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Abstract. A hierarchy of type universes is a rudimentary ingredient
in the type theories of many proof assistants to prevent the logical in-
consistency resulting from combining dependent functions and the type-
in-type axiom. In this work, we argue that a universe hierarchy is not
the only option for universes in type theory. Taking inspiration from
Leivant’s Stratified System F, we introduce Stratified Type Theory
(StraTT), where rather than stratifying universes by levels, we stratify
typing judgements and restrict the domain of dependent functions to
strictly lower levels. Even with type-in-type, this restriction suffices to
enforce consistency.
In StraTT, we consider a number of extensions beyond just stratified de-
pendent functions. First, the subsystem subStraTT employs McBride’s
crude-but-effective stratification (also known as displacement) as a sim-
ple form of level polymorphism where global definitions with concrete
levels can be displaced uniformly to any higher level. Second, to recover
some expressivity lost due to the restriction on dependent function do-
mains, the full StraTT includes a separate nondependent function type
with a floating domain whose level matches that of the overall function
type. Finally, we have implemented a prototype type checker for StraTT
extended with datatypes and inference for level and displacement anno-
tations, along with a small core library.
We have proven subStraTT to be consistent and StraTT to be type safe,
but consistency of the full StraTT remains an open problem, largely
due to the interaction between floating functions and cumulativity of
judgements. Nevertheless, we believe StraTT to be consistent, and as
evidence have verified the ill-typedness of some well-known type-theoretic
paradoxes using our implementation.
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1 Introduction

Every term in a dependent type theory has a type, including types such as Nat.
Types are classified by the type universes to which they belong, and as type
universes are themselves types, they must each belong to some type universe. In
Martin-Löf Type Theory [28], these universes form a hierarchy: universe k has
type k thus preventing any universe from classifying itself. Otherwise, the
system would be inconsistent.
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System F Stratified System F

F-poly
Γ, x type ` B type
Γ ` ∀x.B type

SF-poly
j < k

Γ, x type j ` B type k

Γ ` ∀xj . B type k

SF-fun
Γ ` A type k
Γ ` B type k

Γ ` A → B type k

Fig. 1. Select rules from (Stratified) System F

Many contemporary proof assistants, such as Coq [10], Agda [33], Lean [32],
F* [38], and Arend [9], include universe hierarchies. To make these systems easier
to use, they often automatically infer the levels of each universe, so programmers
can write, for instance, Type instead of Type 3. They also include forms of level
polymorphism, so that definitions can be reused at multiple universe levels.
However, supporting such generality means that the proof assistant must handle
level variable constraints, level expressions, or both. As a result, programming
with and especially debugging errors involving universe levels can be painful.

So we ask: can type universes and reusability coexist without resorting to
level polymorphism?

In this work, we design Stratified Type Theory (StraTT), a new approach
for type universes, and evaluate mechanisms for reusability that don’t include
level polymorphism. The key idea of our design is that we do not stratify uni-
verses into a hierarchy; instead, we stratify typing judgements themselves by
levels. This approach is inspired by Leivant’s Stratified System F [23], a pred-
icative variant of System F [16,34].

Consider the formation rule F-poly for System F’s type polymorphism in
Figure 1. The quantification is said to be impredicative because it quantifies over
all types including itself. In contrast, the formation rule SF-poly for Stratified
System F disallows impredicativity by restricting polymorphic quantification to
only types that are well formed at strictly lower stratification levels. The type
well-formedness judgement tracks the stratification level with an index k.

To extend stratified polymorphism to dependent types, there are two ways
to read this judgement form. We could interpret type as a type
living in some stratified type universe k, which would correspond to a usual
predicative type theory. Alternatively, we could continue to interpret the level
as a property of the judgement and annotate the dependent typing judgement
form as a :k A. Analogously to stratified polymorphic types j , we
introduce stratified dependent function types x :j A B. They similarly quantify
over arguments at the annotated level j, which must be strictly lower than the
overall level of the type. This allows us to remove the level annotation from
universes, so we have :k for any k.

Moving levels off of universes and onto judgements and function domains
opens up the opportunity to really take advantage of McBride’s crude-but-effec-
tive stratification [30]. Following Favonia, Angiuli, and Mullanix [18], we refer
to this as displacement to prevent confusion. Given some signature of global
definitions, we are permitted to use any definition with all of its concrete levels
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uniformly displaced upwards. Displacement is less effective than level polymor-
phism in MLTT for types that involve multiple universes, such as , since
we’d still be stuck with the relative difference of 3 between the two universes.
With stratified functions, this type would look like X : , with only a single
level annotation to displace.

However, we find that even with displacement, stratifying all function types
is too restrictive and rules out terms that are otherwise typeable in MLTT even
without level polymorphism. Going back to Stratified System F, we observe
that with respect to the levels, ordinary function types are more flexible than
polymorphic function types. Their formation rule SF-fun in Figure 1 allows the
level of the domain type to be equal to the overall level of the function type. It
is this flexibility we’re missing that would recover some lost expressivity, so we
add an analogous separate function type that is nondependent but has no fixed
domain level. If the overall level of the nondependent function type is raised, we
say that the level of the domain floats to the same level.

We divide our design into two parts. The subsystem subStraTT features only
stratified dependent functions and displacement, and the full system StraTT
adds floating nondependent functions. We have proven in Agda the logical con-
sistency of the former. Even with type-in-type, the stratification restriction on
the domains of dependent functions prevents the kind of self-referential trickery
that is needed for the usual paradoxes.

We conjecture, but have not proven, the consistency of the full StraTT. Float-
ing functions permit covariant behaviour of the domain with respect to levels,
and our existing Agda proof doesn’t extend to this new feature. That doesn’t
mean that the system is inconsistent: it may be sufficiently different from usual
predicative type theories to require an entirely different approach or an alterna-
tive foundation outside of Agda. Indeed, our experience with the system provides
evidence that consistency does hold. We have found it impossible to use StraTT
to encode some well-known type-theoretic paradoxes. We also have verified its
syntactic metatheory, giving us further insight into its design.

The contributions of our paper are as follows:

A subsystem subStraTT, featuring only stratified dependent functions and
displacement, which is then extended to the full StraTT with floating nonde-
pendent functions. Section 2
Examples to demonstrate the expressivity of StraTT and especially to moti-
vate floating functions. Section 3
Two major metatheorems: logical consistency for subStraTT, which is mech-
anized in Agda, and type safety for StraTT, which is mechanized in Coq.
Consistency for the full StraTT remains an open problem. Section 4
A prototype implementation of a type checker, which extends StraTT to
include datatypes to demonstrate the effectiveness of stratification and dis-
placement in practical dependently-typed programming. Section 5

We discuss potential avenues for proving consistency of the full StraTT and
compare the useability of its design to existing proof assistants in terms of work-
ing with universe levels in Section 6 and conclude in Section 7. Our Agda and
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Coq mechanizations along with the prototype implementation are available at
https://github.com/plclub/StraTT, which is also archived as a paper artifact [8].
Where lemmas and theorems are first introduced, we include a footnote indicat-
ing the corresponding source file and lemma name in the development.

2 Stratified Type Theory

In this section, we present Stratified Type Theory in two parts. First is the sub-
system subStraTT, which contains the two core features of stratified dependent
function types and global definitions with level displacement. We then extend
it to the full StraTT by adding floating nondependent function types. As the
system is fairly small with few parts, we delay illustrative examples to Section 3,
and begin with the formal description.

2.1 The subsystem subStraTT

The subsystem subStraTT is a cumulative, extrinsic type theory with types à la
Russell, a single type universe, dependent functions, an empty type, and global
definitions. The most significant difference between subStraTT and other type
theories with these features is the annotation of the typing judgement with a level
in place of universes in a hierarchy. We use the naturals and their usual strict
order and addition operation for our levels, but they should be generalizable to
any displacement algebra [18]. The syntax for terms, contexts , and signatures

is given below, with x y z for variable and constant names and i j k for levels.

a b c A B C ::= x xi x :j A B x b b a absurd(b)
::= ∅ x :k A
::= ∅ x :k A := a

A context consists of declarations x :k A of variables x of type A at level k;
variables represent locations where an entire typing derivation may be substi-
tuted into the term, so they also need level annotations. A signature consists of
global definitions x :k A := a of constants x of type A definitionally equal to a at
level k; they represent complete typing derivations that will eventually be sub-
stituted into the term. The typing judgement ; a :k A , whose derivation
rules are given in Figure 2, states that the term a is well typed at level k with
type A under the context and signature .

Because stratified judgements replace stratified universes, the type of the type
universe is itself at any level in rule DT-Type. Stratification is enforced in
dependent function types in rule DT-Pi: the domain type must be well typed at a
strictly smaller level relative to the codomain type and the overall function type.
Similarly, in rule DT-AbsTy, the body of a dependent function is well typed
when its argument and its type are well typed at a strictly smaller level, and by
rule DT-AppTy, a dependent function can only be applied to an argument at
the strictly smaller domain level.

https://github.com/plclub/StraTT
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∆;Γ ` a :k A (Typing)

DT-Type
∆ ` Γ

∆;Γ ` ? :k ?

DT-Pi
∆;Γ ` A :j ?

∆;Γ, x :j A ` B :k ?
j < k

∆;Γ ` Πx :j A.B :k ?

DT-AbsTy
∆;Γ ` A :j ?

∆;Γ, x :j A ` b :k B
j < k

∆;Γ ` λx. b :k Πx :j A.B

DT-AppTy
∆;Γ ` b :k Πx :j A.B
∆;Γ ` a :j A j < k
∆;Γ ` b a :k B{a/x}

DT-Var
x : jA ∈ Γ

∆ ` Γ j ≤ k
∆;Γ ` x :k A

DT-Const
x : jA := a ∈ ∆

∆ ` Γ
` ∆ i + j ≤ k
∆;Γ ` xi :k A+i

DT-Bottom
∆ ` Γ

∆;Γ ` ⊥ :k ?

DT-Absurd
∆;Γ ` A :k ?

∆;Γ ` b :k ⊥
∆;Γ ` absurd(b) :k A

DT-Conv
∆;Γ ` a :k A
∆;Γ ` B :k ?
∆ ` A ≡ B
∆;Γ ` a :k B

Fig. 2. Typing rules (subStraTT)

Remark 1. The level annotation on dependent function types is necessary for
consistency. Informally, suppose we have some unannotated type X : B and a
function of this type, both at level 1. By cumulativity, we can raise the level of the
function to 2, then apply it to its own type X : B. In short, impredicativity
is reintroduced, and stratification defeated.

Rules DT-Bottom and DT-Absurd are the uninhabited type and its elim-
inator, respectively. The eliminator appears to only be able to eliminate a false-
hood into the same level, but cumulativity, formally defined shortly, will permit
raising the level of a falsehood, which can then be eliminated at that level.

