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A  B  S  T  R  A  C  T  
 

Recently, there has been a surge in developing curricula and tools that integrate computing (C) into Science, 
Technology, Engineering, and Math (STEM) programs. These environments foster authentic problem-solving 
while facilitating students’ concurrent learning of STEM+C content. In our study, we analyzed students’ be- 
haviors as they worked in pairs to create computational kinematics models of object motion. We derived a 
domain-specific metric from students’ collaborative dialogue that measured how they integrated science and 
computing concepts into their problem-solving tasks. Additionally, we computed social metrics such as equity 
and turn-taking based on the students’ dialogue. We identified and characterized students’ planning, enacting, 
monitoring, and reflecting behaviors as they worked together on their model construction tasks. This study in-
vestigates the impact of students’ collaborative behaviors on their performance in STEM+C computational 
modeling tasks. By analyzing the relationships between group synergy, turn-taking, and equity measures with 
task performance, we provide insights into how these collaborative behaviors influence students’ ability to 
construct accurate models. Our findings underscore the importance of synergistic discourse for overall task 
success, particularly during the enactment, monitoring, and reflection phases. Conversely, variations in equity 
and turn-taking have a minimal impact on segment-level task performance. 
Educational relevance and implications statement: The complexities of collaborative problem-solving for compu-
tational modeling in science provide a unique opportunity to explore individual and group learning. Specifically, 
in this manuscript, we examined differences in collaborative problem-solving behaviors, characterized by social 
and domain specific metrics, and their impact on groups’ ability to complete computational modeling tasks in 
kinematics. We identified the impact of interactivity metrics, such as equity and turntaking, and the interweaving 
of science and computing concepts during collaborative discourse, on groups’ performance. Finally, we analyzed 
differences between groups’ planning, enacting, monitoring, and reflecting behaviors through interactivity 
metrics and students’ segment-level performance. Our findings highlight key differences in students’ problem-
solving behaviors that will have implications in future work targeting adaptive support for problem-solving tasks. 

 
 

 
1. Introduction 

 
In recent years, there has been a growing emphasis on implementing 

technology-enhanced learning environments in secondary school class-
rooms to support problem-based learning (PBL) in STEM fields (Asghar 
et al., 2012; Jeong et al., 2019). In our work, we have leveraged the 
connections between science and computing (C) (NRC, 2012) to develop 
STEM+C curricula. These curricula integrate authentic computational 
modeling of scientific processes with related problem-solving tasks. 

While these environments have shown promise in supporting learning 
across multiple domains (Sengupta et al., 2013; Weintrop et al., 2016), 
researchers have also noted that they can introduce additional 
complexity, exacerbating students’ difficulties in constructing and 
integrating knowledge during model-building tasks (Basu et al., 2016; 
Chi, 2008). We address these challenges by encouraging students to 
collaborate, explore, and develop ideas while constructing and evalu-
ating their solutions for complex computational modeling tasks. 
Collaborative problem-solving (CPS) approaches have significantly 
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enhanced student learning (Beers et al., 2005; Sears & Reagin, 2013). 
Previous research shows that collaboration fosters the development of 
shared knowledge and improves problem-solving behaviors 
(Dillenbourg, 1999; Roschelle & Teasley, 1995). 

Previous studies conducted by our team have demonstrated that 
open-ended, technology-enhanced problem-solving environments 
create a shared situational context that promotes genuine collaborative 
problem-solving in STEM+C domains (Hutchins et al., 2020; Snyder 
et al., 2019; Snyder et al., 2024). This research examines students’ 
collaboration behaviors in the C2STEM environment (Hutchins et al., 
2020) as they engage in model construction and debugging activities 
while building computational models kinematics. We analyze students’ 
learning and collaborative behaviors using the planning, enactment, and 
reflection framework from self-regulated learning (SRL; Schunk & 
Zimmerman, 1998). This framework is applied specifically to analyze 
students’ socially shared regulation of learning (SSRL) processes. We 
chose this framework over others (e.g., Hadwin et al., 2011) due to the 
complexity and open-ended nature of the STEM+C PBL computational 
modeling tasks. 

Given our study’s small sample size, this paper does not seek to draw 
broad conclusions about the connections between groups’ learning and 
CPS behaviors. Instead, we present an exploratory analysis that char-
acterizes the relationships among students’ collaborative interactions, 
their problem-solving behaviors, and model-building performance. This 
analysis, conducted through the lens of multimodal data (i.e., student 
discourse and log file data), enhances our understanding of students’ 
productive and unproductive CPS behaviors in authentic STEM+C PBL 
contexts. 

More specifically, we study the social aspects of students’ collabo-
rative dialogue using turn-taking and equity measures and the synergistic 
nature of their domain-specific conversations. Studying the synergistic 
nature of students’ conversations helps us understand how they develop 
and combine their science and computational knowledge to support 
their model-building and debugging activities (Hutchins et al., 2020; 
Snyder et al., 2019). Using this exploratory analysis framework, we 
leverage log data and discourse summaries to analyze segment-level 
correlations between social interaction measures—such as equity and 
turn-taking—and model-building performance. Next, we broaden our 
analysis to explore students’ planning, enacting, monitoring, and 
reflecting behaviors to better understand how these metacognitive be-
haviors relate to their interaction process measures and their success (or 
lack thereof) in model construction tasks. 

The remainder of this paper is structured as follows: Section 2 re-
views existing research in collaborative learning and delineates how our 
study extends this research within STEM+C domains. Section 3 details 
our research questions and analytical methods, including a description 
of our C2STEM environment, curriculum, and the research study con-
ducted in a high school STEM classroom. Section 4 presents the analyses 
to address our research questions. Finally, Section 5 provides the con-
clusions and suggests directions for future research. 

 
2. Background 

 
Collaboration is an important learning process, promoting deeper 

thinking and developing advanced problem-solving skills (NRC, 2012). 
Roschelle and Teasley defined collaboration as “coordinated, synchronous 
activity that arises from a continuous effort to construct and maintain a 
shared understanding of a problem” (Roschelle & Teasley, 1995, p. 70). 
Successful collaboration depends on active contributions and coordi-
nation among group members, as well as effective social interactions to 
foster a shared understanding, which aids in knowledge co-construction and 
problem-solving (Larkin, 2006; OECD, 2015). Key interaction skills for 
effective collaboration include making and promoting contributions, 
translating ideas into problem-solving steps, monitoring progress, 
reflecting on results, and providing constructive feedback through 
argumentation and explanation (Garrison & Akyol, 2013; Grau & 

Whitebread, 2012). 
Related to STEM learning practices, the Next Generation Science 

Standards emphasize collaboration-related processes like argumenta-
tion and information communication as essential for science education 
(NGSS, 2013). Simultaneously, the NGSS recognizes the growing con-
nections between science and computing and acknowledges computa-
tional thinking as a key science practice (Grover & Pea, 2013; Wing, 
2006). Computing in science learning (i.e., STEM+C) has been actual- 
ized through inquiry tasks and computational modeling (e.g., Ham-
brusch et al., 2009). There has been substantial research on the benefits 
of learning science through computational modeling (diSessa, 2001; 
Sengupta et al., 2013; Sherin et al., 1993). However, studies have also 
documented challenges that students encounter in such settings, such as 
the difficulty of translating science disciplinary knowledge and mathe-
matical relationships into computational forms for model building (Basu 
et al., 2016). 

Measuring students’ collaboration in integrated  science and 
computing curricula necessitates tracking the concepts and practices 
they apply across both domains during their problem-solving tasks 
Sengupta et al. (2013). While researchers have explored the multi-
dimensional nature of collaboration for university students engaging 
in complex tasks (e.g., Nasir et al., 2021; J¨arvela¨ et al., 2020), further 
research is needed to deepen our understanding of how collaborative 
processes influence learning for K-12 students. For this study, we utilize 
CPS, capitalizing on real-time problem-solving discussions among stu- 
dents to enhance our comprehension of STEM+C PBL. 

