Multi-Agent Reinforcement Learning with Serverless Computing

Rui Wei Hanfei Yu Xikang Song
Stevens Institute of Technology Stevens Institute of Technology University of Chicago
Hoboken, USA Hoboken, USA Chicago, USA
rwei7@stevens.edu hyu42@stevens.edu xikang@uchicago.edu
Jian Li Devesh Tiwari Ying Mao
Stony Brook University Northeastern University Fordham University
Stony Brook, USA Boston, USA New York, USA

jianli.3@stonybrook.edu

d.tiwari@northeastern.edu

ymao41@fordham.edu

Hao Wang
Stevens Institute of Technology
Hoboken, USA
hwang9@stevens.edu

Abstract

Multi-agent reinforcement learning (MARL) has emerged as a promis-
ing approach for tasks requiring multiple agents for cooperation
or competition, such as scientific simulation, multi-robot collabo-
ration, and traffic control. Serverless computing, with its dynamic
and flexible resource allocation, has demonstrated potential for
improving training efficiency and cost-efficiency in RL workloads.
However, existing serverless RL training systems focus primar-
ily on single-agent scenarios, overlooking the unique characteris-
tics and inherent complexities of MARL—such as dynamic inter-
agent relationships and heterogeneous policy requirements across
agents—leaving inefficient and even infeasible support to diverse
and complex MARL algorithms.

This paper introduces MARLess, the first serverless MARL
framework designed to support general MARL algorithms. MAR-
Less decomposes MARL algorithms into serverless functions. It
further integrates a dynamic learner sharing mechanism that ex-
ploits agent similarities to reduce model update costs and employs
actor scaling tailored to MARL tasks, minimizing unnecessary sam-
pling costs based on the data requirements of agents’ models. This
design optimizes both training efficiency and costs without harm-
ing the training quality. Experiments on AWS EC2 testbeds show
that MARLess outperforms SOTA MARL baselines with up to 1.27x
faster training and 68% cost reduction. Large-scale evaluations on a
15-node cluster with a total of 1,920 vCPUs demonstrate MARLess’s
scalability and consistent performance under increasing workloads.
For a real-world scientific application—turbulent flow simulation,
MARLess achieves a 34% cost reduction and 1.1X speedup.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SoCC 25, Online, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2276-9/25/11

https://doi.org/10.1145/3772052.3772227

CCS Concepts

« Computer systems organization — Cloud computing; - Com-
puting methodologies — Multi-agent reinforcement learn-
ing.

Keywords

Serverless Computing, Cloud Computing, Multi-Agent Reinforce-
ment Learning

ACM Reference Format:

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao
Wang. 2025. Multi-Agent Reinforcement Learning with Serverless Comput-
ing. In ACM Symposium on Cloud Computing (SoCC °25), November 19-21,
2025, Online, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3772052.3772227

1 Introduction

Multi-agent reinforcement learning (MARL) has been widely ap-
plied to applications across varying areas, such as turbulent flow
simulations [7, 51], biomedical data processing [3, 63, 69], smart city
and transportation [35, 70, 88, 89], and robotic control [2, 20, 66].
The high-performance computing (HPC) community has developed
reinforcement learning (RL) frameworks tailored for supercomput-
ing infrastructures [34, 91], such as MIT SuperCloud. In parallel, the
Al community has rapidly advanced RL toolkits, including MARL-
lib [28] and RLIib [37]. However, existing frameworks either target
single-agent reinforcement learning (SARL) settings which do not
generalize to MARL, or rely on serverful deployments that often
lead to inefficient resource and time usage.

Multi-Agent RL (MARL) v.s. Single-Agent RL (SARL): Un-
like SARL, which involves a single agent interacting with the en-
vironment,! MARL involves multiple agents interacting with the
environment and with one another, leading to a significantly larger
and more complex joint state-action space. This interaction intro-
duces non-stationarity and dynamic coordination challenges, but
also enables richer solution strategies for complex tasks.

! An RL agent is an autonomous decision-maker (e.g., a game player) that learns to take
actions to maximize rewards based on feedback from the environment (e.g., a game).
The agent develops a policy (or a strategy) by learning from the rewards and feedback.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772052.3772227
https://doi.org/10.1145/3772052.3772227
https://doi.org/10.1145/3772052.3772227

SoCC ’25, November 19-21, 2025, Online, USA

<
f:; 100 @ Learner Actor
- r
Q r
§ 50 No MARL Support %
i ;
& 0 [| | | | | | |
W A D WO g P
AR GRS\, o \ &
W N\\(\\0 @ \X\P‘?\\’ P
(a) Training costs
—-200 -
[ARG -
o [P2
g -250 P
; [N\/\\/ . _
o [s --- RLlib — MARLess
£ = MARLIib —— MARLess
8280
a L
4 _300{ | | !
0 200 400 600 800

Wall clock time (s)
(b) Training performance

Figure 1: We benchmark the training of the simple-spread
task [40] using IPPO [12] for 100 rounds on AWS EC2. Exist-
ing serverful MARL frameworks (e.g., RLlib [37] and MARL-
lib [28]) are (a) costly and (b) inefficient. In contrast, server-
less RL frameworks (e.g., MinionsRL [85], Stellaris [86], and
Nitro [84]) only support single-agent RL (SARL) and are in-
compatible with multi-agent settings. As the first serverless
framework for MARL, MARLess achieves (a) cheaper and (b)
faster training. MARLess™ is MARLess without core capabil-
ities: learner sharing (§4.3) and actor scaling (§4.4).

