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Effect and coeffect tracking integrate many types of compile-time analysis, such as cost, liveness, or dataflow,
directly into a language’s type system. In this paper, we investigate the addition of effect and coeffect tracking
to the type system of call-by-push-value (CBPV), a computational model useful in compilation for its isolation
of effects and for its ability to cleanly express both call-by-name and call-by-value computations. Our main
result is effect-and-coeffect soundness, which asserts that the type system accurately bounds the effects that the
program may trigger during execution and accurately tracks the demands that the program may make on
its environment. This result holds for two different dynamic semantics: a generic one that can be adapted
for different coeffects and one that is adapted for reasoning about resource usage. In particular, the second
semantics discards the evaluation of unused values and pure computations while ensuring that effectful
computations are always evaluated, even if their results are not required. Our results have been mechanized
using the Coq proof assistant.
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1 Introduction

Computations interact with the world in which they run. Sometimes the computation does some-
thing the world can observe, known as an effect [Lucassen and Gifford 1988], and sometimes
computations demand something that the world must provide, known as a coeffect [Brunel et al.
2014; Orchard and Eades III 2022; Petricek et al. 2014]. For example, running a computation might
take time (a clock ticking is an effect) and might require resources (using input parameters is a
coeffect).

Some programming languages track effects and coeffects statically. Frank [Convent et al. 2020],
Koka [Leijen 2014], and the Verse functional logic language [Verse development team 2023] do this
for effects such as state, exceptions, divergence, and failure; Linear Haskell [Bernardy et al. 2017]
does this for a resource management coeffect, while Agda and Idris 2 [Brady 2021] do this for a
relevancy coeffect. The Effekt language [Brachthiuser et al. 2022] both tracks effects statically and
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uses a limited form of coeffect tracking to ensure that effect handlers are well-scoped. Finally, the
Granule language [Orchard et al. 2019] uses monads and comonads graded by abstract structures
to track various effects and coeffects in a flexible and expressive system.

We would like to update the type systems of existing languages with effect and coeffect tracking
by annotating their existing type systems. However, in contrast to systems that use monads and
comonads to isolate effectful and coeffectful code from the rest of the language, we need an approach
that is descriptive and that does not restrict programmers in how they structure their code.

Because effectful computation depends on evaluation order, precisely tracking effects works
best in a language that makes its “ambient monad” explicit, such as Moggi’s computational lambda
calculus [Moggi 1989] and fine-grained CBV [Levy et al. 2003]. These systems separate inert “values”
from executable “computations” and include “return” and “let” constructs to sequence evaluation.
This “ambient monad” is part of the structure of the language itself; all computations are monadic.

Levy’s Call-By-Push-Value (CBPV) [Levy 2003b] is a calculus that makes both the ambient
computational monad and comonad explicit. As above, it separates values from computations and
uses “return” and “let” constructs to track how computations manipulate values. However, CBPV
also includes thunks, which temporarily suspend computations and treat them as values, for the
opposite purpose; as a result all computations are also comonadic. In CBPV, then, we can annotate
these existing structures directly to track effects and coeffects, instead of adding new features to
the language.

CBPV is a low-level language and is appropriate for use as a compiler intermediate representa-
tion [Garbuzov et al. 2018; Rizkallah et al. 2018]. Its distinction between values and computations
allows CBPV to work with strict and nonstrict language features explicitly, enabling it to model
both call-by-value and call-by-name languages with the same facility. Adding effects and coeffects
to CBPV would enrich this intermediate representation to support program optimizations; for
example, to justify dead code elimination for pure code whose coeffect annotations mark it as
unused.

The ability of CBPV to model both CBV and CBN also lets us observe how evaluation order
changes the way a program alters and makes demands on the world. Levy characterizes the differ-
ence between values and computations with the slogan: “a value is, a computation does.” [Levy 2003b]
Our interpretation of this slogan is that only computations may contain effectful subcomponents—
values must be pure throughout. Conversely, coeffects describe the demands a program makes on
its inputs, which are always values in CBPV.

CBPV uses separate types for values and computations. Values have positive types (for which
we use the metavariable A), while computations have negative types (for which we use B). These
two forms are connected via an adjunction: the thunk type U B suspends a computation as an
inert value, and the type of return F A creates a fine-grained structure similar to monadic bind
that threads values through computations. Due to the structure of the adjunction, the combination
U (F A) forms a monad and the combination F (U B) forms a comonad [Levy 2003a].

The duality between values and computations gives CBPV its power, and it is reflected in the
structures we use to statically track effects and coeffects. For effects, we add effect information
¢ to the thunk type Uy B, recording the latent effect of suspended computations. Similarly, to
track coeffects, we add coeffect information g to the returner type F, A, describing the demands
subsequent computation is allowed to make on the returned value. With this augmentation, we
will show that the types Uy (FA) and F, (U B) can encode the graded monads and comonads
associated with effect and coeffect tracking.

Following this duality, this paper begins with two mirrored halves and then combines them.
The first part (Section 2) extends CBPV with effect tracking and shows how we can recover the
graded monad by grading the thunk type with latent effects. The second part (Section 3) extends
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CBPV with coeffect tracking and recovers a graded comonad by grading the returner type with
latent coeffects; we also discuss modifications to the system for resource tracking with coeffects
(Section 4). Finally, we combine the two systems and explore their interaction (Section 5). This
paper is best read in color: effects ¢ appear in red and coeffects ¢ in blue. Without these colorful
annotations, the type system and semantics are the standard rules of CBPV.

Along the way, we prove the following results about our extensions.

e We prove effect soundness for our effect-annotated extension of CBPV, demonstrating that
the type-and-effect system accurately bounds what happens at runtime. To do so, we define
an environment-based big-step operational semantics for CBPV instrumented to precisely
track effects during evaluation, and we use a logical relation to prove our soundness theorem.
(Section 2.3)

e We prove that the standard translations from call-by-value (CBV) and call-by-name (CBN)
lambda calculi to CBPV are type-and-effect preserving. Starting with a well-typed CBV or
(monadic) CBN program, we can produce a well-typed CBPV program with the same effects
as the source program. (Section 2.4)

e We prove coeffect soundness for a coeffect-annotated extension of CBPV, demonstrating that
the type-and-coeffect system accurately tracks the demands a program may make on its
inputs. We do so using an environment-based big-step operational semantics for CBPV, where
the environment has been instrumented to track coeffects during evaluation. (Section 3.1)

e We observe that our generic coeffect-tracking operational semantics behavior has strange
implications when reasoning about resource usage. Therefore, we adapt the rules of our
semantics so that it does not demand resources for discarded values, providing a better model
of how the program uses its inputs in this coeffect. (Section 4)

e We prove that the standard translations from both CBN and CBV to CBPV are type-and-
coeffect preserving for this updated coeffect system. Starting with a well-typed CBN or CBV
program, we can produce a well-typed CBPV program with the same coeffects. (Section 4.1)

e We combine the ‘tick’ effect and resource tracking coeffect together into the same CBPV type
system and prove combined versions of the results from each: type-and-effect-and-coeffect
soundness and type-and-effect-and-coeffect preservation of the standard translations from CBV
and CBN. We extend this system with a new rule that does not demand resources for unused
computations, when they are effect-free. Finally, we prove that our discarding semantics
produces the same result and has the same effects as our general semantics, justifying the
soundness of our resource accounting semantics. (Section 5)

We are not the first to extend CBPV with effect tracking and our type system is most similar to
Kammar and Plotkin [2012] and Forster et al. [2017]. However, all other definitions and results of
this paper are novel. In particular, we have found little work that explores the interaction between
CBPV and coeffects. Furthermore, while we are able use the standard translations to interpret CBV
and CBN in CBPV, designing the effect and coeffect systems so that these translations “just work”
is a contribution of this paper. Our approach to effect-and-coeffect soundness also differs from
prior work—we employ a novel environment-based big-step semantics for CBPV that leads to short
and straightforward proofs.

For simplicity, the effect systems in this paper only track clock effects, and the coeffect systems
only count variable usages. As a result, we do not explore more sophisticated interactions between
other forms of effects and coeffects, such as local and global state [Nanevski 2003], or between
information flow and nondeterminism, or between usage analysis and errors [Gaboardi et al. 2016].
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The results of this paper have been formalized in Coq and are available online' and archived on
Zenodo [Torczon et al. 2024b]. This document includes hyperlinks that connect each definition
and theorem to the appropriate source file in the mechanized proofs. For space, some parts of
our mechanization have been elided from this paper, but full details are available in an extended
version [Torczon et al. 2024a].

2 Call-by-Push-Value (CBPV) and Effect Tracking

In this section, we extend the type system of CBPV with effect tracking. Our modifications to the
base system, which are limited to reasoning about effect annotations ¢, are marked in red.

