2024 1IEEE Kansas Power and Energy Conference (KPEC) | 979-8-3503-7240-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/KPEC61529.2024.10676194

Cyber Attack Detection in Distribution Networks
with Topological Data Analytics aided Learning

Damilola R. Olojede’“l, Md Joshem Uddin®-!, Roshni Anna Jacob?, Baris Coskunuzer™? and Jie Zhang*’w,
*Department of Mechanical Engineering, The University of Texas at Dallas
TDepartment of Mathematical Sciences, The University of Texas at Dallas
iDepartment of Electrical and Computer Engineering, The University of Texas at Dallas

Abstract—The integration of smart grid technologies has
brought significant advancements to power systems, yet it has also
increased its vulnerability to cyber threats. False data injection
attacks (FDIAs) pose a substantial risk to grid data integrity,
particularly in critical areas like voltage control and state esti-
mation. This study centers on leveraging the latest advancement
in topological data analysis (TDA), specifically multi-parameter
persistent homology, which has shown remarkable effectiveness
in graph representation learning in recent years. Our objective
is to utilize this approach to bolster the detection of FDIA using
data collected from voltage sensors. By integrating topological
methods, our approach aims to fortify the resilience of power
systems against cyber threats, thereby ensuring the reliability
and security of smart grid operations.

Index Terms—Distribution networks, cyber attacks, anomaly
detection, topological data analysis, multiparameter persistence

I. INTRODUCTION

The emergence of smart grid technologies has brought about
a significant transformation in the power grid, providing av-
enues to enhance the efficiency and reliability in power supply.
This evolution has been facilitated by the increased adoption
of distributed energy resources, remote-controlled devices,
and advanced monitoring and communication infrastructure
within the power network. However, despite these benefits, the
integration of smart grid technologies has also increased the
vulnerability of the power network to cyber-physical attacks
and threats.

The key security requirements for a well-functioning grid as
per the National Institute of Standards and Technology (NIST)
interoperability panel include data availability, integrity and
confidentiality [1]. Transmitting the sensitive power data over
public or private networks creates opportunities for the at-
tackers to access this information, thereby exposing sensitive
grid data. Specific areas of the power system often targeted
during cyber attacks include automatic generation control,
state estimation, load redistribution, voltage control, etc. The
attacks can range from denial of service (DoS) attacks, which
aim to delay or block the availability of critical operational
data (through methods such as channel jamming or spoofing),
to data integrity attacks which involve malicious modification
of transmitted data to compromise the stability of the grid.

In this paper, we focus on false data injection attacks
(FDIA), a type of data integrity attack known to circumvent

LCo-First Authors; 2Co-Senior Authors.

979-8-3503-7240-3/24/$31.00 ©2024 IEEE

traditional algorithms for bad measurement detection [2]. The
attacker exploits the vulnerablilities in the communication
system to inject false data into the voltage sensors within
the power distribution system, thus providing incorrect system
state information at the control centers. This could lead to
unwarranted voltage control actions being implemented in the
network, potentially resulting in either under or over voltage
conditions.

In recent years, there has been considerable research on
FDIA detection algorithms. The FDIA detection methods
primarily fall into two categories: traditional state estimation-
based and machine learning-based approaches [3]. The state
estimation methods employed for FDIA detection utilize vari-
ations of the conventional least-squared methods [4]. In [5],
the authors proposed a distributed state estimation method
for detecting bad data, where the power network was divided
into subsystems to perform state estimation. In such methods,
the residual error exceeding the predefined thresholds indicate
anomalies or bad data. However, manually setting the thresh-
olds can result in false FDIA alarms. It is imperative to strike a
balance between sensitivity to attacks and reliability in system
operation. Hence, adopting machine learning or data driven
methods may be suitable to minimize errors and false alarms.

The other class of methods for FDIA detection, employing
machine learning techniques, range from unsupervised learn-
ing to different variations of deep learning [6]-[8]. However,
these data-driven approaches have not considered the interde-
pendence among node variables (such as voltages, power de-
mand/generation, etc.) resulting from the underlying network
connectivity. For instance, a surge in load demand at a specific
bus (node) within the network may lead to voltage drops,
affecting neighboring network buses. However, an attack on
the voltage sensors would not yield the same behavior on
network variables, since the cause of undervoltage is external
and not intrinsic to the network. To effectively identify these
patterns, learning techniques must integrate network topology
into the detection model. This is evident in [9] where the
use of Gated Graph Neural Networks significantly improved
FDIA detection accuracy compared to alternative Euclidean
data-driven methods.

