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Abstract

Complex systems, such as in brains, markets, and societies, exhibit internal dynamics influ-
enced by external factors. Disentangling delayed external effects from internal dynamics
within these systems is often difficult. We propose using a Vector Autoregressive model with
eXogenous input (VARX) to capture delayed interactions between internal and external vari-
ables. Whereas this model aligns with Granger’s statistical formalism for testing “causal rela-
tions”, the connection between the two is not widely understood. Here, we bridge this gap by
providing fundamental equations, user-friendly code, and demonstrations using simulated
and real-world data from neuroscience, physiology, sociology, and economics. Our exam-
ples illustrate how the model avoids spurious correlation by factoring out external influences
from internal dynamics, leading to more parsimonious explanations of these systems. For
instance, in neural recordings we find that prolonged response of the brain can be explained
as a short exogenous effect, followed by prolonged internal recurrent activity. In recordings
of human physiology, we find that the model recovers established effects such as eye move-
ments affecting pupil size and a bidirectional interaction of respiration and heart rate. We
also provide methods for enhancing model efficiency, such as L2 regularization for limited
data and basis functions to cope with extended delays. Additionally, we analyze model per-
formance under various scenarios where model assumptions are violated. MATLAB,
Python, and R code are provided for easy adoption: https://github.com/Icparra/varx.

1 Introduction

Analyzing signals generated by real-world dynamical systems such as neural activity in the
brain, physiological signals in the body, or trends in society and the economy is a key compo-
nent of scientific discovery. These systems involve endogenous variables, which are internal
variables that develop and interact with each other over time. Additionally, these systems are
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influenced by exogenous variables, which are external factors that serve as drivers of the
endogenous dynamics (for instance, a visual stimulus to the brain, or fiscal stimulus to the
economy). It is often not clear how to separate the external drive from the internal dynamics.

A standard modeling approach to capture effects between dynamic variables is to determine
if one variable can be predicted from another. To determine whether temporal predictions
capture real statistical effects, Clive Granger proposed a method to compute statistical signifi-
cance in his seminal work on causality [1]. He asked whether the quality of the prediction is
significantly improved when a variable is added to the model or not. If such an improvement
is observed, we say that x has an “effect” on y. Granger referred to this as a “causal relation”.
The basic idea had been suggested earlier by Wiener [2], and it is sometimes referred to as
“Wiener-Granger Causality” [3]. In this work, we avoid calling an effect “causal”, due to several
well-known limitations of this interpretation, which we will discuss.

Conventionally, one focuses on linear prediction in parametric multivariate models, which
often captures the dominant relationships between dynamic variables. When considering time
delays, this translates to finding a linear filter that best predicts the next time point based on
the preceding signal. When predicting a variable from its own past, this filter is referred to as
an auto-regressive (AR) model. In scenarios with multiple endogenous variables, a vectorial
auto-regressive (VAR) model is employed, characterized by multiple filters between all the var-
iables. Finally, when some variables represent exogenous inputs, the corresponding model is
known as a VARX model [4].

In practice, optimal linear filters are estimated using ordinary least squares. Then, the loga-
rithmic ratio of the two prediction error variances, in presence and absence of x(t) and its past,
is taken as the test statistic and its statistical significance is assessed based on the corresponding
asymptotic distributions [5-7]. While this procedure is relatively simple to perform, it faces a
key challenge: in order to obtain reliable parameter estimates via least squares, a typically long
observation window is required. In datasets with short duration, the foregoing models typically
over-fit the observed data, resulting in unreliable parameter estimates [8, 9].

This challenge has been addressed in the context of regularized estimation [10-19], in
which the least squares objective function is augmented with a penalty term that enforces addi-
tional restrictions on the parameters, such as smoothness, sparsity, and low-rank structures.
While some of these sophisticated regularization schemes, such as L1-regularization, or the
LASSO [20, 21], smoothly clipped absolute deviation [22, 23], Elastic-Net [24], and their vari-
ants have particularly proven useful in VAR estimation [11-13, 17, 18], regularization with the
&,-norm [10, 25], also known as “ridge regression”, is arguably the most widespread in prac-
tice, due to the simplicity of the resulting parameter estimator.

It is worth noting that in parallel to the aforementioned parametric models, some existing
nonparametric methods bypass VAR estimation by instead employing techniques such as
spectral matrix factorization [26] or multivariate embedding [27]. In terms of statistical testing
of the effects, partial correlation-based nonparametric methods that employ conditional inde-
pendence tests have also been suggested [28-30], which do not require time-series modeling
assumptions.

The statistical formalism developed by Granger can be applied naturally to determine the
significance of the effects in VAR models [31]. Granger analysis for VAR models has been use-
ful to neuroscientists, economists, and sociologists because it allows one to quantify the
strength and direction of effects in interactive dynamical systems, such as brains [3, 8], markets
[32], and societies [33]. However, researchers typically ignore exogenous variables during
Granger analysis, due to a lack of tools to do so. While Granger and later Geweke allow for
exogenous variables [34], these are only included to remove potential instantaneous
confounds.
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In this work, we introduce VARX Granger Analysis, with the following novel contributions.
First, we treat exogenous variables in their own right by applying the Granger formalism to
VARX models. By doing this, we are capturing the lagged effects of the exogenous inputs, and
separating that from the internal dynamics. To enable this, we present the basic equations
required for the VARX model to estimate parameters, effect size, and statistical significance
based on Deviance. Then, we demonstrate the validity of this approach using simulated data.
We further explore methods, such as L2 regularization and the usage of basis functions in
parametric modeling, to handle high-dimensional datasets and obtain longer prediction filters.
These methods effectively reduce the number of parameters. We present in a Supplement the
first derivation of de-biased estimates of the test statistic for L2 regularization. We will also
illustrate instances where interpreting the Granger formalism as “causal” can be misleading,
such as in cases involving missing variables or colliders. Subsequently, we showcase examples
that apply this formalism to neural signals, highlighting the key differences between VARX
models and “temporal response functions” [35] commonly used in neuroscience. We will also
present examples using physiological, sociological, and economic data, treated here for the
first time with the VARX formalism. Finally, we conclude with a discussion on the specifics of
code implementation and some caveats regarding the interpretation of model results.