In our K-12 STEM+C learning environment, students engage in 
complex computational modeling tasks in an open-ended setting. Reg- 
ulatory processes like planning, enacting, and reflecting are crucial in 
these problem contexts (Azevedo et al., 2010). Research highlights the 
importance of planning in complex tasks, where students set goals, break 
them into manageable sub-goals, formulate plans, and identify execu-
tion strategies (Eichmann et al., 2019). While this framework is 
frequently used to study individuals’ self-regulated learning, there is an 
added layer in CPS contexts: students must cultivate a shared under-
standing of the goals, reach a consensus on strategies, and navigate their 
differing knowledge backgrounds (Zimmerman & Moylan, 2009). In 
STEM+C contexts, students must also manage complexities by decom-
posing tasks, sharing responsibilities, and elaborating on plans and 
strategies during problem-solving activities. 

Reflection processes are vital in Problem-Based Learning (PBL) 
(Barrows et al., 1980; Hmelo-Silver, 2004). Previous research has 
emphasized learning cycles and students’ adaptation across these cycles 
as they reflect on their learning processes (Rakovi´c et al., 2022). 
Consequently, researchers have focused on supporting and evaluating 
reflection behaviors (Carpenter et al., 2021). In this study, we consider 
students’ reflection behaviors after they complete parts of a complex 
task and after they complete the entire task (Schon & DeSanctis, 1986). 
Furthermore, students often track their progress while engaging in 
learning and problem-solving tasks (Schwartz et al., 2009). Debugging 
strategies are essential for building correct computational models. In 
collaborative settings, students may use their shared understanding of 
the problem to monitor and debug their models, pausing for reflection 
activities to evaluate their evolving solutions (Kalina & Powell, 2009; 
Stahl & Hesse, 2009). 

Researchers have highlighted the benefits of leveraging multimodal 
analysis to better understand students’ cognitive and metacognitive 
behaviors (e.g., J¨arvela¨ et al., 2021). However, this requires aligning 
and interweaving multiple data modalities, such as aligning students’ 
conversations with their activity data collected in log files (Wise et al., 
2021). Research on multimodal learning analytics (MMLA) has been 
focusing on these efforts (Blikstein & Worsley, 2016), and recent calls for 
an advanced understanding of how to leverage MMLA for collaboration 
analysis have highlighted the need for improved methods that support 
actionable analysis (Wise et al., 2021). For example, multimodal anal-
ysis may require segmenting the data into analyzable and actionable 
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chunks. Researchers have previously leveraged learning-adjacent data 
at set time intervals, such as every 30 s. Such arbitrary choices can 
significantly impact the analysis of students’ learning behaviors, 
particularly because they do not leverage specific educational contexts 
(Knight et al., 2017). To harness the benefits of collaborative learning 
and promote productive collaboration to support STEM+C learning, we 
developed and adopted a contextualized time segmentation approach 
(Snyder et al., 2024) to analyze students’ model-building and debugging 
activities. 

In summary, we expand previous research on collaborative learning 
in STEM+C computational modeling tasks using an exploratory multi-
modal approach to (1) employ context-targeted segmentation methods 
to analyze students’ collaborative problem-solving behaviors and (2) 
integrate interactivity and domain-specific metrics to gain deeper in-
sights into K-12 students’ collaborative learning behaviors. 

 
3. Research Questions 

 
In this paper, we address the following research questions: 

RQ1. How do interaction measures, such as equity and turn-taking, 
and the synergistic dialogue measure relate to students’ model-build-
ing performance? and 

RQ2. How do students’ collaborative problem-solving behaviors, such 
as planning, enacting, monitoring, and reflecting, relate to their inter-
action process measures and ability to construct computational models 
in kinematics? 

To address RQ1, we conduct a fine-grained, segment-level correla-
tion analysis of group interactivity and synergistic dialogue using 
segment-level model scores. Our segmentation method, derived from 
collected log data, enables the analysis of students’ model-building and 
debugging activities within specific task contexts. We examine segment-
level performance across groups to determine how it relates to their 
synergistic and collaborative dialogue. 

To address RQ2, we broaden our analysis of the interaction metrics 
to uncover links between the metrics and groups’ collaborative problem-
solving behaviors. Our study includes manual coding of large language 
model (LLM)–generated summaries of group discussions and students’ 

actions during each segment. Based on the interaction metrics and 
segment-level success, we examine students’ planning, enacting, moni-
toring, and reflecting behaviors. These findings enhance our under-
standing of collaborative problem-solving behaviors and their 
relationship to students’ abilities in building computational models. 

 
4. Methods 

 
This section describes our STEM+C learning environment, measures 

for studying collaborative interactivity, our research study in a high 
school classroom, and our analysis methods. 

 
4.1. C2STEM learning environment 

 
Our block-based programming environment, C2STEM, illustrated in 

Fig. 1, helps students learn their science and computing concepts and 
practices (Hutchins et al., 2020). The environment provides students 
with domain-specific modeling (physics, in this case) blocks and addi-
tional computational blocks. Students can drag and drop blocks from the 
list provided on the left onto the script area to build their computational 
model (Hutchins et al., 2020). The model can be simulated to observe 
the behavior of the object(s) on the stage. Students using the C2STEM 
system can develop both partial and complete models, then simulate 
these models to see how objects move and how the related variables 
change over time. Students using the C2STEM system can develop par-
tial or complete models and then simulate these models to see how 
objects move and how the related variables change over time. 

Students typically analyze and debug their evolving models by 
assessing the motion of the object(s) on stage. The environment provides 
resources that help students evaluate and debug their models. In addi-
tion to animation and variable inspection functions displayed on stage, 
students can access graphing and table tools where selected variable 
values are plotted at each simulation step during a simulation run. For 
example, when variables such as x-position and x-velocity are selected 
for display, the simulation run generates position-time and velocity-time 
graphs, as shown in Fig. 1. Students can also use the table tool, which is 
updated with the current x-position and x-velocity of the object at each 
time step. The graphs and tables assist in interpreting the motion vari-
ables in relation to relevant physics concepts and laws, such as the 

 

 
 

Fig. 1. CSTEM environment. 
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relationship between velocity and acceleration.
Students can also use these features to assess and reflect on the 

correctness of their models. From a computing perspective, these tools 
support data analysis and debugging that are known to be key 
computing and model-building practices (Grover et al., 2018; Weintrop
et al., 2016). C2STEM also facilitates collaborative problem-solving as 
students leverage these tools to co-construct knowledge (Hutchins et al.,
2021; Snyder et al., 2019).

Our curriculum adopts a modular and systematic evidence-centered 
design (ECD; Mislevy & Haertel, 2006), where each module consists of a
sequence of inquiry and computational modeling tasks with accompa-
nying formative assessments. As the students progress through the cur-
riculum, we decrease the amount of instructional scaffolding. For 
example, we initially provide step-by-step instructions to illustrate 
problem-solving steps, but these scaffolds are withdrawn in later tasks. 
The open-ended model-building tasks provide very little scaffolding, 
requiring students to plan, develop, and implement problem-solving 
approaches, such as decomposing the problem to build the model in 
parts.

In this study, we focus our analysis on the first open-ended challenge 
task in this curriculum assigned to students in week 3 of the study. 
Students were instructed to use the domain-specific modeling blocks to 
construct a simulation model of the truck’s motion, starting from rest, 
accelerating to the speed limit, cruising at that speed, and then decel-
erating to stop at a STOP sign. Unlike earlier instructional tasks that 
students worked on in weeks 1 and 2, they did not receive step-by-step 
instructions for solving this task. Instead, they were provided with a few 
hints; for example, it was suggested that they use conditional statements 
to model the behavior changes of the truck as it sped up, cruised, slowed 
down, and eventually stopped at a STOP sign. They were given a hint at 
the appropriate point about using kinematic equations to calculate the 
look-ahead distance, i.e., the distance from the stop sign at which the 
truck needed to begin slowing down. In this paper, we specifically 
analyze students’ activities and behaviors in the open-ended challenge 
task to gain better insights into their collaborative interactions and
problem-solving behaviors during open-ended STEM+C learning.

