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Abstract

Quantum spin liquids are exotic phases of quantum matter especially pertinent to many
modern condensed matter systems. Dirac spin liquids (DSLs) are a class of gapless quan-
tum spin liquids that do not have a quasi-particle description and are potentially realized
in a wide variety of spin 1/2 magnetic systems on 2d lattices. In particular, the DSL in
square lattice spin-1/2 magnets is described at low energies by (2+ 1)d quantum elec-
trodynamics with N f = 4 flavors of massless Dirac fermions minimally coupled to an
emergent U(1) gauge field. The existence of a relevant, symmetry-allowed monopole
perturbation renders the DSL on the square lattice intrinsically unstable. We argue that
the DSL describes a stable continuous phase transition within the familiar Neel phase (or
within the Valence Bond Solid (VBS) phase). In other words, the DSL is an “unnecessary”
quantum critical point within a single phase of matter. Our result offers a novel view of
the square lattice DSL in that the critical spin liquid can exist within either the Neel or
VBS state itself, and does not require leaving these conventional states.
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1 Introduction

Quantum spin liquids are a class of ground states of frustrated quantum magnets that are long
range entangled, and are often described by theories with exotic features such as emergent
gauge fields and associated ‘fractionalized’ degrees of freedom [1–3]. There are a wide vari-
ety of QSLs that are known to be possible theoretically with distinct universal properties. An
especially important example is the U(1) Dirac spin liquid (DSL)1 in two space dimensions.
The low energy physics of the DSL is described by massless QED3, a theory of massless emer-
gent Dirac fermions coupled to an emergent U(1) gauge field [4–7]. The DSL does not admit
a quasi-particle description and is instead described by an interacting conformal field theory
(CFT) in the infrared. DSLs have been studied as candidate stable quantum spin liquids on a
variety of lattices, see, eg, Refs. [7–17].

In this paper we focus on the DSL state in square lattice spin-1/2 quantum magnets which
has been studied extensively previously [7, 9, 17–20]. It has special interest [19] as a parent
Mott insulator that naturally evolves into a nodal d-wave superconductor upon doping. It has
also been studied [9] as a parent of many competing orders such as the conventional Neel and
Valence Bond Solid (VBS) phases.

Here we present a new interpretation of the DSL fixed point in spin-1/2 square lattice
antiferromagnets as a quantum critical point (QCP) that lies within the Neel phase, i.e as a
Neel-Neel QCP. Thus it is an example of an ‘unnecessary’ QCP introduced in Ref. [21], which
describes transitions within a single phase of matter, analogous to a liquid-gas transition, ex-
cept that it is continuous. The QCP is unnecessary or avoidable in the sense that there exists a
smooth adiabatic path in the phase diagram connecting the two phases on either side without
crossing the QCP.

This is in contrast to a conventional QCP, which also has a single symmetry allowed relevant
perturbation but tunes the phase transition between two different phases.

The first examples of unnecessary quantum critical points were found [21] in (3+ 1)d in
the phase diagram of certain non-abelian gauge theories coupled to enough massless matter
fields so as to render them infra-red free and in some free fermion QCPs in both 2+1 and 3+1
dimensions. More examples, including some simple ones, of unnecessary QCPs were also
found [21,23–26] in other free fermion QCPs in 2+ 1-D and in a variety of (1+ 1)d systems.
The identification of the square lattice DSL as an unnecessary QCP adds a particularly familiar
theory to this list.

1The DSL used to be called the Algebraic Spin Liquid (ASL) in the literature. The terminology DSL emphasizes
the origins of this state through a parton mean field description of the spin model where there are spinons with
Dirac dispersion. The terminology ASL emphasizes the algebraic correlations of local operators which is a property
of the low energy physics irrespective of the particular parton description. Indeed we should regard the low energy
theory abstractly as described by an interacting conformal field theory with a particular global symmetry that has
a particular ’t Hooft anomaly.
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Figure 1: a) We exhibit QED3 as an unnecessary quantum critical point within the
Neel and VBS phases. The unnecessary quantum critical point is depicted here as
a codimension-1 manifold (green line) in parameter space. There are paths, such
as the ones shown, that avoid the QCP; whether it is possible to completely engulf
the critical line or not is not clear but the plausible case is that the unnecessary
critical manifold (a line in our two dimensional plot) intersects the Neel-VBS phase
boundary, as depicted here. b) We represent the quantum critical fan, with λ labeling
the monopole fugacity. The QCP is located at λ = 0. In the second graph, we show
the Neel order parameter 〈N〉 and spin stiffness ρs as a function of λ, where the
unnecessary QCP at λ = 0 can be accessed within the Neel phase. Both 〈N〉 and ρs
vanish as a power law of the correlation length ξ, with 〈N〉 ∼ ξ−∆N and ρs ∼ ξ−1

from scaling arguments. Large N f calculations [9,22] estimate ∆N = 2− 64
3π2N f

.

Remarkably, for the square lattice DSL, this means we do not need to exit the Neel phase
to access it. Instead, the DSL can be accessed within the Neel state itself as an unnecessary
QCP, which could shed new light on theories that build on this spin liquid to describe super-
conductivity in doped square lattice Mott insulators. We remark that the same DSL fixed point
also describes a VBS-VBS phase transition (i.e, an unnecessary QCP) within the VBS phase.
We exhibit these results in Figure 1.