CBPV syntactically separates terms into values V, inhabiting positive types A, and computations
M, inhabiting negative types B, as shown by the following grammar.

value types A
computation types B

unit|U9r,B|A1><A2
A— B|FA|B,&B,

values V o u= x| {M}O|]|(V, V)
computations M == AxM|MV|V!|let(x,x)=VinN
| (M, My) | M1 | M.2 | returnV | x « Min N | tick

Values in CBPV mostly correspond to the values found in a call-by-value typed functional
language, such as unit and positive products of values. CBPV values also include suspended
computations, called thunks and written {M}. (Variables always represent values, so they are
always declared with value types in the context.)

Computations in CBPV include abstractions (Ax.M), applications (M V), elimination (forcing)
of thunks (V!), and positive product elimination (let (x;, x;) = V in N). In addition to positive
products, CBPV also includes negative products, of type B; & B;. These are introduced with a pair
of computations (Mj, M) and eliminated by projecting either the first or second component, i.e.
M.1 or M.2.

Values can be threaded through computations. The return V form injects a value into a trivial
computation. In the “letin” construct, written x «— M in N, the first subcomputation must evaluate
to the form return V, and the second computation can then reference V. An advantage of CBPV is
that this bind-like method of threading values through computations makes it readily extensible
with effectful language features. Levy [2003b, 2006, 2022] demonstrates how to add nontermination,
nondeterminism, errors, I/O, state, and control effects to CBPV. In each case, Levy extends the
language with new computations and modifies the operational semantics to account for the new
features.

For simplicity, we describe a single effect in this paper, the tick computation. This effect advances
a virtual clock in the operational semantics, simulating the cost of the program.

2.1 CBPV: Type-and-Effect System

Our type-and-effect system for CBPV is shown in Figure 1. Under some typing context I', this
system assigns a value type to values (I' ko7 V : A) and both a computation type and effect to
computations (I' ke M :¥" B), where ¢ is an upper bound on the effects that could occur during the
evaluation of M. The judgement for values does not need an effect annotation because values are
pure. In rule EFF-THUNK, the thunk type Uy B records the latent effect of a suspended computation.

Following Katsumata [2014], our system models effects using an arbitrary preordered monoid.
This gives us an identity element ¢, an associative combining operation ¢; - ¢, and a preorder

! https://github.com/plclub/cbpv-effects-coeffects/
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Thep VA (value effect typing)

EFF-PAIR
EFF-VAR EFF-THUNK [k Vit A
x:AeT Ty M ¥ B PEE-UNTT Thep Va: Ay
Thegx: A [rep {M}:Uy B [ ke () : unit T heg (V1, Vo) 1 Ay X Ay
Treg M S (computation effect typing)
EFF-APP ,
EFF-ABS ChggM ¥ A— B EFF-FORCE
T,x:Aregg M :/ B Thyp V:A Try V:U, B
Thep Ax.M ¥ A— B Theg MV ¥ B Trep VI 27 B
EFF-LETIN EFF-SPLIT
EFE-RET Trop M "' FA Theg V:AiXAy
Frep VA I,x:Arg N :* B T,x1: A1, %A beg N ¥ B
[ ke returnV :° FA I bef X — MinN 792 B T ke let (x, ) =VinN ¥ B
EFF-CPAIR EFF-FST ) EFF-SND
Tregp My ¥ By Threyp My ¥ By Tty M ¥ B &B; Treg M Y B &B,
T ke (M, M) ¥ By & By Thep M1 27 B Thgp M2 ¥ By
EFF-SUB )
EFF-TICK r "eﬁ M :</e>1 B (/T,)l S(ﬁ’ ¢2
T kg tick :"'“ Funit Trep M 72 B

Fig. 1. CBPV typing and effect tracking

relation <.y that respects the operation. We also include a primitive effect Tick produced by the
tick computation. However, the only parts of the system that are specific to this effect are the rules
for tick, which is our only effectful computation. All other rules are presented generically and
are adaptable to other effects and effectful computations (e.g. a Read effect produced by a read
computation).

Concretely, we could use the natural number monoid with the usual ordering, 0 as the identity
element ¢, and addition as the combining operation to have our type system perform a cost analysis.
Using 1 as our model of the Tick effect, the system would statically bound the number of ticks that are
evaluated. For example, the type system would tell us that the computation (tick, y « tick in tick)
advances the clock at most twice. If the first component of the pair is projected, the type system
overapproximates the effect produced during execution. Note that to track other behaviors with
our type system, we need only change our preordered monoid accordingly (e.g. we could track
possible effects with the power set monoid ordered by set inclusion).

Rules EFF-RET and EFF-LETIN motivate the choice of a monoid structure. Returning a value has
no effect, so the effect of return V should always be ¢. Rule EFF-LETIN must combine effects because
X < Min N is the only computation in our system with two subcomputations, both of which may
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prV W (Value closing)

EVAL-VAL-VPAIR

EVAL-VAL-VAR prVi |l Wy
X W ep EVAL-VAL-UNIT EVAL-VAL-THUNK pr Ve | W
prx | W prO U O pr{M} | clo(p, {M}) pH(Vi,V2) | (Wi, Wy)

Fig. 2. Operational semantics of CBPV with effect tracking

be effectful. Finally, because return and letin satisfy identity and associativity properties as the
building blocks of the CBPV monad, we need these same properties in our effect structure.

Rule £Fr-suB allows for imprecision in the type system. That is, an effect annotation ¢ on the
type of a program indicates that the program will have at most ¢ as its effect; it may have less.
If the type system determines that the computation will complete within 5 ticks, it is also sound,
but less precise, for it to say that it will complete within 7 ticks. Choosing the discrete ordering
(i.e. using equality for <,;) forces the type system to track effects precisely. Note that to allow the
discrete ordering, we do not assume ¢ <. ¢ from the effect structure. In other words, the type
system does not need ¢ to be the least effect, only an identity element for the combining operation.

This imprecision allows more programs to type check. In a program with branching, different
branches may have different effects. For example, in rule EFF-CPAIR, only one side of a computational
pair will ever be evaluated. However, for soundness, both computations must be typed with the
same effect (which may be an overapproximation due to subeffecting).

Unlike in effect systems for the A-calculus, the latent effects of function bodies are not recorded
in function types. Instead, they are propagated to the conclusion of rule err-aBs. This makes sense
because abstractions are not values in CBPV. From an operational sense, they are computations
that pop the argument off the stack before continuing [Levy 2003b].

2.2 Instrumented Operational Semantics and Effect Soundness

We next define a big-step, environment-based operational semantics for CBPV. Here, an environment,
p, is a mapping from variables to closed values, W, and can be thought of as a sequence of delayed
substitutions. Closed values include closures, i.e. suspended computations paired with closing
environments, as well as unit and positive products.

Olp,x—> W
O | clo(p, {M}) | (W1, Wa)

This semantics is new but straightforward. Past presentations of CBPV define its operational
behavior using small-step, big-step, or stack-based semantics, but all the ones we have found use
immediate substitution [Levy 2022]. We choose an environment-based big-step semantics for two
reasons. First, the big-step structure corresponds closely to the structure of the type system; there is
only one rule of the operational semantics for each rule of the type system. Together with the use of
environments, this semantics eliminates the need for substitution lemmas, leading to a remarkably
straightforward soundness proof (Section 2.3). Second, the environment lets us track the demands
that computations make on their inputs in our coeffect soundness proof (Section 3.1). For example,
with resource usage, we can include annotations in the environment that count how many times
the program accesses each variable during computation, mirroring the annotations in the context
in the type system. A substitution-based semantics does not support this instrumentation.

environments p
closed values W

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 310. Publication date: October 2024.


https://github.com/plclub/cbpv-effects-coeffects/tree/main/effects/CBPV/semantics.v
https://github.com/plclub/cbpv-effects-coeffects/tree/main/effects/CBPV/semantics.v

Effects and Coeffects in Call-by-Push-Value 310:7

pregg MU T#¢ (Computation rules)

EVAL-EFF-COMP-APP-ABS

p e M clo(p’,Ax.M) # ¢,

EVAL-EFF-COMP-ABS p FV u w p/ X w '_eﬁ M/ U T# (/52
Pt Ax.M || clo(p, Ax.M) #¢ Prer MV | T#py - ¢,
EVAL-EFF-COMP-FORCE-THUNK EVAL-EFF-COMP-RETURN
prV | co(p',{M})  p'ryyp M| T#¢ prV I W
pregp VI THo p bep return V || return Wi ¢

EVAL-EFF-COMP-LETIN-RET
p re M || Teturn W# ¢, p,x Wiy NI TH#¢,

pl—eﬂrx<—MinNU T#¢p1- ¢

EVAL-EFF-COMP-SPLIT

prV [ (W, W)

P, X1 Wi, xp > Wy kg N || T# EVAL-EFF-COMP-CPAIR
preglet (x,)=VinN| T#¢ p te My, My) || clo(p, (My, My)) # ¢
EVAL-EFF-COMP-FST EVAL-EFF-COMP-SND
P '_eﬁ M U CIO(P” <Mls MZ)) #(/)1 1% "eﬁ M U ClO(P/, <M1, M2>) #(/)1
p reg My | T#¢, P e My L T#6s
P Feff M1 T#¢:- o P"eﬁfMQUT#Q{)l’Qf)z

Fig. 3. Operational semantics of CBPV with effect tracking

Figure 3 shows the definition of the operational semantics. This semantics consists of two
relations. The first relation, written p + V' || W, uses the provided environment p to “evaluate” a
value V to a closed value W. This operation is essentially a substitution operation in that it replaces
each variable found in the value with its definition in the environment.