4.3. Research study and participants

Our research team conducted a two-month-long study, working two 
hours per week with 14–15-year-old 10th grade high school students in a
STEM program hosted by a university in the Southeastern United States. 
The students had varied backgrounds in computing. Some had 
completed a high school programming class, whereas others had no 
formal programming experience. None of the students had taken a high 
school physics course, but some had been introduced to basic kinematics 
in introductory science classes.

For the study, students were divided into 13 groups (one triad and 12
dyads). The triad consisted of one student who did not consent to data

constructed by each group, and video and audio data using laptop 
webcams and OBS software. Student actions were recorded in log files 
with timestamps. Student conversations were automatically transcribed 
using Otter.ai™, which produced diarized transcripts. Two research 
team members then edited these transcripts for clarity and accuracy. 
Three dyads were excluded from our analyses because of problems with 
audio data collection during the study.

4.4. Data analysis methods

Our data analysis procedures included three key components: (1) 
Measures to quantify students’ collaborative interactions as they worked 
on their learning tasks; (2) context-targeted segmentation of time-
aligned multimodal data; and (3) LLM-generated summaries from the 
conversations extracted from each time-aligned segment. We discuss our
analysis methods in greater detail below and describe how these 
methods are combined to understand students’ collaborative problem-
solving behaviors. Overall, this work analyzes 276 problem-solving 
segments consisting of 2786 utterances and 2275 actions in the 
C2STEM environment that occurred over 9 h of problem-solving 
(approximately one hour per group).

4.4.1. Measuring collaborative interactions during computational modeling
in science

We measure collaborative interactions by characterizing students’ 
conversations along three dimensions: (1) social, where students interact 
with their partners to generate a common understanding of the problem-
solving task (Jeong & Chi, 2007); (2) domain-specific, where students 
work together to acquire and combine their science and computing 
knowledge (Snyder et al., 2019); and (3) knowledge application perfor-
mance, where we evaluate students’ STEM+C learning and progress in
their model building.

Social Measures of Collaboration Communication among group 
members is important for successful collaborative learning and effective 
communication requires contributions from all group members 
(Rummel et al., 2009). We adopt two interactivity measures to study the 
social aspects of students’ collaborative problem-solving:

1. equity (EQU) in students’ dialogue, i.e., the balance in the amount 
that each student contributes to the conversation; and

2. turn-taking (TT), i.e., how much do students respond to each other’s
statements and questions as they work together?

Equity measures symmetry in students’ conversations, and helps them
to negotiate differing perspectives and achieve common understanding 
(Meier et al., 2007). For students working in pairs, the equity measure 
was calculated by evaluating the number of utterances made by each 
student using the following formula:

collection procedures, so we did not analyze data from this group. The 
consenting students in the dyads were paired based on prior research 
purporting the benefits of heterogeneous prior knowledge pairs (e.g.,

1 - abs #utterancesS1 - #utterancesS2

max(#utterancesS1, #utterancesS2)

)
, (1)

Zhang et al., 2015). The student with the highest total pretest score (i.e., 
the sum of their pretest scores in kinematics and computing) was paired 
with the student who had the lowest pretest score, and so on. Each 
student dyad worked together on a single laptop with a shared mouse 
and keyboard. Before students started working in the C2STEM envi-
ronment, there was a class discussion on good collaboration practices. 
However, the students were given no specific instructions on how to 
work together. They worked on the kinematics curriculum for two hours 
each week for eight weeks. The data reported in this paper is from their 
work on one of three kinematic challenge problems – a one-dimensional 
accelerated motion challenge task. Our data collection procedure was 
approved by our university Institutional Review Board. This included 
collecting summative pre- and post-test assessment data, logged actions
in  the  C2STEM  environment,  the  final  computational  models

where S1 and S2 represent the two students who worked together. The 
computed value is in the range [0, 1], where a value closer to 0 indicates 
more inequity (i.e. one student spoke more utterances than the other
during the segment) and a value closer to 1 indicates greater equity (i.e., 
the students had relatively equal number of utterances during the 
segment) in the conversations between the students.

Turn-taking promotes back-and-forth conversations among students, 
fostering shared understanding through question posing, explanation, 
and argumentation (Jeong & Chi, 2007; Soller, 2001). The turn-taking 
measure quantifies the number of times the students switch speakers 
during conversation segments. For example, if the speaking pattern is 
S1, S1, S2, S1, S2, then there are three switches, while a speaking pattern
of S1, S1, S1, S2, S2 has only one switch. The turn-taking measure for 
each segment is computed as:
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max
(
#utterancesComputing, #utterancesPhysics

)

#utterance switches
#utterances - 1

(2)
conditional statements. We illustrate the four high-level categories with 
example code shown in Fig. 2.

A value of 1 indicates that the students alternated by switching 
speakers during a time segment. Conversely, a value of 0 indicates that 
one student spoke for the entire duration without the other contributing 
to the conversation.

4.4.2. Domain-Specific Measure
We extend our analyses by measuring the synergistic content, i.e., the 

interleaving of science and computing concepts in the students’ dialogue 
(Hutchins et al., 2020; Snyder et al., 2019). Two researchers hand-coded 
approximately 20 % of the students’ conversation segments based on the 
physics and computation concepts they discussed. They achieved a 
Cohen’s kappa value of 0.83 through back-and-forth discussions. Using 
this coding scheme, we calculated a synergistic score for each segment 
using the following formula:

1 - abs
(

#utterancesComputing - #utterancesPhysics

)
, (3)

This computed value is in the [0, 1] range, where a value closer to 0 
indicates low synergistic discourse (i.e., most utterances in this segment 
focused on one domain). A value closer to 1 indicated high synergistic
discourse (i.e., conversations in this segment included concepts in both 
domains).

Knowledge Application Measures Students’ overall STEM+C
learning was computed by scoring their final models with a pre-defined 
rubric generated using a systematic evidence-centered design approach 
(ECD; Mislevy & Haertel, 2006). The rubrics are discussed in (Hutchins
et al., 2020). The groups’ overall model-building performances (PERF), 
normalized to a [0,1] score, are listed in column 2 of Table 4 in Section 
4.1.

We also evaluated their model-building progress by scoring the 
students’ current computational models at the segment level (the seg-
mentation method is discussed in Section 3.4.2 below). We hand-coded 
their model representations on a qualitative scale into the following 
categories: (1) Consistent progress, if at the end of the segment, there were
no errors in the model and the students had added to their previous 
model; (2) Some progress, if at the end of the segment, there was at least 
one less error in the computational model as compared to the model in 
the previous segment and they may or may not have added to their 
computational model; (3) No progress, if at the end of the segment, the 
students had added to their computational model but they did not fix 
errors from the previous segment; and (4) Backward progress, if at the 
end of the segment, the students had added new errors to their model. 
These qualitative scores were mapped on a quantitative scale of 0–3 for 
analysis, with 0 corresponding to backward progress, 1 corresponding to 
no progress, 2 corresponding to some progress, and 3 corresponding to 
consistent progress.

4.4.3. Context-targeted segmentation
In contrast to conventional multimodal data segmentation methods 

that rely on learning-adjacent techniques such as predefined time seg-
ments, we devised a novel segmentation approach tailored to our spe-
cific problem context. We first encoded students’ computational model-
building actions into abstract syntax trees (ASTs). ASTs are conventional
tree-based representations used in compilers to delineate the syntactic 
structure of computer programs (Grosch & Emmelmann, 1990). 
Leveraging sub-trees from these ASTs, we categorized students’ model-
building actions, which included adding, removing, adjusting, moving, 
and populating blocks into the following high-level categories: (1) 
initialization of relevant variables; (2) variable updating in the simulation
loop to capture the dynamic behavior of the system; (3) conditional 
statements that primarily captured changes in the dynamic behavior; and

A segment ends when students’ model-building actions switch from
one of these four categories to another. For example, if a group first 
added blocks to create a conditional statement that would check if the 
truck should be in cruising mode (i.e., if x velocity > 15 m/s; see Fig. 2), 
this would indicate a problem-solving context focused on conditions to 
model the cruising mode. Next, if the students added the block, set x 
acceleration to 0 m/s2, the earlier segment classified as a conditional 
statement segment would conclude, and a new segment, initialization, 
would begin.

