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Abstract

The “second wave” of Ediacaran evolution (~558-548 Ma) was characterized by the appearance of macroscopic organisms in shallow
marine settings, where they formed communities with high morphological and ecological diversity, including new and more complex
modes of life. Based on analogy with modern marine ecosystems, these early shallow water communities could have substantially
modified local hydrodynamic conditions and influenced resource availability, but we know very little about how they interacted with
their fluid environment at larger spatial scales. Here, we use computational fluid dynamics to investigate the hydrodynamics of
different shallow marine Ediacaran communities based on fossil surfaces from Russia and South Australia. Our results reveal
considerable hydrodynamic variability among these communities, ranging from unobstructed flow, to enhanced mixing, to very low
in-canopy flow. This variability represents a noticeable shift from the more conserved hydrodynamic conditions reconstructed for
older Ediacaran communities from deep water settings. The variation in how shallow marine Ediacaran communities affected local
hydrodynamics could have given rise to notable differences in the distribution of crucial water-borne resources such as organic
carbon and oxygen. We therefore hypothesize that increasing variability in community hydrodynamics was an important source of
habitat heterogeneity during the late Ediacaran. On long timescales, this heterogeneity may have helped sculpt ecological
opportunity, fostering the radiation of animals.
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Significance Statement

The late Ediacaran was a pivotal time in Earth’s history, which saw the radiation of large and complex lifeforms, including some of the
first animals. These early animals formed complex seafloor communities tens of millions year before the Cambrian explosion. Here,
we use computer simulations of fluid flow to show how Ediacaran shallow water communities influenced their local hydrodynamics
in a greater diversity of ways than older deep water communities, contributing to enhanced spatial variability in the distribution of
key resources like food and oxygen. We hypothesize that this increasing variation helped create conditions that allowed animals to
diversify and evolve new traits, paving the way for the emergence of increasingly complex body plans.

Introduction

Benthic organisms in marine environments both shape and are
shaped by hydrodynamics (1). In modern oceans, communities
living on the seafloor exert an influence on the structure of the
water column, including current velocity, flow patterns at differ-
entspatial scales, and the intensity of vertical and horizontal mix-
ing (2-4). Dense communities of macroscopic organisms in
particular can have a powerful effect by baffling currents,

concentrating food particles at the sediment-water interface,
and creating low-energy refugia (5-7). In turn, the characteristics
of fluid flow through and around benthic communities are key to
their persistence. Mixing brings oxygen and other dissolved sub-
stances vital for respiration and gas exchange, while water cur-
rents deliver the nutrients necessary for growth (8-10). Flow
structure can also be crucial for reproduction, promoting the dis-
persal or retention of gametes and larvae (11, 12). The importance
of these interactions and feedbacks is increasingly well
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recognized for large-scale benthic communities such as reefs (13,
14) and marine forests (4), but they remain important at scales
down to the individual organism (1, 15).

The complexity of benthic hydrodynamic conditions has
changed substantially over the past ~3.5 billion years, in step
with major innovations in the history of life. Following the wide-
spread dominance of stromatolitic reefs for much of the
Proterozoic (16), the first macroscopic eukaryotic communities ap-
peared during the late Ediacaran “Avalon” interval (~574-558 Ma)
in relatively deep water settings on continental margins (17).
These communities were dominated by frondose forms that inter-
acted with bottom currents to enhance vertical mixing of the sur-
rounding water, thereby promoting gas and nutrient transport (18,
19). During the succeeding “White Sea” interval (~558-548 Ma), di-
verse benthic communities appeared in nearshore environments
(20, 21). This interval represented the peak in taxonomic and mor-
phological diversity of the so-called Ediacaran macrobiota, and it
was characterized by a series of biotic innovations, including mo-
tility, burrowing, and new modes of feeding (21-23). This has
been referred to as the “second wave” of Ediacaran evolution (21),
and it is thought to have paved the way for subsequent radiations
(24-27). The colonization of nearshore settings at this time would
have posed a range of new physiological and ecological challenges,
principally because shallow marine environments typically exhibit
greater spatial and temporal heterogeneity (e.g. in terms of sea-
water chemistry, energy, nutrient levels, sediment dynamics,
and temperature) than their deeper marine equivalents (28-30).
The hydrodynamics of select White Sea organisms have been in-
vestigated using computer simulations of fluid flow, providing
some of the oldest evidence for macroscopic suspension feeding
in the fossil record (31-34). However, this work has yet to be ex-
panded to the community scale. Consequently, our understanding
of organism-fluid interactions and the role they played in driving
innovation and escalation during this crucial “second wave” of
Ediacaran evolution remains limited.