2 Background on the Dirac spin liquid

Let us first quickly review how QED3 arises as a low energy effective theory of a lattice spin-
1/2 magnet on the square lattice. We begin with a parton decomposition of the lattice spin
operator in terms of fermionic spinon operators:

Si =
1
2

f †
i,ασαβ fi,β , (1)

here f †
i,α is the spinon creation operator on site i with spin α. As is well-known, the repre-

sentation Eq. (1) of the physical spin operator is redundant which is captured by an SU(2)g
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gauge constraint2 to recover the physical Hilbert space [19]. Inserting this representation into
a microscopic spin Hamiltonian and treating the resulting interactions within mean field the-
ory leads to an effective quadratic lattice Hamiltonian. This mean field state may break the
SU(2)g gauge group to some subgroup. A low energy theory for a possible phase (or critical
point) of the original spin system is obtained by coupling the fermions in the mean field state
to a dynamical gauge field transforming in the unbroken subgroup of SU(2)g . We will be
interested in the staggered flux state described by a mean field Hamiltonian of the form

HM F = −
∑

i j

f †
i t i j f j , (2)

where t i,i+bx = (−1)y t for vertical links and t i,i+by = ei(−1)x+yθ/2 t on the horizontal links, with
the flux π ± θ for alternating plaquettes. This mean field Hamiltonian can be recast as the
BCS Hamiltonian for a a dx2−y2-wave superconductor of the spinons, and thus is also known
as the d-wave Resonating Valence Bond (dRVB) state. This Mott insulating state thus has a
close connection to a d-wave superconductor, and hence naturally evolves into the latter upon
doping; for more detail, see Ref. [19].

The band structure of the staggered flux/dRVB mean field Hamiltomnian leads to N f = 4
gapless Dirac nodes for the spinons. Furthermore the mean field ansatz breaks SU(2)g to U(1)
so that the low energy theory must include a dynamical U(1) gauge field. We thus arrive at
the QED3 theory with N f = 4 massless Dirac fermions as a low energy effective field theory of
this state. The corresponding Lagrangian is

LDSL =
4
∑

i=1

ψi i /Daψi +
1

4e2
fµν f µν , (3)

where the fermions are minimally coupled to the dynamical U(1) gauge field a with curvature
fµν = ∂µaν − ∂νaµ.

2.1 Monopole operators and the IR global symmetry

The quantum field theory described by Eq. (3) has been studied extensively. The Dirac fermion
ψ is not a local (gauge invariant) observable but operators such as ψ̄Oψ, where O is hermitian,
are local. A different class of local observables are monopole operators Mq, which insert q
units of U(1) gauge flux into the system. In the absence of such monopole operators in the
action, the total flux of the U(1) gauge field is conserved, corresponding to a global U(1)
symmetry (denoted U(1)top). There is a corresponding conserved current

jµ =
1

2π
εµνλ∂νaλ . (4)

The monopole operators Mq carry charge q under U(1)top. In the presence of Dirac fermions,
the bare monopole operators Mq must be dressed by fermion zero modes in order to be gauge
invariant [27]. Specifically, gauge invariance requires each bare monopole operator to have
half of the 4 Dirac zero modes filled, so in total, there are 6 fundamental monopoles [27]
arising from M1 and the 2 out of 4 choices of Dirac zero mode fillings.

All local operators, including fermion bilinears such asψiOψ j , can be constructed as com-
posites of the gauge-invariant monopole operators. Thus the monopole operators may be
viewed as the ‘fundamental’ degrees of freedom of the theory.

2We include a subscript g to emphasize that this is a gauge group.
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At first cut, apart from U(1)top, the QED3 Lagrangian has an SU(4) f flavor symmetry
corresponding to rotations of the N f = 4 ψ-fields. The monopoles transform as a vec-
tor under SO(6) = SU(4) f /Z2 [17]. The correct internal symmetry group3 is actually

GQED =
SO(6)×U(1)top

Z2
. In addition there are discrete symmetries of time reversal, reflection,

and Lorentz symmetry.4 A summary of the local operators and their symmetry transforma-
tions is collected in Appendix A.

2.2 Embedding the microscopic global symmetry

In any quantum many body system, the microscopic (the UV theory, in field theory parlance)
system has a global symmetry group GUV . This will be embedded in the global symmetry of the
IR theory GIR through a homomorphism. For the lattice spin model, GUV = SO(3)⋊T × p4m,
where p4m is the square lattice symmetry group, generated by the unit lattice translations
T1,2, C4 rotation, and mirror reflection Rx . Time reversal T acts as an antiunitary symmetry
that reverses monopole flux and fermion spin. A table of how these symmetries act on the
fermion fields and the gauge fields can be found in Ref. [9], which then determine how gauge
invariant operators like fermion bilinears transform under action of (the IR image of) GUV .
There is no such fermion bilinear that is a singlet under GUV .

The transformation of the monopole operators is more subtle. It was found through an-
alyzing the embedding of the spin liquid projective symmetry group into GQED that, of the 6
single-strength monopoles, there is one, Φt r iv , whose imaginary part transforms trivially under
GUV for the staggered flux/dRVB state on the square lattice, invariant under GUV [16,17,20].
The other 5 single strength monopoles and corresponding antimonopoles all transform under
GUV . The symmetry properties of other operators in the theory follow directly from those of
the single strength monopoles and fermion bilinears and is summarized in Appendix A.

3 Critical theory of the DSL

In the absence of the massless Dirac fermions, any allowed monopole perturbation will gap
out the photon field and confine gauge charges [28]. This is modified with the addition of
N f ̸= 0. In the large N f limit, the monopole perturbation becomes irrelevant, and it is known
that Eq. (3) is critical and flows to a conformal fixed point [7, 29–34]. As N f is reduced, if
monopole operators are not included, the QED3 theory is believed to flow to a CFT (at least
down to N f = 4 of interest to us here). If now monopoles are included at this conformal fixed
point and are relevant, the spin liquid phase is unstable.