Segment categorization only uses the log data. However, the log data 
provides no information on why the students switched context and what 
they planned to do after introducing the context switch in their 
computational model. On the other hand, the conversations the students 
had just before and during this segment provided us with much more 
information about students’ problem-solving behaviors. For example, 
assume a group made a plan to model the motion of the truck cruising. 
To implement this, they added the conditional statement, and the sub-
sequent conversation implied that they realized they had forgotten to 
initialize a variable, i.e., set the x acceleration to 0 m/s2. More generally, 
this segmentation and categorization helps us align the multimodal data 
(logs and discourse) into segments in time and then use LLMs to sum-
marize their conversations in each segment. This presents a systematic 
approach to understanding and interpreting students’ behaviors in each 
segment of their model-building task. In our study, the average length of 
a segment was one minute and 49 s.

We used additional information from the logged actions to classify 
each extracted model building segment into construction or debugging 
episodes. For construction episodes, students added blocks and 
completed fields associated with the blocks in their current model. For 
debugging episodes, students reviewed code that they had already 
created. Debugging episodes often included actions like ‘run simulation’ 
and/or ‘use the data tools’. In addition, any adjustments, removal, ad-
ditions, and moving of blocks after the model was assessed were also 
classified as part of debugging episodes. As an example, if a group 
started working on a conditional statement that modeled the truck 
motion changing from cruise motion (constant velocity) to a slow-down 
motion to make it stop at the stop sign, all the model-building actions 
connected to creating the new conditional statement were classified as 
part of a construction episode because the students were adding new 
constructs to their model. On the other hand, if the students ran a 
simulation after creating the slow down to stop motion and made 
changes to the blocks in that part of their code, then the associated ac-
tions were classified as part of a debugging episode since students were 
making adjustments or changes to an already existing part of their 
computational model.

4.4.4. LLM-generated discourse summaries
To analyze students’ segment-level problem-solving, we processed 

group discourse for each segment generated (see Section 3.4.2) using 
GPT-3.5, a transformer-based large language model (LLM) (Vaswani
et al., 2017) linked to ChatGPT.1 The LLM summarized student con-
versations, aiding in characterizing specific segments into planning, 
enacting, monitoring, reflection, off-task, and other categories. These 
summaries also enhanced our understanding of how students navigated 
through debugging processes when they encountered errors. However, 
this analysis approach is inherently limited for three primary reasons:
(1) the LLM model was pre-trained and it was not possible to use con-
ventional approaches to fine-tune the deep learning model using re-
training methods; therefore, summary generation was a “black box” 
process; (2) we ran into token limitation problems when processing

(4) variable updating governed by specific conditions that were linked to the
1 https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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Fig. 2. C2STEM task-specific context used for segementation. 
 

conversation segments; and (3) the lack of knowledge persistence 
(across segments) limited our ability to capture the temporal evolution 
in student thinking across multiple segments. 

To overcome these limitations to some extent, we developed an 
initial process that involved two steps: (1) exploring the knowledge 
retrieval and generation scope of the LLM and (2) engineering and uti-
lizing existing prompt patterns so that GPT 3.5 could generate reason-
ably accurate LLM summarizations to answer RQ2. Table 1 outlines this 
human-in-loop training framework. The exploration phase targeted two 
key processes: (1) Exploration of the LLM Scope and (2) Learning Output 
Testing. During Exploration of the LLM Scope we leveraged our collabo-
ration metrics (discussed in Section 3.4.1) to develop prompts targeting 
key collaboration constructs. This included LLM-generated summaries 
of student discussions in physics and computing domain knowledge to 
support their computational modeling task. During the human-in-the-
loop component, the research team reviewed results, memoed key is-
sues in the summaries generated, and iteratively refined the prompts 
until identified issues were minimized and researcher consensus on the 
quality of the summaries was achieved. This approach involved 
reviewing every summary and compared it to the discourse it was 
summarizing to ensure that the summaries accurately reflected the 
discourse during that segment. This process is illustrated in Fig. 3. The 
different prompts and notes for each iteration can be found in the Ap-
pendix. These summaries were also used in work focused on the human-
in-the-loop component (Cohn, Snyder, et al., 2024). 

As an example, during the Exploration of LLM Scope, the initial LLM 
summarization process did not recognize key conceptual knowledge 
components, such as the lookahead distance (the distance from the stop 
sign when the truck needs to slow down to come to a stop) and how it 
was calculated. We addressed this more generally, by asking ourselves 
the question: Could the LLM generate the solution for the problem task 
assigned to the students? This resulted in engineering a prompt pattern we 
called Code Generation during the Learning Output Testing Process. Dur-
ing testing, we identified that the LLM needed the problem description, 
domain-specific knowledge, and context for generating acceptable so-
lutions to the computational modeling task. 

In the engineering phase of our human-in-the-loop framework, we 
employed a testing approach that built upon existing prompt engineer-
ing methodologies (Cohn, Hutchins, et al., 2024; Marvin et al., 2023; 
Schmidt et al., 2024; White et al., 2023). This phase was characterized 
by two principal processes: (1) Input Semantics Generation, where we 
developed a Meta Language to enhance the Large Language Model’s 
(LLM) comprehension of tasks and discourse, and (2) Output Custom-
ization, which aimed to tailor the LLM’s output to address specific 
research questions, such as RQ2. The Input Semantics Generation 

involved refining the metalanguage to improve the LLM’s performance 
in computational modeling tasks. Subsequently, in the Output Custom-
ization phase, we integrated a Code Generation prompt pattern to facili-
tate the generation of precise summaries of problem-solving behaviors 
within groups. An illustration of this is the “lookahead distance” 

concept, where the inclusion of detailed problem task information 
enabled the LLM to accurately detect and interpret discussions about the 
distance calculation for a truck’s deceleration in student conversations. 

Overall, this two-step process resulted in a prompt with the following 
components (see Appendix for the full prompt): 

 
• a context manager pattern (allowing for control of the context of the 

LLM’s output (Cohn, Hutchins, et al., 2024; Snyder et al., 2024; 
White et al., 2023) that described the model-building task and 
incorporated the components such as the Code Generation pattern 
described in our example; 

• a persona pattern, described by White et al. as an approach that “gives 
the LLM a persona or role to play when generating output” (p.4, 
2024; 2024; 2023), in which we indicated to the LLM that it would 
play the role of a teacher trying to interpret the students’ conversa-
tions; and 

• a task-specific pattern that indicated which of the four task-specific 
segment types a particular group was working on and what that 
meant in the model building context (e.g., if the segment was labeled 
as initialization, the prompt stated: “In this segment, the students are 
working on assigning initial values to variables, such as position and 
velocity of the truck.”). 

 
The prompt concluded with an input semantics statement outlining 

the transcript’s format. 
 
4.4.5. Analyzing planning, enacting and reflecting behaviors using 
interaction measures and segment-level performance 

The LLM-generated summaries provided an overview of group 
problem-solving behaviors during each segment. To extract and analyze 
these behaviors, we hand-coded every summary based on prior SRL 
research (White et al., 2009; Winne, 2010; Zimmerman & Moylan, 
2009) outlined in Section 2, utilizing the coding scheme in Table 2. 
Additionally, we categorized segments into further categories: (1) stu-
dents received help from the researcher, (2) students engaged primarily 
in off-topic discussions, and (3) students performed actions without any 
discussion at all. Although we considered leveraging the LLM to simul-
taneously summarize and code the segments, we opted for hand-coding 
the summaries in conjunction with our human-in-the-loop iterative 
prompt design approach (described above in Section 3.4.3) to validate 
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Table 1 
Framework for prompt generation to support context-based segment 
summarizations. 

 

Process Description Example 

Section 3.4.1. In this way, we could better understand these problem-
solving behaviors in the context of students’ synergistic and collabora-
tive interactions and their segment-level performance. 