2 Methods

A way to understand the VARX model is to imagine pellets dropping into a pond. The pellets
are like an external input (exogenous), but the ripples they create are governed by the water’s
own internal dynamics (endogenous). These ripples can also be influenced by unpredictable
wind gusts. Our goal is to distinguish between these external and internal factors by analyzing
what we can observe (the pellets and the pattern of the surface of the water) while minimizing
the influence of the unseen wind.

2.1 VARX model

More formally, consider the vectorial “input” signal x(f) and the vectorial “output” signal y(¢)
of dimensions d,. and d, respectively, with both assumed to be observable (lower-case bold
characters represent vectors). In the case of brain activity, the input may be multiple features
of a continuous natural stimulus, say, luminance and sound volume of a movie. The output
could be neural activity recorded at multiple locations in the brain (see Section 3.3). In the case
of macroeconomic variables, the input could be government spending and the endogenous
variables could be various indicators of economic activity of a nation (see Section 3.6). The
simplest model we can envision is one in which the current signal y(#) can be predicted linearly
from the input x() and also linearly from the preceding output y(¢ — 1) (Fig 1).

y(t) = Axy(t — 1) + B*x(t) + e(t). (1)
Internal innovation
y External
External e(. ) output

'”pzjrt) B % Internal state y(@)
X > >
T: J
Fig 1. VARX model: The gray box represents the overall system response 7.
https://doi.org/10.1371/journal.pone.0313875.g001
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Here, A and B are filter matrices of dimensions [d,, d,] and [d,, d.], with filters of length 7,
and ny, respectively. The additive term e(t) represents an unobserved “innovation” that intro-
duces an error in the prediction. In the theory of linear systems this is called innovation
because it injects novelty into the recurrent dynamic. We refer to y(t) as endogenous variables,
as they are influenced by one another including their own history (through the diagonal terms
in A, and to a(¢) as exogenous variable as they are fixed and not influenced by the endogenous
variables.

In Eq (1) we have used a compact formulation of a multi-input multi-output convolution,
which for the auto-regressive filters A and moving average filters B reads:

Axy(t—1) ZA y(t—1), (2)

np—1

B+ x(¢ ZB x(t —1I). 3)

2.2 Total system response

Note that the total response of the dynamical system (the impulse response) can be written in
the Z or Fourier domains simply as

H=YXx"'=(Z-A'B. (4)

In this view, what we are proposing is to model the total system response as a combination
of a Moving Average (MA) filtering B and Auto-Regressive (AR) filtering (I - A)~'.In the
time domain, the total system response H(t) can simply be computed by passing impulses in
each input variable through the system, while setting the error/innovation to zero, e(t) =
The alternative is to model the total system response as a single MA filter. This is the approach
taken in mTRF [35] and Neuro-Current Response Function (NCRF) [36] frameworks. We will
show (in Fig 5) that the total response estimated either as VARX or MA models are practically
the same. However, as we see in Eq (4), the VARX model factors the total response into an
exogenous and an endogenous dynamic, with parameters B and A, respectively.

2.3 System identification

Given observed x(t) and y(f) one can estimate the parameters A and B by minimizing the
mean of square error:

o’ :?ZeQ(t). (5)

t=1

This identification criterion is equivalent to Maximum Likelihood estimation, if one assumes
that the innovation e(t) is normally distributed and uncorrelated (spherical and white). For
zero-mean signals this is also the variance, hence the conventional symbol ¢?, which is vecto-
rial here as it is computed and minimized for each dimension in y individually. For the VARX
model, the linear predictors y(t — 1) and x(¢) are observable (this will not be true for the Output
Error model discussed in Section 2.8), and parameter estimation results in a simple linear
least-squares problem with a well-established closed-form solution. Eq (1) can be rewritten as

Y=X-H+E, (6)
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where X is a block-Toeplitz matrix of the predictors, including y(t — 1) and x(#). This matrix
has dimensions [T, N], where N is the total number of free parameters for each predicted
dimension in y(t). In this case N = d,n, + dn,. Y is the output signal y(¢) arranged as a matrix
of dimensions [T, d,], and H = [A, B] " is a matrix of dimensions [d,» N] combining the AR
and MA filters. The least-squares estimate is then simply:

H=R]R,. (7)

Matrices R, and R,, are block-Toeplitz capturing cross-correlations:

R, =X"-X, (8)
_ T
R,=X-Y. (9)
The estimated output is:
Y =Xx*H. (10)

The residual errors of this model prediction for each output channel are the diagonal elements
of the correlation matrix for the errors:

. T 5\ AT ) ia
R - (YfY) (YfY)*H .Rxx’H72H ’RX)’+RJ’J” (11)

ee

1
o’ = ?diag(Ree). (12)

In Section 2.7 we discuss how these expressions change when we employ L2 regularization
to mitigate overfitting. In addition, we will extend the approach to include basis functions to
represent filters B, which reduce the number of free parameters, again with the goal of reduc-
ing overfitting.