We aim to advance this by employing topological data
analytics-aided learning models that will capture the temporal
evolution of the topological signature and extract meaningful
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latent features for learning. The contributions of our paper are
as follows:

o We generate a distribution network cyber attack dataset
that is composed of FDIA scenarios for voltage magni-
tudes.

o We present a novel model to detect anomalies stemming
from FDIA on voltage sensors.

e Our approach combines the latest tools in TDA, namely
multipersistence, and various machine learning methods
to achieve enhanced detection promptly.

II. METHODOLOGY
A. Problem Formulation

In this paper, our focus is on FDIAs targeting voltage mea-
surements within distribution networks. These attacks manip-
ulate voltage magnitudes, deceiving control centers by falsely
indicating under- or over-load conditions at the buses. Table I
is formulated from [10] and it presents the different FDIAs
considered in this paper. The voltage magnitude, denoted by
V, is represented in per unit (p.u.).

TABLE I
ANOMALIES IN VOLTAGE MAGNITUDE

Anomaly Type Expression
Interruption V <0.1
Undervoltage 0.1 <V <09
Overvoltage 1.1<V <18

B. Dataset Generation

The test networks used in this paper are the IEEE 37-
and 123-bus networks. We started the data generation process
by first extracting the network’s graph structure, with the
buses represented by the graph nodes, and the branches (i.e.,
lines/transformers) represented by the edges. A scenario gen-
eration method is employed to compose the dataset, which is
summarized in Fig. 1. Varying load shapes are simulated by the
addition of a random noise signal to generate different loading
conditions for each scenario. The dataset is composed of
scenarios representing both normal operation and anomalous
conditions. The scenarios are randomly selected to represent
anomalies by inducing attacks on voltage measurements. In
each attack scenario, buses are randomly chosen within the
network, then FDIAs are added to the voltage signals acquired
from the network model simulation.

The scaling attacks are constructed following the random-
ized attack template discussed in [|1]. Building on this, we
obtained:

Vi fort ¢ T,

Vi =
(1+8)xV; forteTl,

1
where V; represents the voltage magnitude in per unit at time
t, S is the scaling factor used to inject the anomaly, and
T', includes the time steps that fall within the duration when
anomaly occurs. The start time and length of I', are drawn
from a uniform random distribution. Also, the scaling factor
S is selected from a uniform distribution ranging from -1.0 to

0.5. The range for the scaling factor is appropriately selected to
encompass the three different anomalies stated in Section II-A.
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Fig. 1. Flow chart representing the scenario generation process used to
construct the dataset. The dataset generated considers the variations in load
patterns, attack site, type and the duration of attacks. Both normal operation
and anomalous conditions are present in the dataset.

C. Persistent Homology

Persistent Homology (PH) acts as a mathematical frame-
work for extracting hidden topological patterns within data,
utilizing techniques from algebraic topology [12].

The main idea behind PH is to extract a meaningful se-
quence of topological spaces, and record the evolution of
topological features on this sequence. In particular, for a
given graph G, we construct a nested sequence of subgraphs
gt c...cgV = G. For each G, we define an abstract
simplicial complex G',1 < i < N, resulting in a nested
sequence of simplicial complexes G' C ... C G", which
is known as filtration. One of the most common choices for
simplicial complex is the clique complex. This filtration step
is a crucial aspect of PH as it allows for the incorporation of
domain-specific information into the PH process.