The second relation, written p Fef M UJ T#¢, shows how computations evaluate to closed
terminal computations, T. Closed terminals are computations that cannot step any further, such
as returned (closed) values and suspended abstractions and pairs. The effect annotation ¢ on this
relation counts the number of ticks that occur during evaluation of M. While suspended abstractions
and pairs resemble closures, they are not first class. Instead, they provide a convenient notation
describing the propagation of the environment during evaluation.

closed terminals T == return W | clo(p, Ax.M) | clo(p, (M1, My))

The operational semantics of the tick computation is trivial—it merely produces a unit value and
a single Tick effect. Other computations either produce no effect (as in rule EVAL-EFF-COMP-ABS)
or combine the effects of their subcomponents (as in rule EVAL-EFF-COMP-APP-ABs). As in the
type-and-effect system, the only rule that is specific to the Tick effect is the rule for tick. All other
effects in these rules are parameterized over the input monoid.
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While the type system allows for imprecision, the operational semantics precisely tracks the
effects of computation.

2.3 Type-and-Effect Soundness

We state our effect soundness theorem as follows: closed, well-typed computations of type F A
return closed values and produce effects that are bounded by the type system.

THEOREM 2.1 (EFFECT SOUNDNESS). If @ Fop M > FA then 0 Fef M || return W # $; where
([51 Sg//‘ §/)

The proof is simple and based on the following logical relation, consisting of three functions
defined mutually over the structure of types: closed values ‘W[A], closed terminal computations
T[B]?, and computations tupled with environments M[B]?.

Definition 2.2 (CBPV with Effects: Logical Relation).

WI[U; B] = {do(p,{M}) [(p,M) € M[B]’}

W unit] = {0}

(WHAI XAz]] = { (Wl, Wz) | W, € (WﬂAlﬂ and W, € (W[[Agﬂ }

T[FA]? = {return W | W e W[A]andp = ¢}

T[A— B]* = {clo(p,Ax.M) |forallW € W[A], ((p,x+— W),M) € M[B]? }
T[Bi&Bs]” = {clo(p,(My, M) | (p,M) € M[B]? and (p,My) € M[B,]” }

M[B]? = {(p,M) |preg MU T#¢: and T € T[B]and ¢1 - ¢» <oy ¢ }

We use this relation to define semantic typing for environments, values, and computations.
Definition 2.3 (CBPV with Effects: Semantic Typing).

TEep = x:A el impliesx+— W € pand W € W[A]
TEgpV:A TEepimpliesprV || Wand W € W[A]
I'egg M Y B T & p implies (p, M) € M[B]?

Using these definitions, we can prove semantic typing lemmas corresponding to each of the
syntactic typing rules shown in Figure 1. These proofs require our assumptions about the monoidal
structure of effects: that ¢ is an identity element for the associative combining operation.

With these lemmas, we show the fundamental lemma as a straightforward induction.

LEMMA 2.4 (FUNDAMENTAL LEMMA: EFFECT SOUNDNESS).

(1) IfT ke V: AthenT ko V@ A

(2) IfT +eg M % BthenT kg M ¥ B.

The effect soundness theorem (2.1) follows from the second clause of this lemma, after instan-
tiating ' with the empty context and B with F A. Unfolding the definition of @ k. M Y FA

gives us some ¢; and ¢ such that O oy M || T#¢; and T € T [FA]" and ¢, - ¢, <. ¢. Further
unfolding definitions means that T must be return W, ¢, must be ¢, and thus ¢, <. ¢.

2.4 Type-and-Effect Preserving Translations

Levy [2006] provides translations from call-by-value (CBV) and call-by-name (CBN) A-calculi to
CBPV and shows that those translations preserve types, denotational semantics, and (substitution-
based) big-step operational semantics. We show here that those translations also preserve effects.
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For the CBV translation, we start with a A-calculus that has a simple type-and-effect system,
loosely based on Lucassen and Gifford [1988]. However, as few CBN languages directly include
effects, for the CBN translation we start with a simply-typed A-calculus that encapsulates effects
using a graded monad. Furthermore, we show that we can use this same monad with the CBV
translation because effects are encapsulated.

24.1 CBV Type-and-Effect System. The simple CBV language with effect trackingin this subsection
features the same tick term and Tick effect as before, along with the usual forms of the A-calculus.?

LAM-EFF-APP

®3

LAM-EFF-ABS P

LAM-EFF-VAR P Trpea n1>0n
Fximikepe’ o

x:r el LAM-EFF-TICK

T Fefr €2 P2 T1

Cregx:r [ b Axe: 7 5 T Theerer ARZR I [ kg tick ik ynit

Function types, written 7y i T, are annotated with latent effects, which occur when the function
is called. In the application rule rule LAM-EFF-APP, this latent effect is combined with ¢, the effects
that occur when evaluating the function e; to a A expression, and ¢,, the effects that occur when
evaluating the argument to a value.

The CBV type and term translations follow directly from Levy [2022]. Besides adding a case for
the tick expression, the only change that we make is moving the latent effect from the function
type to the thunk type. All other cases are exactly as in prior work. Because of this, we only show
the translation for function types and the tick expression.

Type translation Term translation
I . s
[r1 = ]y =Uy ([u]v = F=]v) [tick]y = tick

This translation preserves types and effects from the source language.
LEMMA 2.5 (CBV TRANSLATION Is TYPE CORRECT). IfT ke €:” 7 then [y ke €]y ¥ F[c]s.

This result is easy to prove, reassuring us that our effect system design is correct: we can use
CBPV to encode the well-studied type-and-effect systems developed over the past 40 years.

2.4.2 Graded Monads. CBPV is designed to serve as a convenient translation target for both CBV
and CBN languages. However, in CBN languages, effects are usually® tracked using parametric
effect monads, also known as graded monads [Katsumata 2014; Orchard and Petricek 2014; Smirnov
2008; Wadler and Thiemann 2003]. Therefore, here we translate a CBN language with graded
monads to CBPV. Our source language for this translation is the simply-typed A-calculus with unit
and products, together with a graded monadic type T, 7, the monadic operations return and bind,
and the tick operation, with a monadic type. To account for imprecision, we include an explicit
type coercion, written coerce e for the graded monad.

LAM-MON-RETURN LAM-MON-BIND
Tvrpone:t I Fmone1: Ty, o [,x:71 bmon €2: Ty, T2
I Fpon Teturne : T, 7 [ Fmon bindx = ejiney : Ty, .4, T2

2 For space, we elide the typing rules for unit and products. These rules are available in the extended version [Torczon
etal 2024a]. 3 Instead of graded monads, we could also consider a translation from call-by-name language that does not
encapsulate effects, such as the one defined by McDermott and Mycroft [2018].
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LAM-MON-COERCE

LAM-MON-TICK ) o
I'bmone:Ty, T P1 e P2

T Fon tick : T unit I’ Fpon coercee: Ty, T

Below, we extend Levy’s translation of the CBN A-calculus to include the graded monad. The
translation of the core language is as in prior work and all effects are isolated to the monadic type,
so we only show the monadic portion in the figure.

Type translation

[Ty 7l = F (U, F (U, [r]a)

Term translation

[return e]y = return {return {[e]x}}

[bind x = e; ine;]y =return{x « (y « [e;]xiny!) inz « [e;]y in 2!}
[coerce €]y =return {x « [e]yinx!}

[tick] = return {x « tick in return {return x}}

This translation preserves types (with embedded effects) from the source language. Note that,
because the monadic type marks effectful code, the translation produces CBPV computations that
can be checked with the “pure” effect ¢.

LEMMA 2.6 (CBN TRANSLATION IS TYPE CORRECT). IfT Fpopn €: 7 then [Ty e [e]y © [7]n-

One difficulty of this translation is that the monadic type in the CBPV adjunction is U F. This
type is a value type, and the standard CBN translation produces terms with computation types.
Therefore. to use U F as the monad in our CBN translation, we need to bracket it: on the outside
by F to form a computation type, and then on the inside by U to construct the value type that the
monad expects. This bracketing produces an awkward translation of the monadic operations with
doubled thunking. This awkwardness is due to the presence of the monad in the source language;
it is a separate structure from the ambient monad of the computation language.