Note that Eqs (2)-(10) are identical to modeling the total system response as a single multi-
variate MA filter, whereby matrix X only contains the input x(¢), with N = d,n;, and the
impulse response H = B. In the neuroscience literature, this MA model is referred to as a “mul-
tivariate Temporal Response Function” (mTRF).

2.4 Granger formalism

To establish whether any of the channels in filters A or B significantly improve predictions, i.e.
have an “effect”, one can use a likelihood-ratio test [37]. In this formalism, one uses Deviance
as test statistics to quantify the contribution of a given predictor in X for each output in Y. The
approach consists of estimating filter parameters H with all predictors included in X, which is
referred to as the “full” model, and then again with one of the predictors removed, which is
referred to as the “reduced” model. We compute the resulting square error 67 and 67, for the
full and reduced models, and obtain the deviance between the two models as test statistics
(there is one Deviance value for each dimension in y):

2 = Tlog(6/67), (13)

where the division of the two variance vectors and the log operator are interpreted element-
wise. For normal, independently, and identically distributed error, the vector 2 contains the
log-likelihood ratios (times a factor of 2), with each element following a chi-square distribution
[7]. Notice that the test statistics vector Z is formed by computing the log-likelihood ratio for
each output dimension, and for each predictor dimension that is removed in the reduced

PLOS ONE | https://doi.org/10.1371/journal.pone.0313875  January 9, 2025 5/21


https://doi.org/10.1371/journal.pone.0313875

PLOS ONE

VARX Granger analysis

model. Thus, one can estimate the statistical significance of each channel in A and B by com-
puting the full model once, and then removing each predictor variable individually from the
full model. The statistical significance for a non-zero contribution from a particular predictor
to a particular output is then given by an element of the “p-value” vector computed with the
corresponding Deviance vector:

p=1—F(2,n), (14)

Here F is the cumulative distribution function for the chi-square distribution and # is the
number of parameters that were removed in the reduced model, i.e n, or 1, depending on
whether an element of y(t — 1) or x(#) was removed. The operation of F on a vector is inter-
preted element-wise.

2.5 Effect size

Note that Deviance increases linearly with T, that is, the statistical evidence increases with the
length of the signals, and thus cannot be used as effect size. A traditional definition of effect
size in the context of reduced and full linear models is the coefficient of determination, or gen-
eralized R-square [38]:

R :=1—-exp(—2/T), (15)

where the exponential of a vector is interpreted element-wise.

2.6 Debiased deviance for L2 regularization

To avoid overtraining with small sample sizes, i.e. where T is not much larger than N, we
decided to use an L2 penalty, with Tikhonov regularization. The advantage over other forms of
regularization, such as L1 [19, 39] or a state space model [40] is computational efficiency
thanks to the closed-form solution:

I:I = (Rxx + VF)ile)ﬁ (16)

where we selected I' = diag(R,,) so that all variables are regularized equally regardless of their
scale, the choice of ¥ is discussed in the results section. This regularization introduces (pur-
posefully) a bias in the estimate, and the deviance estimate has to be corrected to account for
this bias [41]. The derivation for the term that corrects the log-likelihood in case of L2 regulari-
zation is available in the S3 File:

1
b - idiag(R)—; ' R;xl ' Rxe)/diag(Ree)7 (17)

where the division between the two diagonal vectors is element-wiseand R, =R, — R, - H.

This bias term has to be computed for the full and reduced models, giving brand b, respec-
tively. The corresponding de-biased deviance is then:

-l — Tlog (62/62) — b, + b, (18)

and can be used to compute the p-values as before. We have found empirically that we obtain
a better (conservative) estimate of p-values if we use 7' = T — N instead of T in this calculation
of the de-biased deviance. T' represents the effective degrees of freedom of the full model and
converges to T in the asymptotic limit for which the de-biased deviance formula was derived.
The choice of the regularization factor ¥, and its relationship to T are discussed in the S1 File.
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2.7 Basis functions for the moving average filters

The filter length (number of parameters) used in AR filters is typically kept relatively short, to
avoid over-fitting, reduce the odds of instability in the recursion, and because even a single
delay can already represent an infinite impulse response. This is not the case for MA filters,
where longer responses have to be modeled explicitly, which can result in a relatively large
number of parameters, with a risk of over-fitting. We have found empirically that the correc-
tions we introduced in the Deviance estimate for short signals (Eq 18) do not work well when
the filter lengths for A and B are very different. A solution to both these problems (imbalance
in number of parameters and filter length) is to use basis functions for the B filters, following
an approach used previously for TRFs [42-44]. In this formalism, we have:

B=BoW, (19)

where the inner product o is along the lag-axis of the filter matrix B, and the goal now is to
find the optimal B. The matrix W has dimensions [#,, n] so that the number of parameters per
filter is reduced from 7, to n. The linear least-squares problem remains unchanged with the
closed-form solutions using now X = WX. In the equations above this can be implemented
by replacing R, and R, with:

R. = WoR_oW', (20)

XX XX

R, = WoR,. (21)

xy

Note that the new R,, and R, are no longer Toeplitz matrices. The Granger formalism applies

without change.

