL(3,Z) (E32)

takes K → WTKW and produces U(1)2q � U(1)−2q. This is
also clearly consistent with time reversal. �

Remark E2. We could stop here, but it will turn out
that, once we demand invariance under translation, U(1)2q �
U(1)−2q will no longer be an acceptable theory.

Lemma E4. Let A ∈ mG(ν )
GSD for the group G in Eq. (4).

Then it must be the case that a2 is invariant under translation,
i.e., Txa2 = a2 = Tya2. This then implies that a2 is a boson. It
will also further imply that the unique γ discussed earlier is a
boson.

Proof. We follow the same logic as Theorem E 3, but now
with a unitary symmetry. Additionally we can now use the
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fact that, since 2θγ = 0, then Qγ = 0 (mod 2) for the unique
γ discussed earlier. Then the only anyons with the same
U(1) charge modulo two as a are aγ m and aq+1cγ m. Since
translation preserves the U(1) charge of anyons it must be the
case that Txa = aγ m or Txa = aq+1cγ m for some m.

Since translation is a unitary symmetry of the theory it
should also leave the topological spin of the anyons invariant.
This therefore means that if Txa = aγ m then

θa = θaγ m (E33)

= θa + πm

q
+ m2θγ . (E34)

Since θγ = 0, π we must have m is a multiple of q. Since q is
even this means m2θγ = 0 and we must therefore have that m
is a multiple of 2q. But γ 2q = 1. So Txa 	= aγ m unless m = 0.
Next suppose that Txa = aq+1cγ m. Then

θa = θaq+1cγ m (E35)

= π + (q2 + 2q + 1)θa + πm(q + 1)

q
+ m2θγ . (E36)

If we subtract θa from both sides and multiply by two we see
that

0 = (2q2 + 4q)θa + 2πm

q
, (E37)

since 2θγ = 0. Now we note that a2q = 1 so it must braid
trivially with a, i.e., 0 = θa,a2q = 4qθa. Since q is even this
means that (2q2 + 4q)θa = 0. Thus we have that 0 = 2πm/q
so m must be a multiple of q. The only anyons that a can be
taken to under translation are thus

Txa = a, aq+1c, aq+1cγ q. (E38)

In any case we see that Txa2 = (Txa)(Txa) = a2. The same
logic will hold for Ty. Thus we see that a2 must be invariant
under translation.

Next we appeal to the logic of Appendix D 1. There we
demonstrated that

θa,d = θT a,d ∀ d ∈ C such that Txd = d = Tyd. (E39)

So then we may conclude

θa,a2 = θT a,a2 (E40)

= 2θT a,a (E41)

= 0, (E42)

where the last line follows from the fact that θT a,a = −θa,T a.
So then 0 = θa,a2 = 4θa = θa2 and we can conclude that a2 is
a boson.

Finally, since a2 is a boson its powers must be also. In
particular, raising it to the q/2th power will imply that aq is a
boson. But then by the negation of Lemma E 2 we must have
that γ is a boson. �

Theorem E4. Let A ∈ mG(ν )
GSD for the group G in Eq. (4),

where q is even. Then A must be Z2q gauge theory stacked
with the fundamental fermion.

Proof. We know by Lemma E 3 that A must be Z2q gauge
theory or U(1)2q � U(1)−2q stacked with the fundamental
fermion. Our task is thus just to show that U(1)2q � U(1)−2q

cannot work.
We know by Lemma E 1 that all anyons in our TO can be

written as arγ scn. Then we see that

2qθarγ scn = 2q

(
nπ + r2θa + s2θγ + πrs

q

)
(E43)

= q

2
r2θa2 + q

2
s2θγ 2 (E44)

= 0, (E45)

where this follows from the fact that q is even and a2, γ 2 are
bosons. It is easy to see that all anyons b in our TOA have the
property that 2qθb = 0.

But obviously in the TO U(1)2q � U(1)−2q there is some
anyon b such that θb = π/2q and thus 2qθb = π . We have
therefore arrived at a contradiction, and we see that U(1)2q �
U(1)−2q cannot be an acceptable TO. �
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