Remark 2. More generally, the level of a well-typed term must match that of its
type, which we prove later as Regularity (Lemma 9). Intuitively, the level of a
typing judgement represents the level of all the subderivations (up to cumula-
tivity) used to construct its derivation tree, which enforces predicativity at the
derivation level. Since proving regularity amounts to constructing a derivation
for the type out of the subderivations of the term, the level of the type could
not possibly be any higher than that of the term.

In rules DT-Var and DT-Const, variables and constants at level j can be
used at any larger level k, which we refer to as subsumption. This permits the
following cumulativity lemma, allowing entire derivations to be used at higher
levels.

Lemma 1 (Cumulativity).1 If ; a :j A and j k then ; a :k A.
1 coq/restrict.v:DTyping_cumul

https://github.com/plclub/StraTT/tree/main/coq/restrict.v
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Constants are further annotated with a superscript indicating how much
they’re displaced by. If a constant x is defined with a type A, then xi is an element
of type A but with all of its levels incremented by i. The metafunction a i

performs this increment in the term a, defined recursively with ( x :j A B) i =
x :i j A i B i and (xj) i = xi j. Constants come from signatures and variables

from contexts, whose formation rules are given in Figure 3.

` ∆ ∆ ` Γ

D-Nil

` ∅

DG-Nil
` ∆

∆ ` ∅

D-Cons
` ∆ x 6∈ dom∆

∆;∅ ` A :k ?

∆;∅ ` a :k A
` ∆, x :k A := a

DG-Cons
∆ ` Γ ∆;Γ ` A :k ?

x 6∈ domΓ x 6∈ dom∆

∆ ` Γ, x :k A

Fig. 3. Signature and context formation rules (excerpt)

In rule DT-Conv, we use an untyped definitional equality a b that
is reflexive, symmetric, transitive, and congruent. The full set of rules are
given in Figure 4, including -equivalence for functions (rule DE-Beta) and
-equivalence of constants x with their definitions (rule DE-Delta). When a
constant is displaced as xi, we must also increment the level annotations in their
definitions by i.

∆ ` a ≡ b (Definitional equality)

DE-Refl

∆ ` a ≡ a

DE-Sym
∆ ` b ≡ a
∆ ` a ≡ b

DE-Trans
∆ ` a ≡ b ∆ ` b ≡ c

∆ ` a ≡ c

DE-Beta

∆ ` (λx. b) a ≡ b{a/x}

DE-Delta
x : kA := a ∈ ∆

∆ ` xi ≡ a+i

DE-Pi
∆ ` A ≡ A′

∆ ` B ≡ B′

∆ ` Πx :k A.B ≡ Πx :k A′.B′

DE-Abs
∆ ` b ≡ b′

∆ ` λx. b ≡ λx. b′

DE-App
∆ ` a ≡ a′

∆ ` b ≡ b′

∆ ` b a ≡ b′ a′

DE-Absurd
∆ ` b ≡ b′

∆ ` absurd(b) ≡ absurd(b′)

Fig. 4. Definitional equality rules (subStraTT)

Given a well-typed, locally-closed term ;∅ a :k A, the entire derivation
itself can be displaced upwards by some increment i. This lemma differs from
cumulativity, since the level annotations in the term and its type are displaced
as well, not just that of the judgement.

Lemma 2 (Displaceability (empty context)).2 If ;∅ a :k A then ;∅
a i :k i A i.
2 coq/incr.v:DTyping_incr

https://github.com/plclub/StraTT/tree/main/coq/incr.v
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With x :k A := a in the signature, xi is definitionally equal to a i, so this
lemma justifies rule DT-Const, which would give this displaced constant the
type A i at level k + i.

2.2 Floating functions

As we’ll see in the next section, subStraTT alone is insufficiently expressive, with
some examples being unexpectedly untypeable and others being simply clunky
to work with as a result of the strict restriction on function domains. The full
StraTT system therefore extends the subsystem with a separate nondependent
function type, written A B, whose domain doesn’t have the same restriction.

DT-Arrow
∆;Γ ` A :k ? ∆;Γ ` B :k ?

∆;Γ ` A → B :k ?

DT-AbsTm
∆;Γ ` A :k ?

∆;Γ ` B :k ? ∆;Γ, x :k A ` b :k B
∆;Γ ` λx. b :k A → B

DT-AppTm
∆;Γ ` b :k A → B ∆;Γ ` a :k A

∆;Γ ` b a :k B

DE-Arrow
∆ ` A ≡ A′ ∆ ` B ≡ B′

∆ ` A → B ≡ A′ → B′

Fig. 5. Typing and definitional equality rules (floating functions)

The typing rules for nondependent function types, functions, and application
are given in Figure 5. The domain, codomain, and entire nondependent function
type are all typed at the same level. Functions take arguments of the same level
as their bodies, and are thus applied to arguments of the same level.

This distinction between stratified dependent and unstratified nondepen-
dent functions corresponds closely to Stratified System F: type polymorphism
is syntactically distinct from ordinary function types, and the former forces the
codomain to be a higher level while the latter doesn’t. From the perspective of
Stratified System F, the dependent types of StraTT generalize stratified type
polymorphism over types to include term polymorphism.

We say that the domain of these nondependent function types floats because
unlike the stratified dependent function types, it isn’t fixed to some particular
level. The interaction between floating functions and cumulativity is where this
becomes interesting. Given a function of type A B at level j, by cumulativity,
it remains well typed with the same type at any level k j. The level of the
domain floats up from j to match the function at k, in the sense that can be
applied to an argument of type A at any greater level k. This is unusual because
the domain isn’t contravariant with respect to the ordering on the levels as
expected, and is why, as we’ll see shortly, the proof of consistency in Section 4.1
can’t be straightforwardly extended to accommodate floating function types.
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3 Examples

3.1 The identity function

In the following examples, we demonstrate why floating functions are essential.
Below on the left is one way we could assign a type to the type-polymorphic
identity function. For concision, we use a pattern syntax when defining global
functions and place function arguments to the left of the definition. (The sub-
script is part of the constant name.)

id0 : X : x : X X id : X : X X
id0 X x := x id X x := x

Stratification enforces that the codomain of the function type and the func-
tion body have a higher level than that of the domain and the argument, so the
overall identity function id0 is well typed at level 1. While x and have level 0
in the context of the body, by subsumption we can use x at level 1 as required.

Alternatively, since the return type doesn’t depend on the second argument,
we can use a floating function type instead, given above on the right. Since we still
have a dependent type quantification, the function X X is still typed at level
1. This means that x now has level 1 directly rather than through subsumption.

So far, there’s no reason to pick one over the other, so let’s look at a more
involved example: applying an identity function to itself. This is possible due to
cumulativity, and we’ll follow the corresponding Coq example below.

Universes u0 u1.

Constraint u0 < u1.

Definition idid1 (id : forall (X : Type@{u1}), X -> X) :

forall (X : Type@{u0}), X -> X :=

id (forall (X : Type@{u0}), X -> X) (fun X => id X).

Here, since forall (X : Type@{u0}), X -> X can be assigned type Type@{u1},
it can be applied as the first argument to id. For the second argument, while id

itself doesn’t have this type, we can -expand it to a function that does, since
Type@{u0} is a subtype of Type@{u1}, so X can be passed to id.

If we try to write the analogous definition in subStraTT without using float-
ing functions, we find that it doesn’t type check! The problematic subterm is
underlined in red below.

idid1 : id : ( X : x : X X) X : x : X X
idid1 id := id ( X : x : X X) ( X x id X x)

After -expansion, X x id X x has the correct type X : x : X X ,
but at level 2, the declared level of itself. Meanwhile, the second argument of

expects an argument of that type but at level 1. We couldn’t just raise the
level annotation for that argument to 2, either, since that would raise the level
of to 3.
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If we instead use floating functions for the nondependent argument, the anal-
ogous definition then does type check, since the second argument of type can
now be at level 2.

idid1 : ( X : X X) X : X X
idid1 id := id ( X : X X) ( X id X)

This definition of idid1 is now shaped the same as the Coq version, only with
level annotations on domains where Coq has the corresponding level annotations
on Type. If we were to turn on universe polymorphism in Coq, it would achieve
the same kind of expressivity of being able to displace idid1 in StraTT.

As an additional remark, even with floating functions, repeatedly nesting
identity function self-applications is one way to non-trivially force the level to
increase. The following definitions continue the pattern from idid1; the corre-
sponding Coq definitions would similarly require higher universe levels on their
Type annotations.

idid2 : ( X : X X) X : X X
idid2 id := id (( X : X X) X : X X) idid1 ( X x id X x)
idid3 : ( X : X X) X : X X
idid3 id := id (( X : X X) X : X X) idid2 ( X x id X x)

In the untyped setting, these correspond to id id id, id id ( id id id) id,
and id id ( id id ( id id id) id) id. All of idid1 ( X x x), idid2 ( X x x),
and idid3 ( X x x) reduce to X x x.

3.2 Decidable types

The following example demonstrates a more substantial use of StraTT in the
form of type constructors as floating functions and how they interact with cu-
mulativity. Later in Section 5 we’ll consider datatypes with parameters, but
for now, consider the following Church encoding [6] of decidable types, which
additionally uses negation defined as implication into the empty type.

neg : yes : X : X Dec X
neg X := X yes X x := Z f g f x
Dec : no : X : neg X Dec X
Dec X := Z : (X Z) (neg X Z) Z no X nx := Z f g g nx

The yes X constructor decides by a witness, while the no X constructor
decides by its refutation. We can show that deciding a given type is irrefutable.3

3 Note this differs from irrefutability of the law of excluded middle,
neg (neg (ΠX :0 ?.Dec X)), which cannot be proven constructively.
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irrDec : X : neg (neg (Dec X))

irrDec X ndec := ndec (no X ( x ndec (yes X x)))

The same exercise of trying to define neg and Dec using only dependent func-
tions and not floating functions has the same effect of no longer being able to
type check irrDec, even if we allow ourselves to use displacement. More interest-
ingly, let’s now compare these definitions to more-or-less corresponding ones in
Agda.