Here we implemented Gaussian basis functions. With this, we are not only reducing the
number of parameters, i.e. regularizing the solutions, but also selecting among a set of smooth
filters B. In S2 File we validate the parameter and p-value estimation.

2.8 Equation error versus output error model

The VARX model is also called the “equation error” model [4] because the error breaks the
equality of the MA and AR terms. The equation error model assumes that y(#) is directly
observable. It is different from an “output error” model where the recursion has no error, but
the recursive signal z(f) is hidden and only observed with additive noise (see Fig 2):
z(t) =Axz(t—1)+ Bx*x(¢),
(22)
y(t) =z(t) +e(t).

External

External ettt
input N Internal state | z(7). yO)
T T
A e(r)

External noise

Fig 2. Output error model: Here the dynamical variables y(f) are not observable. The gray box represents the
overall system response H.

https://doi.org/10.1371/journal.pone.0313875.9002
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For the output error model, the square error is not a quadratic function of the parameters A
and B. Therefore, there is no closed-form solution to the system identification problem, as we
had for the equation error model. A few different iterative optimization approaches have been
proposed, such as an expectation maximization (EM) algorithm [45], gradient back-propaga-
tion through time [46, 47], or “pseudo regression” [4]. The pros and cons of the equation-
error versus the output-error models are elaborated in the Discussion section.

3 Results

We will start with a few examples on simulated data to demonstrate the validity of the
approach (Section 3.1 and 3.2). We then analyze real-world data from neuroscience, physiol-
ogy, sociology and macroeconomics (Section 3.3-3.6). These examples are not meant as in-
depth analyses in these diverse disciplines, but instead as demonstrations of how the VARX
Granger analysis can be used in principle.

Details on all results provided next can be found in the accompanying MATLAB code
repository https://github.com/Icparra/varx. Code is also provided in Python and R.

3.1 Test of model estimation on known model

To validate the estimation algorithm and code, we simulated a simple VARX model with two
outputs and one input (d, = 2, d, = 1). The algorithm correctly recovers the AR and MA
parameters (Fig 3)). VARX model estimation is available as part of the econometric toolbox in
MATLAB but is limited to instantaneous input n, = 1, i.e. no filtering of the input. When limit-
ing the simulation to this case, the algorithms obtain similar results. Small variations are
expected based on how the initial boundary conditions are handled and numerical differences.
In our implementation, we omit from the estimate all samples that do not have a valid history.
The code handles missing values (NaN) in the same way.

3.2 Validation of p-values

To validate the accuracy of the p-value estimation, we simulated a VARX model with all chan-
nels assigned random non-zero values, except for one channel in matrix A and one in matrix
B, which were set to zero. We did this with a small and large simulated dataset, generated with

A Eff i B Effect si
A B ect size C oF ect size o E 1
- 1 o6 ~ our A
Y 08| - matlab A
N ) o 05 our B
> 315 0.6+ matlab B
s € 0.4 —
ox1 Wyl 2 2 L] 8
g & 5 - 04
& &
P bl b 25 02 o 0.2
2
©
R 3 0.1 £ 0 f
[Effect on L) £
y1 35 0 4
-0.2 1
% N i
D Cause y(t-1) Cause x(t) 04
Ayl A:y2 A:y3 B: x1 1
-0.6 f
g
z 08}
£
al
1 15 2 25 3 1 15 2 2.5 3 1 15 2 2.5 3 1 15 2 =1 0.5 0 0.5 1
samples samples samples samples true value

Fig 3. Comparison of estimated parameters to true parameters in a simple toy example. Here d,, = 3, d,. = 1, n, = 3, n;, = 1. A: Graph shows
the effect sizes R indicating the structure and direction of effects (red for exogenous effect B, and blue for endogenous effects A. B: Effect sizes
R now shown as connectivity matrices. C: Estimated filters A and B. D: comparison of true and estimated parameters, and comparison for
results from MATLAB Econometric Toolbox (we used 1, = 1 to satisfy the limitation of this toolbox). Signals were simulated for T = 1000
time steps with x(¢) ~ N(0,1) i.i.d., e(t). We used no L2 regularization and set n, = 3, n;, = 1 for the estimation).

https://doi.org/10.1371/journal.pone.0313875.9003
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Fig 4. Numerical validation of p-values in both a smaller and a larger model (d, = 6 and d,, = 60). Significance is set at p < 0.05, so we expect a false
discovery rate of 0.05. Simulation here used with d, = 1, n, = 2, n,, = 2, T = 1000. Filter coefficients for B were selected at random from unit variance
normal, and A values were set to be +£0.05 with sign selected at random (this insured stable recursion in practice). Only two channels are set to zero A(:, 2,
2) =0, B(;, 5, 1) = 0. For these two, the false discovery is correctly estimated at approximately 0.05 (green).

https://doi.org/10.1371/journal.pone.0313875.9004

normal i.i.d. innovations e(f). We repeat the simulation 1000 times and determine how many
times the zero channels report a p < 0.05, i.e. we numerically estimate the false discovery rate.
We find a false discovery rate of approximately 0.05 for the null channel, suggesting that p-val-
ues are correctly estimated (Fig 4). For all others, the chance of detecting the non-zero effect is
1, i.e. a perfect true positive rate.