Here, we investigate the hydrodynamics of Ediacaran White
Sea benthic communities for the first time. We digitally recon-
struct a variety of fossil assemblages at meso (0.25 and 1m?)
scales and perform computer simulations of fluid flow to address
several key questions: how did flow conditions vary between dif-
ferent types of communities? How did these conditions differ
from older Avalon communities? And to what extent did they re-
flect the emerging diversity and complexity of animal ecosys-
tems? The results provide valuable insights into how differences
in community structure and composition influenced hydro-
dynamic conditions and thereby shaped ecological opportunity
during succeeding phases of evolutionary innovation in the latest
Ediacaran and early Cambrian.

Material and methods

Material

To account for the diversity and disparity among White Sea fossil
assemblages (21, 35 ), we investigated a range of surfaces repre-
sentative of the different community types known from this inter-
val (Fig. 1). We focused on three White Sea-aged fossil surfaces
from Mitchell et al. (36): the DS, KS, and FUNS surfaces. These sur-
faces were selected because they exhibit differences in the iden-
tity of the dominant taxon, species richness, and the number of
specimens, and they had been mapped as part of previous work
(36), providing the necessary spatial information for modeling vir-
tual communities (see below). They measured 9, 2.74, and 0.78 m?

in total mapped area, respectively. The DS surface, dominated by
Dickinsonia (Fig. 1A), is from the Konovalovka Member of the
Cherny Kamen Formation from a site along the Sylvitsa River in
the Central Urals, Russia (37). The KS surface preserved a greater
diversity of taxa, including Kimberella, Orbisiana, Cyclomedusa,
Charniodiscus, Palaeopaschichnus, Parvancorina, and Tribrachidium
(Fig. 1B); it has been destroyed by weathering and erosion, but
came originally from the lower member of the Erga Formation
from the Winter Coast of the White Sea, Russia (38, 39). The
FUNGS surface is covered in holdfasts of Funisia [surface-type as-
semblage of Surprenant et al. (40)] and was collected from the
Ediacara Member of the Rawnsley Quartzite from the Mount
Scott Range, Flinders Ranges, South Australia (41, 42). We also ex-
amined bedding planes TB-BRW and LV-FUN, which preserve
cluster-type assemblages of Funisia, from Nilpena Ediacara
National Park, South Australia (40). All of these surfaces are
thought to comprise assemblages of marine organisms preserved
in situ, and they are interpreted as having been deposited in shal-
low water settings above storm wave base (39, 40, 43, 44).

Modeling virtual communities

We used the spatial statistics package spatstat (45 ) in R (46) to simu-
late three virtual communities for each of the DS, KS, and FUNS sur-
faces, with the abundance and spatial dynamics of taxa based on
published data from Mitchell et al. (36). Previously identified signifi-
cant associations and interactions (36) were accounted for using
heterogeneous Poisson models to model habitat associations within
and between taxa (47-49), such as those exhibited by Funisia and
Kimberella, and Thomas Cluster models were used to model dispersal
limited reproductive events, as in Aspidella. Additionally, we simu-
lated three Funisia communities corresponding to the cluster-type
assemblages on beds TB-BRW and LV-FUN (40) (Fig. 1D), assuming
a mean of 17 individuals (SD of 15) and a diameter of 10-20 cm
(SD of 2.5 cm) per cluster (40). The DS and KS surface communities
were simulated across areas of 1 m?, whereas the FUNS surface
and Funisia cluster communities were simulated across areas of
0.25 m?. The sizes of these simulated communities represented
a balance between the mapped area and taxonomic diversity
of the fossil surface and computational limitations due to the
size and density of individual organisms [see also Gutarra
et al. (19)]. Smaller areas were used for the simulated Funisia
communities owing to the very high density (>5,000 individu-
als/m?) on the FUNS surface, which meant it was computation-
ally unfeasible to analyze a larger area.