The QED3 theory has been studied through the large-N f expansion [5, 6, 9, 27, 34], and
through direct Monte Carlo calculation [32, 33, 35]. In addition, conformal bootstrap cal-
culations [36–38] have obtained constraints on the scaling dimensions of various operators,
though a full isolation of the corresponding CFT has thus far not been possible.

From a 1/N f expansion, the scaling dimension of the fundamental monopoles Φ is given
by [27,34]

∆1 = 0.265N f − 0.0383+O(1/N f ) . (5)

Extrapolating to N f = 4 gives ∆1 ∼ 1.02 < 3 which would be relevant. This expectation is
confirmed by direct Monte Carlo calculations [35]. We can also consider composite operators
obtained by taking a product of the single monopole and a fermion bilinear, i.e terms like

3Rotations by the Z2 element of the center of SO(6) can be compensated by a U(1)top rotation which is why
SO(6)× U(1)top is modded by Z2.

4The Lorentz symmetry is obviously not present in the lattice model but is an emergent low energy symmetry,
as can be shown explicitly within a large-N f expansion [9].
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ψiψ jΦ. In the large-N f limit, the scaling dimension of this operator is ∆1 + 2
p

25 which
extrapolates to ∼ 3.8> 3 for N f = 4 making these irrelevant. The strength 2 monopole scaling
dimension, estimated from large N f , is ∆2 = 0.673N f − 0.194 ∼ 2.5 < 3 and is nominally
slightly relevant [34]. However, recent Monte Carlo calculations [35] estimate∆2 = 3.73(34)
and comfortably favors the irrelevance of the strength 2 monopole operator. We will assume
this below. Then the only relevant operator we need to consider is the fundamental strength
one monopole, Φ. If allowed by symmetry, proliferation of Φ will prevent the DSL from being
a stable gapless phase.

For the staggered flux/dRVB state on the square lattice, there is a single strength-1
monopole allowed by the symmetries of the microscopic theory. Fermion bilinears are also
relevant but are not singlets under GUV . Included in the fermion bilinears are the Neel order
parameter N⃗ (which transforms as spin-1 under SO(3)) and the VBS order parameter ψV BS
(which is a spin SO(3) singlet).

To be thorough, we must consider operators that correspond to four fermion interactions
and higher order monopoles, which may be relevant. These can be organized into various rep-
resentations of SO(6), including symmetry-allowed operators that transform in the symmetric
tensor representation (20′) and higher representations of SO(6). The symmetric tensor repre-
sentation includes the operator N⃗2−|ψV BS|2, which will play an important role in our analysis
below. It has been argued that this operator will be allowed in any lattice discretization of
QED3, and hence will be irrelevant since the CFT is found in a simulation [37]. Based on this
evidence, we assume this operator is irrelevant.

Furthermore, we will assume that the UV symmetry allowed operators in the higher tensor
representations of SO(6) are irrelevant. These assumptions are similar to the ones needed
for a stable spin liquid on the Kagome lattice [37] and are listed in Appendix A. With these
assumptions, there will be precisely one relevant symmetry allowed operator, and the square
lattice DSL is not a stable phase but rather a quantum critical point. Placing this quantum
critical point in the phase diagram of the square lattice spin-1/2 magnet is the main goal of
this paper.

Lastly, we recall, as mentioned earlier, that all fermion bilinears and higher-order fermion
terms can be written in terms of monopole operators. In particular, the fermion billinears
correspond to monopole-antimonople pairs while four fermion operators correspond to com-
posites of higher order monopole-antimonopole pairs (Appendix A).

4 Effective theory of the perturbed DSL

We consider the continuum quantum field theory defined by perturbing the QED4 theory with
its single allowed relevant perturbation.

L= LDSL + (λiΦ†
t r iv + h.c.) + . . . , (6)

where the “. . . ” includes symmetry-allowed (under GUV ) couplings which are irrelevant at the
QED3 fixed point. We will first analyse the properties of the continuum field theory defined
by the QED3 CFT with its single relevant deformation, and then reinstate these extra terms to
connect to the phase diagram of the microscopic lattice spin system.

Note there are 6 monopoles and 6 antimonopoles and only a particular linear combination
of them, Im [Φt r iv], is symmetry allowed. Once λ ̸= 0, the presence of the trivial monopole

5The scaling dimension is derived from the state-operator correspondence. Such an operator corresponds to an
excited 2π lorentz singlet monopole. The leading-order operator of this kind results from exciting a single sphere
Landau level in a unit charge monopole background from level n = −1 to n = 1, which has excitation energy of
2
p

2.
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of course breaks the U(1)top symmetry. Further it reduces the flavor symmetry from SO(6) to
SO(5), with the real and imaginary parts of Φt r iv being SO(5) scalars. The remaining 10 linear
combinations of monopoles and antimonopoles will split into two sets of SO(5) vectors. There
are symmetry allowed terms in the Lagrangian that couple one set of 5 to four-fermion terms
and the remaining set of 5 to the adjoint fermion billinear masses after λ ̸= 0. However, we will
focus on the condensation of the particular set of 5 operators that couple to the adjoint fermion
billinear mass6 after λ ̸= 0, as the fermion bilinears are more relevant than the four fermion
terms at the QED3 fixed point. We label these monopole operators as na with a = 1, ..., 5.

