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ABSTRACT. We prove the failure of the local-global principle, with respect to
discrete valuations, for isotropy of quadratic forms in 2" variables over function
fields of transcendence degree n > 2 over an algebraically closed field of character-
istic # 2. Our construction involves the generalized Kummer varieties considered
by Borcea and by Cynk and Hulek as well as new results on the nontriviality of
unramified cohomology of products of elliptic curves over discretely valued fields.

INTRODUCTION

The Hasse-Minkowski theorem states that if a quadratic form ¢ over a number
field is isotropic over every completion, then ¢ is isotropic. This is the first, and
most famous, instance of the local-global principle for isotropy of quadratic forms.
Already for a function field of transcendence degree one over a number field, Witt [47]
found examples of the failure of the local-global principle for isotropy of quadratic
forms in 3 variables (and also 4). Lind [34] and Reichardt [38], and later Cassels [13],
found examples of the failure of the local-global principle for isotropy of pairs of
quadratic forms in 4 variables over Q (see [2] for a detailed account), giving examples
of quadratic forms over the function field Q(¢) by an application of the Amer—Brumer
theorem [33], [23, Theorem 17.14]. Cassels, Ellison, and Pfister [14] found examples
in 4 variables over the function field R(z,y).

Here, we are interested in the failure of the local-global principle for isotropy of
quadratic forms over function fields of higher transcendence degree over algebraically
closed fields. All our fields will be assumed to be of characteristic # 2 and all our
quadratic forms nondegenerate. A quadratic form is called isotropic if it admits
a nontrivial zero. If K is a field and v is a discrete valuation on K, we denote
by K, the fraction field of the completion (with respect to the v-adic topology) of
the valuation ring of v. When we speak of the local-global principle for isotropy
of quadratic forms, sometimes referred to as the strong Hasse principle, in a given
dimension d over a given field K, we mean the following statement:

If g is a quadratic form in d variables over K and ¢ is isotropic over K,
for every discrete valuation v on K, then ¢ is isotropic over K.

Our main result is the following.

Theorem 1. The local-global principle for isotropy of quadratic forms fails to hold
in dimension 2" over any function field K of transcendence degree n > 2 over an
algebraically closed field k of characteristic # 2 other than possibly the algebraic
closure of a finite field.

Previously, only the case of n = 2 was known, with the first explicit examples
over K = C(z,y) appearing in [29], and later in [8] and [27]. For a construction,
1



2 AUEL AND SURESH

using algebraic geometry, over any transcendence degree 2 function field over an
algebraically closed field of characteristic 0, see [5], [6, §6]. In a previous version
of this work, Theorem 1 was proved in the case of complex rational function fields,
and left as a conjecture. Though we no longer need to make use of it, in §6, we also
prove a “geometric presentation lemma” of general interest about the existence of
double covers of varieties admitting nontrivial unramified cohomology in maximal
degree, which was conjectured in an earlier version of this work and was shown to
imply Theorem 1.

We recall that by Tsen-Lang theory [31, Theorem 6], such function fields are
C-fields, hence have u-invariant 2", and thus all quadratic forms of dimension > 2"
are already isotropic, thus we provide counterexamples to the local-global principle
in the maximal dimension in which they could occur.

We mention that in the case of transcendence degree n = 1, where K = k(X)
for a smooth projective curve X over an algebraically closed field k, the local-global
principle for isotropy of binary quadratic forms (the “global square theorem”) holds
when the genus of X is zero and fails when X has positive genus, see Remark 5.3.

Finally, when k is the algebraic closure of a finite field, our methods no longer
work. Though one can use other techniques to handle the case of transcendence
degree n = 2 (see Remark 5.4), proving the failure of the local-global principle
for quadratic forms over function fields K of transcendence degree n > 3 over F,
remains an open problem. Our method relies on proving the nontriviality of certain
unramified cohomology classes in top degree, see §6. Already for n = 3, the existence
of threefolds over F,, or F,, admitting nontrivial unramified cohomology in degree 3
is an open problem related to the integral Tate conjecture, see [18, Question 5.4].

Our result relies on two new ingredients and one very useful trick. The trick,
due to Bogomolov [9] and outlined in §1, is a kind of refinement of the existence of
transcendence bases, and allows us to reduce the construction of counterexamples to
the local-global principle over general function fields to the case of rational function
fields. Next, our construction over rational function fields makes use of so-called
generalized Kummer varieties, first considered by Borcea [12] and developed by Cynk
and Hulek [20], which are constructed as quotients of products of elliptic curves
and are birationally double covers of rational varieties. Finally, we prove a new
result (Theorem 3.3) on the nontriviality of unramified cohomology on products of
elliptic curves, which provides an arithmetic generalization of a result of Gabber [16,
Appendice], see also Colliot-Thélene [17].
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the final version of the result. We would also like to thank Fedor Bogomolov, Jean-
Louis Colliot-Thélene, David Leep, and Parimala for very helpful discussions. The
first author received partial support from NSA Young Investigator grant H98230-16-
1-0321, Simons Foundation grant 712097, and National Science Foundation grant
DMS-2200845; the second author from National Science Foundation grant DMS-
1463882.
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1. BOGOMOLOV’S TRICK

Let K/k be a finitely generated field extension. Recall that K/k admits a finite
transcendence basis, i.e., a set of elements x1, ..., x, € K that are algebraically inde-
pendent over k and such that K/k(z1,...,2,) is a finite extension. The cardinality
of any transcendence basis is equal to the transcendence degree of K/k.