Simple 3D digital models of Charniodiscus (50), Cyclomedusa (51),
Dickinsonia (52), Kimberella (53), Orbisiana (54), Palaeopaschichnus
(55), Parvancorina (32), and Tribrachidium (34) were created using
Rhinoceros® v. 7 (56) (Fig. S1). For each taxon, a nonuniform ra-
tional basis spline geometry was constructed based on photo-
graphs and published reconstructions, informed by personal
observations of well-preserved fossil specimens. Fine details
such as ridges, frondlets, and fractal structures were omitted to
minimize model complexity and thereby economize on computa-
tional resources. Previous work has shown that while such fea-
tures can be important at the scale of individual organisms (see
e.g. Olaru et al. (34) and Pérez-Pinedo et al. (57)), they did not
strongly influence larger-scale flow patterns (e.g. development
of the boundary layer or structure of the wake) and are therefore
unlikely to have affected community-scale hydrodynamics (justi-
fying their exclusion in our study). Similarly, static models were
used rather than ones able to deform in flow to minimize compu-
tational costs.
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Fig. 1. Ediacaran White Sea communities. A) Dickinsonia from the DS surface, Konovalovka Member, Cherny Kamen Formation, Sylvitsa River, Central
Urals, Russia. Adapted from Mitchell et al. (36). B) Dickinsonia, Kimberella, Parvancorina, and Tribrachidium from the KS surface, lower Erga Formation,
Winter Coast, White Sea, Russia. Adapted from Mitchell et al. (36). C) Surface-type assemblage of Funisia from the WS-MAB surface, Ediacara Member,
Rawnsley Quartzite, Nilpena Ediacara National Park, Flinders Ranges, South Australia. D) Cluster-type assemblage of Funisia from the TC-BRW surface,
Ediacara Member, Rawnsley Quartzite, Nilpena Ediacara National Park, Flinders Ranges, South Australia. E) Simulated DS surface community (sim 1;
1m? area). F) Simulated KS surface community (sim 1; 1 m? area). G) Simulated FUNS surface community (sim 2; 0.25 m? area). H) Simulated Funisia
cluster community (sim 3; 0.25 m? area).

Virtual communities were assembled in Rhinoceros. For the Funisia individuals modeled as cylinders with a uniform height based on
communities (Fig. 1G and H), the xy coordinates generated in R were the interpretation of Funisia populations as size-similar age cohorts
first imported into the parametric design tool Grasshopper 3D, with (40, 41). A height of 15 cm was used as this represents an intermediate
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value recorded for Funisia populations (40) (this is likely an underesti-
mate of true height, considering the scarcity of complete individuals).
The basal diameter (~0.2-0.9 cm) was based on the size distribution of
holdfasts on the FUNS surface (36) (FUNS surface communities) or
personal observations of unpublished specimens in cluster-type as-
semblages (Funisia cluster communities); the diameter at the top of
each cylinder was 80% of that at the base, accounting for the tapering
observed in well-preserved fossil specimens (40, 41). These geometries
were then exported into Rhinoceros, with any overlapping cylinders
randomly removed.