{-# OPTIONS --cumulativity #-}

open import Agda.Primitive using (lzero ; lsuc)

open import Data.Empty using (⊥)

neg : ∀ ℓ → Set ℓ → Set ℓ

neg ℓ X = X → ⊥

Dec : ∀ ℓ → Set (lsuc ℓ) → Set (lsuc ℓ)

Dec ℓ X = (Z : Set ℓ) → (X → Z) → (neg (lsuc ℓ) X → Z) → Z

yes : ∀ ℓ (X : Set ℓ) → X → Dec ℓ X

yes ℓ X x = λ Z f g → f x

no : ∀ ℓ (X : Set ℓ) → neg ℓ X → Dec ℓ X

no ℓ X nx = λ Z f g → g nx

Universe polymorphism is required to capture some of the expressivity of
floating functions. For instance, to talk about the negation or the decidabil-
ity of a type at level 1, by cumulativity it suffices to use neg and Dec respec-
tively (without displacement!) in StraTT, but we must use neg (lsuc lzero)

and Dec (lsuc lzero) in Agda. However, since the constructors for Dec use the
type argument dependently, in StraTT the level of that argument is fixed at
0. The constructors must be displaced to yes and no to construct proofs of
Dec , just as yes (lsuc lzero) and no (lsuc lzero) would construct proofs of
Dec (lsuc lzero).

3.3 Leibniz equality

Although nondependent functions can often benefit from a floating domain,
sometimes we don’t want the domain to float. Here, we turn to a simple applica-
tion of dependent types with Leibniz equality [22,27] to demonstrate a situation
where the level of the domain needs to be fixed to a strictly lower level even
when the codomain doesn’t depend on the function argument.

eq : X : X X refl : X : x : X eq X x x
eq X x y := P : X P x P y refl X x P px := px

An equality eq A a b states that two terms are equal if given any predicate
, a proof of P a yields a proof of P b; in other words, a and b are indiscernible.

The proof of reflexivity should be unsurprising.
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We might try to define a nondependent predicate stating that a given type
is a mere proposition, i.e. that all of its inhabitants are equal.

isProp :

isProp X := x : X y : X eq X x y

But this doesn’t type check, since the body contains an equality over ele-
ments of , which necessarily has level 1 rather than the expected level 0. We
must assign isProp a stratified function type, given below on the left; informally,
stratification propagates dependency information not only from the codomain,
but also from the function body.

isProp : X : isSet : X :

isProp X := x : X y : X eq X x y isSet X := x : X y : X
isProp (eq X x y)

Going one further, we define above on the right a predicate isSet stating
that is an h-set [40], or that its equalities are mere propositions, by using a
displaced isProp so that we can reuse the definition at a higher level; here, isProp
now has type X : at level 2. Once again, despite the type of isSet not being
an actual dependent function type, we need to fix the level of the domain.

4 Metatheory

4.1 Consistency of subStraTT

We use Agda to mechanize a proof of logical consistency — that no closed inhabi-
tant of the empty type exists — for subStraTT, which excludes floating nondepen-
dent functions. For simplicity, the mechanization also excludes global definitions
and displaced constants, which shouldn’t affect consistency: if there is a closed
inhabitant of the empty type that uses global definitions, then there is a closed
inhabitant of the empty type under the empty signature by inlining all global
definitions. The proof files are available at https://github.com/plclub/StraTT

under the agda/ directory. The only axiom we use is function extensionality.4
The core construction of the consistency proof is a three-place logical relation

a JAKk among a term, its type, and its level, which we would aspirationally
like to define as in Figure 6. Informally, this represents the interpretation of
the type A as a set of closed terms which behave according to that type. For
instance, a term is in the interpretation of a function type if for every term
y which behaves according to the domain, the term f y behaves according to
the codomain. Consistency follows from the fact that the interpretation of the
empty type is empty. In our working metatheory, we use 0 for falsehood, 1 for
truthhood, for conjunction, for implication, and and for universal and
existential quantification .
4 agda/accessibility.agda:funext,funext'

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/accessibility.agda
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a ∈ JAKk

? ∈ J?Kk , 1 Πx :j A.B ∈ J?Kk , j < k ∧A ∈ J?Kj

⊥ ∈ J?Kk , 1 ∧ (∀y. y ∈ JAKj −→ B{y/x} ∈ J?Kk)

a ∈ J⊥Kk , 0 f ∈ JΠx :j A.BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk
a ∈ JAKk , ∃B.A ≡ B ∧ a ∈ JBKk

Fig. 6. Ill-formed logical relation between terms and types

However, this definition isn’t necessarily well formed. It isn’t defined recur-
sively on the structure of the terms or the types, because in the cases involving
dependent functions, we need to talk about the substituted type B y/x . It isn’t
defined inductively, either, because again in the dependent function case, the in-
ductive itself would appear to the left of an implication as JAKj , making the
inductive definition non-strictly-positive.

The solution is to define the logical relation as an inductive–recursive defini-
tion [14]. This design is adapted from a concise proof of consistency for MLTT
in Coq by Liu [25], which uses an impredicative encoding in place of induction–
recursion. This is a simplified and pared down adaptation of a proof of decid-
ability of conversion for MLTT in Coq by Adjedj, Lennon-Bertrand, Maillard,
Pédrot, and Pujet [2], which in turn uses a predicative encoding to adapt a proof
of decidability of conversion for MLTT in Agda by Abel, Öhman, and Vezzosi [1]
that uses induction–recursion.

Figure 7 sketches the inductive–recursive definition, which splits the logical
relation into two parts: an inductive predicate on types and their levels JAKk ,
and a relation between types and terms defined recursively on the predicate on
the type, which we continue to write as JAKk .

JAKk a ∈ JAKk

J?Kk J⊥Kk

j < k JAKj
∀y. y ∈ JAKj −→ JB{y/x}Kk

JΠx :j A.BKk

A ⇒ B JBKk
JAKk

A ∈ J?Kk , JAKk f ∈ JΠx :j A.BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk
a ∈ J⊥Kk , 0 a ∈ JAKk , a ∈ JBKk (where A ⇒ B)

Fig. 7. Inductive–recursive logical relation between terms and types

In the last inductive rule, in place of A B, we instead use parallel reduction
A B , which is a reduction relation describing all visible reductions being
performed in parallel from the inside out. This is justified by the following lemma,
where A ∗ B is the reflexive, transitive closure of A B.
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L e m m a 3 ( I m pl e m e n t a ti o n of d e fi ni ti o n al e q u ali t y ). 5 A ≡ B i ff t h e r e
e xi st s s o m e C s u c h t h at A ⇒ ∗ C ∗ ⇐ B, w hi c h w e w rit e a s A ⇔ B .

E v e n n o w, t hi s i n d u cti v e – r e c u r si v e d e fi niti o n i s still n ot w ell f o r m e d. I n p a r-
ti c ul a r, i n t h e i n d u cti v e r ul e f o r d e p e n d e nt f u n cti o n s, if A i s , t h e n b y t h e
r e c u r si v e c a s e f o r t h e u ni v e r s e, y j c o ul d a g ai n a p p e a r t o t h e l eft of a n i m pli c a-
ti o n. H o w e v e r, w e k n o w t h at j < k , w hi c h w e c a n e x pl oit t o st r atif y t h e l o gi c al
r el ati o n j u st a s w e st r atif y t y pi n g j u d g e m e nt s. We d o s o b y p a r a m et ri zi n g e a c h
l o gi c al r el ati o n at l e v el k b y a n a b st r a ct l o gi c al r el ati o n d e fi n e d at all st ri ctl y
l o w e r l e v el s j < k , t h e n at t h e e n d t yi n g t h e k n ot b y i n st a nti ati n g t h e m vi a w ell-
f o u n d e d i n d u cti o n o n l e v el s. T hi s t e c h ni q u e i s a d a pt e d f r o m a n A g d a m o d el of a
u ni v e r s e hi e r a r c h y b y K o v á c s [ 2 1 ], w hi c h o ri gi n at e s f r o m M c B ri d e’ s r e d u n d a n c y-
f r e e c o n st r u cti o n of a u ni v e r s e hi e r a r c h y [3 1 , S e cti o n 6. 3. 1]. A s t h e c o n st r u cti o n s
a r e n o w f ai rl y i n v ol v e d, w e d ef e r t o t h e p r o of fil e 6 f o r t h e f ull d e fi niti o n s, i n
p a rti c ul a r U f o r t h e i n d u cti v e p r e di c at e a n d e l f o r t h e r e c u r si v e r el ati o n. F o r t h e
p u r p o s e s of e x p o siti o n, w e c o nti n u e t o u s e t h e ol d n ot ati o n.

B e c a u s e t h e l o gi c al r el ati o n o nl y h a n dl e s cl o s e d t e r m s, w e d e al wit h c o nt e xt s
a n d si m ult a n e o u s s u b stit uti o n s σ s e p a r at el y b y r el ati n g t h e t w o vi a y et a n ot h e r
i n d u cti v e – r e c u r si v e d e fi niti o n i n Fi g u r e 8 , wit h a p r e di c at e o n c o nt e xt s Γ a n d

a r el ati o n b et w e e n s u b stit uti o n s a n d c o nt e xt s σ ∈ Γ . A { σ } d e n ot e s a p pl yi n g
t h e si m ult a n e o u s s u b stit uti o n σ t o t h e t e r m A , a n d σ [x ] d e n ot e s t h e t e r m w hi c h
σ s u b stit ut e s f o r x .7

Γ σ ∈ Γ

∅

Γ ∀ σ. σ ∈ Γ − → A { σ } k

Γ , x :k A

σ ∈ ∅ 1

σ ∈ Γ , x :k A σ ∈ Γ ∧ σ [x ] ∈ A { σ } k

Fi g. 8. I n d u c ti v e – r e c u r si v e l o gi c al r el a ti o n b e t w e e n s u b s ti t u ti o n s a n d c o nt e x t s

T h e m o st i m p o rt a nt l e m m a s t h at a r e n e e d e d a r e s e m a nti c c u m ul ati vit y, s e-
m a nti c c o n v e r si o n, a n d b a c k w a r d p r e s e r v ati o n.

L e m m a 4 ( C u m ul a ti vi t y ). 8 S u p p o s e j < k . If A j t h e n A k , a n d if a ∈ A j

t h e n a ∈ A k .

L e m m a 5 ( C o n v e r si o n ). 9 S u p p o s e A ⇔ B. If A k t h e n B k , a n d if a ∈ A k

t h e n a ∈ B k .

L e m m a 6 ( B a c k w a r d p r e s e r v a ti o n ).1 0 If a ⇒ ∗ b a n d b ∈ A k t h e n a ∈ A k .

We c a n n o w p r o v e t h e f u n d a m e nt al t h e o r e m of s o u n d n e s s of t y pi n g j u d g e-
m e nt s wit h r e s p e ct t o t h e l o gi c al r el ati o n b y i n d u cti o n o n t y pi n g d e ri v ati o n s,
a n d c o n si st e n c y f oll o w s a s a c o r oll a r y.