Exploration of 
LLM Scope 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Learning Output 

Testing 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Input Semantics 

Generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Output 
Customization 

Testing preliminary prompt 
patterns to identify 
deficiencies in LLM 
knowledge base and retrieval 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generating the input 
knowledge needed for LLM to 
produce a correct learning 
task solution (i.e., what 
knowledge is needed to solve 
the same problem as students) 

 
 
 
 
 
 
 
 

 
Meta language creation based 
on the previous two tasks to 
maximize LLM’s 
understanding of input and 
ability to process input 
content 

 
 
 
 
 
 
 
 
 
 
 
 

Leveraging a combination of 
prompt generation patterns 
from literature (e.g., Cohn, 
Hutchins, et al., 2024; White 
et al., 2023) to adapt to the 
requirements of the current 
research study (i.e., what is 
the research goal supported 
by the LLM-generated 
summary?) 

An initial prompt was 
generated for ChatGPT to 
summarize conversations 
between students that were 
working collaboratively in a 
computer-based learning 
environment. The input 
context included information 
about the learning 
environment and the domain-
specific problem the students 
had to solve. This process was 
supported by the Fact Check 
List and Reflection (Cohn, 
Hutchins, et al., 2024; White 
et al., 2023) patterns that 
prompt the LLM to provide the 
rationale behind its output. 
Utilizing an iterative process, 
we developed a combination 
of inputs that resulted in the 
LLM generating a correct 
solution for the problem task. 
We developed a Code 
Generation pattern that helped 
the LLM to solve the 
computational model problem 
assigned to students. As a 
result, the LLM learned to 
summarize the processes that 
students were utilizing for 
building that segment model. 
Based on the prompt pattern 
for Meta Language Creation ( 
Cohn, Hutchins, et al., 2024; 
White et al., 2023), we 
provided ChatGPT with 
information to better 
understand the semantics of 
the input so that it could 
generate adequate output. As 
an example, we identified 
individual student utterances 
using the label SPEAKER: 
DISCOURSE and prompted 
ChatGPT to summarize each 
student’s contribution to the 
conversation. 
We used an iterative prompt 
generation process leveraging 
previously identified prompt 
patterns supporting output 
generation to best target our 
research goal of relating group 
problem-solving behaviors 
with their ability to complete 
the computational modeling 
task (RQ2). Our experiments 
produced a prompt that 
combined the Meta Language 
Creation pattern for input 
semantics, the Persona 
pattern, and the Context 
Manager patterns based on a 
manual review of summary 
outputs by two authors for 
each prompt iteration. 

5. Results 
 

This section outlines our method for addressing the two research 
questions and reviews the findings of our analyses. 

 
 

5.1. RQ1: How do interaction process measures, such as equity and turn-
taking, and the synergistic dialogue measure relate to students’ model-
building performance? 

 
To answer RQ1, we applied the segmentation method described in 

Section 3.4.2 and calculated the equity (EQU), turn-taking (TT), and 
synergistic (SYN) scores for the 276 model construction segments across 
all nine groups. To provide an overview of the groups, we computed the 
scores for each group by averaging across all of their segments (see 
Table 4). 

We analyzed the segment-level behaviors of groups by correlating 
the values of interactivity metrics with performance scores and effort (i. 
e., total number of actions) at the segment level. Given the small number 
of groups, we assumed a non-normal distribution and calculated the 
Spearman rank correlation to assess the relationships between segment 
performance measures and collaborative interaction metrics (SYN, TT, 
and EQU). Note that we verified the independence of observations 
assumption was not violated by calculating the intraclass correlation 
using a two-way mixed model for each measure: PERF ICC = 0.005 (95 
% CI: -0.07, 0.20), ACT ICC = -0.086 (95 % CI: -0.11, -0.002), EQU 
ICC = 0.007 (95 % CI: -0.06, 0.23), TT ICC = 0.013 (95 % CI: -0.60- 
0.24), SYN ICC = -0.061 (95 % CI: -0.01, 0.07). The fact that these 
correlations range between -0.1 and 0.1 implies that the independence 
of observations assumption holds for this dataset. 

Table 3 shows the correlation between the three collaborative 
interaction measures and two performance measures: (1) the final model 
score (PERF), and (2) the total number of actions performed to build the 
model (ACT, as a measure of their effort). We found a low correlation 
between performance and effort (ρ = 0.1), indicating a weak link be- 
tween the number of actions students took and their progress in model 
construction at the segment level. Conversely, Table 3 reveals that 
synergistic discourse was moderately correlated with performance (ρ = 
0.42). The data supports previous findings regarding the crucial role of 
synergistic (combined physics and computing) dialogue in computa-
tional modeling performance (Snyder et al., 2019). Both turn-taking 
(TT) and equity (EQU) showed a weak positive correlation with per-
formance, with ρ = 0.05 and ρ = 0.08, respectively. Notably, groups 
typically executed more actions during segments with greater turn-
taking, evidenced by a weak positive correlation (ρ = 0.31). This rela- 
tionship is also reflected in the weak correlation between actions and 
equity (ρ = 0.27). These findings imply that equitable engagement and 
turn-taking may promote exploratory behavior but do not lead to model- 
building progress. We will investigate these relations in more depth in 
future work. 

Table 4 presents the aggregated summary statistics, including met-
rics for synergistic dialogue (SYN), turn-taking (TT), and equity (EQU) 
across all nine groups. The table organizes the groups from the highest 
performer (PERF = 0.97) to the lowest (PERF = 0.42) to facilitate 
comparisons between performance and the synergistic and collaborative 
measures. The higher-performing groups generally had more synergistic 
dialogue (SYN), but group G12 was an exception. In contrast, no clear 

the consistency of the LLM-generated summaries. In the future, we plan 
to use the hand-coded labels to fine-tune our LLMs to automatically 
recognize learning behaviors. To evaluate these students’ problem-
solving behaviors, we analyzed them using the synergistic, turn-
taking, equity, and segment-level performance measures described in 

patterns emerged for the social interaction measures, turn-taking (TT) 
and equity (EQU), in comparison to group performance and effort. Given 
the small number of groups in this study, we will conduct studies with a 
larger number of groups in the future to understand interaction dy-
namics and its consequences in group problem-solving. 
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Fig. 3. Analysis Pipeline. 
 

5.2. RQ2: How do students’ collaborative problem-solving behaviors, such 
as planning, enacting, monitoring, and reflecting, relate to their interaction 
process measures and ability to construct computational models in 
kinematics? 

 
To explore students’ problem-solving behaviors and address RQ2, we 

performed a detailed analysis of groups’ planning, enacting, and 
reflecting behaviors at the segment level. First, we present an overview 
of the distribution of these CPS behaviors across all 276 segments, along 
with the average interaction measures (i.e., turn-taking, equity, and 
synergistic discourse) for each type of behavior (Section efsec:cps-inter-
rq2). Next, we analyze the relationship between CPS behaviors, their 
segment-level success, and these interaction measures (Section efsec: 
cps-inter-perf-rq2). 

 
5.2.1. CPS behaviors and interaction process measures 

Table 5 shows the average interaction measures (SYN, TT, EQU), 
average time span, and number of segments (n) for each of the CPS 
behaviors described in Section (3.4). Note that there are no SYN, TT, or 
EQU measures for segments where students were enacting without 
discussion, having off-topic conversations, or receiving assistance from 
the researchers. Segments in which students exhibited enacting behav-
iors were the most frequent, with 57 occurrences, while enacting and 
monitoring behaviors appeared in 34 segments. Planning behaviors 
often occurred alongside enacting in 51 segments. In contrast, 17 seg-
ments exhibited planning alone, indicating that students more 
frequently discussed their plans during enactments rather than keeping 
the two separate. Reflection behaviors were present in 20 segments, 
while segments that combined planning and reflecting were uncommon, 
with only 3 segments. The considerable variability in the average length 
of these segments, as shown by high standard deviation values in 
Table 5, makes it difficult to draw comparative conclusions regarding 
the time spent on each segment type. 