A projective model of K/k is an integral projective k-variety X whose field of
rational functions is k-isomorphic to K. By the classical Chow’s lemma, every
finitely generated field extension admits a projective model, where the dimension of
the model coincides with the transcendence degree of the extension.

The following statement, a refinement of the existence of transcendence bases,
can be traced back to Bogomolov, in the course of the proof of [9, Theorem 1.1}, cf.
[11, Proposition 20].

Lemma 1.1 (Bogomolov’s trick). Let K/k be a finitely generated extension of tran-
scendence degree n. Assume that k is infinite and that a projective model of K/k
admits a smooth k-point. Then for any prime number p, there exists a transcendence
basis x1,...,xy € K such that K/k(x1,...,xy) is finite of degree prime to p.

We remark that by the Lang—Nishimura theorem, see [32], [35] and also [39,
Proposition A.6], the existence of a smooth k-point on a projective model of K/k
implies that any other projective model admits a k-point. The condition that a pro-
jective model admits a smooth k-point also implies that any model is geometrically
integral and generically smooth, see [45, Lemma 0CDW] and [45, Lemma 056V]. In
particular, if k is algebraically closed, then any projective model of K/k admits a
smooth k-point.

Proof. As above, since a projective model of K/k is geometrically integral, it is
geometrically reduced, and hence K /k is separably generated by a result of MacLane,
see [22, Theorem A1.3]. Hence, as in [25, Proposition 1.4.9], there exists a projective
hypersurface model X C P**! of K/k. Let d be the degree of X. If d = 1, then
X = P" and there is nothing to prove, so we can assume that d > 1.

Projection from a k-point in the complement of X (using that k is infinite) yields
a dominant rational map X --+ P" of degree d. Indeed, it is dominant since the
fibers of the projection are the intersections of X with the lines through the point,
and such intersections are always nonempty, cf. [25, Theorem 1.7.2]. Moreover, it is
generically finite of degree d since any line through the point cannot be contained
in X, hence must intersect X in a zero-dimensional scheme, which has length d.
Similarly, projection from a smooth k-point P of X yields a dominant rational map
X --» P™ of degree d — 1. Indeed, since P is a smooth point, the tangent space
to X at P has codimension 1 in P""! hence (again using that k is infinite) the
general line in P"*! through P meets X transversally at P and thus intersects X
in a nonempty zero-dimensional scheme of degree d containing P as an irreducible
component. Then the general fiber of this projection, which is the complement of
P in the intersection of X with a general line through P, is nonempty (using d > 1)
and has length d — 1, cf. [24, Example 18.16]. Since d and d — 1 are relatively prime,
no prime number p can divide both, hence the associated extension of function fields
K =k(X)/k(P") = k(x1,...,z,) can be chosen of degree prime to p. O

We remark that the hypothesis on a projective model admitting a k-point is
essential. For example, if K/k is the function field of a smooth plane conic X with
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no k-point, then there is no presentation of K as an odd degree extension of a
rational function field k(z). Indeed, X cannot acquire rational points over rational
function fields (see [23, Lemma 7.15]) or extensions of odd degree (by Springer’s
theorem), but does acquire a rational point over its own function field.

We have the following immediate corollary of Bogomolov’s trick.

Corollary 1.2. Let K be a finitely generated field of transcendence degree n over an
algebraically closed field k. Then there exists a transcendence basis x1,...,x, € K
such that K/k(xy,...,x,) is of odd degree.

With this in mind, we now explain how Springer’s theorem allows us to reduce
the construction of counterexamples to the local-global principle for isotropy of
quadratic forms over general function fields to the case of rational function fields.

Proposition 1.3. Let q be a nondegenerate quadratic form over a field K' and let
K/K' be a finite extension of odd degree. If q is a counterexample to the local-global
principle for isotropy over K', then qr is such a counterexample over K.

Proof. By Springer’s theorem, since ¢ is anisotropic over K’ and K/K' has odd
degree, then qx is anisotropic over K. To show that qx is locally isotropic over K,
let v be a discrete valuation on K, which then lies over a discrete valuation v’ on K.
Since the completion K, is a finite extension of the completion K|, and since ¢ is
isotropic over K,, we see that gk is isotropic over K. O

2. UNRAMIFIED COHOMOLOGY OF FUNCTION FIELDS

We now recall the notion of unramified cohomology, introduced in [19], restricting
ourselves to mod 2 coefficients. Readers should consult the excellent survey [15] for
further details. Let k be a field of characteristic # 2 and K/k be a finitely generated
extension. By a discrete valuation v on K/k we mean a rank 1 discrete valuation v
on K that is trivial on k.

For each discrete valuation v on K/k with residue field x(v), recall the residue
map in Galois cohomology

Dy : H"(K, pS™) — H"  (k(v), u§" 1)

which arises from the Gysin sequence associated to the closed point in the spectrum
of the valuation ring R, of v, see [15, §3.3]. The residue map is uniquely determined
by the property that 9, ((u1) -+ (un—1) - (7)) = (@1) - - - (Un—1), where m, is a uni-
formizer and w1, ...,u,_1 are units of R,, and @ means the image of a unit in x(v).
The degree n unramified cohomology of K/k is defined by

Hi (K ke, pus™) = (ker (9, : H* (K, p5™) — H" ™ (k(v), 5" ~"))

where the intersection ranges over all discrete valuations v on K/k. We say that an
element o € H"(K, u3™) is unramified if it belongs to HZ (K /k, u5™).