In the context of an unweighted graph ¢ = (V,E), a
common approach involves the use of a filtering function
f 'V — R alongside a set of thresholds Z = {«;} where
a1 = mingey f(v) < ag < ... < ay = max,ey f(v). For
each o; € Z, let V; = {v, € V | f(v.) < a;}. Define G°
as the induced subgraph of G by V;, i.e. G' = (V;, ;) where
E = {es € £ | vr,us € V;}. This procedure results in a
nested sequence of subgraphs G' ¢ G2 c ... c GV =G,
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called the sublevel filtration induced by the filtering function
f, as shown in Fig. 2. The selection of the function f is
pivotal in this context, and often, f is derived from a significant
characteristic within the domain. In power networks, typically
the voltages measured at the different buses and the powerflow
through the branches represent the system state. Therefore,
these are considered as the filtering functions in the context of
power grids as they aid in assessing the health of the network.

G Gs GlO 615

AV GaRea

Fig. 2. Single Persistence. A simplified illustration of sublevel filtration,
where node attributes determine threshold values of 5, 10, and 15. In this
context, G's denotes the sub-simplicial complex of the graph G, consisting
of nodes with values less than 5 and the corresponding edges between them.
Similarly, G19 and G15 represent similar complexes based on nodes below
their respective threshold values.

During this construction of sub-simplicial complexes, vari-
ous topological features may arise and disappear over time. A
k-dimensional topological feature, also known as a k-hole (o),
can represent different structures such as connected compo-
nents (0-hole), loops (1-hole), or cavities (2-hole). Persistent
homology systematically tracks the evolution of these topo-
logical patterns. When a topological feature emerges initially
in G% and vanishes in Qd we attribute a persistence value
of b, — d, to this feature. Alternatively, we can express this
feature as a tuple (b, d, ), which we compile in a persistence
diagram (PD), as seen in Fig. 3. Then the k" persistence
diagram is defined as

PD(G) = {(bs,do) | o € Hy(G") for b, < i < dy}

Persistence diagram

+00
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Fig. 3. An example of a persistence diagram (PD): in this diagram, red dots
represent the tuple (birth, death) for connected components (0 holes), while
blue dots represent the tuple (birth, death) for loops (1 holes).

Here, Hj(G') is the k'™ homology group of G' which
keeps the information of the k-holes in the simplicial complex
G'. We can also keep track of the evaluation of topological
tensor by persistent barcode. Each bar in a persistent barcode
represents a topological feature (e.g., a connected component,
loop, or void) and its persistence - how long it lasts as the
parameter changes.

The final step of PH is the vectorization process. While PH
uncovers hidden shape patterns from data in the form of PDs,
which consist of collections of points (birth times and death
times) in R?, these diagrams are not inherently suitable for
statistical and machine learning purposes. Instead, common
techniques involve faithfully representing these PDs as ker-
nels [13] or vectorizations [14]. Among the common single
persistence (SP) vectorization methods are Persistence Images,
Persistence Landscapes, Silhouettes, and various Persistence
Curves (e.g., Betti number) [14]. The betti number is focused
in this study, which describes the number of ‘holes’ of various
dimensions in the space, as seen in Fig. 4. These vectorization
methods typically transform PDs into single-variable functions
or fixed-size vectors for use in various applications.

Betti curve

— 0

Tt > =

Betti number

(3% w =

o =

0 5 10 15 20 25 30 35 40
Filtration

Fig. 4. Betti numbers represent the number of topological holes (connected
components, loops, etc.) at each threshold value.

In this work, our objective is to expand the scope of SP
vectorizations by extending them into their multidimensional
counterparts. This expansion allows us to capture changes in
the temporal dimension by treating power grids as dynamic
networks and thereby gain deeper insights through the utiliza-
tion of multipersistence approaches.

D. Multiparameter Persistence for Power Grids

Up to this point, our discussion has been focused solely
on single-parameter persistence theory. The term “single”
arises because we filter the data using only one function
or parameter. The construction of the filtration method is
crucial for detailed data analysis and capturing concealed
patterns. However, in many applications, there are multiple
natural domain functions available for analyzing the data.
Utilizing these functions simultaneously would provide a more
comprehensive understanding of the hidden patterns. With
this insight in mind, multiparameter persistence (MP) theory
emerges as a natural extension of single persistence (SP). So,
if we utilize two or more functions, we gain the ability to
examine the data in much finer detail. For instance, if we have
two functions f : V — R and g : V — R with complementary
information about the network, MP allows us to combine
the insights from both functions into a unique topological
fingerprint. These functions f and ¢ induce a multivariate
filtering function F' : V — R? defined as F(v) = (f(v), g(v)).
We then define non-decreasing thresholds {a;}1* and {5,}}

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on December 01,2025 at 16:22:20 UTC from IEEE Xplore. Restrictions apply.