Fig. 1 shows that existing SARL frameworks [84-86] fall short in
supporting efficient MARL training due to their inability to address
MARL’s unique characteristics: 1) Agents’ dynamic relationship: In
multi-agent environments, agents may exhibit similar behaviors or
assume distinct roles [18, 21, 77], creating opportunities for similar
agents to share policies [10, 18]; 2) Varying data needs: During RL
training, the agent needs varying volumes of training data over
time [13, 43]. MARL further amplifies this variety due to multiple
agents’ heterogeneous, varying demands for training data. 3) Di-
verse MARL variants: Owing to MARL’s design complexity, many
algorithmic variants have emerged—from independent learning
methods [12, 76] to centralized training approaches [40, 59, 74, 82].
This diversity poses significant challenges for RL training systems
in maintaining broad compatibility and support.

Why Serverless? Serverful deployments using virtual machines
(VMs) or physical servers struggle to meet MARL'’s volatile and dy-
namic computational demands, due to their coarse-grained resource
allocation and slow scaling processes. Recent studies [23, 84-86]
have demonstrated the feasibility of training SARL in serverless
environments. Building on these findings, we argue that serverless
computing is well-suited to MARL, as it can better accommodate
its dynamic training patterns and fluctuating resource needs. Fig. 1
shows that serverful solutions [28, 37] take longer time and higher
monetary costs than serverless solutions to similar or even less
rewards. Moreover, serverless MARL training facilitates portable

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

deployment across cloud and supercomputing infrastructures. How-
ever, despite these advantages, serverless adoption for MARL re-
mains non-trivial due to MARL algorithms’ inherence complexity.
Effectively leveraging the flexibility, auto-scaling, and high concur-
rency of serverless platforms requires decomposing complex MARL
algorithms into independent, parallelizable computation units, exe-
cuted by serverless functions. Unlike SARL, the presence of multiple
interacting agents in MARL significantly complicates the compu-
tation logic, posing fundamental challenges for the co-design of
MARL algorithms and serverless runtime systems.

This paper presents MARLess, the first serverless MARL train-
ing framework that integrates system and algorithm co-design to
enable faster and more cost-efficient training across a broad range of
MARL algorithm variants. Specifically, MARLess develops a MARL-
algorithm compatible design that decouples and interprets MARL
algorithm variants into fundamental primitives (e.g., actor, learner,
policy model, critic model etc.),? executed by carefully-orchestrated
serverless functions (§4). MARLess dynamically shares learners
with higher-performing policies among behaviorally similar agents,
enabling them to reuse the same policy. This approach reduces the
number of required learners and saves computational resources.

Additionally, MARLess evaluates agents’ varying demands for
training data (i.e., feedback from the environment) and auto-scales
to a just-right number of actors, further optimizing training effi-
ciency and cost.

Our main contributions can be summarized as follows:

o We design MARLess, the first serverless MARL training
framework that enables faster and cheaper training with
a co-design of serverless architecture and MARL algorithms.

e MARLess introduces three core features, only enabled by
the unique co-design of serverless computing systems and
MARL algorithms: a compatible design for diverse MARL algo-
rithms, dynamic learner sharing, and cost-aware actor scaling.
Together, these features are key to leveraging the flexibility
and expressiveness of serverless functions to address the
complexity and dynamic nature of MARL training.

e We implement and evaluate MARLess on an AWS EC2 testbed
and a 15-node HPC cluster with 1,920 vCPUs. Experimental
results show that MARLess accelerates the training process
by up to 1.27x and reduces training costs by up to 68% in
representative MARL environments. For a large-scale scien-
tific MARL workload—turbulent flow simulation, MARLess
consistently reduces costs by 34% and achieves 1.1X speedup.

2 Background and Motivation

2.1 SARL v.s. MARL

Fig. 2 shows the fundamental difference between SARL and MARL.
SARL only employs one agent to interact with the environment by
learning a policy 7(a | s), which indicates taking action a given
the state s. The objective is to maximize the expected cumulative

reward, defined as E, [Ztho a rt] [48], where r; is the reward

2Each actor interacts with an environment that involves all agents, allowing it to
collect rewards and feedback from their interactions. Learners then train policy with
or without critic models with the rewards and feedback (no critic models for some
MARL variants).

Multi-Agent Reinforcement Learning with Serverless Computing

©®©
'y - 1 - TN

% r
o A}
5| Environment] S Multi-Agent Environment]
(@) SARL (b) MARL
% Actor Learner @ Observation Rewards

Policy/Critic models — Model update

Figure 2: SARL v.s. MARL.

received at time step ¢, and y € [0, 1) is the discount factor that
determines the importance of future rewards.

Unlike SARL, MARL involves multiple agents interacting with
the environment and each other, fostering a stochastic game char-
acterized by joint state and action spaces, S and A = Hfi 1 Aj, as
well as shared or individual rewards r. Agents learn their own
policies 7; (a;|s;) fori € {1,..., N}, with individual partial observa-
tion s; [8]. Thus, due to MARL’s inherence learning dynamics and
complexities arising from the heterogeneity, interactions among
multiple agents, and environmental volatiles, existing SARL frame-
works [84-86] can hardly support efficient MARL training.

SARL and MARL algorithms can be implemented in a distributed
fashion using the actor-learner architecture [15, 16, 44, 49], which
decouples data collection (by actors) from policy updates (by learn-
ers), enabling scalable and parallelized training. In this architec-
ture, multiple distributed actors interact independently with their
environments—executing actions a and collecting observations s.
Once enough samples are collected, they are sent to the learner,
which computes gradients and updates the policy models 7.