3 CBPYV and Coeffects (Version 1: General Semantics)

Next, we construct a parallel extension of CBPV augmented with coeffect tracking. Figure 4 lists the
typing rules, with coeffect annotations in blue. Coeffect systems are designed for reasoning about
how programs use their inputs, so we annotate variables at their binding sites and in the context.

Coeffects annotations consist of grades q taken from a preordered semiring. This structure provides
an addition operation q; + ¢, an additive identity element 0, a multiplication operation ¢; - g, a
multiplicative identity 1, and a reflexive and transitive binary relation <, that respects addition
and multiplication. (The preorder does not have to be the one defined by the addition operation.)
The need for a semiring rather than a monoid arises from the fact that any value may be bound to
a variable that may then be used multiple times, requiring a notion of coeffect multiplication.

Similarly to the previous section, our type system in this section is general across coeffects and
can be specialized via the choice of semiring and preorder. For example, if we are only concerned
with relevance analysis (i.e. determining which of a functions inputs are relevant to computation)
then we might use a semiring with two elements: 0 marks inputs that are known to be unused and
1 is for elements that may or may not be needed. Or, in the case of information flow, then we might
use a semiring where 0 marks secret inputs and 1 marks public information; only the latter may
influence the result of the computation.

We would also like to use coeffects to track resource usage. However, as we discuss in detail
below, this general semantics does not provide a satisfying account of resource usage and requires
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VT beoer VA (value coeffect typing)

COEFF-THUNK

COEFF-VAR YF "Coejf M:B COEFF-UNIT
0Ty, x: A0 begep x: A YT Fegef {M} : UB 0-T Feoer () ¢ unit
COEFF-PAIR COEFF-VSUB
yi-T Fcoeff Vit Ay yo-T Fcoeff Vot Ay y"T Fcoeff V:A Y <V
yi+y2 T Fcoeff (V1 V2) 1 Ap X A y-T Fcoeff V:A
VT beoef M : B (computation coeffect typing)
COEFF-ABS COEFF-APP
yT,x:7A Fcoeff M:B V1T Feoep M : AT — B COEFF-FORCE
q/ Scoq YZF '_coeﬁf V:A yF "coeﬂ V:UB
VT Feoefr AxIM: AT > B Yi+ (g y2) T reep MV : B YT Feoef V! : B
COEFF-SPLIT COEFF-RET
yl-F Fcoeﬁf VZA]XAZ )/Q'F,xl = Al,xg A Ag FcoeﬁfNZB yF Fcoeﬁ V:A
(q-y1) + 2T Feoer caseg Voof (x1,x) — N:B g yT beoef Teturn, V: F, A
COEFF-LETIN COEFF-CPAIR
yl-l" Fcoeff M: FQ1 A Yz'r,x A A F coeff N:B yT Fcoeff M : B; yI‘ F coeff M, : By
(Q2 : }/1) + YZ'F Foeff X «—%“ MinN:B y-T F coeff <M15M2> : B &B;
COEFF-CSUB
COEFF-FST COEFF-SND VT Feoefr M : B
y-T Fcoeff M: By &B; y-T Fcoeff M : By &B; Y Zco )/’
VT Feoep M.1: By VT Feoep M.2 2 By VT Feoep M : B

Fig. 4. CBPV type system with coeffect tracking

further refinement in the next section. Therefore, we first describe the general semantics in terms
of the resource usage coeffect, so that we can prepare for this discussion.

In the case of resource usage, grades bound the uses of variables, as in bounded linear logic, and
come from the natural number semiring with the usual addition and multiplication operators. The
additive and multiplicative identity elements of this semiring mark 0 and at most 1 (affine) use of a
variable respectively, and the addition and multiplication semiring operations calculate the total
number of times each variable is used in the program.

As in many systems for bounded linear logic, ¢; <., ¢. indicates that g, is less precise or less
restrictive than ¢;. When counting variable usage, this has the opposite order from the usual one—we
have 3 <., 2 because allowing at most 3 uses is less restrictive than at most 2. With other coeffects,
such as security levels, this ordering has a more intuitive interpretation: a higher grade corresponds
to a higher security level, which is more restrictive than a low security level.

Like the effect system with subeffecting, this type system includes a rule for subcoeffecting: if a
judgment holds with some annotation g, on a variable in the context, then it is also derivable with
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any q; <. (. For example, we can weaken a judgment that a computation makes zero (0) uses of
some variable to observe at most one use (affine) or any other number. This corresponds to the
usual weakening lemma from typed A-calculi.

Again, as in the effect section, including a preorder with the semiring allows for imprecision,
needed when analyzing branching computations. For example, if one branch requires 1 use of a
variable x, but the other branch requires 0 uses, the system will record that the program must have
the resources to use x at least once, because 1 <., 0, in a semiring where 1 corresponds to affine
usage. This relation is dual to the preorder’s role in the effect system—if one branch ticks once and
the other does not tick, then the system will record at most one tick. In both cases, replacing the
ordering with the discrete preorder means that the type system must be precise and would reject
both of these examples.

The type system uses a grade vector y, a comma-separated list of grades, to represent the
annotations for the variables in a typing context. When combined with a typing context I', written
y-T, the grade vector must have the same length as I'. We extend a combined grade vector and
typing context simultaneously with the notation y-T', x : A, equivalent to (y,q) (T, x : A).

The grade vector written 0 contains only zeros and is used where its length can be inferred from
context. Grade vectors of the same length can be added together pointwise, written y; + y», and
compared pointwise, written y; <., y2. Grade vectors can also be pointwise scaled, written q - y.

The basis of this system is rule COEFF-vAR. When introducing a variable x, the context must
grade x with 1, indicating that it is used once. No other variables in the context should affect the
typing judgement, so they must have grade 0. Similarly, the unit value () can make no demands on
the environment, so rule COEFF-UNIT requires that all variables in the typing context be graded 0.

In rule COEFF-THUNK and rule COEFF-FORCE, there is a single subterm that makes exactly the
same demands on its environment as the term in the conclusion, so we use the same grade vector
in the conclusion and the premise.

In other rules, the term in the conclusion has multiple subterms, so we combine the demands
made by each. In rule COEFF-PAIR, the subterms both get evaluated and do not directly interact, so
we combine their grade vectors via simple pointwise addition. Conversely, with negative products,
the two subterms must use the same resources, so we use the same grade vector in each premise
and the conclusion. Intuitively, this is because we can only ever project out one subterm from a
computation pair (see rule COEFF-FsT and rule COEFF-SND), so the projected term will make all the
same demands on the environment as the pair.

In rule coEFr-aABs, we know from the premise that M will require a grade of g on x, so we store
that grade as an annotation on x in the term syntax. For flexibility, we allow the annotation in the
type, ¢, to be a less precise approximation of g. (This expressiveness is useful for the translation
results in the next section. Note that subcoeffecting is not sufficient as it cannot allow the annotation
on the A to differ from the annotation on the function type.) Both the premise and the conclusion
make the same demands on the variables in T, so y is otherwise the same in both.

In some rules, we must combine the grade vectors of subterms using both scaling and addition.
For example, in rule COEFF-APP, y; denotes the demands the operator M makes on the environment,
and y; denotes the demands the argument V makes. M has type A? — B, indicating that when it
is reduced to some terminal Ax? .M’, then M’ will require x to have a grade of ¢’, where ¢ <., ¢'.
This means we must scale y; by ¢ before adding it to y, to calculate the total demands that M V
makes on its environment.

In the effect system, we annotate the type Uy B with the effect of the suspended computation. In
the coeffect system, we dually annotate the returner type F, A. In our resource usage example, the
q indicates that we require enough resources from the environment to produce g copies of a value.
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For example, return; V indicates that we require the resources to create 3 copies of V. Therefore,
rule COEFF-RET scales the demands needed to create V by q.

In rule COEFF-LETIN, M has returner type F,, A, and its result value has been scaled by g;.
However, the expression includes another scaling annotation ¢, that allows duplication of the
computation M itself. If y; denotes the demands M makes on its environment, ¢; - g, denotes the
grade N requires x to have, and y; denotes the demands N makes from the rest of the environment,
then we need q; - y; + y» to type the entire term.

The scaling annotations in return, V and x < M in N increase the expressiveness of the
language and are required for the translation of a CBV A-calculus to CBPV described in Section 4.1.2.
Because CBYV is strict, when translating an application, we must use a let binding to evaluate the
translated argument before applying the translated function to it. However, the function may
require a particular grade ¢ on its argument, so we must be able to scale this computation. Similarly,
to translate the graded CBV comonadic type, we need to be able to duplicate values.

The two subsumption rules COEFF-vsUuB and COEFF-csuB allow for subcoeffecting.