The synergistic dialogue during planning segments was lower (SYN 
score = 0.72) than during enacting (SYN score = 0.88) and monitoring 
(SYN score = 0.88). This suggests that students may have focused more 
on one domain at a time during planning, while their dialogue became 
more synergistic when constructing their models. This suggests that 
model-building tasks and monitoring progress during model-building 
required discussions centered around both domains. For segments that 
included planning and enacting, the average SYN score was 0.82 as 
students had some segments of discourse that focused on one domain 
when planning and then transitioned to more synergistic dialogue when 
enacting. When considering reflection behaviors, students’ dialogue had 
the lowest average SYN score (0.56), but the standard deviation was 
high (0.5). When analyzing these segments individually, a number of 
segments had student dialogue that was highly synergistic with SYN 
scores above 0.90, implying the discussions included both domains. In 
contrast, there was also a number of reflection segments focused on one 
domain with SYN scores of 0. 

The collaboration measures highlight that students displayed more 
collaboration during segments that had a combination of behaviors, in 
particular during planning and enacting (EQU = 0.68 and TT = 0.54) 
and enacting and monitoring (with EQU = 0.68 and TT = 0.55). When 

only enacting, students were less collaborative in their dialogue (EQU = 
0.53 and TT = 0.40). We hypothesize that segments where students 
exhibited multiple CPS behaviors allowed for more opportunities for 
contribution from both students. For example, while enacting, one stu-
dent might take the lead (in both discourse and action), but while 
planning and enacting, both students had opportunities to be involved. 
During reflection segments, students’ discourse had a higher EQU score 
(0.55) but a lower TT score (0.35), suggesting that both students had 
ideas that they verbalized, but there was a lack of back and forth within 
the group. Planning segments had low average EQU (0.48) and TT (0.46) 
scores, which match with prior research (Snyder et al., 2024) that 
showed students often had to do continuous planning during model 
building because they could not achieve consensus during the initial 
planning phase. In other words, the group would have to go back to 
planning after trying to enact one group member’s ideas because they 
had not achieved consensus in their approach earlier. 

 
5.2.2. CPS behaviors, interaction process measures and segment-level 
success 

To further explore groups’ collaborative behaviors, we analyzed 
their interactions concerning segment-level success as defined by the 
knowledge application measures in Section 3.4.1. Specifically, we 
identified segments where students succeeded in their model-building 
tasks (i.e., made some or consistent progress) and those where they 
did not succeed (i.e., made no progress or introduced additional errors). 
We focused on segments where students exhibited model-building and 
debugging behaviors, rather than planning and reflection behaviors, 
where students discussed their models without making modifications. 
Table 6 presents the number of segments, average interaction measures, 
and average time for each successful and unsuccessful problem-solving 
segment. Students exhibited more unsuccessful problem-solving seg-
ments than successful ones, emphasizing the complexity of the compu-
tational modeling task and the frequent challenges students face in 
building and debugging their models. 

When considering segments where students exhibited only enacting 
behaviors, their discourse was more synergistic and collaborative when 
they were successful in their model building. However, the differences 
were not significant (SYN = 0.90 vs. 0.87, TT = 0.41 vs. 0.39, and EQU 
= 0.56 vs. 0.52). The average time spent per segment was similar, but 
there was a wider variability in the enacting segments that were un-
successful. Students sometimes spent more time performing unsuccess-
ful actions or quickly switched to working on a new part of their model 
when they had difficulties. During successful enacting and monitoring 
segments, the student exhibited more synergistic dialogue (SYN = 0.95) 
in comparison to the unsuccessful segments (SYN = 0.86). This points to 
an avenue for future research to explore if the synergistic nature of their 
monitoring discourse is the main reason for success. 

Interestingly, the turn-taking scores were identical in both successful 
and unsuccessful enacting and monitoring segments (TT = 0.55), but the 
students’ equity scores were higher on average during unsuccessful 
segments (EQU = 0.70 vs. EQU = 0.62). These results imply that syn-
ergistic dialogue, where students discuss concepts across both domains, 
signifies successful monitoring; however, the connection to equity and 
turn-taking is less clear and requires further examination in future 
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Table 2
Coding scheme for LLM-generated summaries.

Code Description Example: Portion of LLM

Table 2 (continued )

Code Description Example: Portion of LLM
summary

PLANNING Students decompose the
problem and/or discuss
steps to be taken to
construct the simulation

ENACTING Students discuss the actions
they are taking to construct
the model

summary

The students discuss how to
create a conditional statement
for the truck’s motion. They
consider using an “if-else” 
statement to check if the
velocity equals 15 m/s, and if
it does, the truck should
cruise. If not, they discuss the
possibility of using nested “if” 
statements to calculate the
distance or time remaining
until the stop sign and
decelerate accordingly.
One student asks what value
to use for delta t, and another
student suggests using 0.1.

ASSISTANCE Students are receiving help
from one of the researchers

OFF-TOPIC Students are having an off-
topic discussion unrelated to
the task

Table 3

They are trying to figure out
how to make the truck
accelerate and then cruise
once it reaches the speed limit
of 15 m/s. The researcher
suggests using an if statement
and checking the simulation
data to see if the model is
working as they expect.
The conversation is not
related to the task of creating
a computational model of
truck motion.

The first student thanks the
second student for the

Correlations between Interactivity metrics, Performance, and Effort - Segment
Level numbers in parentheses are the p-values.

suggestion and confirms the
value of 0.1 SYN TT EQU

REFLECTING Students review the The students discuss an issue performance (PERF) (p-val) 0.42 (0.004) 0.05 (0.75) 0.08 (0.59)
simulation behavior and/or they had in the previous sub- Total actions (ACT) (p-val) 0.21 (0.16) 0.31 (0.04) 0.27 (0.07)
discuss the implications of task with the truck’s motion
their constructed code model. They mention a block

that did not work and discuss

PLANNING &
ENACTING

Students plan and enact
(construct) their solution in
the same segment

how they used a [delta t]
variable with a value of 0.1,
which they believe caused the
truck to move slower and
smoother.
They try to figure out how to
make the truck slow down,
and one student suggests that

Table 4
Overall Summary Statistics for the nine groups. The performance measure
(PERF), the interaction measures, synergistic dialogue (SYN), Turn-Taking (TT),
and Equity (EQU), and behavior measures, the ratio of Construction (CONSTR)
to debugging (DEBUG) actions is normalized to [0,1] scores. The total number of
actions (ACT) and the number of segments (Num Segs) in students’ computa-
tional model-building work also appear in the Table.

S7 then confirms that the
truck does maintain constant
velocity and suggests
including velocity in the
conditional statement. S21
agrees and apologizes for the

Table 5
CPS Behaviors, Counts (n), Average Interaction Measures (SYN, TT, EQU), and
Average Segment Length (Time, minutes:seconds).

Behaviors Count SYN TT EQU Time

n Average(SD)
confusion. S7 begins to Planning 17 0.72 (0.4) 0.46 0.48 1:23
suggest how the conditional (0.3) (0.3) (1:32)
statement should be Reflecting 20 0.56 (0.5) 0.35 0.55 1:09
structured. (0.3) (0.4) (1:25)

ENACTING & Students are building parts One student introduces blocks Planning and 3 0.94 0.46 0.46 0:58
MONITORING of the model and checking it to increase the truck velocity Reflecting (0.04) (0.4) (0.4) (0:13)

in the same segment and another student observes Enacting 57 0.88 (0.3) 0.40 0.53 1:37
that it is not increasing. The (0.3) (0.4) (3:15)
first student asks why and the Planning and 51 0.82 (0.2) 0.54 0.68 2:33
second student responds that Enacting (0.2) (0.3) (3:24)
it is just not working and Enacting and 34 0.88 (0.2) 0.55 0.68 2:22
taking a long time. The second
student then suggests that

Monitoring
Enacting with No 49 NA

(0.2)
NA

(0.3)
NA

(2:27)
0:52

maybe the “if” statement may
not be working.

Disc.
Off-Topic 15 NA NA NA

(2:43)
1:54

ENACTING WITH
NO

Students are performing
actions to construct their

There is no conversation to
summarize. Assistance 30 NA NA NA

(2:19)
2:35

DISCUSSION model but there is no (2:50)
discussion about the
approach.