2.2 Motivating Dynamic Learner Sharing

Competition, cooperation, and combinations of both emerge among
agents in MARL. Agents with similar objectives may exhibit similar
behaviors [18, 21, 77], enabling learner sharing to simplify training
and improve generalization by allowing these agents to share a
common policy model [10, 18, 21, 29, 77]. From a system perspective,
reducing the number of learners also lowers computational costs.

However, naive learner sharing may result in reduced rewards
compared to training agents with separate individual policy model.
Thus, we demonstrate the necessity of a reward-aware dynamic
sharing method by applying indexed learner sharing [18], which
feeds the agent index as an extra input to the shared policy, in two
MARL tasks from Multi-Agent Particle Environment (MPE) [40]:
simple-spread and simple-adversary, both with three agents. The
simple-spread task represents a fully cooperative scenario, and the
simple-adversary involves both competition and cooperation.

Fig. 3(a) and (b) show the mean episodic rewards across the
training process.? Due to the varying relationship between agents,
static learner sharing strategies can lead to lower rewards compared
to the no-sharing setting, as Fig. 3(a) shows. When running the
simple-adversary task with learner sharing disabled, we measured

30ne training round is defined as a single update of all agents’ policies. One round
may involve multiple episodes. Each episode indicates a game from the start to finish.

SoCC ’25, November 19-21, 2025, Online, USA

10~ -==w/o sharing - — w/ sharing

Round

Episodic reward

°
©
=
2
Q
©
3
iy Round
(b) Simple-spread
& — Agent 0&1 -—- Agent 0&2 - Agent 1&2
g .
g 0.8 N Ny \4[.1\//'_,",\!-_‘
2 06} WA
k%) C | | | | |
3 o 20 40 60 80 100

Training rounds
(c) Similarities among agents

Figure 3: Average episodic rewards per round in two MPE
scenarios with and without learner sharing, respectively. We
run 100 training rounds for each setting: (a) simple-spread
and (b) simple-adversary. (c) shows dynamic relationships
among agents change during the training,.

the similarity of action distributions dictated by agents’ policies to
show their relationship. Fig. 3(c) shows that the similarity among
agents’ policies changes over time. Existing static learner sharing
strategies [10, 18] fail to adapt to the dynamic nature of agent
behaviors. Thus, we argue that it is essential to enforce dynamic
learner sharing based on agents’ runtime behaviors.

2.3 Motivating Actor Scaling

As training progresses in deep reinforcement learning (DRL), policy
models typically require varying amounts of data for each round
to reach the optimal performance [13, 43]. This variability directly
impacts the scale of the round and is influenced by the number of
active actors. Dynamically adapting the number of actors ensures
generating sufficient data while minimizing resource waste.

Existing actor-scalable distributed RL frameworks [85, 86] focus
on SARL, where only one policy model is considered. They estimate
its data needs and adjust the number of actors accordingly. While
effective in single-agent settings, these methods are not directly
applicable to MARL. MinionsRL [85], for example, uses a RL-driven
scheduler that predicts actor demand based on rewards but requires
hours of pre-training. In contrast, Nitro [84] adopts a data-driven
approach by analyzing the Hessian matrix and outperforms Min-
ionsRL in both cost and efficiency.

MARL introduces higher complexity with multiple agents and
policy models, each requiring different amounts of data that vary
over time. Since all actors generate data for all agents, mismatches
in model demands can cause inefficiencies—for instance, one model
may require much more data than others. This complexity makes it
non-trivial to transfer SARL scaling methods to MARL. It calls for

SoCC ’25, November 19-21, 2025, Online, USA

MARL-specific strategies that balance heterogeneous data demands
across policy models and scale actors efficiently to reduce costs
without harming training quality.

2.4 Motivating MARL with Serverless

The emergence of serverless computing has created new opportu-
nities to enable dynamic and scalable resource allocation, which
releases idle resources in time and enhances overall efficiency. As
shown in Fig. 2, training in RL tasks is typically synchronous, which
often leads to idle time between actors and learners. Serverless com-
puting can reduce training costs by deallocating resources during
these idle periods, as illustrated by MARLess™ in Fig. 1. However,
simply applying serverless infrastructure by turning MARL com-
ponents into stateless functions is not sufficient to fully optimize
training efficiency in MARL workloads. To achieve this, additional
system-algorithm co-design optimizations, such as learner sharing
and actor scaling, are required.

At the same time, serverless computing is inherently well-suited
for MARL due to its ability to handle dynamic and fine-grained re-
source demands. In distributed RL systems, each actor or learner typ-
ically requires a small resource footprint (e.g., one CPU) and must be
instantiated quickly (e.g., within one second), making it difficult for
traditional serverful platforms to adapt efficiently and reduce train-
ing costs under such dynamic conditions. In contrast, serverless
environments support rapid provisioning and fine-grained resource
control, enabling MARLess to reduce training costs by dynamically
releasing similar policy models through learner sharing and avoid-
ing the launch of redundant actors via actor scaling.

Recent serverless-based SARL frameworks [84-86] have demon-
strated significant improvements in training- and cost-efficiency.
However, these serverless SARL training frameworks are not com-
patible with MARL workloads and are difficult to adapt, as their
core designs focus solely on training a single policy model. This
leads to two key limitations: 1) they overlook the interactions and
dependencies among multiple policy models, and 2) they cannot
balance the varying data needs across models, which is essential
for maintaining overall training quality.