3.1 General Instrumented Operational Semantics and Coeffect Soundness

Next, we develop an instrumented operational semantics, shown in Figure 5, that tracks coeffects
using an environment p, which maps variables to closed values, and a grade vector y of equal
length, which implicitly maps variables to their coeffects. As before, we extend both a grade vector
and corresponding environment simultaneously with the notation y-p, x —9 W, equivalent to
(r.9)-(p,x = W).

We also use W as a metavariable for closed values and T as a metavariable for closed terminal
computations. However, closed terminals include coeffects here. They have the form return, W,
clo(y-p, Ax?.M), or clo(y- p, (M1, Mz)), where clo(y-p, M) denotes the closure of M under y-p. The
grade vector in the closure indicates the demands on the variables used by M.

Unlike our instrumented operational semantics for effects, which calculates the exact effect of a
computation, this semantics cannot track coeffects with precision. For example, suppose we have a
term Ax'.M where M is a computation that both branches on its argument and uses it in at exactly
one branch, such as case; x of inl x; — returnx;inr x, — returninr (). * What should this
step to? If provided with an argument of the form inl y, it should step to clo(x —' inl y, Ax'.M).
If provided with an argument of the form inr y, it should step to clo(x " inr y, Ax'.M). But, if
this term is the entire program, it is not clear what it should step to. In general, depending on the
argument, the body of a function Ax?.M may require a different exact grade on x; all we know
from the typing judgement is that ¢ must be a bound on that usage. We cannot write a precise rule
for evaluating abstractions to their closed terminal forms, because we do not have access to the
argument yet when doing that evaluation.

Therefore, as in the typing rules, the operational semantics also includes rules for subcoeffecting,
rules EVAL-COEFF-VAL-VSUB and EVAL-COEFF-COMP-CsUB. These rules say that if we can step a term
with grades given by y attached to the environment, then we can step it with y’ for any y" <., v,
i.e., any less precise accounting.

As in the semantics for CBPV without coeffects, we define “evaluation” of values using the
given environment (see Figure 5). These rules mirror the typing rules: rule EVAL-COEFF-VAL-VAR
requires the evaluating variable to have 1 as its corresponding grade and all other variables to
have 0; rule EVAL-COEFF-VAL-UNIT requires that every variable be graded with 0; rule EVAL-COEFF-
VAL-THUNK simply includes the grade vector in the closure along with the environment, and
rule EVAL-COEFF-VAL-VPAIR sums the grades needed to evaluate subterms to their closures.

4 The system in our extended version [Torczon et al. 2024a] and Coq development includes sums.
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YPreoeg VIW (Value rules)
EVAL-COEFF-VAL-VAR EVAL-COEFF-VAL-UNIT
61',01, x ! w, 62'/32 Feoeff X w a'P Fcoeff 040

EVAL-COEFF-VAL-VPAIR

V1P Feoeff Vil w Y2 P Feoeff Vol W
Y P Fcoeff {M} | clo(y-p, {M}) Y1 +Y2 P Feoeff (V1, Vo) | (W, W)

EVAL-COEFF-VAL-THUNK

EVAL-COEFF-VAL-VSUB

V1P Feoeff Vv ll w Y2 <co Y1
V2P Feoeff Viw

VP Feoeg MUT (Computation rules)

EVAL-COEFF-COMP-ABS

q/ SL‘U q EVAL-COEFF-COMP-CPAIR
VP Feoeff Ax?.M || clo(y-p, qu/-M) Y P Fcoeff (My, My) || clo(y-p, (My, M))
EVAL-COEFF-COMP-APP-ABS EVAL-COEFF-COMP-SPLIT
V1P Feoeff M CIO(Y"P', Ax?.M") V1P Feoeff VI (W, Wa)
V2P Feoeff Viw Yorp, x1 =T Wi, x 7 W, Fcoeff NUT
Vop' s x o Wheeg M UT Yy =yi+q- )2 Y=Eq-y1+y2
VP reoegg MV T VP Feoer case; Vof (x;,x) — N T
EVAL-COEFF-COMP-RETURN EVAL-COEFF-COMP-FORCE-THUNK
Y-p |'coeﬁf Vv U w Y-p |'coeﬁf Vv U Clo(}/'l)’, {M}) }/'P/ "coeﬁf M U T
q Y- p Feoe Teturn, V || return, W VPl VI T
EVAL-COEFF-COMP-LETIN-RET EVAL-COEFF-COMP-FST
V1P Feoeff M| returng, w Y P Feoeff M| 010()/",0', (My, My))
Yorp, X I W Fcoeff N U T }/’P’ Fcoeff M, U T
QY1 ty2p l'cc)e]]'rJC(_qZ]\/Iin]\]l,lT VP Feoeff M1 T
EVAL-COEFF-COMP-SND EVAL-COEFF-COMP-CSUB
VP Feoer MU clo(y'-p', My, Mz)) v p" beoep Mo U T VPt MUT vy <oy
VP Feoeff M2|T VP Feoeff MUT

Fig. 5. Instrumented operational semantics

Figure 5 also shows computations. Rules EVAL-COEFF-COMP-ABS, EVAL-COEFF-COMP-FORCE-THUNK,
EVAL-COEFF-COMP-CPAIR, EVAL-COEFF-COMP-FST, and EVAL-COEFF-COMP-SND are largely the same
as before, just with the inclusion of grade vectors along with environments.

In rule EVAL-COEFF-COMP-RETURN, we scale the grade needed to evaluate the subterm to its
closure by g. In the elimination rules EVAL-COEFF-COMP-APP-ABS, EVAL-COEFF-COMP-LETIN-RET, and
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EVAL-COEFF-COMP-SPLIT, if we are eliminating a value V and binding it to a variable x with a grade
q for use in some computation M, we must scale the grade vector needed to evaluate V by q before
adding it to the grade vector needed to continue with M, as in the typing rules.

We prove a coeffect soundness theorem stating that if a term is well-typed with some grade
vector y, then given y and some environment p that provides values of the correct type for all free
variables, it can evaluate to a terminal. Because both values and computations make demands on
their inputs, we state this property for both. We formalize the requirement on p as I’ E p in our
logical relation below, and this theorem follows immediately from the fundamental lemma.

THEOREM 3.1 (COEFFECT SOUNDNESS). Let I' be a context and p an environment mapping all
variables in the domain of T to closed values of the expected type, such thatT E p. Then:

(1) Ify T beoep V: Atheny-p beoep V I W for some closed value W.
(2) If YT Feoep M : Bitheny-p beoep M || T for some closed terminal computation T.

The proof of coeffect soundness is similar to the proof of effect soundness, and requires a similar
logical relation.

Definition 3.2 (CBPV with General Coeffects: Logical Relation).

W[UB] = {co(y-p.{M}) | (y-p.M) € M[B]}

Wunit] = {0}

(W[[Al XAzﬂ = { (Wl, Wz) | W, e (W[[Al]] and W, € (W[[Az]]}

T [F, A] = {return,W | W e W[A] }

TJAT - B] = {clo(y-p,Ax?.M) | forall W € WI[A], ((y-p, x =7 W),M) € M[B] }
TIB &B] = {clo(yp.(MyM) | (-p.My) € MIB)] and (y-p, My) € MIB] }
Closures

(V[[A]] = { ()/‘,D, V) | VP Feoeff VIiWand W € (W[[A]] }

MIB] = {(y-p,M) [V-preeg MU TandT € T[B] }

Definition 3.3 (CBPV with General Coeffects: Semantic Typing).
Tep = x:A € Timplies exists W, x> W € pand W € W[A]
VT Feoep Vi A forallp,T & p implies exists W, y-p teoep VI Wand W € W[A]
YT Ecef M:B = forallp,T & p implies (y-p, M) € M[B]

We can now state the fundamental lemma, which derives the soundness theorem as a corollary.

THEOREM 3.4 (FUNDAMENTAL LEMMA: COEFFECT SOUNDNESS). For all y, T, if y-T ke V @ A then
VT Eep Vi A, and for ally, T, if y-T beger M : Bthen y-T Eeoqr M : B.

We can show 3.1 by unfolding the definitions of y-T' Eoer V @ Aand y-T Eeoer M : B, which give
us the desired evaluations.