The transformation of na under GUV is such that we can identify them with the 5 com-
ponent vector bn = (Nx , Ny , Nz , ReψV BS , ImψV BS), where Nx ,y,z is the Neel order parameter
and ψV BS is the columnar valence bond solid (VBS) order parameter [16, 20]. Time reversal
Z T

2 continues to be a symmetry. We will take the corresponding operation TIR to change the
sign of all 5 components of na. The UV time-reversal operation TUV maps in the IR theory to
a combination of TIR and an SO(5) rotation that flips the sign of the VBS order parameters.
UV reflection along, say, the x-axis acts as a unitary Z2, reversing one of the SO(5) vector
components. As with time reversal, we can combine this with an SO(5) rotation to define an
IR reflection operation RIR

x which changes the sign of all 5-components of na.
The relevance of the single monopole means that a non-zero λ will grow upon scaling to

low energies, and will lead to an expectation value for Φt r iv . The 5-component na operator,
representing the non-singlet monopoles, can also be viewed as fermion bilinears that transform
as a vector under SO(5) (in other words once 〈Φt r iv〉 ̸= 0, there is no symmetry distinction
between the remaining monopoles and these fermion bilinears). To be more precise, at λ= 0,
the 15 fermion billinear masses transform as the 15 representation of SO(6) which branches
into 5⊕ 10 under SO(6)→ SO(5). It is the 5 that can be identified with na once λ ̸= 0.

It was shown in Ref. [39] that there is an anomaly for the global SO(5) × Z T
2 symmetry.

The part of the anomaly involving just the SO(5) symmetry can be characterized physically as
follows. Consider a vortex in two components of the SO(5) vector bn. This vortex configuration
breaks the SO(5) to SO(3)×U(1). The anomaly implies that the vortex transforms as a spinor
under the remaining SO(3). This is simply the familiar fact [40] that VBS vortices for square
lattice spin-1/2 magnets transform as spinors under the global SO(3) spin rotation symmetry.
We can also characterize the anomaly formally by coupling a background SO(5) gauge field,
and placing the theory on an arbitrary oriented smooth space-time manifold X3. As usual, the
anomaly implies that the action will not be invariant under SO(5) gauge transforms. To get a
gauge-invariant action, we need to extend the SO(5) gauge field, but not the dynamical fields,
to one higher space-time dimension X4 whose boundary is X3. The bulk action for the SO(5)
gauge field will be the response of an invertible topological phase such that the combined bulk-
boundary action is gauge invariant. The anomaly can thus be fully characterized by specifying
the response of the invertible topological phase on a closed compact manifold M4. For the
perturbed N f = 4 QED3 theory, this response takes the form of a discrete theta term

Zbulk = exp

�

iπ

∫

M4

wSO(5)
4

�

, (7)

where wSO(5)
4 ∈ H4(X4,Z2) is the fourth Stiefel-Whitney class of the SO(5) gauge bundle on M4.

The full anomaly (including time-reversal) has a similar characterization but with wO(5)
4 where

the improper element involves orientation reversal of the space-time manifold [41]. Crucially,
this full anomaly is also Z2 classified, so it is independent of the sign of λ and disappears if
two copies of the theory are stacked.

6The specific form of the coupling can be found in [16].
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Both the symmetry and the anomaly are identical to that describing the putative deconfined
quantum critical point [26, 39] between Neel and VBS phases. This is perhaps not surprising
given the identification of the basic uncondensed monoples of the the deformed QED3 theory
with the Neel and VBS order parameter fields. Any field theory describing the fluctuations of
these orders must have an anomaly that reflects lattice Lieb-Schultz-Mattis constraints.

5 Symmetry breaking and relation to the DQCP

What is the fate of the deformed QED3 theory with its anomalous SO(5) × Z T
2 symmetry?

First we know that any anomaly prevents a trivial gapped phase that preserves the global
symmetry. Ref. [39] argued a stronger result: so long as SO(5)× Z T

2 symmetry is preserved,
even a gapped topological ordered phase is forbidden, i.e, the theory has the property [42] of
‘symmetry-enforced gaplessness’.

The most likely fate of the deformed QED3 theory is simply a state where the SO(5) is
spontaneously broken. To understand how this might come about, first consider the theory
in the absence of any monopoles. Then the fermions of QED3 can be viewed as the basic 2π
vortices of an order parameter carrying charge-1 under U(1)top. This arises from the reciprocal
2π Berry phase when a U(1)top charged object, e.g. an elementary monopole, is moved around
a fermion in a closed loop. The addition of the singlet monopole operator leads to a field that
couples linearly to this order parameter. The phase winding around vortices will then be
restricted to strings that connect vortices to anti-vortices. Thus monopole proliferation leads
to a strong attractive interaction between fermionic particles and their holes. Thus we expect a
particle-hole (rather than a pairing) condensate to form once the monopole fugacity becomes
large. A further clue on the nature of this condensate comes from examining the particle-hole
operator with the lowest scaling dimension at the QED3 fixed point: it is presumably these
operators that will acquire an expectation value once the monopole fugacity flows to strong
coupling. It is known from calculations of scaling dimensions [9, 10, 22] (from the large-N f

expansion) that the flavor mass operator ψ̄Mψ, where M is an adjoint SU(4) matrix, has a
lower scaling dimension than the singlet mass operator ψ̄ψ. Therefore, the dominant, slowly
decaying, long-wavelength correlations at the QED3 fixed point will arise from the flavor mass
operator ψ̄Mψ. Due to these enhanced correlations at the QED3 fixed point, we heuristically
expect flavor symmetry to be broken.7 Further, as we discussed above, the true symmetry of
the model in the presence of the singlet monopole is SO(5), and we might reasonably expect
that the condensate transforms in the vector representation of SO(5).