For the DS and KS surface communities (Fig. 1E and F), models
were manually arranged over a surface in Rhinoceros based on the
simulated R coordinates, with the dimensions and orientations
specified for each model. The dimensions of models in the DS sur-
face communities were based on the size distribution of speci-
mens from the DS surface (36). For the KS surface communities,
model dimensions were estimated based on the maximum and
minimum sizes of specimens recorded from published photo-
graphs of the KS surface (36) and other Russian White Sea fossil-
bearing beds (50, 51, 53-55, 58-61); model sizes were obtained
from random sampling from a normal distribution within these
size ranges, with the exception of Charniodiscus, for which holdfast
sizes were sampled from a right-skewed distribution [as reported
for the holdfast Aspidella (59, 62)], with the height then calculated
assuming the same ratio between frond and holdfast sizes as seen
in the holotype of Charniodiscus yourgensis (53). Charniodiscus was
orientated perpendicular to flow, following the orientation of
similar frondose taxa from bedding surfaces in Mistaken Point,
Newfoundland, Canada (63) and assuming a mode of life that
would have benefited from maximizing the area of the frond ex-
posed to flow (64). Taxa inferred to have been mobile (i.e.
Dickinsonia, Kimberella, and Parvancorina) were orientated random-
ly. Orbisiana and Palaeopaschichnus were also randomly orientated
as the default assumption considering orientation data is not
available for these taxa. Lastly, Cyclomedusa and Tribrachidium
are radially symmetrical and thus did not require orientating.
The final virtual communities were exported in .STP format.

Computational fluid dynamics

Computational fluid dynamics (CFD) simulations were performed
using COMSOL Multiphysics v. 5.6 (65) following established pro-
tocols (19, 64, 66). Virtual communities were imported into
COMSOL and placed at the bottom of the computational domain,
which consisted of a cuboid measuring 3 m in length, 1.5m in
width, and 0.45 m in height (Fig. S2A). This was sufficiently large
to allow flow to fully develop around all the simulated communi-
ties. The models were subtracted from the domain using a
Boolean operation, with the standard material properties of water
(density p=1,000kg/m? and dynamic viscosity u=0.001 kg/s-m)
assigned to the space surrounding the models. An inlet with fully
developed flow was specified at one end of the domain and an out-
let with a static pressure of 0 Pa was defined at the opposing end.
No-slip boundaries were assigned to the models and the lower
surface of the domain, with slip boundaries used for the upper
surface of the domain and periodic flow conditions (with a pres-
sure difference of 0 Pa) for the sides of the domain.

Theinlet velocity was inferred based on the sediment grain size
and bedforms described for the DS, KS, FUN5, TB-BRW, and
LV-FUN surfaces (36, 39, 40, 42), which allowed us to estimate bot-
tom current velocities of between 0.1 and 0.4m/s using the
bedform-velocity matrix of Stow et al. (67). These flow velocities
are also consistent with typical values recorded in analogous

modern shallow marine settings (68-70). CFD simulations were
performed for all virtual communities using an average inlet vel-
ocity of 0.2 m/s. We also carried out simulations of average veloci-
ties of 0.1 and 0.4 m/s for select communities to assess the impact
of flow velocity on the results. 3D, incompressible flow was simu-
lated using a stationary solver to compute the Reynolds averaged
Navier-Stokes equations using the Spalart-Allmaras turbulence
model (71). Additionally, select simulations were repeated using
the K-epsilon (k-€) turbulence model (72) to allow us to visualize
the turbulent kinetic energy.

The domain was meshed using six layers of prismatic elements
along the no-slip boundaries and tetrahedral elements in the rest
of the domain. A refinement area was created around the virtual
community, which measured at least 1.5x the height of the tallest
model (2 minimum height of 0.2 m was used). Mesh size settings
(maximum element size =1.8 mm, minimum element size =0.03-
0.196 mm, maximum element growth rate = 1.1, curvature factor=
0.4, resolution of narrow regions =0.9 in the refinement area; max-
imum element size=4.9mm, minimum element size=1.4-
1.47 mm, maximum element growth rate=1.2, curvature factor=
0.7, resolution of narrow regions = 0.6 in the rest of the domain) large-
ly followed Gutarra et al. (19), with the minimum element size modi-
fied based on the number and complexity of the modeled organisms.

Sensitivity tests

Both the size and density of individuals can vary considerably
among surface-type assemblages of Funisia (40). To explore the sen-
sitivity of our results to the modeled height of Funisia, we carried out
three CFD simulations for one of the FUN5 surface communities
(sim 2) with model heights changed to (i) 12 cm, (ii) 18 cm, and (iif)
varying between 12 and 18 cm. Additionally, to assess the impacts
of population density on the results, we ran CFD simulations of
the three FUN5 surface communities with model density reduced
from ~5,000 individuals/m? to ~900individuals/m? [consistent
with the lowest densities reported for surface-type assemblages
(40)] by randomly removing models from the original virtual com-
munities. These sensitivity tests were performed with the same set-
tings as the main analyses, using an average inlet velocity of 0.2 m/s.