We recall two results about discrete valuations on rational function fields that
will be useful later.

Proposition 2.1.
a) Let k be a field and K = k(x1,...,x,) a rational function field over k with
n > 1. For each 1 < m < n, there exists a discrete valuation v on K/k
satisfying v(z;) =1 for all 1 <i <m and v(z;) =0 for allm+1<1i<n.
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b) Let ko be a field with a discrete valuation vy and residue field ko. Then there
exists a discrete valuation v on the rational function field Ky = ko(x1,...,zy),
extending vy on ko, and with residue field ko(x1,...,zy).

Proof. For (a), let A be the localization of k[x1, - - - , x,] at the prime ideal (x1, -+ , xy,).
Then R = Aly1,- -+ ,Ym-1]/(Tm — T1y1, "+ , Tm — Tm—1Ym—1) is an integral domain
with field of fractions isomorphic to K. Furthermore, the ideal p of R generated by
the images of x1,...,x,, is a prime ideal and Ry is a discrete valuation ring. The
valuation on K /k given by this discrete valuation ring has the required properties.
Geometrically, this corresponds to blowing up the model P of K /k along the linear
subspace defined by z; =--- =z, = 0.

For (b), letting Ry C ko be the valuation ring of vy and 7y a uniformizer, we take

the discrete valuation v on Kj associated to the prime ideal in Rylz1,...,z,] C Ko
generated by 7. By construction, the residue field of v on Ky is ko(z1,...,Zn).
Geometrically, this corresponds to the special fiber of the model Pg,- ]

3. GENERALIZED KUMMER VARIETIES

In this section, we review a construction, considered in the context of modular
Calabi—Yau varieties [20, §2] and [21], of a generalized Kummer variety attached to
a product of elliptic curves. This recovers, in dimension 2, the Kummer K3 surface
associated to a decomposable abelian surface, and in dimension 3, a class of Calabi—
Yau threefolds of CM type considered by Borcea [12, §3]. We also prove some results
about the unramified cohomology groups in top degree of products of elliptic curves
and their associated generalized Kummer varieties.

Let F1, ..., E, be elliptic curves over an algebraically closed field k of character-
istic #£ 2 and let Y = Fy x --- X E,. Let o; denote the negation automorphism on
E; and E; — P! the associated quotient branched double cover. We extend each
o; to an automorphism of Y by acting trivially on each E; for j # 4; the subgroup
G C Aut(Y) they generate is an elementary abelian 2-group. Consider the exact
sequence of abelian groups

1> H—-G52/20,

where II is defined by sending each o; to 1. Then the product of the double covers
Y — P! x --- x P! is the quotient by G and we denote by ¥ — X the quotient by
the subgroup H. The intermediate quotient X — P! x --- x P! is a double cover,
branched over a reducible divisor of type (4,...,4). For n = 2, this divisor is the
union of 4 vertical fibers and 4 horizontal fibers of P! x P! meeting in 16 points.

We point out that X is a singular degeneration of smooth Calabi—Yau varieties
that (geometrically) admits a smooth Calabi—Yau model, see [20, Corollary 2.3] and
[21, Section 4]. For n = 2, the minimal resolution of X is indeed isomorphic to the
Kummer K3 surface Kum(E; x E3).

Given nontrivial classes v; € H ét (E;, 12), we consider the cup product

(1) Y= € HE (Y, u5™)

and its image in H™(k(Y)/k, u5™) under restriction to the generic point. These
classes have been studied in [16]. We remark that 7 is in the image of the restriction
map H"(k(P* x --- x P), uS™) — H™(k(Y), u5") in Galois cohomology since each
7; is in the image of the restriction map H'(k(PY), u2) — H(k(E;), pu2).



6 AUEL AND SURESH

We make this more explicit as follows. Corresponding to each double cover F; —
P!, choose a Weierstrass equation in Legendre form

(2) yi = @iz — 1) (2 — i)

where w; is a coordinate on P' and \; € k ~ {0,1}, see [43, II1.1.7]. Then the
branched double cover X — P! x ... x P! is birationally defined by the equation

(3) yZZHxi(xi—l)(xi—)\i):f(xl,...,xn)
=1

where y = y1 -y, in k(Y), see [21, §3]. Up to an automorphism, we can, and
henceforth will, choose the Legendre forms so that the image of +; under the map
H}.(E;, p2) — H'(k(E;), p2) coincides with the square class (z;) € k(E;)/k(E;)*? =
H(k(E;), p2) of the rational function x;, which is then visibly in the image of the re-
striction map H*(k(P'), u2) — H'(k(E;), u2). Hence we see that the (ramified) cup
product class € = (z1) - (z,) € H*(k(x1,- -+ ,xy), u$™), restricts to the unramified
class v € HL(k(Y)/k, u§™).

The first main result of this section is that the class & already restricts to an
unramified class over the quadratic extension k(X). We prove a more general result
that can be viewed as a higher dimensional generalization of [15, §1].

Proposition 3.1. Let k be an algebraically closed field of characteristic # 2 and
K = k(x1,...,2,) a rational function field over k. For 1 <i < n, let f;i(x;) € k[x;]
be polynomials of even degree satisfying f;(0) # 0, and let f =[]\, z; fi(xi). Then
the restriction of the class & = (x1)--- (z,) € HY (K, u$™) to HY(K(VF), p$™) is
unramified with respect to all discrete valuations.