3 Objectives and Challenges

Prior research has addressed several challenges of serverless com-
puting. For example, cold-start latency [9, 68, 83] and state manage-
ment [41, 61], have been extensively studied. However, executing
MARL workloads in a serverless environment introduces new chal-
lenges that remain largely unexplored. Based on the latest related
work and the observations discussed in the previous section, we
propose the design of a serverless MARL system with the aim of
achieving three primary goals listed below:

Interpretability: MARLess aims to be a generic serverless MARL
framework that supports diverse MARL algorithms. It should allow
users to interpret MARL algorithms to serverless functions with
minimal refactoring, thereby fully leveraging the flexibility and
auto-scaling capabilities of serverless computing.

Efficiency: Our primary goal is to leverage the benefits of server-
less computing and the similarity among agents’ policy models to
improve training- and cost-efficiency. In MARLess, we design novel

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

multi-agent actor scaling and dynamic learner sharing methods com-
bined with serverless computing to achieve this.

Scalability: MARLess is designed to fully utilize available re-
sources, scaling up or down as needed. Similar to existing serverless
DRL frameworks [85, 86], MARLess includes scalable actors that
can be dynamically adjusted during training rounds.

Running MARL training in a serverless environment can lower
costs by dynamically releasing idle components. However, to opti-
mize training efficiency and cost reduction, we aim to fully exploit
serverless flexibility through actor scaling and learner sharing. To
achieve the three objectives above, the following new challenges
must be addressed:

How to decompose diverse, complex MARL algorithms
into serverless functions? Most frameworks [28, 37, 64, 90] use
centralized learners to simplify logic, but this design limits scala-
bility and efficiency in serverless settings. MARLess decomposes
learners into specialized functions, enabling fine-grained resource
control while supporting a wide range of MARL algorithms.

How to design dynamic learner sharing without affect-
ing training quality? Learner sharing, also known as parameter
sharing, is widely used in MARL to streamline training [12, 21,
26, 33, 40, 82]. We extend this concept to dynamically launch and
release learners to reduce training costs. However, most methods
rely on static groupings [1, 10, 21, 59, 72], which can hurt final per-
formance as agent behaviors evolve [29, 87]. To maintain training
quality, we require a lightweight, adaptive method that responds
to performance changes without adding significant overhead.

How to balance the varying data needs among agents?
Existing scaling strategies [84, 85] are tailored to SARL and cannot
handle MARL’s heterogeneous data demands. MARLess introduces
a new metric to dynamically scale actors and ensure most policy
models receive sufficient training data, balancing quality and cost.

4 MARLess’s Design

4.1 Overview

MARLess is a serverless, distributed MARL training framework
that leverages serverless computing and dynamic learner sharing
to improve cost-efficiency. We first analyze a wide range of MARL
algorithms and identify decomposable and parallelizable computa-
tion motifs to interpret MARL algorithms into serverless functions.
In addition, MARLess’s core components include a performance
decrease detector, a learner categorizer, and an actor scaler. After
decomposing MARL algorithms into concurrent actor functions
and learner functions (§4.2), the training process is divided into
four main steps, as illustrated in Fig. 4.

Step @: Sampling and training. Actors retrieve the latest
model weights from the external cache and continuously sample
trajectories using the current policies. Each actor is configured with
its own copy of the policies and a separate MARL environment
for interaction. The generated trajectories are then stored in the
external cache. Each trajectory records the previous observation,
action, current observation, and reward for a single agent. Once
enough data is collected, learner functions calculate the loss values
and update their corresponding policy models. This process repeats
until training is complete.

Multi-Agent Reinforcement Learning with Serverless Computing

I,
% Actor function

SoCC ’25, November 19-21, 2025, Online, USA

Learner function € Observations Actions Rewards Models
Time
External
© 5 © © : Storage
ARy B il f
K g 0 ” 3]
5| £ o g NS i
5% 2 [\Decrease 3 = .. & J
< f\ -8 r = lf) 1 D A A
= . @ > ctors f';
w f @z '5_") 2 g& g@g $ = W
: . Round ‘ f‘W'

)

()

©)

Figure 4: MARLess’s workflow.

Step @: Performance decrease detection. MARLess com-
putes a global reward R; by aggregating the agents’ rewards from
round ¢. This global reward is normalized to facilitate performance
drop detection. If a performance decline is detected, a new policy
sharing strategy is triggered. The training process alternates be-
tween enabling and disabling learner sharing to help agents recover
from the performance drop more effectively.

Step @: Dynamic learner sharing,. If learner sharing is en-
abled after a performance drop is detected, the learner categorizer
retrieves the latest trajectories and analyzes their similarity across
agents. The similar agents will be grouped together for learner shar-
ing. Agents within the same group share a common learner and
policy model, resulting in a new policy set 7n+ with N’ learners.

Step @: Actor scaling. The actor scaler estimates the required
number of actors per policy using the Hessian matrix eigenvalues
and applies a scaling rule to compute the total number I;,1 for the
next round. Training then proceeds to round t with I, actors and
N’ learners, repeating from Step @ until training ends.