3.3 Example: Brain signals in humans

A key advantage of VARX models lies in their ability to factorize the overall system response
into AR and MA components, as shown in Eq (4). This separates the influence of endogenous
variables into an initial response followed by ongoing reverberations within the dynamical sys-
tem. To illustrate this, we analyze intracranial electroencephalography iEEG) recordings from
a patient watching movie clips (data from [48]). We focus on 50 electrodes from visual brain
regions (occipital cortex, fusiform face area, and parahippocampal cortex). We used the neural
data from [48], and use the same preprocessing to extract high-frequency broadband activity
(BHA, 70-150Hz, downsampled to 60Hz), often considered a marker of local neuronal firing.
The exogenous “input” is a pulse train indicating fixation starts (moments of new visual input).
Of course, multiple other features of the video stimulus could have been used as “input”. Previ-
ous research with natural speech and movies has used features such as sound volume, visual
motion, or specific content from the video and sound [49, 50]. By focusing on fixation onset,
we intend to extract the neural activity associated with the initial visual processing [51].

The first observation is the diagonal terms of A dominate (Fig 5A), with oscillating parame-
ters (indicating a high-pass filter) (Fig 5C). What is most evident is that the B (Fig 5D)
response is shorter than the total system response H (Fig 5F). This suggests that the VARX
model decomposes the total response into a fast response followed by a prolonged response
due to the recurrence in the brain network. Estimating H directly (following [35], Fig 5E), or
using the VARX model, i.e.as H= (1 - A)'B (Fig 5F), we see that the two are very similar.
The factorization of the total system response in the VARX model, Eq (4), thus appears to be a
good approximation of the direct estimate as a purely MA system response.

We employed basis functions to represent long delay filters B of length n,, efficiently with
fewer parameters, namely n < #, (see Section 2.7 for details).
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Fig 5. Example of intracranial recording in humans: A VARX model was fitted to broadband high-frequency activity
during free viewing of 7 videos recorded from 50 (d, = 50) electrodes. A total of 43.6 minutes of data was used at a
sampling rate of 60 Hz (T = 156, 955) from a single patient. (A) Effect size R for the recurrent connectivity A between
recording electrodes—in the language of neuroscience, this could be called “functional connectivity”. (B) Effect size R of
fixation onset as an exogenous variable on different electrodes. (C) A filter coefficients (n, = 4). (D) B filter coefficients

n, = 30,n = 20. (E) System response estimated as a multivariate MA filter—in the language of neuroscience, this is the
multivariate “temporal response function” (mTREF). (F) System response resulting from the VARX model estimate (Eq 4).
Data from [48].

https://doi.org/10.1371/journal.pone.0313875.9005

3.4 Example: Physiological signals in human

Human physiology is a dynamic system with multiple dependent signals. In previous work, we
reported correlations between respiration, heart rate, pupil response, and brain activity [52].
We were motivated to identify the interactions between the body and mind in these signals.
Pupil size and heart rate were measured in the experiment as metrics of physiological arousal.
Respiration was measured because it is well known to affect heart rate, and eye movements
were analyzed because of their association with arousal [53].

The present VARX analysis indicates potential directional effects among these physiological
variables (Fig 6). As variables are added to the VARX model the connectivity structure is typi-
cally preserved. In this specific example, using a controlled breathing task, we initially observe
a bidirectional link between pupil size and heart rate (Fig 6A), however, this disappears once
respiration is taken into account (Fig 6B). Instead, this link is explained by an effect of respira-
tion on pupil size, together with the well-established bidirectional link between respiration and
heart rate [54] that is recovered in this data. Saccades, which are short, rapid eye movements,
also have a well-established effect on pupil size [52]identified in this study (Fig 6C).

In general, adding variables can remove links—if the new common-cause variable provides
an explanation for a spurious link. Adding variables can also add links—if the addition is a
“collider”. This is well established for i.i.d samples [55] and is no different for temporally corre-
lated time sequence data. We will demonstrate this further using simulated data in Section 4.
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Fig 6. Example of physiological signals in humans. This data was collected while study participants carried out a
rhythmic breading task. In this case there was no exogenous stimulus, so we only fit a VAR model. Links in A are
shown if p < 0.001. Here we had 26 minutes of data compiled across multiple subject samples at 25Hz (T = 26*60*25).
Data from [52].

https://doi.org/10.1371/journal.pone.0313875.g006

3.5 Example: Union participation in the US

Here, we present an analysis from the field of sociology. We examine the history of workers’
union membership and its relationship to strikes (Fig 7A). We hypothesize that strikes increase
union membership in subsequent years. The variables here were specifically selected to test
this hypothesis, largely following [56]. We assume the unemployment rate is unaffected by
union variables, so it is modeled as an exogenous input. In contrast, the number of unionized
workers, the number of workers on strike, and the number of strikes can all potentially influ-
ence each other. VARX Granger analysis (Fig 7B) suggests that unemployment affects unioni-
zation, which in turn affects the number of strikes, which obviously affects the number of
workers on strike. These results depended on the choice of hyper-parameters n,, 1, A. Only
the effect of NumberOfStrikes — WorkersOnStrike was robust to parameter choice. What did
not robustly emerge from this data is evidence for the initial hypothesis that strikes lead to an
increase in union membership.