Proof. Let L = K(y/f) and v a discrete valuation on L with valuation ring R,
maximal ideal m, and residue field k. Write £, for the restriction of £ to H"(L, ™).

Suppose v(z;) < 0 for some i. Let d; be the degree of f; and consider the reciprocal
polynomial f(z;) = xflfl(x%), so that x; fi(z;) = ZC?i+1 . x%fz*(x%) Since d; is even,
we have that the polynomials z; f;(x;) and l% fz*(m%) have the same class in K* /K *2.

Thus, up to replacing, for all i with v(z;) < 0, the polynomial f; by f in the
definition of f and replacing x; by x%, we can assume that v(x;) > 0 for all ¢ without
changing the extension L/K. Hence k[x1,...,x,] C Ry.

Consider p = k[z1,...,2,] N m. Then p is a prime ideal of k[z1,...,x,] whose
residue field k(p) is a subfield of k. Let K, be the completion of K at p and L, the
completion of L at v. Then K, is a subfield of L,,.

If v(z;) = 0 for all 4, then £/, is unramified at v. So suppose that v(z;) # 0 for some
i. By reindexing z1,...,x,, we assume that there exists m > 1 such that v(z;) > 0
for 1 <i¢<m and v(z;) =0 for m+1<i<n,ie, we have z1,...,2,, € p and
T4, - -+, Ty € p. In particular, the transcendence degree of k(p) over k is < n —m.

First, suppose fi(z;) € p for some m + 1 < i < n. Since f;(z;) is a product of
linear factors in k[z;], we have that z; — a; € p for some a; € k, with a; # 0 since
fi(0) # 0. Thus the image of x; in x(p) is equal to a; and hence is a square in K.
In particular, z; is a square in L,, thus £, is trivial (hence unramified) at v, cf. [19,
Proposition 1.4].

Now, suppose that f;(x;) € p for all m+1 < i < n. Then for each 1 < i < m, we
see that since x; € p and f;(0) # 0, we have f;(x;) & p. Consequently, we can assume



FAILURE OF THE LOCAL-GLOBAL PRINCIPLE FOR ISOTROPY 7

that f = x1 - x,u for some u € k[x1,...,z,] N p. We remark that f =z - -zpu
is a square in L, so that (z1---2y,) = (u) in H(L, ug).

For m = 1, we see that £, = (u) - (z2) -+ (x,) is unramified at v since u and
To,...,x, are units at v.

For m > 1, a computation with symbols

(@1)+ (@m) = (@1) - (@m-1) - (@1 @) = (@1) - (@ma1) - (w) € H™ (L, p5™)

shows that & = (z1) - (Tm—1) - (u) + (Tpmy1) -+ (). Since v and Zyi1,..., Ty
are units at v, computing with the Galois cohomology residue homomorphism 9, :
H™(L, yu§™) — H* 1 (k(v), ™) from §2 shows that

0o ((@1) - (@m—1) - (W) - (Fm41) -+ (n)) = @+ (@) * (@Fms1) -+~ (Tn)

for some v € H™2(k(v), ™ 2), where for any h € k[z1, ..., x,], we write & for the
image of h in k(p) C k. Since the transcendence degree of k(p) over k is < n —m
and k is algebraically closed, we have that x(p) has 2-cohomological dimension
< n —m by [42, I1.4.2 Proposition 11], so that H" ™+ (k(p), u5" ™) = 0. Since
u,T; € K(p), we then have that (@) - (ZTy41) - - - (%) is trivial. In particular, 9,(£) is
trivial, and hence &7, is unramified at v. Finally, we have shown that the restriction
&1 is unramified at all discrete valuations on L. O

As an immediate consequence, we deduce the fact that the class £ restricts to an
unramified class over k(X) = k(x1,...,2,)(v/f), where f is as in (3).

Proposition 3.2. Let E1,...,E, be elliptic curves over an algebraically closed
field k of characteristic # 2, given in the Legendre form (2), with K = k(z1,...,zy).
Then the restriction of the class & = (z1) -+ (zy) in H"(K, uS™) to H™(k(X), u5™)
is unramified at all discrete valuations.

This unramified class on k(X)) restricts to the class v on k(Y in (1), so without
loss of generality, we will also call it . Finally, we will need conditions ensuring
that our class v is nontrivial over k(X). For this, we must choose the elliptic curves
Esq, ..., E, more carefully, and we will then show that ~ is nontrivial over k(Y),
hence is nontrivial over k(X). We proceed as follows.

First, we choose a subfield kg C k admitting a discrete valuation vg. This is
possible unless k is the algebraic closure of a finite field; this is why we must hence-
forth assume that k is not the algebraic closure of a finite field. Then we choose
E; defined over ko with Weierstrass equation (2) satisfying vo(\;) > 0. Finally, we
appeal to the following arithmetic version, which was inspired by Bogomolov [10,
§7], of a result of Gabber [16, Appendice].

Theorem 3.3. Let kg be a field with a discrete valuation vy whose residue field has
characteristic # 2. Let E1, ..., E, be elliptic curves over ko given in the Legendre
form (2), with vo(N;) > 0 for all 1 < i <n. LetY = E; x --- x E, and k/kg
be an algebraically closed extension. Then the class v € H™ (k(Y),uS™) in (1) is
nontrivial.