Visualization and quantification

CFD results were visualized in COMSOL as 2D plots (horizontal
cross-sections) of streamwise velocity (u) and vertical velocity
(w) normalized by the average inlet velocity (Uo) and 3D flow
streamlines. We also visualized 2D plots and 3D isosurfaces of tur-
bulent kinetic energy (k) normalized by U3 for select communities.

Streamwise velocities (u) were sampled from 20 evenly spaced
lines at the back of the community (Fig. S2B) and from a central
line at the inlet (Fig. S2C). Additionally, vertical (w) velocities
were sampled from a 3D grid of evenly spaced points. In the DS
and KS surface and Funisia cluster communities, the point grid
surrounded the entire virtual community (Fig. S2D). In the FUNS
surface communities, to eliminate the strong influence from the
leading edge [where flow conditions are different from the bulk
of the community (73)], w values were sampled from the fully de-
veloped region towards the back of the domain (‘Subsample 2’ in
Fig. S3; see Supplementary text for further details). Plots were
made in R using the package ggplot2 (74).

Results

Our CFD simulations revealed considerable variation in the hydro-
dynamics of different White Sea community types, consistent
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across all simulated inlet velocities (Figs. 2-4 and S4-56). In the DS
surface communities, flow was not strongly influenced by the
modeled organisms, which produced only very short wakes imme-
diately downstream of models (Figs. 2A, S4, S5A, and S6A). The
modeled organisms in the KS surface communities had a greater
impact on flow patterns, diverting the flow laterally and vertically
and creating long wakes (Figs. 2A, S4, SSA, and S6A). In the FUN5
surface communities, flow decelerated from where it first encoun-
tered the community, becoming fully developed at a distance of
~30 cm from the leading edge, at which point there was very little
flow between the modeled organisms (Figs. 2A, S4, SSA, and S6A).
In this fully developed region, there was strong interaction be-
tween the wakes produced by neighboring models, meaning that
individual wakes could not be recognized (Figs. 2A, S4, S5A, and
S6A). Lastly, in the Funisia cluster communities, flow was diverted
around the sides and over the top of the community, as well as
moving through it; the extent of throughflow varied depending
on the density of the modeled organisms, which created wakes
that interacted with each other (Figs. 2A, 54, S5A, and S6A).

In the DS and KS simulated communities, the mean normalized
streamwise velocity (u/Up) increased logarithmically with height,
giving a velocity profile that was almost indistinguishable from
the undisturbed boundary layer (Figs. 2B, S5B, and S6B). This
was markedly different to the FUNS surface and Funisia cluster
communities, where the streamwise velocity was slowed relative
to the undisturbed boundary layer profile until it reached the top
of the community, with a strong velocity gradient developed
above this (Figs. 2B, S5B, and S6B).

In the DS surface communities, the normalized vertical veloci-
ties (w/Up) were close to zero, whereas the KS surface and Funisia
cluster communities displayed positive and negative vertical vel-
ocity perturbations in the vicinity of the modeled organisms (Figs.
3A, S5C, and S6C), giving roughly bottle-shaped vertical velocity
plots (Figs. 3B, S5D, and S6D). Within the fully developed region
in the FUNS surface communities, vertical velocities were gener-
ally small (Figs. 3A, S5C, and S6C), with a notable positive perturb-
ation occurring above the community (Figs. 3B, S5D, and S6D).

The normalized turbulent kinetic energy (k/U3) was very low in
the DS surface communities and in the fully developed region in
the FUNS surface communities (Fig. 4). In contrast, turbulent ki-
netic energy was enhanced in the KS surface communities, with
turbulence produced in the wakes of models with larger frontal
areas (Fig. 4). Similarly, there was elevated turbulent kinetic en-
ergy in the Funisia cluster communities, both surrounding the
models and within their wakes (Fig. 4).