5 a g d a / t y p i n g . a g d a : ≈ - ⇔ 6 a g d a / s e m a n t i c s . a g d a 7 T h e m e c h a ni z a ti o n u s e s d e
B r uij n i n d e xi n g; v a ri o u s i n d e x- s hif ti n g o p e r a ti o n s o n s u b s ti t u ti o n s a r e o mi t t e d
f o r c o n ci si o n. 8 a g d a / s e m a n t i c s . a g d a : c u m U , c u m E l 9 a g d a / s e m a n t i c s . a g d a : ⇔ - U , ⇔ - e l
1 0 a g d a / s e m a n t i c s . a g d a : ⇒ ⋆ - e l

https://github.com/plclub/StraTT/tree/main/agda/typing.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
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T h e o r e m 1 ( S o u n d n e s s ). 1 1 S u p p o s e Γ a n d σ ∈ Γ . If Γ a :k A, t h e n
A { σ } k a n d a { σ } ∈ A { σ } k .

C o r oll a r y 1 ( C o n si s t e n c y ). 1 2 T h e r e a r e n o b, k s u c h t h at ∅ b :k ⊥ .

T h e p r o bl e m wi t h fi o a ti n g f u n c ti o n s T hi s p r o of c a n’t b e e xt e n d e d t o t h e
f ull Str a T T . W hil e fi o ati n g n o n d e p e n d e nt f u n cti o n t y p e s c a n b e a d d e d t o t h e
l o gi c al r el ati o n di r e ctl y a s b el o w, c u m ul ati vit y will n o l o n g e r h ol d.

A k B k

A → B k

f ∈ A → B k ∀ x. x ∈ A k − → f x ∈ B k

I n p a rti c ul a r, gi v e n j ≤ k a n d f ∈ A → B j , w h e n t r yi n g t o s h o w f ∈ A →
B k , w e h a v e b y d e ff niti o n ∀ x. x ∈ A j − → f x ∈ B j , a t e r m x , a n d x ∈ A k ,
b ut n o w a y t o c a st t h e l att e r i nt o x ∈ A j t o o bt ai n f x ∈ B k a s d e si r e d
vi a t h e i n d u cti o n h y p ot h e si s, b e c a u s e s u c h a c a st w o ul d g o d o w n w a r d s f r o m a
hi g h e r l e v el k t o a l o w e r l e v el j , r at h e r t h a n t h e ot h e r w a y a r o u n d a s p r o vi d e d
b y t h e i n d u cti o n h y p ot h e si s. Tr yi n g t o i n c o r p o r at e t h e d e si r e d p r o p e rt y i nt o t h e
r el ati o n, p e r h a p s b y d e fi ni n g it a s ∀ ≥ k. ∀ x. x ∈ A − → f x ∈ B k , w o ul d
b r e a k t h e c a r ef ul st r ati fi c ati o n of t h e l o gi c al r el ati o n t h at w e’ v e s et u p.

T h e vi ol ati o n of c u m ul ati vit y d u e t o fi o ati n g f u n cti o n s i s i n d e p e n d e nt of
o u r m et h o d of l o gi c al r el ati o n s. If w e t r y t o p r o v e c o n si st e n c y vi a a t r a n sl ati o n
i nt o a n e xi sti n g t y p e t h e o r y wit h a c u m ul ati v e u ni v e r s e hi e r a r c h y, f o r i n st a n c e
A g d a wit h c u m ul ati v e u ni v e r s e s, a si mil a r di r e ct t r a n sl ati o n of fi o ati n g f u n cti o n s
w o ul d c a u s e t h e s a m e i s s u e. C o n c r et el y, s u p p o s e w e t r a n sl at e t h e t y p e →

at s o m e l e v el k i nt o t h e A g d a f u n cti o n t y p e S e t k → S e t k . T o p r o v e t h at
t h e t r a n sl ati o n p r e s e r v e s Str a T T ’ s c u m ul ati vit y, w e w o ul d r e q ui r e a f u n cti o n of
t h e t y p e ( S e t k → S e t k ) → ( S e t ( l s u c k ) → S e t ( l s u c k ) ) , w hi c h h a s t h e s a m e
p r o bl e m of n e e di n g a d o w n w a r d c a st. S u c h a t r a n sl ati o n w o ul d still n e e d t o b e
st r ati fi e d b y l e v el t o b e w ell d e fi n e d, s o a u ni v e r s e- p ol y m o r p hi c t r a n sl ati o n t o
∀ ℓ → S e t ℓ ⊔ k → S e t ℓ ⊔ k w o ul d n’t b e vi a bl e eit h e r.

4. 2  T y p e s af e t y of S tr a T T

W hil e w e h a v e n’t y et p r o v e n it s c o n si st e n c y, w e h a v e p r o v e n t y p e s af et y of t h e
f ull Str a T T . We u s e C o q t o m e c h a ni z e t h e s y nt a cti c m et at h e o r y of t h e t y p-
i n g, c o nt e xt f o r m ati o n, a n d si g n at u r e f o r m ati o n j u d g e m e nt s of Str a T T , r e c alli n g
t h at t hi s c o v e r s all of st r ati fi e d d e p e n d e nt f u n cti o n s, fl o ati n g n o n d e p e n d e nt f u n c-
ti o n s, a n d di s pl a c e d c o n st a nt s. We al s o u s e Ott [ 3 6 ] al o n g wit h t h e C o q t o ol s
L N g e n [ 4 ] a n d M et ali b [3 ] t o r e p r e s e nt s y nt a x a n d j u d g e m e nt s a n d t o h a n dl e
t h ei r l o c all y- n a m el e s s r e p r e s e nt ati o n i n C o q. T h e p r o of s c ri pt s a r e a v ail a bl e at
h t t p s : / / g i t h u b . c o m / p l c l u b / S t r a T T u n d e r t h e c o q / di r e ct o r y.

We b e gi n wit h s o m e b a si c c o m m o n p r o p e rti e s of t y p e s y st e m s, n a m el y w e a k-
e ni n g, s u b stit uti o n, a n d r e g ul a rit y l e m m a s, a s w ell a s a g e n e r ali z e d di s pl a c e-
a bilit y l e m m a. N e xt, w e i nt r o d u c e a n oti o n of r e st ri cti o n , w hi c h f o r m ali z e s t h e

1 1 a g d a / s o u n d n e s s . a g d a : s o u n d n e s s 1 2 a g d a / c o n s i s t e n c y . a g d a : c o n s i s t e n c y

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/soundness.agda
https://github.com/plclub/StraTT/tree/main/agda/consistency.agda
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i d e a t h at l o w e r j u d g e m e nt s c a n’t d e p e n d o n hi g h e r o n e s, al o n g wit h a n oti o n of
r e st ri ct e d fi o ati n g , w hi c h i s c r u ci al f o r p r o vi n g t h at ff o ati n g f u n cti o n t y p e s a r e
s y nt a cti c all y c u m ul ati v e. O nl y t h e n a r e w e a bl e t o p r o v e t y p e s af et y.

A s w e h a v e n’t m e c h a ni z e d t h e s y nt a cti c m et at h e o r y of d e fi niti o n al e q u alit y
∆ A ≡ B , w e st at e a s a xi o m s s o m e st a n d a r d, p r o v a bl e p r o p e rti e s [5 , S e cti o n
5. 2], w hi c h a r e o rt h o g o n al t o st r ati fi c ati o n a n d o nl y u s e d i n t h e fi n al p r o of of t y p e
s af et y. T h e e q ui v al e nt l e m m a s f o r s u b Str a T T , h o w e v e r, h a v e b e e n m e c h a ni z e d i n
A g d a 1 3 a s p a rt of t h e c o n si st e n c y p r o of.

A xi o m 1 ( F u n c ti o n t y p e i nj e c ti vi t y ). 1 4 If ∆ A 1 → B 1 ≡ A 2 → B 2

t h e n ∆ A 1 ≡ A 2 a n d ∆ B 1 ≡ B 2 . If Π x :j 1 A 1 . B 1 ≡ Π x :j 2 A 2 . B 2 t h e n
∆ A 1 ≡ A 2 a n d j 1 = j2 a n d ∆ B 1 ≡ B 2 .

A xi o m 2 ( C o n si s t e n c y of d e fi ni ti o n al e q u ali t y ). 1 5 If ∆ A ≡ B t h e n A
a n d B d o n ot h a v e di fi e r e nt h e a d f o r m s.

B a si c p r o p e r ti e s We e xt e n d t h e o r d e ri n g b et w e e n l e v el s j ≤ k t o a n o r d e r-
i n g b et w e e n c o nt e xt s Γ 1 ≤ Γ 2 t h at al s o i n c o r p o r at e s w e a k e ni n g i n Fi g u r e 9 .
St r o n g e r c o nt e xt s h a v e hi g h e r l e v el s a n d f e w e r a s s u m pti o n s.

Γ 1 ≤ Γ 2 ( O r d e ri n g o n c o nt e xt s )

S- Ni l

∅ ≤ ∅

S- C o n s
j ≤ k Γ 1 ≤ Γ 2

Γ 1 , x :j A ≤ Γ 2 , x :k A

S- W e a k
Γ 1 ≤ Γ 2

Γ 1 , x :k A ≤ Γ 2

Fi g. 9. C o nt e x t s u b s u m p ti o n r ul e s

T hi s o r d e ri n g i s c o nt r a v a ri a nt i n t h e t y pi n g j u d g e m e nt: w e m a y l o w e r t h e c o n-
t e xt wit h o ut d e st r o yi n g t y p e a bilit y. T hi s r e s ult s u b s u m e s a st a n d a r d w e a k e ni n g
l e m m a.

L e m m a 7 ( W e a k e ni n g ). 1 6 If ∆; Γ a :k A a n d ∆ Γ a n d Γ ≤ Γ t h e n
∆; Γ a :k A.

T h e s u b stit uti o n l e m m a r e fi e ct s t h e i d e a t h at a n a s s u m pti o n x :k B i s a
h y p ot h eti c al j u d g e m e nt. T h e v a ri a bl e x st a n d s f o r a n y t y pi n g d e ri v ati o n of t h e
a p p r o p ri at e t y p e a n d l e v el.

L e m m a 8 ( S u b s ti t u ti o n ). 1 7 If ∆; Γ 1 , x :j B , Γ 2 a :k A a n d ∆; Γ 1 b :j B
t h e n ∆; Γ 1 , Γ 2 { b / x } a { b / x } :k A { b / x } .

T y pi n g j u d g e m e nt s t h e m s el v e s e n s u r e t h e w ell-f o r m e d n e s s of t h ei r c o m p o-
n e nt s: if a t e r m t y p e c h e c k s, t h e n it s t y p e c a n b e t y p e d at t h e s a m e l e v el.
B e c a u s e o u r t y p e s y st e m i n cl u d e s t h e n o n – s y nt a x- di r e ct e d r ul e D T- C o n v , t h e
p r o of of t hi s l e m m a d e p e n d s o n s e v e r al i n v e r si o n l e m m a s, o mitt e d h e r e.