Proof. Let Ko = ko(z1,...,2,) and let 49 be the restriction of the class { =
(w1) - (zn) € HY (Ko, pu5™) to H™(ko(Y),u$™). Letting ko be the residue field
of vy, by Proposition 2.1b) we can extend vy to a discrete valuation on Ky with
residue field ko(x1,...,2z,). We remark that each x; € Ky is a unit with respect
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to this valuation. Since ko(Y')/Kp is a finite separable extension, we can further
extend this valuation to a discrete valuation ¥ on ko(Y'). Writing

ko(Y) = ko(w1, -+, xn) (Var(r = (@1 = Ar), -+, V(e — 1)(@n — An))

then since 0()\;) > 0 and 9(z;) = 0 for all i, we have that the residue field of v is

R=rko(x1, - ,xn) (Vo1 — 1, WV, —1).

Since each x; is a unit at o, the class 79 is unramified at 0, and has specialization
o= (x1) - (za) € H"(R, ug™).

We now argue that &y is nontrivial, hence that g is nontrivial. To this end, by

Proposition 2.1a) there is a valuation v, on ko(x1,- - ,x,) such that v,(x;) = 0 for
1 <i<n-—1and v,(z,) = 1, and we denote by v, an extension to &, which is
separable over kg(z1,...,z,) and unramified at o,,. Thus 0, is trivial on the subfield

/%n :"10(:1717"' 7‘7:71—1)(\/3:1 _17 » V Tn—1 _1)

and satisfies 9, (x,) = 1. Then the residue field of @, is #,(v/—1) and the residue
of the class & at @, is simply (x1)---(xn—1). Repeatedly taking residues using
this process, we arrive at the class (z1) € H'(rko(z1)(v/—1,v/x1 — 1), u2), which is
nontrivial, hence & is nontrivial. Thus vo € H"(ko(Y), u3™) is nontrivial.

Now let k/kq be any algebraically closed field extension and let ko be the algebraic
closure of ko in k. First, we show that the restriction of vo to H"(ko(Y),u$™)
is nontrivial. This is equivalent to the restriction of vy to H"(Io(Y), u5") being
nontrivial for every finite algebraic extension ly/kg. Letting wp be an extension of
vo to I, we still have that wg(\;) > 0 for all ¢, so we can apply what we have already
proved. Second, since g is unramified, its restriction to H"(ko(Y'), u5™) and further
to H™(k(Y), u5™), remains unramified and coincides with the class 7. Then we can
appeal to the rigidity property for unramified cohomology, which implies that the
restriction map HZ (ko(Y)/k, u5™) — HZ(k(Y)/k, u$™) is an isomorphism, see [15,
§4.4], showing that - is nontrivial. u

Additional aspects and applications of the argument in the proof of Theorem 3.3
will be the subject of forthcoming work [7]. In particular, u5™ coefficients can be
replaced by NZ@” coefficients for any positive integer ¢ prime to the residue charac-
teristic of kg. We content ourselves with giving one application here, which is a new
proof of (a generalization of) Gabber’s result [16, Appendice].

Corollary 3.4. Let k be a field of characteristic # 2 and K/k an algebraically
closed extension. Let Ei,...,E, be elliptic curves over K whose j-invariants are

algebraically independent over k. LetY = E; X --- X E,. Then the class v €
H™Y(K(Y),uS™) in (1) is nontrivial.

Proof. Since K is algebraically closed, each elliptic curve F; can be put into Legendre
form (2). Hence Y is defined over the field ko = k(A1, ..., A,). Since the j-invariant
of E; is a rational function in );, the algebraic independence of j(E1),...,7(Ey)
over k implies the algebraic independence of A1, ..., \, over k. By Proposition 2.1a),
there exists a discrete valuation vy on kg such that vy(A;) > 0 for all 7, and then we
can apply Theorem 3.3. O
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4. HYPERBOLICITY OVER A QUADRATIC EXTENSION

Let K be a field of characteristic # 2. We will need the following result about
isotropy of quadratic forms, generalizing a well-known result in the dimension four
case, see [41, Ch. 2, Lemma 14.2].

Proposition 4.1. Let g be a quadratic form over K of dimension divisible by 4 and
discriminant d, and let L = K(\/d). If q is hyperbolic over L then q is isotropic
over K.

Proof. If d € K*?, then K = L and there is nothing to prove, so suppose d ¢ K *2.
To get a contradiction, we will assume ¢ is anisotropic. Since g7, is hyperbolic,
we then have ¢ ~ < 1,—d > ® ¢ for some quadratic form ¢; over K, see [41,
Ch. 2, Theorem 5.2]. Since the dimension of ¢ is divisible by four, the dimension of
q1 is divisible by two, and a computation of the discriminant shows that d € K*2,
which is a contradiction. ([l

For n>1 and aq,...,a, € K*, recall the n-fold Pfister form
Lal,...,ap >=<1,—a1> ®---® <1,—a,>

and the associated symbol (a1) - - - (a,,) in the Galois cohomology group H™(K, us™).
Then < ay,...,a, > is hyperbolic if and only if <aq,...,a, > is isotropic if and
only if (a1) - - - (ay) is trivial. For the fact that isotropic Pfister forms are hyperbolic,
see [41, Ch. 4, Corollary 1.5]. The fact that the triviality of (a;) - - - (a,) implies the
hyperbolicity of < ai,...,a, > is a consequence of the Milnor conjectures for the
Witt group, as proved by Voevodsky [46] and Orlov, Vishik, Voevodsky [36].