A low energy continuum effective theory that captures this symmetry broken state is a
sigma model in terms of the 5-component SO(5) unit vector bn with a level 1 Wess-Zumino-
Witten (WZW) term [43,44],

S =
1

2g

∫

d3 x (∂ bn)2 + 2πΓ [bn] , (8)

where the WZW term Γ is defined by extending bn into an extra dimension u. This is done by

7The intuition is that the operator with the slower correlations at the CFT fixed point is more “almost ordered”
and if there is a relevant perturbation, then it is more likely to freeze in the fluctuations of this operator, though
a more thorough analysis would require a consideration of the parameter space surrounding the fixed point. A
more concrete example of this heuristic argument is to consider an array of spin-1/2 chains coupled together by
antiferromagnetic interactions between nearest neighbor chains. Each spin chain has power law Neel and VBS
correlations; the Neel correlations are enhanced over the VBS by a log factor, so the Neel is (slightly) more slowly
fluctuating than the VBS. Now as the inter-chain coupling is known to be relevant, the belief is that the relevant
flow leads to the Neel ordered state, rather than the VBS ordered state (at least so long as the interchain interaction
is not frustrating).
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defining bn(x , u) as a smooth extension of bn(x ) with bn(x , u= 0) = bn(x ) and bn(x , u= 1) = bnre f

a fixed reference vector (for example, bnre f = (1, 0,0, 0,0)T ). In terms of the extended vector
bn, the WZW term is written as

Γ [bn] =
εabcde

Vol(S4)

∫ 1

0

du

∫

d3 x na∂x nb∂y nc∂y nd∂une. (9)

The WZW term endows the sigma model with the right anomaly for the SO(5)×Z T
2 symmetry.

As a continuum theory, the sigma model is well defined at weak coupling and flows to the
ordered fixed point where SO(5) is spontaneously broken to SO(4). That the sigma model
matches the correct anomaly of the deformed QED3 is further evidence supporting an SO(5)
ordered ground state.

In principle, this theory could flow to a gapped, chiral spin liquid that saturates the SO(5)
anomaly [39]. However, we rule out this possibility8 as the resulting topological order has
an intrinsic sign problem [45], while the deformed QED3 is sign-problem free, both on the
lattice [46] and in the continuum field theory.

We comment briefly on the more exotic possibility that the IR fixed point of the deformed
QED3 theory is an interacting gapless CFT with the anomalous global SO(5) symmetry. This
fixed point needs to have no relevant SO(5)×Z T

2 invariant perturbations so that the perturbed
QED3 theory can flow to it without fine tuning. If breaking SO(5) to SO(3)×SO(2) is relevant,
such a theory would describe the deconfined quantum critical point between Neel and VBS
states (with emergent SO(5) symmetry), does not seem to exist as per numerical calculations
on lattice models, a conclusion supported by searches using the conformal bootstrap [47,48].
Rather the Neel-VBS transition seems to be very weakly first order which corresponds, in the
SO(5) symmetric model, to a weak breaking of the SO(5) symmetry.9 An even more exotic
possibility is that such a gapless CFT exists with no relevant perturbations even if SO(5) is
broken to SO(3)×SO(2). Such a CFT might describe a stable gapless phase of the underlying
lattice spin system. In the absence of any strong evidence supporting the existence of such a
phase, we do not consider it further here.10

5.1 DSL as an unnecessary critical point

The DSL quantum critical point is obtained by tuning the sign of the monopole fugacity λ. The
theory has the same symmetry and anomaly for either sign of λ. Moreover, the sign of λ can
be flipped by an SO(6) rotation (i.e. the center of the group) in the DSL. Thus irrespective of
the sign of λ we expect that it flows to the SO(5) symmetry broken ground state where the bn
condenses. It follows that the QED3 CFT at λ= 0 is a quantum critical point within the SO(5)
symmetry broken ordered state.

When the perturbed QED3 arises from microscopic lattice models, it will have anisotropies
that break SO(5) to a smaller subgroup. An important such anisotropy is the term

L1 = −κ
�

2
�

n2
1 + n2

2 + n2
3

�

− 3
�

n2
4 + n2

5

��

, (10)

which breaks SO(5) to SO(3) × U(1), and selects between Neel and VBS orderings. This
perturbation transforms in the traceless symmetric tensor representation, 20′, of SO(6) and is

8We thank Chong Wang for pointing this out to us.
9It is possible that an SO(5) symmetric CFT exists as a complex fixed point [39, 49–52] that leads to a slow

walking renormalization group flow to the symmetry broken fixed point, or that the weakness of the ordering
is due to proximity of the studied models to a tricritical point [53–55]. But whatever the explanation, SO(5)
symmetry breaking, rather than conformality, seems to be the ultimate fate.