Table 5

they need to add a new part to group PERF ACT Num Segs SYN TT EQU CONSTR/DEBUG
the model to make it slow
down. They use trial-and- g3 0.97 228 24 0.81 0.59 0.89 0.30
error approaches to refine g2 0.95 374 45 0.72 0.39 0.92 0.74
their model and are open to g11 0.92 145 10 0.79 0.52 0.82 0.84
suggestions from each other. g9 0.89 165 22 0.82 0.42 0.53 0.82

PLANNING & Students plan solution steps S7 suggests they should check g12 0.84 262 21 0.58 0.24 0.54 0.82
REFLECTING while reflecting on past if the truck starts slowing g8 0.76 172 23 0.62 0.48 0.91 0.70

work in the same segment down when it reaches the g4 0.71 293 47 0.50 0.32 0.86 0.34
speed limit now that they g7 0.68 309 50 0.63 0.30 0.84 0.50

have finished modeling the g5 0.42 327 34 0.69 0.42 0.87 0.30

speeding up a portion of the
task, but S21 disagrees and
suggests looking at the graph.
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Table 6 
Successful (SUC) and Unsuccessful (UNSUC) Problem-Solving Segments and 
Average Interaction Measures (SYN, TT, EQU), and Average Segment Length 
(Time, minutes:seconds). 

Behaviors Success Count SYN TT EQU Time 

n Average(SD) 
Enacting SUC 17 0.90 0.41 0.56 1:23 

  (0.2) (0.3) (0.4) (1:42) 
UNSUC 40 0.87 0.39 0.52 1:43 

  (0.3) (0.3) (0.4) (3:42) 
Planning and SUC 14 0.78 0.52 0.66 3:44 

Enacting  (0.3) (0.2) (0.3) (5:10) 
UNSUC 37 0.87 0.56 0.69 2:06 

  (0.2) (0.2) (0.3) (2:24) 
Enacting and SUC 6 0.95 0.55 0.62 1:25 

Monitoring  (0) (0.1) (0.3) (1:00) 
UNSUC 28 0.86 0.55 0.70 2:34 

  (0.2) (0.2) (0.3) (2:38) 
Enacting and No SUC 11 NA NA NA 1:07 

Discussion     (2:38) 
UNSUC 38 NA NA NA 0:48 

     (2:46) 

 
 
research. This contrasts with the planning and enacting segments, where 
the average synergistic score was lower in the successful segments (0.78) 
than the unsuccessful segments (0.87). Additionally, the average time 
spent on successful versus unsuccessful segments was longer (3:44 vs. 
2:06), suggesting that during computational model building, concen-
trating on planning and enacting in one domain before addressing the 
other may be beneficial, despite the increased time commitment. 
Furthermore, during segments where students were enacting without 
discussion, there was significant variability in the time spent; however, 
the ratio of successful to unsuccessful segments remained similar to 
other behaviors. 

 
6. Conclusions and future work 

 
The complexities involved in analyzing students’ collaborative 

problem-solving performance and behaviors in computational modeling 
for science present a unique opportunity to explore individual and group 
learning, as well as how interactivity and synergistic dialogue influence 
the understanding of science and computing concepts during model-
building tasks. In this paper, we investigated differences in collabora-
tive problem-solving behaviors and their impact on groups’ ability to 
complete computational modeling tasks in kinematics. We assessed how 
interactivity metrics, such as equity and turn-taking, and the collabo-
rative discourse’s synergistic nature affect groups’ overall capability to 
construct accurate computational models. 

We analyzed the differences in the groups’ planning, enacting, 
monitoring, and reflecting behaviors. By assessing the interactivity and 
synergistic metrics, we were able to define these collaborative behaviors 
in relation to their model-building performance. All these analyses were 
bolstered by multimodal approaches, where we integrated students’ 
conversations and activity logs to segment their model-building activ-
ities and analyze their collaborative behaviors for each problem-solving 
segment. 

Our analysis of collaborative interactivity and domain-specific pro-
cesses during problem-solving yielded several initial findings with po-
tential for systematic, in-depth future research. First, our results for RQ1 
highlighted the importance of maintaining synergistic dialogue, 
extending past findings (e.g., Snyder et al., 2019, Grover et al., 2019) to 
demonstrate the necessity of consistently leveraging both domains 
across all model-building task components. Second, while previous 
research has emphasized the significance of equity and turn-taking in 
collaborative problem-solving, we found that fluctuations in equity 
during segmented model-building are not critical indicators of student 
collaboration and task completion efficiency. This underscores the need 
for future research to better understand collaborative interactions, 

particularly in designing formative feedback approaches to enhance 
collaboration. 

Beyond understanding the components of collaborative interactivity, 
our analysis for RQ2 centered on planning, enacting, monitoring, and 
reflecting behaviors during problem-solving. Our findings showed that 
synergistic dialogue varied by behavior type. Successful model-building 
segments demonstrated more synergistic discussions during the enacting 
and monitoring phases, highlighting the importance of integrated dia-
logue while tracking progress. This contrasted with effective planning 
segments, where discussions were less synergistic as students focused on 
one domain at a time before integration. Collaboration measures 
revealed more balanced participation in segments that combined be-
haviors, such as planning and enacting or enacting and monitoring. In 
contrast, single behavior segments, like enacting alone, often saw one 
student taking the lead. Reflection segments exhibited higher equity but 
limited turn-taking dialogue, suggesting that students shared ideas 
without much back-and-forth discussion. Future work aimed at adaptive 
support for problem-solving will build on these findings and additional 
research to promote monitoring and reflection behaviors (e.g., Carpen-
ter et al., 2021) as students engage in their problem-solving tasks. 

We acknowledge several limitations in this study. The small sample 
size, resulting from challenges in collecting and analyzing extensive 
multimodal data in classroom settings, limits the generalizability of our 
findings. Consequently, our exploratory analysis highlights an in-depth 
examination of students’ problem-solving behaviors. Despite these 
constraints, our study makes valuable contributions by utilizing a widely 
used SRL framework to enhance our understanding of students’ 
collaborative problem-solving (CPS) during STEM+C PBL. It demon- 

strates the effectiveness of various analytical approaches for compre-
hending CPS and employs multimodal classroom data to explore the 
interplay among group dynamics, regulatory behaviors, and perfor-

mance outcomes. Future research will expand this analysis to include 
more participants and diverse tasks to examine its applicability. While 
this study focuses on regulatory CPS processes, the relationship of these 
processes with traditional CPS practices warrants further investigation. 

The categorization of groups by performance could be enhanced with 
larger participant pools to include additional collaborative learning 
variables for a more thorough analysis. Our ongoing research in-

vestigates how individual factors, such as speaking time and domain 
knowledge, influence group regulatory processes. To ensure coding 
integrity in discourse analysis, we employed systematic coding and re-
view of the large language models’ generation processes. However, it is 
important to recognize the inherent limitations of LLMs, including bia-
ses and the issue of non-persistent memory. While we aimed to verify the 
authenticity of LLM-generated summaries through human oversight and 
manual coding, further validation is required for automating the coding 
processes (e.g., Suraworachet et al., 2024). Future work will concentrate 
on improving the use of LLMs for the automated coding of CPS behav- 

iors, particularly in STEM+C educational environments. 
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Appendix A 

 
Fig. 4 shows the final LLM prompt (V4) we used to generate the segment summaries that is described in more detail in (Snyder et al., 2024). The 

highlighted green component is the context manager pattern (Snyder et al., 2024; Cohn, Hutchins, et al., 2024; White et al., 2023), where we detail the 
task and the learning environment. Next, in blue, is the persona pattern (Snyder et al., 2024; Cohn, Hutchins, et al., 2024; White et al., 2023), where we 
informed the LLM of its task. While reviewing the summaries during the human-in-the-loop approach, we identified instances of hallucination2. The 
section in red was included in the prompt to address these issues. In the yellow section, we included details about what segment type the students were 
working on (i.e., initialization, conditional statements, updating variables under conditions or generally). Finally, our prompt concludes with the meta 
language creation pattern (purple) with the input template (i.e., SPEAKER: DISCOURSE) and asking the LLM to summarize the segment. 

 

Fig. 4. Final LLM prompt used to generate segment summaries reprinted from Snyder et al. (2024). 