X ¢ ] e T I'T T

10 ' 10 i P ' K’ '
050 oso 1 os0 I = 0050 1 e 0 !

¢ 030 ® o — 20003 '
i ! i 1 A o X
A 010 1 A 1 A 1 A g0 1
o080 B0 @) 1 0% 2@ ! HONM 2 °,': [RCX NG 220 G 1
' ' ' 50 '
o " By=6| o By =a | o B =1, Lo By =1
vo75 _____""f____B_lffl_____“i___?i_f‘ll ___________ 1__.1l_____°‘_°____?’_=.1:
o ' ' ' '
30 0s0 1 " 050 1 - 0s0 1 - 050 1
10 L 5 9 ! 0 ' B9 ! B—©® !
F t o0 ! @ 00 ! ° o0 1 @ &" 010 1
0.50 0.60 20 g 1 060 L 20 g 1 060 20 g 1 o0 520 @ !
60, zm G a o= ® , :’;’;_E ' R 0 |
By =41 " By =3 By =21 By =2
g B, =01 B, =01 B, =01 B, =01
\ 010 050} = === === ===l bmmmm e AT . ¥ i = = mims H
060 100, 20 e 1 1 1 1
E 0so ) 0s0 | 0s0 | 0s0 |

030 030 P 030 o 30 P
/070 B ] B—mp @ 1 D— 9 B—5 @
' ' ' '
o0 1 010 1 010 1 00 1
B 1 ® ® ®
By =3 | By =2 | By =2 B, =2,
B, =01 B, =0, B, =0, B, =0
------------- T T L T
0.25 ' i i i
1 1 1 1
' ' ' 1
1 1 1 1
' ' ' '
o1 | 010 | o010 | o1 |

E E E E
' ' ® . '
—11 11 ' _qt
By =1 By =1 By =1, By =1,
By =0, B, =0, B, =01 By =0,
25 50 Branch Flow 100 250

Fig. 5. Multiparameter Persistence. For a given power network, employing MultiPersistence allows us to extract substructures (subgraphs) dictated by both
bus voltages and branch flows. The signature (e.g., 8o and (31) on each substructure induces an m X n tensor, which effectively captures the topological

changes in the bifiltration, and helps to detect the anomalies in the network.

for f and g, respectively. Using these thresholds, we define
sets V9 = {v, € V| f(v;) < ay,9(v,) < B;}. Bach G¥
represents the induced subgraph of G by V¥, capturing the
hidden patterns in the data revealed by multipersistence (See
Fig. 5). Note that the top row (or rightmost column) in the
multipersistence grid represents single persistence with respect
to the corresponding parameter. By constructing simplicial
complexes from these subgraphs, we obtain a bifiltration of
complexes {G¥ | 1 <i < m,1 < j < n}.Next, by computing
the homology groups of these complexes, {Hx(G¥)}, we
obtain the induced bigraded persistence module, representing
a rectangular grid of size m x n. For more details on multi-
persistence, see [15].

The core principle guiding the multipersistence method is to
extract vital descriptors from the meaningful substructures of
the graph generated by employing multiple functions simul-
taneously. In simpler terms, functions f and ¢ facilitate the
organized decomposition of the entire graph into subgraphs,
where the topological changes in specific subgraphs provide
key signatures relevant to the downstream task. Over the
recent years, multipersistence has demonstrated considerable
efficacy in graph representation learning, surpassing numerous
conventional methods and graph neural networks (GNNs) in
various tasks [16]-[19].

Power grids, represented as the weighted (branch flow)
directed network G = (V,&,W), offer a diverse array of
filtration functions for effectively applying TDA models. These
functions can be divided into two main categories. The first
category encompasses general functions applicable to any
graph, such as degree, betweenness, and closeness. These
functions capture fundamental graph properties and prove
particularly valuable for tasks related to graph classification.
The second category consists of domain functions, directly
derived from the dataset’s domain, in this case, power grids.
These functions, e.g., bus voltages, residual capacity, and

branch flow, offer insights tailored to the unique characteristics
and behavior of power grids.