1 3 a g d a / r e d u c t i o n . a g d a 1 4 c o q / a x i o m s . v : D E q u i v _ { A r r o w , P i } _ i n j { 1 , 2 , 3 }
1 5 c o q / a x i o m s . v : i n e q _ * 1 6 c o q / c t x . v : D T y p i n g _ S u b G

1 7 c o q / s u b s t . v : D C t x _ D T y p i n g _ s u b s t

https://github.com/plclub/StraTT/tree/main/agda/reduction.agda
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/subst.v
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L e m m a 9 ( R e g ul a ri t y ). 1 8 If ∆; Γ a :k A t h e n ∆ a n d ∆ Γ a n d
∆; Γ A :k .

G e n e r ali zi n g di s pl a c e a bilit y i n a n e m pt y c o nt e xt, d e ri v ati o n s c a n b e di s pl a c e d
w h ol e s al e b y al s o i n c r e m e nti n g c o nt e xt s, w ritt e n Γ + i , w h e r e ( Γ, x :k A ) + i =
Γ + i , x :k + i A + i .

L e m m a 1 0 ( Di s pl a c e a bili t y ). 1 9 If ∆; Γ a :k A t h e n ∆; Γ + j a + j :k + j A + j .

If w e di s pl a c e a c o nt e xt, t h e r e s ult mi g ht n ot b e st r o n g e r b e c a u s e di s pl a c e-
m e nt m a y m o dif y t h e t y p e s i n t h e a s s u m pti o n s. I n ot h e r w o r d s, it i s n ot t h e c a s e
t h at Γ ≤ Γ + k .

R e s t ri c ti o n T h e k e y i d e a of st r ati fi c ati o n i s t h at a j u d g e m e nt at l e v el k i s
o nl y all o w e d t o d e p e n d o n a s s u m pti o n s at t h e s a m e o r l o w e r l e v el s. O n e w a y
t o o b s e r v e t hi s p r o p e rt y i s t h r o u g h a f o r m of st r e n gt h e ni n g r e s ult, w hi c h all o w s
v a ri a bl e s f r o m hi g h e r l e v el s t o b e r e m o v e d f r o m t h e c o nt e xt a n d c o nt e xt s t o b e
t r u n c at e d at a n y l e v el. F o r m all y, w e d e fi n e t h e r e st ri cti o n o p e r ati o n, w ritt e n
Γ k , w hi c h fflt e r s o ut all a s s u m pti o n s f r o m t h e c o nt e xt wit h l e v el g r e at e r t h a n

k . A r e st ri ct e d c o nt e xt m a y b e st r o n g e r si n c e it c o ul d c o nt ai n f e w e r a s s u m pti o n s.

D e fi ni ti o n 1 ( R e s t ri c ti o n ). 2 0

∅ k = ∅

Γ , x :j A k =
Γ k , x :j A if j ≤ k

Γ k if k < j

L e m m a 1 1 ( R e s t ri c ti o n ). 2 1 If ∆ Γ t h e n ∆ Γ k f o r a n y k, a n d if
∆; Γ a :k A t h e n ∆; Γ k a :k A.

L e m m a 1 2 ( R e s t ri c ti o n s u b s u m p ti o n ). 2 2 Γ ≤ Γ k .

R e s t ri c t e d fi o a ti n g S u b s u m pti o n all o w s v a ri a bl e s f r o m o n e l e v el t o b e m a d e
a v ail a bl e t o all hi g h e r l e v el s u si n g t h ei r c u r r e nt t y p e. H o w e v e r, w h e n w e u s e t hi s
r ul e i n a j u d g e m e nt, it d o e s n’t c h a n g e t h e c o nt e xt t h at i s u s e d t o c h e c k t h e t e r m.
T hi s c a n b e r e st ri cti v e — w e c a n o nl y s u b stit ut e t h ei r a s s u m pti o n s wit h l o w e r
l e v el d e ri v ati o n s.

I n s o m e c a s e s, w e c a n r ai s e t h e l e v el of s o m e a s s u m pti o n s i n t h e c o nt e xt
w h e n w e r ai s e t h e l e v el of t h e j u d g e m e nt wit h o ut di s pl a ci n g t h ei r t y p e s o r t h e
r e st of t h e c o nt e xt. F o r e x a m pl e, s u p p o s e w e h a v e a d e ri v ati o n f o r t h e j u d g e m e nt
f :j Π x :i A . B , x :i A f x :j B w h e r e i < j. We c o ul d d e ri v e t h e s a m e j u d g e m e nt
at a hi g h e r l e v el k > j w h e r e w e al s o r ai s e t h e l e v el of f t o k . H o w e v e r, w e c a n’t
r ai s e x f r o m it s l o w e r l e v el i b e c a u s e t h e n it w o ul d b e i n v ali d a s a n a r g u m e nt

1 8 c o q / c t x . v : D C t x _ D S i g , c o q / c t x . v : D T y p i n g _ D C t x , c o q / i n v e r s i o n . v : D T y p i n g _ r e g u l a r i t y
1 9 c o q / i n c r . v : D T y p i n g _ i n c r 2 0 c o q / c t x . v : r e s t r i c t

2 1 c o q / c t x . v : D S i g _ D C t x _ D T y p i n g _ r e s t r i c t i o n 2 2 c o q / r e s t r i c t . v : S u b G _ r e s t r i c t

https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/inversion.v
https://github.com/plclub/StraTT/tree/main/coq/incr.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
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t o f . I n g e n e r al, w e c a n o nl y r ai s e t h e l e v el of v a ri a bl e s at t h e s a m e l e v el a s t h e
e nti r e j u d g e m e nt.

T o p r o v e t hi s f o r m all y, w e m u st w o r k wit h j u d g e m e nt s t h at d o n’t h a v e a n y
a s s u m pti o n s a b o v e t h e c u r r e nt l e v el b y u si n g t h e r e st ri cti o n o p e r ati o n t o di s c a r d
t h e m. N e xt, t o r ai s e c e rt ai n l e v el s, w e i nt r o d u c e a fi o ati n g o p e r ati o n o n c o nt e xt s
↑ k

j Γ t h at r ai s e s a s s u m pti o n s i n Γ at l e v el j t o a hi g h e r l e v el k wit h o ut di s pl a ci n g
t h ei r t y p e s.

L e m m a 1 3 ( R e s t ri c t e d Fl o a ti n g ). 2 3 If ∆; Γ a :j A a n d j ≤ k t h e n
∆; ↑ k

j ( Γ j ) a :k A.

T h e r e st ri ct e d ff o ati n g l e m m a i s r e q ui r e d t o p r o v e c u m ul ati vit y of j u d g e m e nt s.

L e m m a 1 4 ( C u m ul a ti vi t y ). 2 4 If ∆; Γ a :j A a n d j ≤ k t h e n ∆; Γ a :k A.

I n t h e n o n d e p e n d e nt f u n cti o n c a s e ∆; Γ λ x . b :j A → B , w h e r e w e w a nt
t o d e ri v e t h e s a m e j u d g e m e nt at l e v el k ≥ j, w e g et b y i n v e r si o n t h e p r e mi s e
∆; Γ , x :j A b :j B , w hil e w e n e e d ∆; Γ , x :k A b :k B . R e st ri ct e d fi o ati n g a n d
w e a k e ni n g all o w s u s t o r ai s e t h e l e v el of b t o g et h e r wit h t h e si n gl e a s s u m pti o n
x f r o m l e v el j t o l e v el k .

T y p e S af e t y We c a n n o w s h o w t h at t hi s l a n g u a g e s ati s fi e s t h e p r e s e r v ati o n
(i. e. s u bj e ct r e d u cti o n) a n d p r o g r e s s l e m m a s wit h r e s p e ct t o c all b y n a m e β δ -
r e d u cti o n ∆ a b , w h o s e r ul e s a r e gi v e n i n Fi g u r e 1 0 . F o r p r o g r e s s, v al u e s
a r e t y p e f o r m e r s a n d a b st r a cti o n s.

T h e o r e m 2 ( P r e s e r v a ti o n ). 2 5 If ∆; Γ a :k A a n d ∆ a a t h e n ∆; Γ
a :k A.

T h e o r e m 3 ( P r o g r e s s ). 2 6 If ∆; ∅ a :k A t h e n a i s a v al u e o r ∆ a b f o r
s o m e b.

∆ a b ( R e d u cti o n )

R- B e t a

∆ ( λ x . b ) a b { a / x }

R- D e l t a
x : k A := a ∈ ∆

∆ x i a + i

R- A p p
∆ b b

∆ b a b a

R- A b s u r d
∆ b b

∆ a b s ur d ( b ) a b s ur d ( b )

Fi g. 1 0. C all b y n a m e r e d u c ti o n r ul e s

2 3 c o q / r e s t r i c t . v : D T y p i n g _ f l o a t _ r e s t r i c t 2 4 c o q / r e s t r i c t . v : D T y p i n g _ c u m u l
2 5 c o q / t y p e s a f e t y . v : R e d u c e _ P r e s e r v a t i o n 2 6 c o q / t y p e s a f e t y . v : R e d u c e _ P r o g r e s s

https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
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5 P r o t o t y p e i m pl e m e n t a ti o n

We h a v e i m pl e m e nt e d a p r ot ot y p e t y p e c h e c k e r, w hi c h c a n b e f o u n d at h t t p s :

/ / g i t h u b . c o m / p l c l u b / S t r a T T u n d e r t h e i m p l / di r e ct o r y, i n cl u di n g a b ri ef o v e r vi e w
of t h e c o n c r et e s y nt a x.2 7 T hi s i m pl e m e nt ati o n i s b a s e d o n p i - f o r a l l [4 1 ], a si m pl e
bi di r e cti o n al t y p e c h e c k e r f o r a d e p e n d e ntl y-t y p e d p r o g r a m mi n g l a n g u a g e.

F o r c o n v e ni e n c e, di s pl a c e m e nt s a n d l e v el a n n ot ati o n s o n d e p e n d e nt t y p e s c a n
b e o mitt e d; t h e t y p e c h e c k e r t h e n g e n e r at e s l e v el m et a v a ri a bl e s i n t h ei r st e a d.
W h e n c h e c ki n g a si n gl e gl o b al d e fi niti o n, c o n st r ai nt s o n l e v el m et a v a ri a bl e s a r e
c oll e ct e d, w hi c h f o r m a s et of i nt e g e r i n e q u aliti e s o n m et a v a ri a bl e s. A n S M T
s ol v e r c h e c k s t h at t h e s e i n e q u aliti e s a r e s ati s fi a bl e b y t h e n at u r al s a n d ff n all y
p r o vi d e s a s ol uti o n t h at mi ni mi z e s t h e l e v el s. T h e r ef o r e, a s s u mi n g t h e c oll e ct e d
c o n st r ai nt s a r e c o r r e ct, if a si n gl e gl o b al d e fi niti o n h a s a s ol uti o n, t h e n a s ol uti o n
will al w a y s b e f o u n d. H o w e v e r, w e d o n’t k n o w if t hi s h ol d s f o r a s et of gl o b al
d e fi niti o n s, b e c a u s e t h e s ol uti o n f o r a p ri o r d e fi niti o n mi g ht a fi e ct w h et h e r a
l at e r d e fi niti o n t h at u s e s it i s s ol v e a bl e. D et e r mi ni n g w h at m a k e s a s ol uti o n
“ b ett e r ” o r “ m o r e g e n e r al ” t o m a xi mi z e t h e n u m b e r of gl o b al d e fi niti o n s t h at
c a n b e s ol v e d i s p a rt of f ut u r e w o r k.