Our sensitivity tests demonstrated that the flow patterns ob-
tained for the FUNS surface communities were largely unaffected
by model height (Fig. S7), with a steep gradient in mean normal-
ized streamwise velocity (Fig. S7A) and positive perturbations in
normalized vertical velocity (Fig. S7B) always occurring just above
the maximum height of the community. Model density had a
stronger influence on the results, with the low-density communi-
ties allowing greater throughflow and showing a weaker
leading-edge effect compared to the original simulated communi-
ties (Fig. S8). Moreover, the heights at which the streamwise vel-
ocity gradient (Fig. S8B) and vertical velocity perturbations
(Fig. S8D) occurred were lower than in the original simulated com-
munities (Fig. S8A and C).

Discussion

Our analyses demonstrate that different types of White Sea com-
munities had distinct flow conditions. The DS surface

communities did not substantially modify the ambient hydro-
dynamics, with flow velocities and turbulence in the bottom
boundary layer largely unaffected by the presence of the modeled
organisms. The KS surface communities had a greater influence on
flow, generating enhanced vertical mixing (i.e. strong perturba-
tions in vertical velocity) and turbulence, but still produced
mean streamwise velocity profiles that closely resembled an un-
disturbed boundary layer (75). Lastly, the FUNS5 surface and
Funisia cluster communities were characterized by the develop-
ment of a roughness sublayer, where streamwise velocities were
reduced, with an inflection point (maximum velocity gradient) at
the top of the community, both features of canopy flow (4, 76).
However, in the FUNS surface communities, positive vertical vel-
ocity perturbations were only evident above the community,
whereas the Funisia cluster communities created stronger patterns
of vertical mixing and turbulence that were more similar to the KS
surface communities. Thus, shallow marine environments inhab-
ited by benthic communities during the White Sea interval would
have been associated with a range of hydrodynamic conditions.

Notably, we find that White Sea communities were character-
ized by greater variation in hydrodynamics than those from the
earlier Ediacaran (Avalon) (Fig. 5). Previous analyses of
~565-million-year-old Avalon communities found they enhanced
mixing of the surrounding seawater (19), similar to some present-
day marine animal forests (4). We see this feature in two of the
studied White Sea community types. However, other flow condi-
tions reconstructed for our White Sea communities (e.g. flow at
very high canopy densities) are unknown from Avalon communi-
ties and could thus represent their first appearance, indicative of a
step increase in hydrodynamic variability coincident with the
emergence of new body plans and behaviors (21, 22).

These results allow us to develop hypotheses for how commu-
nity structure and hydrodynamics shaped resource availability in
late Ediacaran shallow water settings. The DS surface communi-
ties were composed of widely spaced, low-relief organisms (i.e.
Dickinsonia) that had minimal impact on flow and would not be ex-
pected to have greatly affected the transport of dissolved and par-
ticulate substances (4). This is consistent with the inference that
Dickinsonia fed via the external digestion of benthic microbial
mats (77, 78) and was therefore not reliant on water-borne nu-
trients as a main food source. In contrast, the KS surface commu-
nities comprised a much wider diversity of organism shapes and
sizes, creating locally enhanced vertical mixing and turbulence
that would have served to redistribute resources like oxygen and
organic carbon, as can be seen in modern communities of benthic
macroinvertebrates (4, 8-10). The KS surface communities in-
cluded probable low-level suspension feeders [e.g. Tribrachidium
(31, 34)], which may have been able to take advantage of the in-
creased vertical transport of suspended particulate organic mat-
ter brought about by turbulent mixing. Funisia occurred in two
types of communities characterized by distinct flow conditions.
Discrete clusters of Funisia promoted vertical mixing of the sur-
rounding water, thereby enhancing gas and nutrient transport
in a similar manner to the KS surface communities. However,
dense communities of Funisia covering large areas of the seafloor
were associated with very low in-canopy flow, likely resulting in
greatly reduced mass transfer rates and the deposition of sus-
pended particles, as seen in modern marine canopies (4, 6, 73).
This variation in how different Funisia community types affected
the distribution of resources suggests they did not require specific
flow conditions for feeding or respiration.