For d € K* and n > 2, we will consider quadratic forms of discriminant d related
to n-fold Pfister forms, as follows. Write <ay,...,a, > as q L <(=1)"ai...a,>,
then define <ay,...,an;d>= qo L <(=1)"ay...ay,d>. For example:

La;d>» = <1,—ad>
<La,b;d> = <1,—a,—b,abd>
<La,b,c;d> = <1,—a,—b, —c,ab, ac, bc, —abcd >

for n = 1,2, 3, respectively. We remark that every quadratic form of dimension 4
is similar to one of this type. We also remark that < aq,...,a,;d > becomes
isomorphic to < ai,...,a, > over K(v/d). In general, these quadratic forms are
examples of twisted Pfister forms in the sense of Hoffmann [26].

Proposition 4.2. Assume n > 2. If ¢ =<ay,...,ay;d > and L = K(v/d) then q
is isotropic if and only if q, is isotropic if and only if (a1)--- (an) € H™(L,us™) is
trivial.

Proof. If ¢ is isotropic then ¢y, is isotropic. If g7 is isotropic, then as mentioned
above, it is hyperbolic as it is a Pfister form, hence by Proposition 4.1 (since g has
dimension 2" and n > 2), ¢ is isotropic over K. As previously mentioned above
(and consequence of the Milnor conjectures), (a1) - - - (a,) € H™(L, u$™) is trivial if
and only the Pfister form ¢z, is isotropic. O

This generalizes a well-known result about quadratic forms of dimension 4, see
[41, Ch. 2, Lemma 14.2].
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5. FAILURE OF THE LOCAL GLOBAL PRINCIPLE

In this section, we prove our main Theorem 1 by providing a construction of
quadratic forms over function fields that are locally isotropic yet globally anisotropic.
First we prove a general result about the generalized Pfister forms in Section 4.

Proposition 5.1. Let k be an algebraically closed field of characteristic # 2 and K /k
a finitely generated extension of transcendence degree n > 2. Let ay,...,a,,d € K*
be such that the symbol (ay)---(an) in H™(K,u$™) becomes unramified over L =
K(\/&) Then the quadratic form q =< ay,...,an;d > is locally isotropic over K.

Proof. Let v be a discrete valuation on K and w an extension to L, with comple-
tions K, and L,, and residue fields x(v) and x(w), respectively. By assumption, the
restriction of the symbol (a1) - (a,) to H"(L, u5™) is unramified at w. By coho-
mological purity for discrete valuation rings (cf. [15, §3.3]) we have a surjective map
HZ (R, p3™) — HE(Ly /K, p$") where Ry, C Ly, is the valuation ring. By proper
base change (cf. [4, XIL.5.5], see also a general result of Gabber [45, Tag 09ZI]), we
have an isomorphism HY (R, pu$") = H™(k(w), u3™). Since x(w)/k has transcen-
dence degree < n by Abhyankar’s inequality [1, Corollary 1(1)] and k is algebraically
closed, we have that x(w) has 2-cohomological dimension < n by [42, I1.4.2 Propo-
sition 11]. From all this, we deduce that H? (L /k,u$™) = 0. In particular, the
symbol (a1) - - - (a,) has trivial restriction to H"(Ly,, u5™). Thus by Proposition 4.2,
we have that g, is isotropic. Finally, as this holds for every discrete valuation v
on K, the quadratic form ¢ is locally isotropic over K. ]

Now, we will utilize our constructions in Section 3. Let k£ be an algebraically
closed field of characteristic # 2 that is not the algebraic closure of a finite field. Let
ko C k be a subfield with a discrete valuation vy whose residue field has character-
istic # 2. Let Ej,..., E, be elliptic curves over kg given in the Legendre form (2),
with vo(\;) > 0 for all 1 <i < n. Let X — P! x--- x P! be the double cover defined
by y? =[], zi(x; — 1)(z; — N;) = f(z1,...,2,) in (3), and consider the quadratic
form

(4) q:<<$17"'7xn;f>>

over the rational function field k(P! x --- x P') = k(x1,...,2,), as in Section 4.

Our main result is that for n > 2, the quadratic form ¢ shows the failure of
the local-global principle for isotropy, with respect to all discrete valuations, for
quadratic forms of dimension 2" over k(z1,...,zy).

Theorem 5.2. Let k be an algebraically closed field of characteristic # 2 that is
not the algebraic closure of a finite field and assume n > 2. The quadratic form
q=<KLx1,...,Tp; f > as in (4) is anisotropic over k(xi,...,x,) yet is isotropic
over the completion at every discrete valuation.

Proof. Write K = k(x1,...,2,) and L = K(y/f). By Proposition 3.2, the restriction
of the symbol (x1) - -+ (z,) € H"(K, u$™) to L is unramified. Hence Proposition 5.1
implies that ¢ is locally isotropic at every discrete valuation on K.