In this study, we have employed two types of filtration
functions. The first type is filtration based on node features,
where we utilize bus voltage as the node filtration parameter.
Each observable node encompasses three voltage measure-
ments for the three phases, and thus, we considered their
average. Another filtration function we used is based on the
edge weight, (w;;) as the filtration parameter. In this approach,
for sublevel filtration G,, = (V,,, £,,) is the subgraph generated
by the edge set &, = {e;; € € | wij < ap}, where G,
is the smallest subgraph in G containing the edges in &,.
Consequently, V,, automatically comprises the set of endpoints
of the edges in &,. Using these two filtration approaches,
we constructed an m x n nested sequence of subgraphs, as
mentioned earlier. Subsequently, we derived m X n topological
features from the power grid network.

III. SIMULATION AND RESULT ANALYSIS

A. Distribution Network Simulation

We use the open source distribution system simulator
(OpenDSS) [20] to simulate the power distribution network
state. A time-series power flow is run using the daily simula-
tion mode with a 1-hour resolution load-shape in OpenDSS. A
representative sample from the dataset demonstrating an attack
on the bus ‘799’ in the 37-bus network is shown in Figs. 7 and
8. Specifically, Fig. 7 represents the time series voltage signals
for the three phases at bus ‘799’ during normal operation for a
particular load shape. Natural voltage drops below the desired
limit of 0.9 per unit is observed on phases 2 and 3 of bus
“799’. This is attributed to the loading condition on the 37-bus
network. Fig. 8, on the other hand, represents the three phase
voltage signals at bus ‘799’ for the same loading conditions
with FDIA. In this scenario, the scaling factor is -0.407 (Eq. 1),
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Fig. 6. Our model pipeline involves the following steps: Within a dynamic network, we generate an m X n multi-persistence tensor at each time step. Next,
we extract a topological tensor from this substructure and input it into the recurrent neural network for classification purposes.

thereby introducing an under-voltage attack for 5 hours from
the 7th to the 12th hour of operation.
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Fig. 7. Voltage plot for bus ‘799" in the 37-bus network during normal

operation for specific loading conditions. Regular non-anomalous under-
voltage values (< 0.90 p.u.) that could occur with normal system operations
are observed.
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Fig. 8. Voltage plot for bus “799” in the 37-bus network for the same loading
conditions as in Fig. 7 with FDIA. An under-voltage attack has been injected
for 5 hours starting from the 7th hour of the operation.

B. Experimental Setup

We conducted our experiments on a machine equipped with
the Apple M2 chip, which includes an 8-core CPU, a 10-core
GPU, and a 6-core Neural Engine, along with 16GB of RAM.
Our code is implemented in Python version 3.11.4. We present
the outcomes derived from single persistence, employing bus
voltage data, alongside multi-persistence, integrating node
voltage and branch flow information. For single persistence,
we employed 18 threshold values for voltage to construct sub-
graph complexes. Additionally, for multi-persistence analysis,
we incorporated 8 dimension thresholds for branch flow. For

computing the number of £** homology groups for each sub-
simplicial complex, we utilized the Pyflagser package.

Given the network’s nature, we concentrated solely on
the 0'* homology group, denoted as [y, which signifies
the number of connected components in the sub-simplicial
complexes. Each time series is labeled as either 1 (indicating
an anomaly at some time step) or O (indicating no anomaly).
Therefore, we treat the anomaly detection as a binary time
series classification task. We use the extracted topological
features as input for machine learning classifiers, specifi-
cally XGBoost, RandomForest (RF), Multi-Layer Perceptron
(MLP), and Long Short-Term Memory (LSTM) based Recur-
rent Neural Networks (RNNs). For each sample, we possess
24 sets of data spanning 24 time steps, resulting in 24 18-
dimensional topological tensor for single persistence and 24
18 x 8 dimensional tensor in multi-persistence. In our machine
learning model, we perform element-wise addition of all these
24 vectors to serve as input. In the case of the LSTM model,
the vector corresponding to each time step is utilized as input.