3.6 Example: Macroeconomic dynamic in the US

As a final example, we demonstrate the model on a dataset from the U.S. Federal Reserve
encompassing fiscal, monetary, and labor factors, spanning quarters from 1959 to 2009. These
data were selected because of their availability in the Econometrics Toolbox in MATLAB.

A \q‘ /‘/\v,/"\d’”v_m/ \ B
N . ] #WorkersOnStrike
V1o ) N
-
A A

e \ e~ AL / eUnemploymentRate #NumberOfStrikes

1920 1940 1960 1980 2000
Year
o

- NumberOfStrikes
——— WorkersOnStrike
NumberOfWorkersinUnion
UnemploymentRate

#NumberOfWorkersinUnion

Fig 7. Example on union participation and strikes: (A) Historical data from the US. We treated the unemployment
rate as an exogenous input in the VARX model, and the others as endogenous variables. (B) Significant effects in A and
B are indicated in blue and red, respectively (p < 0.05, n, = n, = 3, T = 195). Note missing data around 1980, which
was omitted during the estimation, including a 3-year history.

https://doi.org/10.1371/journal.pone.0313875.9007
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Fig 8. Example on US macroeconomic data: (A) Historical data from the US measured every quarter. None-rate
variables (1-8) have been converted into annual percentage rates of change. (B) Significant effects in A and B are
indicated in blue and red, respectively (p < 0.001, T'= 195). We are taking 12-18 months history into account (1, = 4,
ny, = 6). (C) Pearson correlation of all variables.

https://doi.org/10.1371/journal.pone.0313875.g008

Here we have converted all gross numbers into annual percentage rates. This removes the
exponential growth resulting from predominantly positive rates (Fig 8A), which leads to trivial
correlations and non-stationarity (sometimes referred to as unit-root signals). To determine
the effect of the government on the economic variables, we examined the impact of govern-
ment spending (GCE) and federal funds rate (FEDFUND). Government spending itself is a
function of economic conditions, such as unemployment benefits, which are automatically
linked to unemployment, while a rise in GDP increases tax revenue, which typically leads to
increased government spending. Nevertheless, by treating GCE and FEDFUND as exogenous
variables, we are asking what effects these government policies have on the economy, if they
were controlled independently. Before we discuss the results (Fig 8B), it is important to note
that the specific effects strongly depend on the choice of variables (gross numbers vs annual
rates, endogenous vs exogenous) and parameters (independent of hyper-parameters n,, 11, ).
However, a robust finding is the direct effect of government spending on the gross domestic
product (GDP), inflation (CPTAUCSL) and personal spending (PCEC). Rate policy affects the
unemployment rate (UNRATE) independently of government spending. Despite the sensitiv-
ity to parameters, the model identifies sensible relationships and demonstrates that many vari-
ables remain independent despite a dense correlation structure (Fig 8C).

3.7 The case of a missing and superfluous variable

Here we want to evaluate the case where the model does not match the data generation pro-
cess. We simulated three possible data generation processes with one input and two outputs
(d.=1,d,=2). We simulated three cases, where the exogenous input x (conditioning variable)
will be either a common cause, a collider, or an independent variable (see Fig 9). In all cases,
the simulation implements a one-directional effect y; — y,. We then measure how frequently
we find p < 0.05 for this path, i.e. the power of the test to identify a correct path, and how fre-
quently we find p < 0.05 for y, < y,, i.e. the rate of false discovery. Note that conditioning on
a collider is known to introduce spurious correlations [55]. We test this for data generated
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Fig 9. The VARX (equation error) model requires a larger T to obtain similar power as the output error model (22). Simulation here used n, = n;, = 3,

T = 5000 and normal i.i.d. error.

https://doi.org/10.1371/journal.pone.0313875.9g009

with both the equation (VARX) and output error models. The results in Fig 9 indicate that the
false discovery rate is correctly estimated at 0.05 in most scenarios, i.e. we are not finding
causal effects above chance where there were none. This result holds regardless of whether x
was included as input (i.e. as a control variable with instant or delayed effect) or whether it did
or did not have a true effect on y, and y, (common cause vs independent). Only when incor-
rectly modeling a collider as input, did we obtain spurious effects. Statistical power was
improved when including the input to the model. In summary, there is no risk of false discov-
ery when including input variables, even if they don’t have a true effect, except if they are actu-
ally affected by the internal variables y.

An additional mismatch between the model and the data generation process can be the ori-
gin of the innovation process. Despite using the VARX model, when the data was generated
with an output error model (Fig 9-bottom), the false discovery remains limited at the target of
0.05. However, a common unobserved cause can generate spurious effects y; «<— y,. It has been
suggested that running a Granger causality model on time-reversed data provides a control for
this situation [57, 58]. We have found that running the model on time-reversed data results in
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spurious effects in all conditions tested here, so it is not clear to us how this can provide a rem-
edy, and the caveat of an unobserved common cause remains when we are not directly observ-
ing endogenous variables, but only a noisy version of the internal dynamic.

4 Discussion

Here, we first discuss the novel contributions of this work and compare our code with existing
software tools. We then follow with a number of caveats and methodological comments.