The restriction of the symbol (z1) - -+ (z,) € H"(K, u5™) to L is nontrivial since
its further restriction to k(E; x --- x E,) is nontrivial by Theorem 3.3. Hence
Proposition 4.2 implies that ¢ is anisotropic over K. U
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Proof of Theorem 1. By Bogomolov’s trick (Corollary 1.2), we find x1,...,2, € K
such that K/k(x1,...,2,) has odd degree. If g is as in (4), then by Theorem 5.2, ¢
is anisotropic yet locally isotropic over k(x1,...,x,). Finally, by Proposition 1.3, ¢
is a counterexample to the local-global principle for isotropy over K. O

To give an explicit example, let a,b,c € Q \ {0,1} be any algebraic integers all
divisible by a common odd prime ideal in a number field containing them. For
example, take a = b = ¢ = 3. Then over the function field K = C(x,y, z), the
quadratic form

q=< 171"’ Y, 2, 1Y, Tz, Yz, (:L‘ - 1)(y - 1)(2 - 1)($ - a)(y - b)(Z - C) >
is isotropic over every completion K, associated to a discrete valuation v on K, and
yet q is anisotropic over K.

Remark 5.3. Let k be any algebraically closed field of characteristic # 2. When
K/k is a finitely generated field of transcendence degree 1, then K = k(X) for a
smooth projective curve X over k. Any binary quadratic form ¢ over K is similar to
<a> = <1,—a> for some a € K*, and q is isotropic if and only if a is a square.
For any discrete valuation v on K, we have that ¢ is isotropic over K, if and only if a
is a square in K, equivalently (since k is algebraically closed and characteristic # 2),
v(a) is even. Thus if ¢ is locally isotropic at all discrete valuations on K then the
divisor of the rational function a on X can be written as 2D for a divisor D on X.
The divisor class of D is 2-torsion in Pic(X) and it is trivial if and only if a is a square
in K. Conversely, if X admits a nontrivial 2-torsion element of Pic(X), then twice
this element is the divisor of a rational function a € K and the local-global principle
fails for << a >. Thus the local-global principle for isotropy fails for K if and only
if the Picard group of X admits a nontrivial 2-torsion element, equivalently (again,
since k is algebraically closed and characteristic # 2), the genus of X is positive.
Equivalently, the local-global principle for isotropy holds for quadratic forms over
K if and only if K/k is purely transcendental.

In fact, we see that Proposition 4.2 (and hence Proposition 5.1) is false for n = 1
by considering the trivial class in H'(K, u2) and d € K* any nonsquare.

Remark 5.4. When k is the algebraic closure of a finite field of characteristic # 2,
Theorem 5.2 still holds for n = 2 assuming that the elliptic curves F; and Es are
not isogenous. Indeed, by Proposition 3.2, the restriction of the symbol (z1) - (x2) €
H?(K, /15@2) to L is still unramified, and the only thing left to verify is that it
is nontrivial. We can check this by further restriction to k(E; x E3), where the
symbol is the restriction to the generic point of a class in H}, (E1, u2) ® HY (E2, p2)
by §3. However, standard computations of the Brauer group of Ey x Es, cf. [44, §3],
show that if F; is not isogenous to Fo, then in fact Br(E; x Ej) = Hgt(El, H2) @
H élt(Eg, 2), so that each such cup product class is indeed nontrivial in the Brauer
group. Then, as before, Proposition 5.1 implies that the local-global principle for
isotropy fails for ¢ as in (4) over K, hence Theorem 1 also holds in this case.

6. A GEOMETRIC PRESENTATION LEMMA

The method for producing locally isotropic but globally anisotropic quadratic
forms of dimension 2" over function fields of transcendence degree n presented in
this work is different from the one employed in [6, §6] for n = 2. There, we first
proved a kind of geometric presentation lemma about the existence of nontrivial
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unramified cohomology (in degree 2) over quadratic extensions. Specifically, using
Hodge theory, we proved [6, Proposition 6.4] that given any smooth projective sur-
face S over an algebraically closed field of characteristic zero, there exists a double
cover T — S with T smooth and H2 (k(T)/k,us?) = Br(T)[2] # 0. It has been
an open question ever since whether such a geometric presentation lemma holds for
unramified cohomology in higher degree.

Conjecture 6.1. Let K be a finitely generated field of transcendence degree n over
an algebraically closed field k of characteristic # 2. Then either H.(K [k, u$™) # 0
or there exists a separable quadratic extension L/K such that HZ.(L/k, u$™) # 0.

Assuming this conjecture, we can give a more direct proof of the existence of qua-
dratic forms representing a failure of the local-global principle for isotropy without
using the construction involving generalized Kummer varieties in §3.

Proposition 6.2. Let K be a finitely generated field of transcendence degree n
over an algebraically closed field k of characteristic # 2. If Conjecture 6.1 holds
for K, then the local-global principle for isotropy of quadratic forms fails to hold in
dimension 2" over K.

Before proceeding with the proof of Proposition 6.2, we recall a standard applica-
tion of the Milnor conjectures for the Witt group. Since we could not find a suitable
reference, we also provide a proof.

Lemma 6.3. Let K be a field of characteristic # 2. If K is a C)y-field then every
element in H™(K, u$™) is a symbol.

Proof. By the Milnor conjectures for the Witt group, as proved by Voevodsky [46]
and Orlov, Vishik, Voevodsky [36], there exists a surjective homomorphism e, :
I"(K) — H™(K,uS") taking n-fold Pfister forms to symbols, where I"(K) is the
nth power of the fundamental ideal of the Witt group of K. Thus it suffices to
prove that every element in I"(K) is represented by a Pfister form. Let ¢ be an
anisotropic quadratic form representing a class in I"(K). By the Arason—Pfister
Hauptsatz (see [41, Ch. 4, Theorem 5.6]), ¢ has dimension > 2", but since we are
assuming that K is a C),-field, every quadratic form of dimension > 2" is isotropic,
hence ¢ has dimension 2".