Both XGBoost and RF classifier are trained with 100 boost-
ing strategies, a learning rate set to 0.1, and a maximum tree
depth of 10 to avoid overfitting. For the MLP, we optimize it
using the ‘adam’ optimizer with a sigmoid activation function
and set a maximum of 1000 iterations. We optimize the LSTM
model using the ‘adam’ optimizer, employing a tanh activation
function for the main layer and a sigmoid activation function
for the recurrent connections. The pipeline of our model is
shown in Fig. 6.

To evaluate performance and address overfitting concerns,
we report the average score and standard deviation from a
10-fold cross-validation. In the 10-fold cross-validation, the
dataset is divided into 10 equal parts or folds. The model is
trained and evaluated 10 times, each time using a different fold
as the validation set and the remaining 9 folds as the training
set. This allows us to assess the effectiveness and versatility
of these topological features with different machine learning
models. Our code is accessible here!.

C. Results

The results presented in Table II demonstrate that our TDA
augmented learning model achieves good performance on
both the IEEE 37-bus and IEEE 123-bus datasets. A major

Thttps://anonymous.4open.science/r/Cyber_Attack-1735/README.md
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TABLE 11
PERFORMANCE EVALUATION: CLASSIFICATION ACCURACY (%) AND
STANDARD DEVIATION OF DIFFERENT METHODS

DMS-2229417, Simons Foundation under grant # 579977, and
Office of Naval Research under ONR award number N0O0O14-

21-1-2530.
Dataset ML Model Single Persistence MultiPersistence REFERENCES
XGBoost 84.00-+£6.67 86.67+6.08 [1] K. Chatterjee, V. Padmini, and S. A. Khaparde, “Review of cyber attacks
IEEE 37-bus MLP 83.2044.73 86.67+3.51 on power system operations,” in 2017 IEEE Region 10 Symposium
RandomForest 84.10+4.18 86.00-+4.66 (TENSYMP), 2017, pp. 1-6.
LSTM 79.39+8.11 88.66-+5.02 [2] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
XGBoost 84.80+5.18 91.00+5.68 state estimation in electric power grids,” ACM Transactions on Informa-
IEEE 123-bus MLP 83.00+£4.02 92.00+4.76 tion and System Security (TISSEC), vol. 14, no. 1, pp. 1-33, 2011.
RandomForest 84.4043.62 89.66+4.57 [3] J. Cao, D. Wang, Z. Qu, M. Cui, P. Xu, K. Xue, and K. Hu, “A novel
LSTM 80.39+4.97 91.66+5.40 false data injection attack detection model of the cyber-physical power

challenge here is to consider the time evolution of the voltage
signal and convert the anomaly indicator attributed to a time
series signal to a label at each time step. By extracting the
topological tensor of the network at each time step, we can
create a suitable input vector for each time series for a machine
learning model. This approach proves the effectiveness of
topological features in the context of power grid analysis.
In our model, we employed both the traditional method in
TDA, single persistence, and the latest and improved version
of it, multipersistence, to extract the topological signatures
for cyber attack detection in power grids. We observe that
multi-persistence approach is able to extract finer topological
features from the network, leading to significantly superior
performance compared to using single persistence.

In particular, our model employing multi-persistence
demonstrates substantial improvements, achieving an average
gain of 4% for the IEEE 37-bus network, and 8% for the IEEE
123-bus network, using various machine learning classifiers.
This highlights the effectiveness of multi-persistence in the
context of power distribution threat analytics.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for detecting
anomalies caused by cyber attacks targeting voltage sensors
within power distribution networks. We focused on false data
injection attacks, where attackers manipulate voltage measure-
ments to deceive operators by fabricating under or overvolt-
age conditions at network buses. A learning-based approach
has been developed for anomaly detection incorporating the
latest topological data analysis methods to extract evolving
topological signatures over time. The proposed model has
been validated on the IEEE 37-bus and 123-bus networks,
where single and multi-parameter persistence using voltage
and branch-flow data yields significant results.

The future scope of this work involves leveraging the de-
veloped framework, which integrates persistent homology and
deep learning frameworks, to detect increasingly sophisticated
attacks, including those targeting distributed energy resources
and voltage regulators.
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