4.1 Novel contributions

Exogenous variables were incorporated into the Granger formalism as conditional dependence
by Geweke [34] and were already briefly discussed in the original work of Granger [1]. In prac-
tice, this “conditional causality” has been used to control for spurious correlations due to com-
mon causes. The code implementations of this idea [40, 59] only use exogenous variables to
remove confounds. In contrast, we propose to model the total system response as a combina-
tion of both exogenous effects and endogenous dynamics. In this view, the exogenous effects
are not a nuisance, but an important component of the model to be estimated, encompassing
multiple time delays. Although economists have employed VARX models to capture exoge-
nous effects, the use of the Granger formalism to establish the effects of individual variables is
not as widely used. Indeed, the correspondence of the “conditional Granger-causality” [3, 60]
with VARX models is not well known. While the VARX model is common in statistics tool-
boxes, we are not aware of any implementation of the VARX model with the Granger-Geweke
test to assess the effects.

4.2 Related toolboxes

Several software tools can estimate VARX models. We are not aware of one that provides the
Granger-Geweke test for significance. The MVGC toolbox [40] in MATLAB supports control
variables, but does not report results on exogenous variables. It therefore is mostly a tool to
estimate only VAR models. The MVGC toolbox identifie the parameters A in both the time
and frequency domain. To our knowledge, all implementations of VARX models identify
parameters A and B only in the time domain, including our own. Implementations of VARX
models in MATLAB Econometrics Toolbox and in SAS software for instance, make signifi-
cance statements for individual delays but do not allow for the exogenous variable, i.e. nb = 1.
Other toolboxes written in MATLAB/Python such as mTRF [35], NCRF [36], or Unfold [61]
only identify parameters B of MA models, i.e. they ignore endogenous effects. To our knowl-
edge, this is the first implementation of a model that estimates both A and B with time delays
in each. Therefore we estimate both endogenous and exogenous delayed effects and emphasize
computational efficiency to handle large datasets, with comparatively long filters B. The tool is
available in MATLAB, Python, and R.

4.3 Equation error versus output error models

Estimating model parameters for a VARX model has a closed-form solution, which is much
faster than finding parameters for an output error model, which requires iterative algorithms
[4]. The gain in computational efficiency results from the assumption that y(t) is observable.
This may not be a good assumption in the case of brain signals measured across the skull, such
as EEG/MEG where only a linear mixture, possibly with added noise, is observed. In that case,
iterative algorithms are needed, but the Granger formalism can still be used with some effort
[39]. However, in the VARX model, we do not need to assume that all internal activity is

PLOS ONE | https://doi.org/10.1371/journal.pone.0313875  January 9, 2025 14/21


https://doi.org/10.1371/journal.pone.0313875

PLOS ONE

VARX Granger analysis

directly observable. Any unobserved activity is captured as innovation e(t). We only need to be
aware that any recurrent connectivity may be due to those unobserved common “causes”. In
particular, symmetric effect sizes R will be suggestive of such a missing variable. The role of the
error is quite different in the two models. In the VARX (equation error) the error is an internal
source of innovation driving the recurrent dynamic similar to the drive that comes from the
input. The internal states are fully observable. In the output error model, the input entirely
drives the system, and the error only affects the observations and is not injected into the
dynamic.

4.4 Comparison of VARX, MA, OE, and VAR models

VARX and output error (OE) models can be viewed as ways to break down a system’s response
into moving average (MA) and autoregressive (AR) components. Alternatively, the entire sys-
tem response can be modeled as a pure MA filter, as demonstrated in Fig 5E. In theory, incor-
porating an AR component allows for the representation of long impulse responses with fewer
parameters, which is a practical advantage. However, the key difference lies in the error
assumptions: MA and OF models assume errors at the output, while VARX models assume an
internal innovation process with no error in the observations. Therefore, VARX models
should not be considered mere input-output models, but rather models of internal dynamics.
It's worth noting that all variables can be included in an AR portion of the model, allowing the
estimation process to determine if any variable acts as an external input (i.e. that it does not
depend on any other variable). For example, in the US macroeconomic model, arguably, gov-
ernment spending should have been included in the AR portion of the model, as it may
depend on other variables. Including variables as exogenous serves to incorporate prior knowl-
edge, such as knowing that movie stimuli cannot be caused by brain activity. Additionally, it
allows for counterfactual analysis, such as exploring the effects of independently controlled
government spending.

4.5 Sensitivity to parameters

A caveat to all results above is that individual links can be sensitive to the model assumptions,
namely, which variables are selected as endogenous (and can be affected by all others), and
which variables are selected as exogenous (and cannot be affected). An example of that was the
choice of the unemployment rate as exogenous to the dynamic of unions. The results can also
depend on which endogenous variables are included, as we saw in the example of physiological
signals. Results can also depend on the number of parameters #, and n;, and regularization fac-
tor A (we saw this in examples with Unions and the US macroeconomic data). Further investi-
gation on the robustness of parameter choice is required for a clear interpretation of those
results. Although we did demonstrate this here, these parameters could be established with
cross-validation.

4.6 Caveats to causality

In Granger’s original work [1], the error of the full and reduced model refers to one-dimen-
sional signals where y(¢ — 1) is used in both cases and x(¢) is either used or omitted. If the error
is significantly reduced by including x(t) in the model, Granger argues that x “causes” y. This
interpretation is problematic for several reasons [62]. As we saw, when common causes are
not observed (either as external input or internal variables) they can generate spurious links
[63]. Bidirectional effects between two variables (e.g. Fig 8) may be an indication of an under-
lying unobserved common cause. Similarly, including colliders can cause spurious links. All
this is well explained by Pearl’s approach to causal inference [55]. Therefore one should not
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think of the Granger formalism as serious evidence for a causal graph without a well-justified
prior graphical model [64]. In particular for large dimensional datasets such as brain data,
where we only observe a tiny fraction of all the variables, the risk of unobserved common
causes is much too large to take the resulting graph seriously as a causal graph. Nevertheless,
asymmetries in the A matrix can be seen as evidence of temporal precedence suggestive of an
asymmetric “information flow”.