Now we recall that every anisotropic form ¢ of dimension 2" in I"(K) is similar to
a Pfister form over (any field) K, cf. [28, Corollaire 4.3.7]. Indeed, let K(gq) be the
function field of the projective quadric defined by g. Then qg (4 € I"(K(q)). Since q
is isotropic over K (g), the anisotropic part of i (4) over K(g) has dimension smaller
than 2™, hence by the Arason—Pfister Hauptsatz must be zero, thus ¢ is hyperbolic
over K(q). Being anisotropic over K and hyperbolic over K (q), the quadratic form ¢
is thus similar to a Pfister form over K, see [41, Ch. 4, Theorem 5.4(i)].

Since K is assumed to be a C,-field, and I""1(K) is additively generated by
(n + 1)-fold Pfister forms by [41, Ch. 4, Lemma 5.5], which are hyperbolic as soon
as they are isotropic by [41, Ch. 4, Corollary 1.5], we conclude that I"*(K) = 0.
We now argue that any quadratic form in I™(K) that is similar to a Pfister form
is actually a Pfister form. Indeed, if ¢ is any Pfister form in I"(K) and a € K*,
then <a>®¢ = L —a is in I"T1(K) = 0, hence 9 = at). Thus our anisotropic
quadratic form ¢ in I"™(K) is a Pfister form, proving the desired statement. O

We do not know, in the spirit of [42, I1.4.5 Remark 3] and [30], whether the
statement of Lemma 6.3 holds for Galois cohomology modulo ¢ for primes ¢ # 2.
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Proof of Proposition 6.2. First, by Lemma 6.3, every element in H"(K, u?”) is a
symbol since K is a Cy,-field by Tsen—Lang theory [31]. Proposition 5.1 (applied with
d = 1) implies that for any symbol (a1) - - - (ay,) in H2.(K/k, p$™), the n-fold Pfister
form < ay,...,a, > is locally isotropic. If we assume that H(K/k,uS™) # 0,
then taking a nontrivial unramified symbol (a;)---(a,), the n-fold Pfister form
<ay,...,a, > is locally isotropic but is anisotropic by Proposition 4.2, giving a
counterexample to the local-global principle for isotropy over K.

Now assume that HZ(K/k,us™) = 0 and that HZ(L/k,u$™) # 0 for some
separable quadratic extension L = K(v/d) of K. By Tsen Lang theory (e.g., [42,
11.4.5]), L is also a Cy-field, hence by Lemma 6.3 every element in H"(L,u$™)
is a symbol. Thus we can choose a nontrivial unramified symbol (a1)---(a,) €
HP.(L/k, p$™). Since the corestriction map H™(L,u$™) — H™(K, u$™) preserves
unramified cohomology, and we have assumed that H?.(K/k,uS™) = 0, we see
that the corestriction of (ay) - - - (ay) is trivial. By the restriction-corestriction exact
sequence for Galois cohomology, see [3, Satz 4.5] or [42, 1§2 Exercise 2|, we have
that (a1)--- (an) is in the image of the restriction map H™(K, u5™) — H™(L, u5"™),
and thus we can take a1, ...,a, € K*. Then by Proposition 5.1, the twisted Pfister
form <ay,...,ay;d > is locally isotropic over K but globally anisotropic. [l

However, under the hypothesis in which we prove Theorem 1, namely, that k is not
the algebraic closure of a finite field, our method allows us to prove Conjecture 6.1.

Theorem 6.4. Let k be an algebraically closed field of characteristic # 2. If k is
not the algebraic closure of a finite field then Conjecture 6.1 holds for any finitely
generated field K of transcendence degree n over k.

Proof. By Bogomolov’s trick (Corollary 1.2) we consider K as an extension K/Kj
of odd degree over a rational function field Ko = k(x1,...,x,). By Theorem 3.3,
the symbol (z1) -+ (z,) € H"(Ko, p$™) is nontrivial over the (separable) quadratic
extension Ly = Ko(v/f) for f € K defined by (3). Since K/Ky and L/K, have
relatively prime degree, L = K ®p, Lo is a quadratic extension of K and L/Lg
has odd degree. Thus by a standard restriction-corestriction argument, the symbol
(z1) -+ (z5,) remains nontrivial when restricted from Lo to L. By Proposition 3.2,
it is unramified over Lo, hence it remains unramified over L. O

Remark 6.5. When k is the algebraic closure of a finite field of characteristic # 2,
then Conjecture 6.1 holds for n = 2. Indeed, following the proof of Theorem 6.4,
we only need to show that (1) (z2) € H?(Ko, u5"™) is nontrivial over the quadratic
extension Ly = Ko(v/f), which follows from Remark 5.4.

Thus we have reduced Conjecture 6.1 to k the algebraic closure of a finite field.
However, the construction of nontrivial higher degree unramified cohomology on
varieties over a finite field (or the algebraic closure of a finite field) is an open
problem. In degree 3, this is related to the integral Tate conjecture. Currently,
there are no known smooth projective threefolds over a finite field with nontrivial
unramified cohomology in degree 3; investigating this is a favorite problem of Colliot-
Thélene, see [18, Question 5.4]. The smallest known dimensions in which such
varieties exist is 5 (see [37]), and recently, 4 (see [40]). Of course, one wonders
whether the cup product class on a product of three elliptic curves, as in §3, is
nontrivial over a finite field. One might also investigate the same class on the
associated generalized Kummer variety over a finite field.
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