T h e i m pl e m e nt ati o n a d diti o n all y f e at u r e s st r ati fi e d d at at y p e s, c a s e e x p r e s-
si o n s, a n d r e c u r si o n, u s e d t o d e m o n st r at e t h e p r a cti c alit y of p r o g r a m mi n g i n
Str a T T . R e st ri cti n g t h e d at at y p e s t o i n d u cti v e t y p e s b y c h e c ki n g st ri ct p o siti vit y
a n d t e r mi n ati o n of r e c u r si v e f u n cti o n s i s p o s si bl e b ut o rt h o g o n al t o st r ati fl c ati o n
a n d t h u s o ut of s c o p e f o r t hi s w o r k. T h e p a r a m et e r s a n d a r g u m e nt s of d at at y p e s
a n d t h ei r c o n st r u ct o r s r e s p e cti v el y c a n b e eit h e r fl o ati n g ( i. e. n o n d e p e n d e nt)
o r fi x e d ( i. e. d e p e n d e nt), wit h t h ei r l e v el s f oll o wi n g r ul e s a n al o g o u s t o t h o s e of
n o n d e p e n d e nt a n d d e p e n d e nt f u n cti o n s. A d diti o n all y, d at at y p e s a n d c o n st r u c-
t o r s c a n b e di s pl a c e d li k e c o n st a nt s, i n t h at a di s pl a c e d c o n st r u ct o r o nl y b el o n g s
t o it s d at at y p e wit h t h e s a m e di s pl a c e m e nt.

We i n cl u d e wit h o u r i m pl e m e nt ati o n a s m all c o r e li b r a r y, 2 8 a n d all t h e e x a m-
pl e s t h at a p p e a r i n t hi s p a p e r h a v e b e e n c h e c k e d b y o u r i m pl e m e nt ati o n.2 9 I n t h e
s u b s e cti o n s t o f oll o w, w e e x a mi n e t h r e e p a rti c ul a r d at at y p e s i n d e pt h: d e ci d a bl e
t y p e s, p r o p o siti o n al e q u alit y, a n d d e p e n d e nt p ai r s.

5. 1  D e ci d a bl e t y p e s

R e vi siti n g a n e x a m pl e f r o m S e cti o n 3 , w e c a n d e fi n e D e c a s a d at at y p e.

d at a D e c (X : ) : 0 w h e r e

Y es :0 X → D e c X

N o :0 n e g X → D e c X

T h e l a c k of a n n ot ati o n o n t h e p a r a m et e r i n di c at e s t h at it’ s a fl o ati n g d o-
m ai n, s o t h at λ X . D e c X c a n b e a s si g n e d t y p e → at l e v el 0. D at at y p e s a n d

2 7 i m p l / R E A D M E . m d 2 8 i m p l / p i / R E A D M E . p i 2 9 i m p l / p i / S t r a T T . p i

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/impl/README.md
https://github.com/plclub/StraTT/tree/main/impl/pi/README.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/StraTT.pi
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t h ei r c o n st r u ct o r s, li k e v a ri a bl e s a n d c o n st a nt s, a r e c u m ul ati v e, s o t h e af o r e m e n-
ti o n e d t y p e a s si g n m e nt i s v ali d at a n y l e v el a b o v e 0 a s w ell. W h e n d e st r u cti n g
a d at at y p e, t h e c o n st r u ct o r a r g u m e nt s of e a c h b r a n c h a r e t y p e d s u c h t h at t h e
c o n st r u ct o r w o ul d h a v e t h e s a m e l e v el a s t h e l e v el of t h e s c r uti n e e. C o n si d e r t h e
f oll o wi n g p r o of t h at d e ci d a bilit y of a t y p e i m pli e s it s d o u bl e n e g ati o n eli mi n a-
ti o n, w hi c h r e q ui r e s i n s p e cti n g t h e d e ci si o n.

d e c D N E :1 Π X :0 . D e c X → n e g (n e g X ) → X

d e c D N E X d e c n n := c a s e d e c of

Y es y ⇒ y

N o x ⇒ a bs ur d (n n x )

B y t h e l e v el a n n ot ati o n o n t h e f u n cti o n, w e k n o w t h at d e c a n d n n b ot h h a v e
l e v el 1. T h e n i n t h e b r a n c h e s, t h e p att e r n s Y es y a n d N o x m u st al s o b e t y p e d
at l e v el 1, s o t h at y h a s t y p e X a n d x h a s t y p e n e g X b ot h at l e v el 1.

5. 2  P r o p o si ti o n al e q u ali t y

D at at y p e s a n d t h ei r c o n st r u ct o r s, li k e c o n st a nt s, c a n b e di s pl a c e d a s w ell, u ni-
f o r ml y r ai si n g t h e l e v el s of t h ei r t y p e s. We a g ai n r e vi sit a n e x a m pl e f r o m S e c-
ti o n 3 a n d n o w d e fi n e a p r o p o siti o n al e q u alit y a s a d at at y p e wit h a si n gl e r e ff e x-
i vit y c o n st r u ct o r.

d at a E q (X :0 ) : 1 X → X → w h e r e

R efl :1 Π x :0 X . E q X x x

T hi s ti m e, t h e p a r a m et e r h a s a l e v el a n n ot ati o n i n di c ati n g t h at it’ s fi x e d at
0 , w hil e it s i n di c e s a r e fi o ati n g. Di s pl a ci n g E q b y 1 w o ul d t h e n r ai s e t h e fi x e d
p a r a m et e r l e v el t o 1 , w hil e t h e l e v el s of E q 1 it s elf a n d it s fi o ati n g i n di c e s al w a y s
m at c h b ut c a n b e 2 o r hi g h e r b y c u m ul ati vit y. It s s ol e c o n st r u ct o r w o ul d b e
R efl 1 c o nt ai ni n g a si n gl e a r g u m e nt of t y p e X at l e v el 1 . Di s pl a c e m e nt i s n e e d e d
t o st at e a n d p r o v e p r o p o siti o n s a b o ut e q u aliti e s b et w e e n e q u aliti e s, s u c h a s t h e
u ni q u e n e s s of e q u alit y p r o of s.3 0

UI P :2 Π X :0 . Π x :0 X . Π p :1 E q X x x . E q 1 (E q X x x ) p (R efl x )

UI P X x p := c a s e p of R efl x ⇒ R efl 1 (R efl x )

5. 3  D e p e n d e n t p ai r s

B e c a u s e t h e r e a r e t w o di fi e r e nt f u n cti o n t y p e s, t h e r e a r e al s o t w o di fi e r e nt w a y s t o
d e fi n e d e p e n d e nt p ai r s. U si n g a fl o ati n g f u n cti o n t y p e f o r t h e s e c o n d c o m p o n e nt’ s
t y p e r e s ult s i n p ai r s w h o s e fl r st a n d s e c o n d p r oj e cti o n s c a n b e d e fi n e d a s u s u al,

3 0 T h e p r o v a bili t y of t hi s p ri n ci pl e, al s o k n o w n a s UI P [ 1 7 ], i s m o r e a c o n s e q u e n c e of
t h e q ui r k s of u ni fi c a ti o n i n p i - f o r a l l t h a n a n i nt e nti o n al d e si g n.
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while using the stratified dependent function type results in pairs whose second
projection can’t be defined using the first. We first take a look at the former.

data NPair (X : ) (P : X ) : where
MkPair : x : X P x NPair X P

nfst : X : P : X NPair X P X
nfst X P p := case p of MkPair x y x
nsnd : X : P : X p : NPair X P P (nfst X P p)
nsnd X P p := case p of MkPair x y y

Due to stratification, the projections need to be defined at level 1 and 2
respectively to accommodate dependently quantifying over the parameters at
level 0 and the pair at level 1. Even so, the second projection is well typed, since

can be used at level 2 by subsumption to be applied to the first projection at
level 2 also by subsumption in the return type of the second projection.

As the two function types are distinct, we do need both varieties of dependent
pairs. In particular, with the above pairs alone, we aren’t able to type check a
universe of propositions NPair isProp, as the predicate has type X : .

data DPair (X : ) (P : x : X ) : where
MkPair : x : X P x DPair X P

dfst : X : P : ( x : X ) DPair X P X
dfst X P p := case p of MkPair x y x
dsnd : X : P : ( x : X ) p : DPair X P

case p of MkPair x y P x
dsnd X P p := case p of MkPair x y y

In the second variant of dependent pairs where is a stratified dependent
function type, the domain of is fixed to level 0, so in the type in dsnd, it can’t
be applied to the first projection, but it can still be applied to the first component
by matching on the pair. Now we’re able to type check DPair isProp.

In both cases, the first component of the pair type has a fixed level, while
the second component is floating, so using a predicate at a higher level results
in a pair type at a higher level by subsumption. Consider the predicate isSet,
which has type X : at level 2: a universe of sets DPair isSet is also well
typed at level 2.

Unfortunately, the first projection dfst can no longer be used on an element
of this pair, since the predicate is now at level 2, nor can its displacement dfst,
since that would displace the level of the first component as well. Without proper
level polymorphism, which would allow keeping the first argument’s level fixed
while setting the second argument’s level to 2, we’re forced to write a whole new
first projection function.
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In general, this limitation occurs whenever a datatype contains both depen-
dent and nondependent parameters. Nevertheless, in the case of the pair type,
the flexibility of a nondependent second component type is still preferable to a
dependent one that fixes its level, since there would need to be entirely separate
datatype definitions for different combinations of first and second component
levels, i.e. one with levels 0 and 1 (as in the case of isProp), one with levels 0
and 2 (as in the case of isSet), and so on.

6 Discussion

6.1 On consistency

The consistency of subStraTT tells us that the basic premise of using stratifi-
cation in place of a universe hierarchy is sensible. However, as we’ve seen that
directly adding floating functions to the logical relation doesn’t work, an entirely
different approach may be needed to show the consistency of the full StraTT.