Late Ediacaran shallow water communities modified hydro-
dynamics in a greater range of ways than older deeper water
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Fig. 2. Plots of streamwise velocity for White Sea communities. CFD results for three simulated communities (sim 1-sim 3) of the DS (1 m? area), KS (1 m?
area), FUNS (0.25 m? area) surfaces, and Funisia clusters (0.25 m? area). A) 2D plots of streamwise velocity (u) relative to the average inlet velocity (Up =
0.2 m/s) for horizontal cross-sections at heights z=0.05 cm (DS), z=1 cm (KS), and z=5 cm (FUNS and Funisia clusters). Direction of ambient flow from
left to right. B) Plots of streamwise velocity (u) relative to the average inlet velocity (Up=0.2 m/s) at heights between z=0 and z =30 cm. The black line
shows the mean streamwise velocity and the dotted red line shows the undisturbed boundary layer profile.

communities, likely reflecting changing environmental pressures
[e.g. moving away from the deep marine stenothermal cradle of
Boag et al. (30)] and/or the evolution of new tissues and modes
of life that differed in their reliance on water-borne resources
(22). In thisregard, the increased disparity in flow conditions likely

mirrored the increasing ecological complexity of early animals.
We hypothesize that the generation of hydrodynamic variability
across White Sea benthic communities had the potential to be a
powerful ecosystem engineering process influencing the distribu-
tion of nutrients and other resources, similar to the present day
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Fig. 3. Plots of vertical velocity for White Sea communities. CFD results for three simulated communities (sim 1-sim 3) of the DS (1 m? area), KS (1 m?
area), and FUNS (0.25 m? area) surfaces and Funisia clusters (0.25 m? area). A) 2D plots of vertical velocity (w) normalized by the average inlet velocity (U
=0.2 m/s) for horizontal cross-sections at heights z=0.05 cm (DS), z=1 cm (KS), and z=5 cm (FUNS and Funisia clusters). Direction of ambient flow from
left to right. B) Plots of vertical velocity (w) normalized by the average inlet velocity (Up = 0.2 m/s) at heights between z=0 and z=30 cm.

(4), and this may plausibly have shaped ecological opportunity on
longer timescales. For example, the mixing produced by the KS
surface and Funisia cluster communities could have increased
the supply of suspended food particles to communities, potential-
ly leading to an expansion in suspension feeding strategies (33),
promoting horizontal habitat heterogeneities (36), and cementing

resource hotspots on the seafloor (27, 79). In contrast, reduced
rates of mass transfer in the FUNS surface communities would
have limited the supply of suspended resources, while promoting
the settling of organic and inorganic particles.

Previous work on White Sea-aged surfaces has emphasized the
extent and spatial heterogeneity of seafloor microbial mats, and
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area), FUNS (sim 2; 0.25 m? area) surfaces, and Funisia clusters (sim 3; 0.25 m? area). A) 3D isosurfaces of turbulent kinetic energy (k) normalized by the
average inlet velocity (Up = 0.2 m/s) squared. B) 2D plots of turbulent kinetic energy (k) normalized by the average inlet velocity (Up = 0.2 m/s) squared for
horizontal cross-sections at heights z=0.05 cm (DS), z=1 cm (KS), and z=5 cm (FUNS and Funisia clusters). Direction of ambient flow from left to right.
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1 m? area) surfaces. Plots of vertical velocity (w) normalized by the average inlet velocity (U = 0.2 m/s) at heights between z = 0 and z = 30 cm, with models

of the corresponding community shown in frontal view.

the crucial role these would have played as a food source for early
animals (36, 80, 81). Our results contribute to this picture, suggest-
ing that increasing hydrodynamic variability among local com-
munities may have created regional heterogeneity in both the
character and availability of nutrients. Together, these sources
of habitat heterogeneity may have helped sculpt ecological oppor-
tunity during the “second wave” of Ediacaran evolution (27, 79).
With the growing recognition that ecosystem engineering effects
can sometimes scale upwards to impact macroevolutionary pat-
terns (82-85), this raises the possibility that these processes
played an important role in the radiation of macro-organisms
with increasingly complex lifestyles, including early bilaterians.
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