4.2 Decomposing Diverse MARL Algorithms

In existing MARL frameworks [28, 37, 64, 90], learners are typically
implemented with coarse granularity, managing all agents within a
centralized learner. In contrast, MARLess decomposes the central-
ized learner into separate functions, enabling fine-grained control
in a serverless environment. This design improves flexibility and
allows the system to manage each function independently, adapting
more efficiently to the dynamic learner sharing design. The func-
tion decomposition follows the core execution logic of mainstream
MARL algorithms, enhancing serverless functions’ interpretability
and compatibility. In MARLess, serverless learner functions are
categorized into three types based on their algorithmic roles: critic
functions, policy functions, and post-processing functions.

The policy function trains the agent’s policy network, which gen-
erates actions based on the agent’s observations. In actor-critic algo-
rithms like Proximal Policy Optimization (PPO) [67] and Deep De-
terministic Policy Gradient (DDPG) [38], the policy network serves
as the actor network.* For value-based methods like Independent
Q-Learning (IQL) [48], the policy network is instead the value

4The term “actor” here refers to the actor component in the actor-critic architecture,
which is distinct from the actor function in the actor-learner training paradigm.

Policy Critic Post-process
$ model X& model function
L _] L _]

f ! !
% & 4
f. dain F=
% % 4
(@) 1QL (b) MAPPO

o % b bl #
f % f e f &
(c) VDN (d)IPPO

Figure 5: MARLess’s learner function composition varies
based on different MARL algorithms, including: (a) indepen-
dent value-based methods [76], (b) centralized actor-critic
methods [40, 82], (c) centralized value-based methods [59, 74],
and (d) independent actor-critic methods [12, 40].

network. The critic function is specific to actor-critic methods. It
updates the critic network, which estimates returns and assists in
training the policy network [75]. The post-processing function is
used in centralized training methods with information sharing like
Value-Decomposition Networks (VDN) [74], Multi-Agent Proximal
Policy Optimization (MAPPO) [82] and Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) [40], where models are trained
using global information. This function processes the trajectory
data produced by actors into the correct format for the critic and
policy models. As shown in Fig. 5, by flexibly combining the policy
function, critic function, and post-processing function, all common
types of MARL algorithms can be constructed. The categorization
of these algorithms follows existing work [28, 90].

4.3 Dynamic Learner Sharing

Unlike SARL, where a single policy model is used, MARL typically
assigns each agent a separate policy model that maps observa-
tions to actions. During training, some policy models may become

SoCC ’25, November 19-21, 2025, Online, USA

similar—producing identical actions given the same observations—
creating opportunities for learner sharing to reduce training over-
head [18, 21, 77]. However, static sharing can degrade training
quality by limiting agents’ adaptability to evolving and diverse
roles [29, 87]. To address this, MARLess integrates a dynamic learner
sharing mechanism that is aware of training quality and can enable
or disable sharing based on performance trends. To enable this ca-
pability, four key challenges must be addressed: 1) How to mitigate
the effects of reward fluctuations in training when detecting the
performance decrease? 2) How to calculate the similarities among
policies without introducing extra overhead? 3) How to determine
the appropriate number of shared learners? 4) How to identify
which policy models should be shared among similar agents? We
address these challenges using four corresponding techniques, as
described below.

4.3.1 Performance decrease detection. In MARLess, learner sharing
is toggled on and off when the performance of the alternative strat-
egy declines. Specifically, when sharing is enabled and the reward
decreases, MARLess disables sharing to allow agents to diverge
and explore independently. Conversely, when sharing is disabled
and the reward decreases, MARLess enables sharing so that similar
agents can reuse the same policy, thereby reducing the number of
active learners and overall learner cost. To fairly assess each agent’s
contribution to the global rewards, the individual reward of agent i

P
Wm [39], before
being aggregated. However, DRL training often exhibits significant
reward fluctuations. To mitigate the impact of these fluctuations,
MARLess uses a tolerant window of the most recent W rounds of
global rewards to monitor performance trends, where W defines
the window size. MARLess then fits a least squares regression line
and calculates its slope k; it switches strategies only if k falls below
a predefined threshold y and the tolerant window is full. Besides,
we observe that each time the strategy changes, there may be a
temporary drop in performance, which typically recovers shortly
afterward. To allow the system sufficient time to stabilize after a
strategy switch, the window is cleared following each change.

at round t is first normalized as 7;’ :=

4.3.2 Policy similarity calculation. Once a performance decrease is
detected and learner sharing is enabled, MARLess groups similar
agents by comparing their policy models, allowing shared mod-
els. A common approach measures similarity by vectorizing each
agent’s trajectories—observations and actions—and computing dis-
tances between these vectors. state-of-the-art (SOTA) methods
like selective parameter sharing [10] and Multi-Agent Policy Dis-
tance (MAPD) [29] train encoder models to generate latent repre-
sentations [10, 29]. However, these introduce extra training costs
and lack generality across diverse MARL tasks. Instead, MARLess
compares the probability distributions of each agent’s policy model.
During updates, learner functions construct a Kernel Density Es-
timation (KDE) model for each agent using the latest trajectories.
These models represent observation-action distributions. For agent
i’s policy 7m;, MARLess computes the Kullback-Leibler (KL) diver-
gence between every agent pair. To reduce computation in high-
dimensional spaces, MARLess compresses each trajectory using
principal component analysis (PCA).