One possible direction is to take inspiration from the syntactic metatheory,
especially Restricted Floating (Lemma 13), which is required specifically to show
cumulativity of floating functions. Since cumulativity is exactly where the naïve
addition of floating functions to the logical relation fails, the key may be to
formulate this lemma more semantically.

Another possibility is based on the observation that due to cumulativity,
floating functions appear to be parametric in their stratification level, at least
starting from the smallest level at which it can be well typed. This observa-
tion suggests that some sort of relational model may help to interpret levels
parametrically.

Nevertheless, we strongly believe that StraTT is indeed consistent. Restric-
tion (Lemma 11) in particular intuitively tells us that nothing at higher levels
could possibly be smuggled into a lower level to violate stratification. As a fur-
ther confidence check, we have verified that four type-theoretic paradoxes which
are possible in an ordinary type theory with type-in-type do not type check in
our implementation. These paradoxes are Burali-Forti’s paradox [7] and Rus-
sell’s paradox [35] as formulated by Coquand [11], and Girard’s paradox [16] as
formulated by Hurkens [20]. In each case, the definitions reach a point where a
higher-level term needs to fit into a lower-level position to proceed any further
— exactly what stratification is designed to prevent. Appendix A examines these
paradoxes in depth.

6.2 On useability

Useability comes down to the balance between practicality and expressivity. On
the practicality side, our implementation demonstrates that if a definition is well
typed, then its levels and displacements can be completely omitted and inferred,
providing a workflow comparable to Coq or Lean. Additionally, constants are
displaced uniformly, so StraTT doesn’t exhibit the same kind of exponential
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bl o w u p i n l e v el s a n d t y p e c h e c ki n g ti m e t h at c a n o c c u r w h e n u si n g u ni v e r s e-
p ol y m o r p hi c d e fi niti o n s i n C o q o r L e a n.3 1

O n t h e ot h e r h a n d, if a d e fi niti o n i s n ot w ell t y p e d, d e b u g gi n g it m a y i n v ol v e
w a di n g t h r o u g h c o n st r ai nt s a m o n g g e n e r at e d l e v el m et a v a ri a bl e s i n sit u ati o n s
n o r m all y h a vi n g n ot hi n g t o d o wit h u ni v e r s e l e v el s, si n c e st r ati ff c ati o n n o w i n-
v ol v e s l e v el s e v e r y w h e r e, i n p a rti c ul a r w h e n u si n g d e p e n d e nt f u n cti o n t y p e s.

O n t h e e x p r e s si vit y si d e, t h e di s pl a c e m e nt s y st e m of Str a T T f all s s o m e w h e r e
b et w e e n l e v el m o n o m o r p hi s m a n d p r e n e x l e v el p ol y m o r p hi s m; i n s o m e s c e n a ri o s,
it w o r k s j u st a s w ell a s p ol y m o r p hi s m. F o r i n st a n c e, t o t y p e c h e c k H u r k e n s’ p a r a-
d o x a s f a r a s Str a T T c a n, t h e C o q f o r m ul ati o n of t h e p a r a d o x ( wit h o ut t y p e-i n-
t y p e) r e q ui r e s u ni v e r s e p ol y m o r p hi s m, a n d t h e A g d a f o r m ul ati o n of t h e p a r a d o x
( wit h o ut t y p e-i n-t y p e) r e q ui r e s d e fi niti o n s p ol y m o r p hi c o v e r at l e a st t h r e e u ni-
v e r s e l e v el s. T hi s i s d u e t o t y p e s t h at i n v ol v e m ulti pl e s y nt a cti c u ni v e r s e s, s u c h
a s Π X :0 . (X → ) → , w hi c h o nl y i n v ol v e s o n e l e v el i n Str a T T , w hil e t h e c o r-
r e s p o n di n g A g d a t y p e ( X : S e t ℓ ₁ ) → ( X → S e t ℓ ₂ ) → S e t ℓ ₃ r e q ui r e s t h r e e. I n
H u r k e n s’ p a r a d o x, t h e s e t h r e e A g d a l e v el s m u st v a r y i n d e p e n d e ntl y, b ut Str a T T
a c hi e v e s t h e s a m e e fi e ct vi a di s pl a c e m e nt a n d fi o ati n g.

H o w e v e r, i n ot h e r s c e n a ri o s, t h e e x p r e s si vit y of l e v el p ol y m o r p hi s m o v e r m ul-
ti pl e l e v el v a ri a bl e s i s t r ul y n e e d e d. I n p a rti c ul a r, m e r el y h a vi n g a t y p e c o n st r u c-
t o r wit h b ot h a d e p e n d e nt d o m ai n a n d a n o n d e p e n d e nt d o m ai n i nt e r a ct s p o o rl y
wit h c u m ul ati vit y. S u p p o s e w e h a v e s o m e t y p e c o n st r u ct o r T :1 Π x :0 X . Y →
a n d a f u n cti o n o v e r el e m e nt s of t hi s t y p e f :1 Π x :0 X . Π y :0 Y . T x y → Z . B y
c u m ul ati vit y, if y h a s l e v el 2 , t h e n T x y i s still w ell t y p e d b y c u m ul ati vit y at
l e v el 2 , b ut f c a n n o l o n g e r b e a p pli e d t o it, si n c e t h e l e v el of y i s n o w t o o hi g h.
We w o ul d li k e t h e s e c o n d a r g u m e nt of f t o fi o at al o n g wit h T , b ut t hi s i s n’t p o s-
si bl e d u e t o d e p e n d e n c y. M a ki n g t h e l e v el of t h e s e c o n d a r g u m e nt p ol y m o r p hi c
( s u bj e ct t o t h e e x p e ct e d c o n st r ai nt s) w o ul d r e s ol v e t hi s i s s u e.

6. 3  R el a t e d w o r k

Str a T T i s di r e ctl y i n s pi r e d b y L ei v a nt’ s st r ati fi e d p ol y m o r p hi s m [2 3 ,2 4 ,1 2 ], w hi c h
d e v el o p e d f r o m St at m a n’ s r a mi fi e d p ol y m o r p hi c t y p e d λ - c al c ul u s [3 7 ]. St r ati fi e d
S y st e m F, a sli g ht m o di fl c ati o n of t h e o ri gi n al s y st e m, h a s si n c e b e e n u s e d t o
d e m o n st r at e a n o r m ali z ati o n p r o of t e c h ni q u e u si n g h e r e dit a r y s u b stit uti o n [ 1 5 ],
w hi c h i n t u r n h a s b e e n m e c h a ni z e d i n C o q a s a c a s e st u d y f o r t h e E q u ati o n s p a c k-
a g e [ 2 6 ]. M o r e r e c e ntl y, a n i nt e r p r et e r of a n i nt ri n si c all y-t y p e d St r ati fl e d S y st e m
F h a s b e e n m e c h a ni z e d i n A g d a b y T hi e m a n n a n d Wei d n e r [ 3 9 ], w h e r e st r at-
i fi c ati o n l e v el s a r e i nt e r p r et e d a s A g d a’ s u ni v e r s e l e v el s. Si mil a rl y, H u b e r s a n d
M o r ri s’ St r ati fi e d R ω , a st r ati fl e d S y st e m Fω wit h r o w t y p e s, h a s b e e n m e c h a-
ni z e d i n A g d a a s w ell [ 1 9 ]. M e a n w hil e, di s pl a c e m e nt c o m e s f r o m M c B ri d e’ s c r u d e-
b ut- e ff e cti v e st r ati fi c ati o n [ 3 0 ,2 9 ], a n d w e s p e ci ali z e t h e di s pl a c e m e nt al g e b r a (i n
t h e s e n s e of F a v o ni a, A n gi uli, a n d M ull a ni x [ 1 8 ]) t o t h e n at u r al s.

3 1 i m p l / p i / B l o w u p . p i

https://github.com/plclub/StraTT/tree/main/impl/pi/Blowup.pi
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7 C o n cl u si o n

I n t hi s w o r k, w e h a v e i nt r o d u c e d St r ati fi e d T y p e T h e o r y, a d e p a rt u r e f r o m a
d e c a d e s- ol d t r a diti o n of u ni v e r s e hi e r a r c hi e s wit h o ut, w e c o nj e ct u r e, s u c c u m bi n g
t o t h e t h r e at of l o gi c al i n c o n si st e n c y. B y st r atif yi n g d e p e n d e nt f u n cti o n t y p e s,
w e o b st r u ct t h e u s u al a v e n u e s b y w hi c h p a r a d o x e s m a nif e st t h ei r i n c o n si st e n-
ci e s; a n d b y s e p a r at el y i nt r o d u ci n g ff o ati n g n o n d e p e n d e nt f u n cti o n t y p e s, w e
r e c o v e r s o m e of t h e e x p r e s si vit y l o st u n d e r t h e st ri ct r ul e of st r ati fi c ati o n. Al-
t h o u g h p r o vi n g l o gi c al c o n si st e n c y f o r t h e f ull Str a T T r e m ai n s f ut u r e w o r k, w e
h a v e p r o v e n it f o r t h e s u b s y st e m s u b Str a T T , a n d w e h a v e p r o vi d e d s u p p o rt-
i n g e vi d e n c e b y p r o vi n g it s s y nt a cti c m et at h e o r y a n d s h o wi n g h o w w ell- k n o w n
t y p e-t h e o r eti c p a r a d o x e s f ail.

T o w a r d s d e m o n st r ati n g t h at Str a T T i s n’t a m e r e t h e o r eti c al e x e r ci s e b ut
c o ul d f o r m a vi a bl e b a si s f o r t h e o r e m p r o vi n g a n d d e p e n d e ntl y-t y p e d p r o g r a m-
mi n g, w e h a v e i m pl e m e nt e d a p r ot ot y p e t y p e c h e c k e r f o r t h e l a n g u a g e a u g m e nt e d
wit h d at at y p e s, al o n g wit h a s m all c o r e li b r a r y. T h e i m pl e m e nt ati o n al s o f e at u r e s
i nf e r e n c e f o r l e v el a n n ot ati o n s a n d di s pl a c e m e nt s, all o wi n g t h e u s e r t o o mit t h e m
e nti r el y. We l e a v e f o r m all y e n s u ri n g t h at o u r r ul e s f o r d at at y p e s d o n’t vi ol at e
e xi sti n g m et at h e o r eti c al p r o p e rti e s a s f ut u r e w o r k a s w ell.