10A simple symmetry preserving gapless phase is one where the Dirac fermions pair condense, thereby Higgsing
the U(1) gauge field to Z2. However we alreay argued against such pair condensation when the QED3 theory is
destabilized by monopoles.
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Figure 2: A phase diagram with RG flow of the unnecessary QCP. The horizontal axis
is the monopole fugacity λ, which drives the QED3 CFT into the SO(5)→ SO(4) sym-
metry broken state. The vertical axis is a generic, dangerously irrelevant anisotropy
that tunes between Neel and VBS ordering.

hence expected to be irrelevant at the QED3 fixed point. When a non-zero λ is turned on, the
sign of κ nevertheless determines whether the SO(5) broken state will possess Neel or VBS
order. Thus κ should be viewed as ‘dangerously irrelevant’. In general, different microscopic
lattice models will yield different signs of κ. Thus, in a class of microscopic Hamiltonians, we
expect to find the QED3 CFT as a quantum critical point inside the Neel phase (and likewise
also find it as a quantum critical point inside the VBS phase for other microscopic models).

As κ is dangerously irrelevant and λ is relevant, we can obtain the structure of the renor-
malization group (RG) flows in the (κ,λ)-plane is shown in Figure 2, with a schematic phase
diagram as well. More generally, the unnecessary critical point will occupy some codimension
one surface in parameter space.

As opposed to QCPs that separate two different phases, we see the DSL QCP is an unnec-
essary QCP, as it describes a continuous transition within the same phase. In particular, we
can find the DSL embedded within just the familiar collinear Neel phase, and hence may not
require a too strongly frustrated Hamiltonian. These results are summarized in Figure 1.

Implicitly, in reaching the conclusions above, we assumed that the sign of κ cannot change
under the RG flow when the monopole fugacity λ flows to strong coupling. In particular, if
the sign of the renormalized κ was determined by the sign of λ (irrespective of the bare sign
of κ), then we will have a situation where for one sign of λ we end up in the Neel state, and
for the other sign of λ, in the VBS phase. The QED3 CFT will then describe a second order
Neel-VBS transition. However this possibility is disallowed on general grounds simply because
of SO(5) symmetry which dictates that dκ/dl must vanish at κ = 0. Therefore, the flows of
(κ,λ) cannot cross the κ= 0 axis.11

Since the phases on either side of the unnecessary QCP are the same, we expect that there
will be a smooth path that connects them which avoids the QED3 completely. Thus the un-
necessary phase boundary will end within the Neel phase at a multicritical point, which may
also be interesting to explore in future work. An obvious candidate (within the Neel phase)

11Here we make the further assumption that other SO(5) breaking perturbations with higher scaling dimension
(at the QED3 fixed point) generated once κ ̸= 0 stay sufficiently small that we can ignore them and study the
theory in the (κ,λ) plane; then the κ= 0 theory is SO(5) invariant.
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is the QED3-Gross-Neveau model studied in Ref. [56]. Here the QED3 action is modified by
including a coupling to a fluctuating Neel vector field φ⃗ that couples to a fermion bilinear with
the same transformation under GUV . The Lagrangian reads

LQED−GN =
4
∑

i=1

ψi i /Daψi + φ⃗ · ψ̄µzσ⃗ψ+
�

∂µφ⃗
�2
+ rφ⃗2 + · · ·+

1
4e2

fµν f µν . (11)

(Here µI are Pauli matrices in the Dirac valley space, and σ⃗ are Pauli matrices in physical
spin space.) When φ⃗ is gapped, we can integrate it out to get the QED3 theory that describes
the unnecessary critical line. When φ⃗ is condensed, there is Neel order and the fermions get
a mass gap. The gauge fluctuations and the fermions will then be confined, and we get the
conventional Neel state. More detail is in Ref. [56]. A similar theory with a fluctuating VBS
order parameter field replacing the Neel field is also a candidate for the multicritical point
inside the VBS phase.

Finally we mention that there are other theories that share the same SO(5) global symmetry
and anomaly such as N f = 2 QCD3, of which the DSL can be realized as a Higgs descendant
[39]. The picture of the DSL as a parent state of the DQCP can also be seen from the theory of
Stiefel liquids as formulated in Ref. [41]. The SO(6)/SO(2) Stiefel liquid with a WZW term at
level 1 emerges as a theory closely related to the QED3 CFT, in the sense of having the same
local operators, global symmetry, and anomaly. Condensing a single monopole is equivalent
to condensing part of the Stiefel manifold order parameter, resulting in nothing more than the
SO(5) NLSM in Eq. (8).

6 Experiments and discussion

In addition to providing a platform to realize competing orders on different lattices, the DSL
can be realized as a critical theory living inside a single ordered phase on the square lattice.
Experimentally, the proximity to the DSL QCP within the Neel phase could be probed through
scattering experiments. A Neel state proximate to the unnecessary QCP would still exhibit con-
ventional behavior at long wavelengths and lowest energy, exhibiting magnon modes from the
spontaneously broken spin symmetry. However at higher energy, one would be able to probe
decay of the magnon into the CFT modes, leading to behavior such as anomalous broadening
of the magnon spectral function. The magnitude of the Neel order parameter, as well as the
spin stiffness, will itself vanish upon approaching the DSL QCP with exponents related to the
scaling dimension of the fermion billinears, as shown in Figure 1 b). Similarly, when the DSL
QCP arises as an unnecessary QCP within the VBS state, there will be vanishing of both the
order parameter and the energy gap as one tunes toward the DSL.

The example we have presented in this paper allows for unexpected phenomenology even
in systems deep within conventional phases of matter. Clearly it would be interesting to search
for “unnecessary” quantum criticality inside the Neel phase through numerical simulations of
square lattice spin-1/2 magnets.