3.2 A Strange Semantics?

The operational semantics and soundness proof in this section work for any instantiation of the
coeffect semiring. However, this semantics has strange implications for the resource usage coeffect.
Here, the soundness theorem should say that if y-p ke M || T, then the evaluation of M used its
variables at most the number of times indicated by y. If y says that a variable x has grade 0, then
there should never be a use of rule EVAL-COEFF-VAL-VAR with the variable x.
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yIvinM:B (Modified typing rule)

LIN-LETIN
qd = q]1 yi-TrinM:F, A v2rT,x: 7 Avp, N: B

(¢ y)+y2Trimx <" MinN:B

yprimMUT (New and modified computation rules)

EVAL-LIN-COMP-APP-ABS-ZERO
yoprimMUco(y -p Ax"M)  (Vp), (x" Db MU T
Y*P Flin MV U T

EVAL-LIN-COMP-SPLIT-ZERO

yp, xi’ g, e fh NUT

EVAL-LIN-COMP-RET-ZERO

0-p by, Teturny V |} return 4 y-p bin casey Vof (x;,%) — N T

EVAL-LIN-COMP-LETIN-RET
qg = q2 1 Y1p Fiin M || return, W vorp, x 8T Wy N T

g yi+ysprinx =" MinN{|T
Fig. 6. Typing rules and instrumented operational semantics for resource tracking

But, on closer examination of the operational semantics, this is not exactly what this soundness
theorem implies. Consider the following example:

x " U (F unit) Feoeff 21 <" x!in return; () : F; unit

x! does not contribute to the final result, and the resources used in its evaluation are accordingly
multiplied by 0 when we calculate the grade for x in the context. However, our semantics evaluates
x once here using rule EVAL-COEFF-VAL-VAR, violating the principle we described above.

More generally, we encounter this issue with any rule in the operational semantics that scales
resources based on some annotation in the terms. For example, in rule EVAL-COEFF-COMP-APP-
ABs, the resources used by the evaluation of the argument y, are scaled by ¢, the grade on the
function argument. The total resources of the application y must equal this scaled vector plus yq,
the resources used to evaluate the function - i.e., we must have y = y; + ¢ - y». What if ¢ is 0? The
resources needed to compute the argument are then not accounted for in y. This suggests that we
should not evaluate the argument at all in this case, so we need to adjust our operational semantics.

4 CBPV and Coeffects (Version 2: Resource Tracking)

In this section, we discuss how, with a few additional axioms, we can modify our instrumented
operational semantics and type system to produce a better model for resource tracking. Our goal is
to ensure that we never evaluate values and computations without including their resource usage
in the final count. The modifications that we discuss here are summarized in Figure 6. We use the
judgements y-T' +j, M : Band y-T Fj, V@ A to refer to the modified typing rules of this section and
vp Fiin M || T to refer to the modified operational semantics, highlighting the connection between
resource usage coeffects and bounded linear logic.

First, we axiomatize that the semiring is nontrivial. If 1 = 0, resource tracking via grades is
meaningless, and our general semantics degenerates to standard CBPV. Second, we require that
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if0 <, q1+¢q thenq, = 0and g, = 0.]If either subterm in a value pair requires nonzero
resources, we should not be able to evaluate the pair with no resources. Finally, for similar reasons,
we require that there be no nonzero zero divisors in the semiring, i.e.,if 0 = ¢; - go, theng; = 0
or g = 0.Semirings that satisfy these additional constraints include natural numbers, with their
usual or discrete orderings, or the {0, 1, 0} semiring that tracks whether inputs are unused, only
used linearly, or with any usage. Note that 1 is incomparable to 0 in this semiring.

In this system, the 0 grade denotes that the corresponding variable is inaccessible, i.e., used 0
times, so anywhere we eliminate a value and bind it to an inaccessible variable (or return a value
with grade 0), we require special treatment. Rules EVAL-COEFF-COMP-APP-ABS, EVAL-COEFF-COMP-
RETURN, and EVAL-COEFF-cOMP-SPLIT all have this property, so we modify these rules to require
that the relevant grade be nonzero. We also add new rules that apply when the grade is zero. These
rules, shown in Figure 6, discard the unused value V without evaluating it and use a new, untyped,
closed value ¢ in place of the result of evaluating V. Because values are pure, discarding an unused
value does not alter any effects of the program.

However, rule EVAL-COEFF-COMP-LETIN-RET requires special consideration. Unlike in the rules
above, which discard values, this rule discards a computation — but because that computation could
be effectful, this could change the semantics in unintended ways. Following related work [Dal Lago
and Gavazzo 2022; Gavazzo 2018], we reconcile this by adding a notion of ¢ || 1, which is equivalent
to ¢ when ¢ is nonzero and 1 otherwise. We continue to allow the syntax of the term itself to
contain any gz, but the rest of the typing rule refers to ¢; || 1 instead. (All other typing rules stay the
same.) The evaluation rule, rule EVAL-LIN-COMP-LETIN-RET, follows the same pattern (see Figure 6).
Note that this modified evaluation rule introduces a new source of imprecision: we may consume
resources to evaluate code without ever using its result, making our final resource accounting more
of an overapproximation.

With these modifications, we update our logical relation with a special case for zero resources
below. For brevity we show only the changes.

Definition 4.1 (CBPV with Resource Coeffects: Logical Relation).

Closed graded values
Wi[A] = {¢}
W, [A] = W[A] whenq # 0

Closed terminals
TF, A] = {return,W | W e W,[A]}
T[A? - B| {clo(y-p, Ax?.M) | forall W € W, [A],
((y-p, x =7 W),M) € M[B] }

Furthermore, we update our semantic typing relation for environments to also include a special
case for zero; in this case the environment need not have a closed value for that variable. (The
remaining definitions do not change other than to use the resource accounting operational semantics.
In particular, ‘V[A] still requires the resulting closed value to be in ‘W[A].)

Definition 4.2 (CBPV with Resource Coeffects: Semantic Typing).
vy Tep = x9A € yTimpliesq = 0or(x+—> W € pand W € W[A])

With these updates, we again prove the fundamental theorem. As in the previous section, if we
unfold the definitions above, this theorem gives us exactly the soundness theorem we would like.

THEOREM 4.3 (FUNDAMENTAL LEMMA: RESOURCE SOUNDNESS). Forally, T, ify-T' ki V 1 A, then
Y T En VA andforally,T,ify-T vjjn M : B, theny - T Ej M : B.
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Fig. 7. CBN with coeffect tracking
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Fig. 8. CBV with coeffect tracking

We can also use this theorem to reason about unused variables. For example, suppose we type
check some computation M in the context of an inaccessible variable x. Instantiating the theorem
above with this context assures us that evaluation succeeds even when variables are mapped to 4
in the environment.

COROLLARY 4.4 (INACCESSIBLE VARIABLE EXAMPLE). For all M and B, if x % A vy M : B, then there
exists some T, such that x —° 4 v, M | T.

Because the operational semantics does not include any rules for evaluating 4, we can conclude
that 0-marked variables are never used by the operational semantics. Furthermore, there are no
assumptions about the structure of / values, so we can discard them during computation.

4.1 Translation Soundness

As with effects, we explore the translation of coeffect-aware CBN and CBV A-calculi to CBPV.
As in our CBPV extension with coeffects, the source type systems are parameterized by a pre-
ordered semiring structure of coeffects and combine the typing context with y, a vector of coeffect
annotations that describe the demands on each variable.

The type-and-coeffect system that we consider as the starting point of our CBN translation
is adapted from the simple type system of Choudhury et al. [2021] and is similar to the system
developed by Abel and Bernardy [2020]. The differences between this source language and the
related work are minor. The design of our CBV language is inspired by Dal Lago and Gavazzo
[2022]. To make the comparison clear, we present it as a standard CBV lambda calculus instead
of fine-grained CBV. Other changes to the language include the introduction of subcoeffecting,
allowing functions to take g copies of their argument instead of one (and annotating applications
with ¢), and replacing g A 1 with g || 1 to force the evaluation of subterms. (We choose ¢ || 1 over
g A 1 to avoid requiring the existence of g A 1 as an axiom of the semiring. The difference is minor.)
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The rules for the CBN version of the system appear in Figure 7; the rules for the CBV version are
in Figure 8. Most of the rules parallel those of the corresponding terms in CBPV; for brevity, then,
we show only the rules for application, boxing and unboxing here. The two languages differ in the
application rule. In CBV, we annotate applications with the number of times the function uses its
argument. Because the argument will always be evaluated once in CBV, if g is zero, we force it to
be one.

These latter two terms introduce and eliminate the modal type O, 7. The introduction form
requires grade g on its argument. When we unbox the argument, the second subterm has access
to it with grade ¢; - ¢2. The g; comes from when the box was created, and the g comes from the
unboxing term, as in let bindings in CBPV. In CBV, we use letin in both translations, so we include
¢ || 1 in both rules in an analogous way to its use in rule cOEFF-LETIN. In CBN, we use letin in
the translation of unbox but not box, so we can drop ¢ || 1 from the typing rule for box. This
imprecision makes sense in the source languages for the same reason it makes sense in CBPV:
because we are combining effects and coeffects, we sometimes need to evaluate subterms for their
effects even if the results of those subterms are never used.

4.1.1 Call-by-Name Translation. We first consider a call-by-name translation to CBPV. For brevity,
we show just the translation of function and box types on the left below and the translation of
applications and the box and unbox terms on the right.

q_, . _ Sz [[61 62]]N = [[elﬂN {[[eZHN}
q "IN q N [unbox, x = e; in e,y = x <7 [e]y in [er]x

In this translation, the coeffect on the A-calculus function type translates directly to the coeffect
on the CBPV function type. Furthermore, the modal type O, 7 is a graded comonad, so it can be
translated to the comonad in CBPV, adding the grade to the returner type.