Gi v e n t h e v a ri o u s u s e a bilit y t r a d e o fi s di s c u s s e d, a s w ell a s t h e i n c o m pl et e
st at u s of it s c o n si st e n c y, w e d o n’t s e e a n y p a rti c ul a rl y c o m p elli n g r e a s o n f o r e x-
i sti n g p r o of a s si st a nt s t o a d o pt a s y st e m b a s e d o n Str a T T . H o w e v e r, w e d o n’t s e e
a n y s h o w st o p p e r s eit h e r, s o w e b eli e v e it t o b e s uit a bl e f o r f u rt h e r i m p r o v e m e nt
a n d it e r ati o n. Ulti m at el y, w e h o p e t h at Str a T T d e m o n st r at e s t h at alt e r n ati v e
t r e at m e nt s of t y p e u ni v e r s e s a r e f e a si bil e a n d w o rt h y of st u d y, a n d o p e n s u p
f r e s h a v e n u e s i n t h e d e si g n s p a c e of t y p e t h e o ri e s f o r p r o of a s si st a nt s.

A P a r a d o x e s

A. 1  B u r ali- F o r ti’ s p a r a d o x

B u r ali- F o rti’ s p a r a d o x [ 7 ] i n s et t h e o r y c o n c e r n s t h e si m ult a n e o u s w ell-f o u n d e d-
n e s s a n d n o n – w ell-f o u n d e d n e s s of a n o r di n al. I n t y p e t h e o r y, w e i n st e a d c o n si d e r
a p a rti c ul a r d at at y p e U d u e t o C o q u a n d [ 1 1 ],3 2 , 3 3 al o n g wit h a w ell-f o u n d e d n e s s
p r e di c at e f o r U .

d at a U :1 w h e r e

M k U :1 Π X :0 . (X → U ) → U

d at a W F :2 U → w h e r e

M k W F :2 Π X :0 . Π f :1 X → U . ( Πx :1 X . W F (f x)) → W F (M k U X f )

3 2 O u r t h a n k s t o S t e p h e n D ol a n f o r d e t aili n g t o u s t hi s e x a m pl e. 3 3 i m p l / p i / W F U . p i

https://github.com/plclub/StraTT/tree/main/impl/pi/WFU.pi
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N ot e t h at b ot h of t h e s e d e fi niti o n s a r e st ri ctl y p o siti v e, s o w e a r e n’t u si n g
a n y t ri c k s r el yi n g o n n e g ati v e d at at y p e s. We c a n s h o w t h at all el e m e nt s of U
a r e w ell f o u n d e d. If w e i g n o r e st r ati fi c ati o n a n d u s e t y p e-i n-t y p e, w e c a n al s o
c o n st r u ct a n el e m e nt l o o p t h at i s p r o v a bl y n ot w ell f o u n d e d.

wf :2 Π u :1 U . W F u l o o p :1 U

wf u := c a s e u of l o o p := M k U U (λ u . u )

M k U X f ⇒ M k W F X f (λ x . wf (f x)) n wf L o o p :2 W F l o o p → ⊥

M k W F X f h ⇒ n wf L o o p (h l o o p)

I n t h e b r a n c h of n wf L o o p , b y p att e r n m at c hi n g o n t h e t y p e of t h e s c r uti n e e,
X i s b o u n d t o U a n d f t o λ u . u , s o h l o o p c o r r e ctl y h a s t y p e W F l o o p . N ot e t h at
t hi s d e ff niti o n p a s s e s t h e u s u al st r u ct u r al t e r mi n ati o n c h e c k, si n c e t h e r e c u r si v e
c all i s d o n e o n a s u b a r g u m e nt f r o m h . T h e n n wf L o o p (wf l o o p ) i s a n i n h a bit a nt
of t h e e m pt y t y p e.

H o w e v e r, wit h st r ati fi c ati o n, U wit h l e v el 1 i s t o o l a r g e t o fit i nt o t h e t y p e
a r g u m e nt of M k U , w hi c h d e m a n d s l e v el 0 , s o l o o p c a n’t b e c o n st r u ct e d i n t h e
fi r st pl a c e. T hi s i s al s o w h y t h e l e v el of a d at at y p e c a n’t b e st ri ctl y l o w e r t h a n
t h at of it s c o n st r u ct o r s, d e s pit e s u c h a d e si g n n ot vi ol ati n g t h e r e g ul a rit y l e m m a.

A. 2  R u s s ell’ s p a r a d o x

T h e U a b o v e w a s o ri gi n all y u s e d b y C o q u a n d [ 1 1 ] t o e x p r e s s a v a ri a nt of R u s s ell’ s
p a r a d o x [ 3 5 ].3 4 , 3 5 Fi r st, a n el e m e nt of U i s s ai d t o b e r e g ul a r if it’ s p r o v a bl y
i n e q u al t o it s s u b a r g u m e nt s; t hi s r e p r e s e nt s a s et w hi c h d o e s n’t c o nt ai n it s elf.

r e g ul ar :1 U →

r e g ul ar u := c a s e u of

M k U X f ⇒ Π x :0 X . (f x = M k U X f ) → ⊥

T h e t ri c k i s t o d e fi n e a U t h at i s b ot h r e g ul a r a n d n o n r e g ul a r. N o r m all y, wit h
t y p e-i n-t y p e, t hi s w o ul d b e o n e t h at r e p r e s e nt s t h e s et of all r e g ul a r s et s.

R :3 U 2

R := M k U 2 (N P air 1 U r e g ul ar ) (nfst 1 U r e g ul ar )

St r ati fi c ati o n o n c e a g ai n p r e v e nt s R f r o m t y p e c h e c ki n g, si n c e t h e p ai r p r o-
j e cti o n r et u r n s a U a n d n ot a U 2 a s r e q ui r e d b y t h e c o n st r u ct o r M k U 2 . T h e t y p e
c o nt ai n e d i n t h e p ai r c a n’t b e di s pl a c e d t o U 2 eit h e r, si n c e t h at w o ul d m a k e t h e
p ai r’ s l e v el t o o l a r g e t o fit i n si d e M k U 2.

3 4 A n A g d a i m pl e m e nt a ti o n [ 1 3 ] c a n b e f o u n d a t
h t t p s : / / g i t h u b . c o m / a g d a / a g d a / b l o b / m a s t e r / t e s t / S u c c e e d / R u s s e l l . a g d a .
3 5 i m p l / p i / R u s s e l l . p i

https://github.com/agda/agda/blob/master/test/Succeed/Russell.agda
https://github.com/plclub/StraTT/tree/main/impl/pi/Russell.pi
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A. 3  H u r k e n s’ p a r a d o x

Alt h o u g h w e’ v e s e e n t h at st r ati fi c ati o n t h w a rt s t h e p a r a d o x e s a b o v e, t h e y l e v e r-
a g e t h e p r o p e rti e s of d at at y p e s a n d r e c u r si v e f u n cti o n s, w hi c h w e h a v e n’t f o r m al-
i z e d. H e r e, w e t u r n t o t h e f ail u r e of H u r k e n s’ p a r a d o x [2 0 ] a s f u rt h e r e vi d e n c e
of c o n si st e n c y, w hi c h i n c o nt r a st c a n b e f o r m ul at e d i n p u r e Str a T T wit h o ut
d at at y p e s. B el o w i s t h e p a r a d o x i n C o q wit h o ut u ni v e r s e c h e c ki n g.

R e q u i r e I m p o r t C o q . U n i c o d e . U t f 8 _ c o r e .

U n s e t U n i v e r s e C h e c k i n g .

D e f i n i t i o n P ( X : T y p e ) : T y p e : = X → T y p e .

D e f i n i t i o n U : T y p e : = ∀ ( X : T y p e ) , ( P ( P X ) → X ) → P ( P X ) .

D e f i n i t i o n t a u ( t : P ( P U ) ) : U : = λ X f p , t ( λ s , p ( f ( s X f ) ) ) .

D e f i n i t i o n s i g ( s : U ) : P ( P U ) : = s U t a u .

D e f i n i t i o n D e l t a ( y : U ) : = ( ∀ p , s i g y p → p ( t a u ( s i g y ) ) ) → F a l s e .

D e f i n i t i o n O m e g a : U : = t a u ( λ p , ∀ ( x : U ) , s i g x p → p x ) .

D e f i n i t i o n M ( x : U ) ( s : s i g x D e l t a ) : D e l t a x : =

λ d , d D e l t a s ( λ p , d ( λ y , p ( t a u ( s i g y ) ) ) ) .

D e f i n i t i o n D : T y p e : = ∀ p , ( ∀ x , s i g x p → p x ) → p O m e g a .

D e f i n i t i o n R : D : = λ p d , d O m e g a ( λ y , d ( t a u ( s i g y ) ) ) .

D e f i n i t i o n L ( d : D ) : F a l s e : = d D e l t a M ( λ p , d ( λ y , p ( t a u ( s i g y ) ) ) ) .

D e f i n i t i o n f a l s e : F a l s e : = L R .

If w e r e pl a c e u n s etti n g u ni v e r s e c h e c ki n g wit h S e t U n i v e r s e P o l y m o r p h i s m . ,
t h e n t h e d e ff niti o n s c h e c k u p t o M . T h e c o r r e s p o n di n g Str a T T c o d e, t o o, c h e c k s
u p t o M , u si n g di s pl a c e m e nt a s n e e d e d, a n d i s v e ri fi e d i n t h e i m pl e m e nt ati o n.3 6

P :0 → := λ X . X →

U :1 := Π X :0 . (P (P X ) → X ) → P (P X )

t a u :1 P (P U ) → U := t (λ s . p (f (s X f )))

si g :2 U 1 → P (P U ) := λ s . s U t a u

D elt a :2 P U 1 := λ y . ( Πp :1 P U . si g y p → p (t a u (si g y ))) → ⊥

O m e g a :3 U := t a u (λ p . Π x :2 U 1 . si g x p → p (λ X . x X ))

M :4 Π x :3 U 2 . si g 1 x D elt a → D elt a 1 x :=

λ x . λs . λd . d D elt a s (λ p . d (λ y . p (t a u (si g y ))))

D :3 := Π p :1 P U . ( Πx :1 U . si g x p → p x ) → p O m e g a

T h e n e xt d e fi niti o n D d o e s n’t t y p e c h e c k, si n c e si g t a k e s a di s pl a c e d U 1 a n d
n ot a U . T h e t y p e of x c a n’t b e di s pl a c e d t o fi x t hi s eit h e r, si n c e p t a k e s a n
u n di s pl a c e d U a n d n ot a U 1 . B ei n g st u c k t r yi n g t o e q u at e t w o di fi e r e nt l e v el s
i s r e a s s u ri n g, a s c o n fi ati n g di fi e r e nt u ni v e r s e l e v el s i s h o w w e e x p e ct a p a r a d o x
t h at e x pl oit s t y p e-i n-t y p e t o o p e r at e.

3 6 i m p l / p i / H u r k e n s . p i ( n o a n n o t a ti o n s ), i m p l / p i / H u r k e n s A n n o t . p i ( all a n n o t a ti o n s )

https://github.com/plclub/StraTT/tree/main/impl/pi/Hurkens.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/HurkensAnnot.pi
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