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

4.3.3 Agent categorization. After computing agent similarities, the
categorization step becomes a clustering problem. The next chal-
lenge is to determine how many groups to form. As previously
discussed, changing the sharing strategy often causes a temporary
drop in reward. The size of this drop is closely related to the change
in the number of policy models—the larger the change, the greater
the drop. Although models typically recover, a large disruption late
in training can negatively impact final performance. To mitigate
this, we introduce a policy count scheduler in the dynamic learner
sharing module. It limits how much the number of policy models
can vary over time, helping maintain training stability and preserve
final rewards. When learner sharing is enabled for the jth time, the
number of policy models N is given by N’ = min(2/, 2108 NJ+1),
where N is the total number of agents. This scheduler prevents
drastic changes in strategy, especially during the later stages of
training. Finally, MARLess uses K-Means—a widely used clustering
algorithm—to group similar agents for subsequent learner sharing.

4.3.4 Shared model selection. When a group of agents is clustered
together, MARLess selects one agent’s model as the base for sharing,
following a strategy similar to existing work [29]. The selection is
based on evaluating the performance of each agent’s policy model.
The Hessian matrix—a common tool for analyzing the curvature
of neural network loss surfaces [30, 55, 73]—has been applied in
scalable RL training [84]. Following prior work, we compute the
convexity ratio C of a policy 7 using the largest and smallest
eigenvalues of its Hessian matrix:

cl = —e{'.ﬂ, (1)

e .

min
where e}, and efm.n are the largest a_md smallest eigenvalues, re-
spectively. A higher convexity ratio C’ suggests the model is closer
to alocal optimum on the reward surface, while a lower ¢/ indicates
flatter or less promising reward regions [84]. The model with the
highest C is selected as the base for sharing. Once the new policy
set is finalized, the corresponding learner functions are configured
and remain active until the next strategy switch. By adjusting the
number of policies, MARLess dynamically scales the number of
learner functions to optimize learner costs.

4.4 Actor Scaling

Previous research has shown that data requirements vary across
training stages in deep neural networks [13, 43], including RL mod-
els [84, 85]. In such cases, the number of trajectories needed by
agents’ policy models changes over time. Unlike actor scaling in
MinionsRL [85] and Nitro [84], MARLess scales actors based on
each policy model’s performance, taking into account the vary-
ing data needs of different models. We begin by defining how to
compute the required number of actors for a single policy model,
following the methodology proposed in prior work [84].

The number of actors I; at round ¢, bounded by an upper limit
Imax and a lower limit Iy, is determined based on the estimated
training improvement, as shown in Eq. (1). As mentioned, a smaller
convexity ratio C/ for policy rj indicates poorer exploration due
to less diverse trajectories. This suggests that generating more
trajectories can lead to greater benefits for 7;, requiring additional

Multi-Agent Reinforcement Learning with Serverless Computing

- Policy Model 0
-+ Policy Model 1
-= Policy Model 2
— MARLess
Threshold

N
o
T

Rquired
of actors
S
o
N
S
[e¢]

6 10
Round

Figure 6: MARLess scales the number of actors to balance
training quality with cost efficiency.

actors. Thus, more actors are launched when policies have lower
convexity ratios. To account for training fluctuations, MARLess
reuses the tolerant window to record convexity ratios of each policy
over the last W rounds, representeq as C{/V = {Ci—w+1’ el C{},
Using this record, the scaling ratio Si for 7 at round ¢ is calculated
with min-max normalization as

J J
Sj ._ cmax - Ct
e
J J
Cmax - Cmin

where C},,, and Cfn in, are the maximum and minimum convexity
ratios of policy 7; within the window. The number of actors for a
policy j can be calculated as

I,{ = CliP(S{ X Imax; Imins Imax),

where the Clip function is used to ensure that I{ stays within the
defined upper and lower bounds. This design addresses the skewed
scaling scores with many near-zero values. A direct linear map is too
sensitive, as small noise can trigger unnecessary scaling. Clipping
adds a dead zone to ignore minor fluctuations and activates scal-
ing only when real demand appears, following prior actor-scaling
work [84]. After computing the required number of actors for each
policy model, we analyze the distribution of data needs across mod-
els during training. To illustrate this, we run Independent Proximal
Policy Optimization (IPPO) on MPE’s three-agent simple-spread
task and record the evolving actor requirements for each policy
model, as shown in Fig. 6. Based on these observations, we design
a cost-aware actor-scaling strategy to guide the allocation process.
Specifically, the total number of actors to launch in the next round,
denoted as I;, is computed as:

Iihreshold = B X (Imax = Imin),

N’ 7J
I _ 2 j=1 I
average * IN| >
I = maX(I{ | j €N, ifIaverage 2 Ithresholds @)
t = .
Iaverage= if Iaverage < Ithresholds

where N’ represents the set of current policies, and f§ is an upper
threshold. As shown in Fig. 6, the threshold § helps balance @
training quality by allocating enough actors when most policy
models require more data, and @ cost reduction by launching
only a moderate number of actors when increased demand is limited
to the minority of models. As long as f < 1/K, MARLess avoids the
extreme cases where a single outlier causes unnecessary scaling,
which can be theoretically verified.

SoCC ’25, November 19-21, 2025, Online, USA

Learner &8 /O overhead
Actor

(D Scaling overhead
® 50 o N, ZHI
S @ :

T 40 ° e \ ! i e
£ 30 Latency (s)
3 (b) Scale-down latency
© 20
ks
* 10 v
i 666‘\9‘55 | \ \
15 20 25 % 0 20 40 60
Round Latency (s)

(a) Actor demands (c) Scale-up latency

Figure 7: Serverful platforms cannot effectively implement
actor scaling due to slow provisioning, which introduces
significant scaling overhead. (a) Fluctuating actor demands I;
estimated according to Equation (2). (b) Both serverless and
serverful platforms have negligible scale-down latency. (c)
Serverful platforms (i.e., AWS EC2) typically have a high scale-
up latency due to lengthy provisioning and initialization.