It is also interesting to note the implications for theories of superconductivity in doped
Mott insulators. The DSL we have studied has an approximate wavefunction description as
a Gutzwiller-projected nearest neighbor d-wave BCS superconductor. At half-filling this is a
(spin liquid) Mott insulator. The same wavefunction at non-zero doping describes a correlated
d-wave superconductor. Thus the doped DSL gives us a route to connect the Mott insulator and
the doped superconductor, as explored in the old literature [19]. The traditional view has been
that the parent DSL state of the doped superconductor can only be accessed in a deformation
of the realistic spin Hamiltonian that is strong enough to completely leave the Neel state. The
understanding developed here shows that this parent state exists already within the Neel state,
and thus the deformation needed to access it may not be as violent as previously assumed.
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A UV symmetry allowed operators in QED3

In this appendix, we will analyze the symmetry properties of higher monopole operators in
QED3. Specifically, we will consider composites of the fundamental monopoles and categorize
them into representations of the global IR SO(6) and U(1)top symmetry. If the DSL is to be a
quantum critical point and not a multicritical point, then except for the operator used to tune
the critical point, all other operators allowed under the UV symmetries should be assumed to
be irrelevant. We will relate these assumptions to statements about the stability of DSLs on
the triangular and Kagome lattice made in Ref. [37].

The transformation of the single charge monopoles under the UV symmetries was derived
in Ref. [17] and is outlined in Table 1.

We now describe the symmetry allowed operators in each sector. We will label the repre-
sentations by (d, q) where d= dim(rep(SO(6))) and q the U(1)top charge. We remark that all
allowed operators of the form (d, q) will appear in the theory as linear combinations of (d,±q)
(or equivalently, the real and imaginary parts of (d, q)). Here are the assumptions made about
the operators for DSL stability on the triangular and Kagome lattices, in which there is no
symmetry allowed single strength monopole:

• Triangular lattice: We only need to assume (20′, 0) and (84, 0) are irrelevant, as only
strength 3 monopoles are allowed.

• Kagome lattice: We must assume (20′, 0), (84, 0), (20′, 2), and (64, 1) are irrelevant.

Using results from Refs. [16,17], Ref. [37] derived the above UV singlet operators that must be
RG irrelevant in order for the DSL to be stable. We note the operators (1, 0)must be irrelevant
in order for the QED3 to flow to a true CFT in the IR without fine tuning. Furthermore, (20′, 0)

Table 1: The transformation of the single-charge monopoles under the UV symme-
tries. The trivial monopole is Im [Φ2].

Monopole T1 T2 Rx Rotation T
Φ†

1 Φ1 −Φ1 −Φ1 −Φ3 Φ†
1

Φ†
2 −Φ2 −Φ2 −Φ2 −Φ2 −Φ†

2

Φ†
3 −Φ3 Φ3 Φ3 Φ1 Φ†

3

Φ†
4/5/6 −Φ4/5/6 −Φ4/5/6 Φ4/5/6 Φ4/5/6 −Φ†

4/5/6
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Table 2: Representations of q = 0.

Rep. Tensor form UV Symmetry Transformation

(1, 0)
∑

i O
†
i Oi Allowed

(15, 0) Im [O†
i O j] Transforms as the fermion billinears

(20′, 0) O†
(iO j) −δi j

∑

k O
†
kOk

6 Allowed, such as (O†
1O1 +O†

3O3 − · · · )

and (84, 0) contain singlets in any lattice QED3 simulation and therefore must be irrelevant if
N f = 4 QED3 is found to be stable in any lattice gauge model.

Now let us make the same assumptions for the square lattice as Ref. [37] does for the
stability of the Kagome lattice DSL and observe if any additional conditions are required in
order for the square lattice DSL to not be a multicritical point. For ease of notation, we write
Oi1,...in = Φi1 . . .Φin = O(i1,...in). In each U(1)top charge sector, we will first describe the irre-
ducible representations at fixed q and then comment on what is UV allowed. As O• transforms
as the single index vector representation of SO(6), we can analyze the composites of O to de-
rive explicit tensor forms of each representation and examples of symmetry allowed operators.

Viewing the SO(6) fundamental representation as the antisymmetric two box representa-
tion of SU(4), we can label the 6 of SO(6) as a Young tableau with a single column of two
boxes. Then, in general, for a charge q operator, its allowed SO(6) representations will labeled
by SU(4) Young tableau with ν boxes, where ν

2 = q (mod 2).

A.1 q = 0

In the q = 0 sector, we have operators of the form O†
•O•,O†

••O••, · · · . The first term splits as

6⊗ 6= 1⊕ 15⊕ 20′, (A.1)

under SO(6), with explicit tensor forms and examples of symmetry allowed operators shown
in Table 2, while the latter term splits as

(1⊕ 20′)⊗ (1⊕ 20′) = 2(1)⊕ 15⊕ 3(20′)⊕ 84⊕ 105⊕ 175 , (A.2)

as in Table 3. Note the (105, 0) is the fully symmetric, traceless representation, while (84, 0)
contains all the rest of the operators symmetric with respect to O → O†, minus the fully
symmetric and trace components. We see the UV allowed operators lie in (1, 0), (20′, 0), and
(84, 0), so these must be assumed irrelevant.

We note that fermion bilinears correspond to the operators transforming as (15, 0) in Ta-
ble 2. The four-fermion term will have overlap with numerous sectors, including (15, 0),
(20′, 0), and (84, 0) in Table 3, in addition to the SO(6) representations 45 and 45 that are
hosted by higher order monopole-antimonopole operators.