The CBN translation of A terms is as usual. However, the translation of the box introduction
and elimination forms follows from the definition of the CBPV comonadic type. To create a box,
we return the thunked translation of the expression. To eliminate a box, we use letin to move the
thunk to the environment.

4.1.2  Call-by-Value Translation. Next, we define a corresponding CBV translation to CBPV. For
brevity, we again show only the translation of function and graded modal types and of applications
and the box and unbox terms.

[} = ]y =U([a]¥ - Fi [z]v)

(=P % =U(F, [r]v)

[ei7e:] =x ' [e;]viny <7 [e]]yin x! y
[box, e]v = x <7 [e] in return; {return, | ; x}
[unbox, x = e; in e;]y =y <7 [er]y in x <7 ylin [e]y

As above, we propagate the coeffect from the A-calculus function type directly to the CBPV
function type. Similarly, we propagate the grade in the modal type to the inner returner type and
let binding in CBPV.

For applications, we use let bindings to access the translations of the function and the argument.
The argument is not thunked in translation, so it is strict, but the function is thunked in translation,
so we must force it before applying it. box is also strict in CBV, so its translation first evaluates
its argument. The rest of the translation follows its type definition. In CBPV, the computation
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x «' M in return; x is equivalent to M, but the computation x <% M in return, x corresponds
to duplicating M g times in a resource usage coeffect. This propagation of the grade is exactly the
feature that we need to translate the box term. Like the CBN translation of the modal type, in the
CBYV translation, the comonadic type is difficult to access. In this translation, box must include an
extra thunk that is forced in the translation of the unbox term, giving us access to the comonadic
type F U. We must also use the annotation capability of letin (twice) to mirror the annotation in
the source language. The correctness proofs for both the CBN and CBV translations follow from
the corresponding proofs of the combined system (taking the trivial effect).

5 Combined Effects and Coeffects

Next, we present a system that tracks both effects and coeffects, by combining the effect system of
Section 2 with the resource usage system of Section 4, and adding one new rule.

Definition 5.1 (Combined type system). The judgements y-T' +py V: Aand y-T by M % Brefer
to the CBPV type system with effect annotations from Figure 1 and coeffect annotations (resource
tracking version) from Figure 6.°

This type system is a straightforward combination of the systems presented earlier. For example,
the typing rule FULL-LETIN combines rule EFF-LETIN with rule LIN-LETIN and includes both the
grade vector g, - y1 + v, and the effect ¢, - ¢, for the computation.

FULL-LETIN , )
¢ = @ll1 yiTrun M " Fy Ay Tox % Avgy My B

(¢ - y1) +v2-T kg x <% My in My 2772 B
Similarly, we augment our instrumented operational semantics to track both effects and coeffects.
Definition 5.2 (Combined Resource Semantics). The judgements y-p by V | Wand y-p by M |

T # ¢ refer to the CBPV operational semantics with effect annotations from Figures 2 and 3 and
coeffect annotations from Figure 5, with updates for resource tracking from Figure 6.

For example, the letin evaluation rule computes the instrumented grade vector and effect and
requires that the computation M be evaluated at least once, as in rule EVAL-LIN-COMP-LETIN-RET.

EVAL-FULL-COMP-LETIN

% =ql1 Yi'p b M | returng, W# ¢, Yorp, X 1 W Fran N | T# ¢

g yi+yepranx <P MinN || T#¢, - ¢,

We can use this operational semantics to show both effect and coeffect soundness of the combined
type system. However, before we do so, we make one more extension to the language.

Skipping Unused Discardable Computations. In Section 4, we developed several “zero” rules for
discarding unused values. But, unused computations could not be discarded, because they may
have effects. However, in this system, we can identify unused, pure computations, and add a new
syntactic form, written x < M in N, indicating that they can be discarded. The typing rule (below
left) requires that M be effect free and its result unused in N.

FULL-LETIN-ZERO , EVAL-FULL-COMP-LETIN-ZERO
yiTraun M F, Ay Tox Aray N B yop, x> 4 N T#¢
v2 T I—fullx<—?.MinN:"éB y-p Ffu”x<—?.MinNU T#¢

> For space, we do not include the entire combined system here. The full rules of this system are available in the extended
version of this paper [Torczon et al. 2024a] and in the Coq development.
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Furthermore, the operational semantics of this new expression form (above right) does not evaluate
M. Instead it uses the junk value 4 for the result of this computation.

To see this rule in action, consider the CBV translation of an expression y; (y; x), where y,
is a constant function and y; is pure. In this case, the type system can observe that x does not
contribute to the final result when the application of y; to x is marked as discardable.

x'A 9 U0 (A - FA),y, Uy (A" = B) Ffull 2 <—?. yilxin yp!z B

Soundness Proof for Discardable Computations. We next show that discarding unused values and
unused pure computations does not change the evaluation behavior of computations. To do so, we
need the following properties that state that ¢ is the minimum element of the effect preorder. ¢

Definition 5.3 (Min identity). (1) For all ¢, ¢ <.z ¢ (2) For all ¢, ¢ <. ¢ implies¢ = .

To prove that discarding is sound, we establish a relation between our combined resource
semantics and one that does not discard terms.

Definition 5.4 (Combined nondiscarding semantics). The judgement y-p tgen M | T # ¢ refers to
the operational semantics that is the combination of CBPV with effect annotations from Figure 3
and coeffect annotations from Figure 5, with the modified rule FuLL-LETIN that always evaluates
computations. This semantics does not include rules that discard values or computations and uses
rule EVAL-FULL-COMP-LETIN to evaluate the new letin expression.

Our simulation lemma states that for closed boolean-valued computations’, evaluating with
either the nondiscarding semantics (Definition 5.4) or with the resource semantics (Definition 5.2)
produces the same result and the same effect.

LEMMA 5.5 (RESOURCE SIMULATION). If0-@ Fpy M :* F, (unit + unit) then either

(1) 0-0 +gen M || return, (inl () # 1 and -0 rgy M || return, (inl ()) # ¢ or
(2) 0-0 +gen M || return, (inr () # ¢ and 0-0 rgy M || return, (inr () # ¢;.

This simulation lemma is a corollary of a much more general result—the fundamental lemma for
a binary logical relation between computations that are evaluated with the two different semantics.
This relation, shown below, is mutually defined with relations between closed values and closed
terminals (not shown, but available in the extended version [Torczon et al. 2024a] and in the Coq
development).

MIB]? = {(y-pr. My p2 M) | Vp1tgen My U Ti# 9 a'}d yop2 bpn M || Tz # ¢4
and (T, Ty) € T[B]"* and (Ty, T;) € T[B]" and ¢ - > <5 ¢ }

Using this relation, we define a binary version of the semantic typing relation. Two environments
p1 and p, are related when the closed values in the first environment are related to themselves,
and, if the usage is nonzero, the closed value in the second environment is related to the first. The
first condition ensures that we know something about closed values in the first relation even when
the corresponding value in the second relation has been discarded in the resource semantics.

% These properties hold for tick effects, but we have not used them before now. 7 The system in our extended ver-
sion [Torczon et al. 2024a] and Coq development includes sums, necessary to implement the boolean type.
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Definition 5.6 (Semantic double typing).

v-TEp ~p2 =x:7A € y-T impliesx — Wy € p; and (W;, W;) € WI[A] and
(g = 0or(x+ W, € p; and (W, W,) € W[A]))

Y Teay Vi~Vy : A = forall py,pa,y T Ep1~p2
implies y-py bpy Vi | Wi and y-ps b Vi | Wi
and (Wl, Wl) (S (W[[A]] and(Wl, Wz) € (W[[A]]

v T Efy My = M, 0 B = forall p1, ps,y - T E py ~ py implies (y - p1, My, y - p2, My) € M[[B]]‘f’

The fundamental theorem shows that this binary relation is reflexive.

THEOREM 5.7 (FUNDAMENTAL LEMMA: SIMULATION).
(1) Forally,T,ify-T vy V: A theny -Tegy V~V : A and
(2) forally,T, ify-T rpy M % B, theny - T Efut M =~ M % B.

This fundamental lemma combines and generalizes prior results of this paper. In particular, it
shows the effect-and-coeffect soundness of the combined type system with respect to both the
nondiscarding and resource accounting semantics—the effects and coeffects of the evaluation are
bounded by the type system. For clarity, we also separately show effect-and-coeffect soundness of
the combined type system in the Coq development.

CBN and CBYV Translations. Finally, we have defined CBN and CBV with combined effects and
coeffects and have proved the soundness of translations to the combined CPBV type system.

THEOREM 5.8 (CBN AND CBV TRANSLATION CORRECTNESS).