Moreover, the actor scaling design can speed up training by sam-
pling and learning only from the necessary number of trajectories.
Although serverful platforms [4, 19, 47] can also improve learner
update speed by adjusting the amount of training data, they have
difficulty balancing performance and cost. Integrating actor scaling
with serverful platforms is impractical due to the high overhead
of resizing instances or VMs during training. Even when using a
cluster of multiple instances and dynamically turning them on and
off, the process remains inefficient. This inefficiency arises because
adding instances causes frequent startup delays that increase total
training time (e.g., AWS EC2 [4] instances typically take seconds to
minutes to initialize), as the system must frequently add or remove
instances. We conduct experiments in both serverless and server-
ful environments using IPPO on AWS EC2 with the simple-spread
scenario and a fixed random seed, as Fig. 7 shows. We extend the
serverful baseline to support actor scaling by dynamically spawn-
ing new instances or shutting down redundant ones. Fig. 7(b) and
(c) present the per-round latency breakdowns during scale-up and
scale-down operations, respectively. The results show that serverful
platforms incur minimal extra overhead when scaling down, since
active actors do not need to wait for redundant instances to shut
down. However, the serverful baseline introduces significant addi-
tional latency when scaling up due to the time required to spawn
new instances in response to increased actor demand. Using large
instances can reduce the frequency of such adjustments, but they
are often underutilized, resulting in unnecessary costs.

5 Implementation

MARLess is a generic MARL framework designed to accelerate
MARL training and reduce training costs through serverless com-
puting while supporting all mainstream MARL algorithms. We build
MARLess on top of Ray RLIib [37], without changing the outer RL
interfaces exposed to the user, which ensures the usability and
makes it easy for previous RLIib users to adapt within around two

SoCC ’25, November 19-21, 2025, Online, USA

hours. The implementation of MARLess consists of approximately
4K lines of Python code, which is open-sourced®.

Serverless cluster. We implement our own serverless cluster
using AWS EC2 instances to manage the serverless functions in
MARLess for simplicity. We deploy the cluster using Docker con-
tainers [45], a widely adopted choice in open-source serverless
frameworks such as Knative [11] and OpenWhisk [6]. For server-
ful baselines, learners and actors are implemented as Python pro-
cesses. The resources allocated to each serverless function are pre-
configured and remain fixed throughout a training run. Typically,
each function uses 1-2 CPUs and at least 1 GB of memory.

Pre-warm serverless functions. Cold-start latency in server-
less computing refers to the delay when a function is invoked for
the first time or after being idle, requiring the platform to allocate
resources and initialize the environment [9, 68, 71, 83]. To align
the initial invocation overhead with real-world serverless envi-
ronments, we pre-warm the containers during the first round of
training. After this initial invocation, containers are kept alive for
10 minutes, following the standard keep-alive mechanism adopted
by existing serverless frameworks [6] to reduce the startup over-
head of serverless functions. MARLess’s design is orthogonal to
existing pre-warming techniques [6, 36, 42, 52, 68, 71, 83, 83] and
can be easily integrated with them.

State management. To reduce data transfer overhead, we adopt
a temporary caching technique [61]. Specifically, we use Redis [60],
an in-memory key-value store, as the external cache. All intermedi-
ate data, including model weights and trajectories, are efficiently
serialized using Pickle [57] and CloudPickle [56].

RL models. The policy and critic models within these functions
are implemented using PyTorch [58], with model wrappers inspired
by the design of Ray RLIib [37]. The interfaces of the environments
and policy models follow Gymnasium’s design [79] The original
MARL environments are provided by existing libraries [64, 78].

Learner sharing and actor scaling in MARLess. To enable
dynamic learner sharing without extra latency, MARLess computes
policy similarity in parallel with learner updates, right after actors
finish sampling. The latency of building the KDE model is thus
hidden if it is shorter than the learner’s update time. For actor
scaling, we use PyHessian [81] to calculate Hessian eigenvalues
for estimating the scaling ratio S{ . To further reduce computation
time, we follow the method in [84], which approximates these
eigenvalues using a subset of trajectories.

6 Evaluation

6.1 Experimental Setup

Testbeds. We deploy all the baselines and MARLess to an AWS
cba.16xlarge instance, with 64 AMD EPYC 7R13 vCPU cores and
128 GB CPU memory for MARL training tasks. We also evaluated
the setup using a GPU-based testbed with a c6a. 16x1large instance
and a g5.16x1large instance (8 NVIDIA A10G GPUs). However,
training on GPUs was similar or even slower than on CPUs across
all baselines and MARLess, due to small model and batch size with
frequent CPU-GPU communication in the tested MARL tasks. Thus,

Shttps://github.com/IntelliSys-Lab/MARLess-SoCC25

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

we run the experiments with only CPUs for a fair evaluation. Fur-
thermore, we evaluate MARLess’s scalability through large-scale
experiments on a simulated HPC cluster consisting of fifteen AWS
EC2 c6a. 32x1arge instances, each equipped with 128 AMD EPYC
7R13 vCPUs and 256 GB of CPU memory.

Cost model. Referring to the cost models from existing research [62,
86], we calculate the training cost for serverless baselines as a dollar-
unit budget based on the resource requirements and invocation
time for each function. The unit price, expressed as dollar-per-
resource-second, is based on AWS Lambda’s pricing [5]. Pre-warm
costs are included in the training costs, while keep-alive periods
are excluded. This is consistent with the cost models of existing
serverless platforms [5, 46]. For serverful baselines, the training
cost is calculated using the unit price of the smallest AWS EC2
instance that can accommodate the workload. In our experiments,
the price is based on the c6a.16x1large instance.