A.2 q = 1, 3

The q = 1 sector contains the operators of the form O†
•,O†

••O•, · · · . In the single monopole
sector, we have the UV allowed trivial monopole, transforming in (6, 1). More specifically, it
will be a linear combination of (6, 1) and (6,−1), Im [O†

2]. The higher monopole sector carries
representations

(1⊕ 20′)⊗ 6= 2(6)⊕ 50⊕ 64 , (A.3)

as described in Table 4. We see that the operators (6, 1), (50, 1), and (64, 1) are allowed under
the UV symmetries. The symmetry channel (6, 1) is exactly the relevant tuning parameter.
Therefore, we must assume (50, 1) and (64, 1) are irrelevant.
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Table 3: More representations of q = 0.

Rep. Tensor form UV Symmetry Transformation

2(1, 0)

∑

i, j O
†
i jOi j Allowed

∑

i, j O
†
iiO j j

3(20′, 0)

∑

i(Re [O†
i jOik]−δ jk

∑

l Re [O†
ilOil]

6 ),

Allowed
∑

i(Re [O†
iiO jk]−δ jk

∑

l Re [O†
iiOl l]

6 ),
∑

i( Im [O
†
iiO jk]−δ jk

∑

l Im [O†
iiOl l]

6 )

(105, 0)

O†
(i jOkl) −

1
10

∑

m

�

δklO
†
(i jOmm) +δ jlO

†
(imOkm)+

Allowed, such as (O†
44O44 − · · · )δilO

†
(mjOkm) +δ jkO

†
(imOml) +δikO

†
(mjOml) +δi jO

†
(mmOkl)

�

+ 1
80

∑

m,n

�

δi jδklO
†
(mmOnn) +δikδ jlO

†
(mnOmm) +δilδ jkO

†
(mnOnm)

�

(84, 0)

Real part of O†
i jOkl −O†

(i jOkl) −
1
6

∑

m

�

δi j(O†
mmOkl −O†

mkOml)+

Allowed, such as (Re [O†
44O55]− · · · )

δkl(O
†
i jOmm −O†

miOmj)
�

− 1
12

∑

m

�

δik(O
†
mjOml −O†

mmO jl) +δil(O
†
mjOkm

−O†
mmO jk) +δ jk(O

†
imOml −O†

mmOil) +δ jl(O
†
imOkm −O†

mmOik)
�

+
� 1

30δi jδkl −
1

60δikδ jl −
1

60δilδ jk

�∑

m,n(O
†
mmOnn −O†

mnOmn)

(15, 0)
∑

i Im [O†
i jOik] Transforms under symmetries

(175, 0)
Imaginary part of O†

i jOkl −
1
6

∑

m

�

δi jO†
mmOkl +δklO

†
i jOmm

�

−
Transforms under symmetries

1
8

∑

m

�

δikO
†
mjOml +δilO

†
mjOkm +δ jkO

†
imOml +δ jlO

†
imOkm

�

Table 4: Representations of q = 1.

Rep. Tensor form UV Symmetry Transformation

2(6, 1)

∑

i O
†
i jOi Allowed, such as (

∑

j Im [O†
j2O j],

∑

i O
†
iiO j

∑

j Im [O†
j jO2])

(50, 1) O†
(i jOk) −

1
8

∑

m

�

δi jO
†
(mmOk) +δikO

†
(mjOm) +δ jkO

†
(imOm)

�

Allowed, such as ( Im [O†
22O2]− · · · )

(64, 1)
O†

i jOk −O†
(i jOk) −

2
15δi j

∑

m(O
†
mmOk −O†

mkOm)−
Allowed, such as (O†

4O4(Im[O2])− · · · )
1
15

∑

m

�

δik(O
†
mjOm −O†

mmO j) +δ jk(O
†
imOm −O†

mmOi)
�

For q = 3, we have operators such as O†
•••, which transform as the fully symmetric

6⊕ 50 . (A.4)

The 6 is the singlet
∑

i O
†
ii j while the 50 is the traceless part of O†

i jk. Both of these sectors will

contain UV symmetric operators, including
∑

i Im [Oii2] for the former and Im [O222] for the
latter. However, as they have higher U(1)top charge q = 3, they are likely irrelevant and we
will not consider them further.

A.3 q = 2

The q = 2 sector contains operators of the form O†
••. These will transform in the symmetric

1⊗ 20′ (A.5)

representation, as summarized in Table 5. As addressed in the main text, we have already
assumed that the q = 2 monopole operators are irrelevant.

In conclusion, in addition to higher charge monopoles, we must assume the following
operators irrelevant in order for the square lattice DSL to be a QCP:

• (1, 0): This has scaling dimension ∼ 4.23 from large N f [57] and as mentioned previ-
ously, must be irrelevant to have a true CFT in the IR.
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• (20′, 0): The lowest scalars in this channel are four-fermion operators with scaling di-
mensions ∼ 2.38 from large N f [57].

• (84, 0): The lowest scalars are four-fermion operators with scaling dimension ∼ 4.54
from large N f [57].

• (50, 1), (64, 1): The lowest scalar in these channel is the excited q = 1 monopole, whose
lowest dimension operator has scaling dimension ∼ 3.85 by large N f [34].

These are the exact same assumptions made in [37] for the stability of the Kagome lattice
DSL, with the addition of (50, 1) being irrelevant. Except for (20′, 0), all of these operators
are estimated to be irrelevant from large N f calculations.

Table 5: Representations of q = 2.

Rep. Tensor form UV Symmetry Transformation

(1, 2)
∑

i O
†
ii Allowed

(20′, 2) O†
i j −δi j

∑

k O
†
kk

6 Allowed, such as ( Im [O†
44]− · · · )
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