 
The following subsections have each of the prompts we iterated through. The segment summaries generated by each prompt were reviewed by two 

members of the research team. After every segment summary was judged to accurately summarize the segment dialogue, we stopped refining the 
prompt (leaving us with the final prompt in Fig. 4). However, while this prompt was sufficient for the analysis presented in this paper, additional 
prompt iterations may be necessary if these summaries were used for a different analysis with a different focus. Fig. 5 shows the notes taken about each 
prompt after reviewing the generated summaries and comparing them against the student discourse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2   https://machinelearningmastery.com/a-gentle-introduction-to-hallucinations-in-large-language-models/ 

https://machinelearningmastery.com/a-gentle-introduction-to-hallucinations-in-large-language-models/
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Fig. 5. Prompt Iteration Notes. 

 

 
A.1. Prompt V0 

 
You are a helpful assistant who summarizes science texts. Importantly, you are not allowed to infer things that are not explicitly mentioned. 

Additionally, if you feel you cannot provide a sufficient summary based on the text provided, take your best guess anyway. You must always attempt to 
provide a summary. 

 
A.2. Prompt V1 

 
C2STEM is a computer-based learning environment based on a novel computational paradigm that combines visual programming with physics 

modeling using Netsblox (a visual, block-based programming environment) to promote computational modeling in the physics domain while pro-
moting synergistic learning of physics and computational thinking (CT) concepts and practices. C2STEM’s website can be found at this URL: https://c2 
stem.org/. 

In C2STEM, CT concepts include those related to programming, such as conditional statements (“if blocks”, for example), initializing variables, 
updating variables, and operator expressions. Physics concepts include those related to the kinematic equations that define Newtonian physics, such as 
velocity, acceleration, time (delta t), position, and distance. In C2STEM, high school sophomores work collaboratively to apply and combine their 
knowledge of physics and CT to accomplish various tasks in the C2STEM environment by creating computational models with C2STEM to complete 
several scientific simulations. In each simulation, students must first initialize all variables, define the behavior of the model for each time step, and 
test the computational model by running the simulation. In C2STEM, students have various tools at their disposal, such as graphs and tables, to help 

https://c2stem.org/
https://c2stem.org/
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them debug and improve their computational models. In this particular simulation, students must work together in pairs (dyads) and use C2STEM to 
build a computational model inside C2STEM that causes a truck starting from rest (initial velocity = 0 m/s), to accelerate to a speed of 15 m/s (the 
speed limit) and then maintain that speed. The maximum acceleration the truck can have is 4 m/s/s. At a certain distance away from the stop sign, the 
students must make the truck start to slow down so that its velocity is 0 at the stop sign. The truck can have a maximum negative acceleration of -4 m/ 
s/2. 

You are a scientific researcher whose job is to summarize transcribed segments of student discourse while they try to accomplish this truck task in 
C2STEM. You are doing this task to help a Research Team that is interested in understanding how students construct knowledge and want to un-
derstand whether or not students have a correct understanding of the relationships between the various physics and CT concepts as students work to 
build and test their computational models in the simulation. The Research Team is also interested in identifying times when certain scientific and CT 
concepts are missing from the discourse that are integral in fully understanding the relationships between concepts and how they fit into the kinematic 
equations. Because of this, you are not allowed to infer things that are not explicitly stated in the discourse segments when providing your summary. 
Additionally, if the discourse is relevant, but you feel you cannot provide a sufficient summary based on the text provided, take your best guess 
anyway. You must always attempt to provide a summary if you feel the discourse is relevant to the task at hand. If the discourse segment is not related 
to the C2sTEM truck task or is otherwise off-topic, simply respond ‘not relevant.’ 

Each line in the discourse is an individual student utterance with the format SPEAKER: DISCOURSE. Based on these instructions, summarize the 
following conversation: 

 
A.3. Prompt V2 

 
Students are working in pairs on a computer-based learning environment that combines block-based programming with scientific modeling 

through a domain-specific modeling language to promote simultaneous learning of physics and computational thinking (CT) concepts and practices. 
CT concepts include conditional statements (“if blocks”, for example), initializing variables, updating variables, and operator expressions. Physics 
concepts include those related to the kinematic equations that define Newtonian physics, such as velocity, acceleration, time (delta t), position, and 
distance. Students work to create computational models that simulate Newtonian physics. In each model, students must initialize all variables, define 
the behavior of the model for each time step, and test the computational model by running the simulation. Students have various tools at their disposal, 
such as graphs and tables, to help them debug and improve their computational models. 

In this task, students are creating a computational model that simulates a truck starting from rest (initial velocity = 0 m/s), to accelerate to a speed 
of 15 m/s (the speed limit) and then maintain that speed. The maximum acceleration the truck can have is 4 m/s/s. At a certain distance away from the 
stop sign, the students must make the truck start to slow down so that its velocity is 0 at the stop sign. The truck can have a maximum negative 
acceleration of -4 m/s/2. 

You are a teacher whose job is to summarize transcribed segments of student discourse. You are doing this task to help a Research Team that is 
interested in understanding how students construct physics and CT knowledge and want to understand whether or not students have a correct un-
derstanding of the relationships between the various physics and CT concepts. You are not allowed to infer things that are not explicitly stated in the 
discourse segments when providing your summary but if you feel you cannot provide a sufficient summary based on the text provided, take your best 
guess anyway. 

Each line in the discourse is an individual student utterance with the format SPEAKER: DISCOURSE. Based on these instructions, summarize the 
following conversation and create a set of facts that the answer depends on that should be fact-checked and list this set of facts at the end of your output 
that generated the summarization. 

 
A.4. Prompt V3 

 
Students are working in pairs on a computer-based learning environment that combines block-based programming with scientific modeling 

through a domain-specific modeling language to promote simultaneous learning of physics and computational thinking (CT) concepts and practices. 
CT concepts include conditional statements (“if blocks”, for example), initializing variables, updating variables, and operator expressions. Physics 
concepts include those related to the kinematic equations that define physics behavior, such as velocity, acceleration, time (delta t), position, and 
distance. Students work to create computational models that simulate motion guided by kinematics. In each model, students must initialize all 
variables, define the behavior of the model for each time step, and test the computational model by running the simulation. Students have various tools 
at their disposal, such as graphs and tables, to help them debug and improve their computational models. 

In this task, students are creating a computational model that simulates a truck starting from rest (initial velocity = 0 m/s), to accelerate to a speed 
of 15 m/s (the speed limit) and then maintain that speed. The maximum acceleration the truck can have is 4 m/s/s. At a certain distance away from the 
stop sign, the students must make the truck start to slow down so that its velocity is 0 at the stop sign. The truck can have a maximum negative 
acceleration of -4 m/s/2. 

You are a teacher whose job is to summarize transcribed segments based on these learning objectives of student discourse in order to design 
actionable feedback to the students. You are doing this task to help a Research Team that is interested in understanding how students construct physics 
and CT knowledge and want to understand whether or not students have a correct understanding of the relationships between the various physics and 
CT concepts. You are not allowed to infer things that are not explicitly stated in the discourse segments when providing your summary but if you feel 
you cannot provide a sufficient summary based on the text provided, take your best guess anyway. Here is context for what the students in this segment 
are doing in the environment: 

In this segment the students added these components to the model [addedblocks], edited or adjusted these components on the model [adjust-
edblocks], and added, edited or adjusted these components that are not connected to the model [draftedblocks]. They ran their model [or used the data 
tools]. In this segment the students worked on [context == initialization: “initializing variables”; context == updating-variables-under-conditions: 
“updating variables under specific conditions”; context == updating-variables-every-sim-step: “updating variables every step in the simulation”; 
context == conditional-clause: “conditional statements”] and at the end of the segment the students’ model [progress == backward: “had a new 
error”; progress == no progress: “still had a previously existing error but was added to without any new errors being created”; progress == progress: 
“had a previously existing error fixed”; progress == consistent: “had no errors and was added to”.] 

In the next section is the students’ discourse. Each line in the discourse is an individual student utterance with the format SPEAKER: DISCOURSE. 
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Based on these instructions and the context, summarize the following conversation. 
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