(1) Forally,T, e, 7, if YT Fcpncoer € : 7, then y-[Tlly Frun [e]n = [7]n, and
(2) Forally,T, e, 7, if YT *epveoef € : T, then y-[T]y Faar [e]v = Fi [7]vs

Like 2.5, these proofs follow by simple induction, so we omit them here; however, they can be
found in the Coq development.

6 Related Work

Call-by-push-value (CBPV) was originally developed by Levy [2003b]. Forster et al. [2019] mecha-
nized proofs of its metatheoretic properties and translation soundness and inspired our mechanized
proofs. Current applications of CBPV include modeling compiler intermediate languages [New
2019; Rizkallah et al. 2018], understanding the role that polarity plays in bidirectional typing [Dun-
field and Krishnaswami 2021] and subtyping [Lakhani et al. 2022], and incorporating effects into
dependent type theories [Pédrot and Tabareau 2019; Pédrot et al. 2019].

CBPV and Effects. Call-by-value languages with effect tracking go back to FX [Lucassen and
Gifford 1988]. Wadler and Thiemann [2003] showed the connection between graded monads and
effects by translating the effect system of Talpin and Jouvelot [1994] to a language that isolates
effects using graded monads. Our monadic effect language is inspired by this paper, generalized
following Katsumata [2014]. In this paper, our translation is the reverse of Wadler and Thiemann,
mapping a language with graded monads to an effect-style extension of CBPV. Like us, Rajani et al.
[2021] use a logical relation to show the soundness of their monadic cost analysis.

Although CBPV has often been used to model the semantics of effects, its type system has
only rarely been extended with effect tracking. The type system that we present in Section 2 is
most similar to MAM (multi-adjunctive metalanguage) from Forster et al. [2017], which builds on
Kammar and Plotkin [2012] and Kammar et al. [2013]. Forster et al. use MAM to compare the relative
expressiveness of effect handlers, monadic reflection and delimited control. The differences between
our system and MAM are in the abstract structure of effects: MAM does not use a preordered
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monoid to track effects. Instead, in each extension effects are interpreted differently. For effect
handlers, effects are a set of operations specified by some effect signature; for monadic reflection,
effects are monad stacks; for delimited control, effects are a stack of computation types.

Wauttke [2021] defines a cost-annotated version of CBPV by annotating the thunk type in CBPV
with a bound [a < I] that limits the number of times that thunks can be forced. This work includes
both call-by-value and call-by-name translations from cost-annotated PCF terms to cost-annotated
CBPV. For expressiveness, the system includes subtyping and indexed types.

Some extensions of CBPV annotate effects on F A instead of U B. These systems isolate effects so
that they need not be tracked by the typing judgement. Extended Call-by-Push-Value (ECBPV) [Mc-
Dermott and Mycroft 2019] adds call-by-need evaluation to CBPV and layers an effect system to
augment equational reasoning. This system uses an operation (¢)B to extend the effect annotation
to other computation types, combining effects in returner types and pushing effects to the result
type of functions and inside with-products. Rioux and Zdancewic [2020] tracks divergence. In this
system, the sequencing operation requires that the annotation on the returner type be less than or
equal to any annotation on the result of the continuation.

Coeffects. Type systems that track coeffects were introduced by Brunel et al. [2014]; Ghica
and Smith [2014]; Petricek et al. [2014] and developed by Abel and Bernardy [2020]; Orchard
and Eades III [2022]; Orchard et al. [2019]. Early applications were for bounded linearity; but
these systems have also been used for tracking information flow in differential privacy [Reed and
Pierce 2010], dynamic binding [Nanevski 2003] and have also been applied for resource usage in
Haskell [Bernardy et al. 2017] and irrelevance in dependently-typed languages [Abel et al. 2023;
Atkey 2018; Choudhury et al. 2021]. Petricek et al. [2014] give a number of additional examples,
including dataflow (the number of past values needed in a stream processing language) and data
liveness (whether references to a variable are still needed).

As in our work, all prior semantics that “count” uses of variables are imprecise and allow
execution to waste resources. Abel et al. [2023] and Choudhury et al. [2021] use a heap-based
operational semantics to show coeffect soundness for a language with a small-step, call-by-name
semantics, but do not consider the interactions with effects. Bianchini et al. [2023] proves resource
soundness for a fine-grained call-by-value language using a big-step semantics. Their language
includes a nontermination effect through recursive functions and recursive types. Their soundness
proof is based on a heap-based semantics, which must simultaneously evaluate g copies of an
expression. In contrast, because our environment-based semantics can separate the resource usage
of a subexpression from the rest of the computation, our semantics uses multiplication instead of
multi-usage. For consistency with effects, several rules of their type system require that the number
of copies of the produced value to be nonzero, similar to our use of ¢ || 1.

Dal Lago and Gavazzo [2022] also explore the addition of effects and coeffects to a fine-grained
call-by-value language. They also force the letin term to count the coeffects of the computation at
least once, through the use of ¢ A 1. (This rule is derived from Gavazzo [2018].) Unlike our work,
Dal Lago and Gavazzo give a denotational semantics based on a monadic evaluation function and
do not track resource usage. Their main result is a definition of a program relation in the presence
of effects and coeffects. Their approach is to refine a standard logical relation with relators and
corelators that capture the interaction of effects and coeffects with the language semantics. This
approach is more general than ours, which is tied to a specific effect and coeffect.

CBPV and Linearity. Our extension of CBPV with coeffect typing is novel and inspired by the
duality with effects. The most related systems are those involving linearity in the context of low-
level or compiler intermediate languages. Schopp [2015] develops a low-level language, similar
to CBPV, that includes linear operations in its type system. The enriched effect calculus [Egger
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et al. 2009, 2012] extends a type theory for computational effects, with primitives from linear logic.
Ahmed et al. [2007] augment a variant of typed assembly language with linear types. Jang et al.
[2024] develop a natural deduction formulation of adjoint logic (which is similar to CBPV) and use
its structure to combine linear, affine, strict and intuitionistic logics in a uniform setting.

Interactions Between Effects and Coeffects. Several systems describe interactions between effects
and coeffects. Nanevski [2003] uses comonads to guard the usage of local state (dynamic binding)
and monads to guard the usage of global state. In each case the type system tracks the set of
locations can be safely read and updated. In future work, we would like to extend this work with
state effects and local effect handlers so that we can track this interaction using annotations on
thunk and returner types, instead of encapsulated within monad and comonadic structures.

Gaboardi et al. [2016] present a combined calculus featuring effects and coeffects. Unlike this
work, their lambda calculus isolates effects and coeffects using graded monadic and comonadic
modal types. A key feature of their system are “graded distributive laws”, that permit interactions
between the monad and comonad. The exact interactions are mediated by operations determined
by the particular effects and coeffects being modeled. For example, we could distribute a term of
type O3 (T3, 7) into a term of type T . (O3 7). That is, it could turn 3 copies of a monad which
ticks twice and returns a term of type 7 into a monad which ticks 6 times then returns 3 copies of
the term.

In future work, we hope to add distributivity to this system. Unlike the distributive property
described above, in this context the distributive laws need not change the structure of the com-
putation. Instead, we would like it to redistribute grades on types in the form F, Uy F,, A or
Uy, F, Uy, B. However, we have yet to determine what sorts of rearrangement are sound in this
context.

7 Conclusion and Future Work

In this paper we have annotated the ambient monad and comonad of CBPV to statically track effects
and coeffects. We have presented these extensions separately to provide a gentle introduction,
before developing a combined calculus that tracks both simultaneously. We have identified semantic
subtleties in resource tracking and have developed an alternative semantics that better describes
our understanding of this coeffect. We have proven soundness for all versions of our type system,
identifying the required assumptions of the effect and coeffect algebras. To make sure that our
designs are expressive, we have shown the standard translations from call-by-value and call-by-
name lambda calculi into call-by-push-value preserve tick and resource tracking with our system.
By exploring both effects and coeffects together, we were also able to observe similarities between
these dual notions, and, more importantly, identify their differences.

However, this work is only the starting point for investigation in this space. The natural next
step is to go beyond a single effect (tick) and single coeffect (resource usage) to develop a more
general structure for extensions of CBPV, perhaps based on algebraic effects [Plotkin and Pretnar
2008] or effect signatures [Katsumata 2014]. This structure would allow us to verify that our rules
stay general in the presence of other effects, such as nontermination and state, or other coeffects,
such as information-flow tracking and differential privacy.

We can also extend this work by adding language features that interact with effect and coeffect
tracking, such as polymorphism, indexed or dependent types, and quantification over effects and
coeffects. Subtyping would captures the idea that the type Uy, B is a subtype of Uy, B when
$1 <ef $2, and that the type F,, Ais a subtype of F,, A when g, <., g;. Finally, we would like to
explore the practical concerns of this system in more depth, focusing on how users or compilers
might make effective use of the statically tracked information.
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