4.7 Non-stationarity

Deviance makes a statistical judgment for the entire channel, not individual delays, as is com-
mon we simply treat each delay as a new predictor with its statistical test (this is the approach
of the MATLAB VARX). There are multiple methods under the umbrella of “Granger causal-
ity” that attempt to decide on how many tabs or which delays to use. By collapsing statistical
evidence into a single test statistic, Deviance, this approach has greater statistical power. This
is reflected in the linearity of D with the number of samples T. The flip side is that this statistic
is very sensitive to violations of its assumptions. For instance, it assumes that all T samples of
the innovation process are independent and identically distributed. The AR portion of the
model assures that the linear-fit residual errors are uncorrelated in time, however, if there is
any non-stationarity, this will no longer be the case. Therefore, non-stationarity will cause spu-
rious correlations [65]. In particular, any transient will cause larger deflection and correlation
across samples. In particular, transient that affect several signals, say a common edge at the
start or end of the signal may appear to behave like a common drive with high amplitude that
results in a spurious link. Therefore, in the present approach, one has to treat edges and tran-
sients with utmost care to avoid spurious links.

Some have argued that issues with non-linearity and non-stationarity can be addressed
[66]. Barnett et al. proposed a State Space model that can cope to some degree with missing
variables, does not need to compute a reduced model, and can deal with non-linearity and
non-stationarity [66]. However, Stokes and Purdon showed that even the state-space Granger
is not immune to confounding effects, non-stationarities, etc. The topic remains a matter of
debate [67].

An alternative is to avoid using analytic expressions for the p-value, Eq (14), and instead
use standard non-parametric statistics. For time series, the simplest is to randomly time-delay
channels relative to one another, potentially with a circular wraparound. All else in the model
identification, i.e. estimates A, B, and effect size R* remain valid estimates of linear predictions
even in the presence of non-stationarity and non-linearity.

4.8 L2 regularization

In this study, we proposed utilizing L2 regularization due to its compatibility with the closed-
form solution of linear least squares problems. This approach enables efficient computations
for large models. It is often used when estimating MA models (e.g., mTRF toolbox) as long
delays add a large number of parameters. However, all regularization methods introduce a bias
in the model estimates. This introduced the need for a bias correction in parametric estimates
of statistical significance [68]. Corrections are available for L1 but not for L2 regularization
[39, 41, 42], which we presented here for the first time. L1 regularization has the advantage
that it results in sparse parameterizations, and has been used in the context of VAR models
[31, 39, 41] However, it is computationally more demanding. In contrast, L2 regularization
allowed us to implement fast computations of statistical significance for each channel in A and
B. These new bias correction formulas should also enable fast computation of statistical
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significance in MA models, which so far have not been available in existing toolboxes, e.g.
mTRF or Unfold [35, 61].

4.9 Stability

A word about A is in order. The AR filter 1/(1 — A) can be unstable. We have not implemented
any mechanism for this vectorial AR filter to remain stable. Lack of stability only manifests in
the systems when computing the overall systems response H, which is not necessary during
estimation for the B, A nor the calculation of statistical significance of each path (contrary to
the output error model, where the recurrence has to be run back in time to estimated gradi-
ents, risking issues of stability. We rarely encountered unstable AR estimates, and where we
did, L2 regularization addressed the issues. But again, there is nothing in our formalism to
ensure the stability of H.

4.10 1/f spectrum

Another word about A. The diagonal elements of A in practice will always be high-pass filters,
as we saw in the example of intra-cranial recordings. We advise not to take individual delays in
the diagonal terms literally. The reason for this is that the innovation process is assumed to be
white (constant spectrum), whereas all natural signals tend to have a 1/f spectrum. As a result,
1/(1 — A) has to have a 1/f spectrum, and A has to scale with f, i.e. be high-pass. In practice, we
find that this is entirely accomplished by the diagonal elements of A. But the caveat in principle
applies also to the off-diagonal elements. Future work could consider a VARMAX model
where the innovation is first filtered and then injected into the recurrent dynamic [4]. How-
ever, estimation of VARMAX model parameters is a non-convex optimization problem with
similar complications to the output-error model.

5 Conclusion

The predominant approach to modeling the effect of exogenous variables onto a dynamical
system is to simply treat them as input and output of a vectorial MA filter (known as “temporal
response function” in neuroscience, or simply “impulse response” in the linear systems litera-
ture). Unlike the VAR model, this is not commonly examined in the Granger formalism.
Although Granger and Geweke both incorporate exogenous variables into the analysis formal-
ism [34], the connection to the VARX model has not yet been widely recognized. We hope to
have bridged this gap. While not incorrect, the simple MA approach fails to factor out the por-
tion of the total system response that is due to the internal dynamic and separates that from
the external drive. In contrast, when relying only on VAR models, one fails to exploit the prior
knowledge that some variables are independent of the internal dynamic. In summary, different
models vary in their assumptions about how to break down the system’s overall response.
When estimating with the VARX model, we manage to uniquely factor the overall response
into external drive versus internal dynamics.
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