Workloads. To comprehensively evaluate MARLess against SOTA
baselines, we selected two environments representing a range of
workloads, from moderate to heavy, including OpenAI’'s MPE [40]
and StarCraft Multi-Agent Challenge (SMAC) [14, 64]. 1) For MPE,
the simple-spread task and the simple-adversary task are used to
evaluate system performance in cooperative and competitive sce-
narios, respectively. We increase the number of agents to six in
both tasks to introduce higher complexity and more effectively
evaluate MARLess’s capability. 2) For SMAC, two scenarios will
be evaluated: 8m (homogeneous agents),® and 3s5z (heterogeneous
agents),” covering all major MARL task variations. These scenarios
involve micromanagement across agents, closely resembling multi-
agent decision-making in scientific computing tasks [3, 7, 66, 88],
and provide a comprehensive evaluation of the system’s ability to
handle diverse multi-agent dynamics.

MARLess’s settings. We set the tolerant window size W to 10
for all experiments, and the upper threshold g for scaling actors
is set to 0.5 when evaluating MARLess. The learning rate remains
fixed throughout training. The decrease detection threshold y is
configured based on the specific algorithm and environment. The
maximum number of available actors, I, 4y, for all baselines is set to
50. In MARLess, the minimum number of actors, I,in, is set to I'"T“"
where N is the number of agents in the environment. Additionally,
we evaluate the sensitivity of these hyperparameters in §6.5.

6.2 Overall Performance

6.2.1 Performance Improvement in MARL Algorithms. We evalu-
ate how MARLess improves training efficiency for SOTA MARL
algorithms. To demonstrate its performance and compatibility,
we implement four representative algorithms in MARLess, cov-
ering independent and centralized, actor-critic and value-based
methods. 1) IPPO [12] is the multi-agent extension of PPO [67], a
popular on-policy actor-critic algorithm. We implement it with
Generalized Advantage Estimation (GAE) and surrogate objec-
tive clipping. 2) IQL [76] is the multi-agent version of Deep Q-
Network (DQN) [48], representing a standard off-policy value-based
approach. 3) MAPPO [82] enhances PPO with a centralized critic
for improved stability and remains on-policy. 4) VDN [74] builds

©8m denotes the task “8 Marines v.s. 8 Marines.”
7355z denotes “3 Stalkers & 5 Zealots v.s. 3 Stalkers & 5 Zealots”

Multi-Agent Reinforcement Learning with Serverless Computing

SoCC ’25, November 19-21, 2025, Online, USA

- -200 --- Vanilla — MARLess 120 ~200
S 120
% 60 L r
S 250 q we | 60F -300
5 40 W L
2 . | | 0 |
aQ 0 400 0 400 400 0 100 200
w Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s)
(a) IPPO-spread (b) IPPO-adversary (c) IPPO-8m (d) IPPO-3s5z (e) IQL-spread
T 140f F -200 80"
Sy 100/ f -
L headtons N\ A 40 i it
§ or | | b I I oL~ N PPt ‘ i ‘ i
a 0 100 200 0 500 1000 0 1000 0 400 0 400
w Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s)
(f) IQL-adversary (g) 1QL-8m (h) 1QL-3s5z (i) MAPPO-spread (j) MAPPO-adversary
-200 160
e [
: 140] | 140l . 80
s 7oF 700, -300 80 40
2 L
g 0 . | . | . 0 . | . 0 . | .
a 0 400 800 0 1000 0 200 400 0 400 800 0 500
w Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s) Wall clock time (s)
(k) MAPPO-8m (I) MAPPO-3s5z (m) VDN-spread (n) VDN-8m (o) VDN-3s5z
Figure 8: MARLess improves training efficiency for vanilla MARL algorithms.
Table 1: Network architecture settings. Learner 8 IPPO IDQN & MAPPO & VDN
0.5
Environment Layer Activation Size [
MPE Fully-connect Tanh [64, 64] [z
SMAC Fully-connect Tanh [128, 256] 0~ E% @ E% @
0.05F
—~ N/A
on DQN by aggregating agents’ value outputs into a shared loss £ of @ @ o
for more stable training. 3 -
We use the four vanilla algorithms mentioned above as baselines © o5
and integrate them with MARLess for comparison. Hyperparameter a N @ @ % @ @ @
selection follows tuned examples from RLIib [37] and MARLIib [28]. 0=
The detailed hyperparameter settings for algorithm baselines can be 04r
found in the GitHub repository®. The decrease detection threshold 02 g § g
y is set to 0.1 for MPE and -1 for SMAC. Table 1 summarizes the 0 [@ =S0 @ | en @ |

policy models’ neural network configurations for different MARL
environments. For algorithms involving critic networks, the critics
are configured identically to the policy networks. The model scale
is aligned with previous MARL research [28, 40, 59, 64, 78, 82].

All training processes use the Adam optimizer [31] by default.
When running IQL and VDN in the SMAC environment, the opti-
mizer for these algorithms is set to RMSProp [25]. Each algorithm
is trained for 100 rounds across all available scenarios selected
from two environments. Note that VDN is applicable only to fully
cooperative scenarios and does not include simple-adversary. The
results are derived by averaging values sampled from ten repeated
experiments with different random seeds.

Training efficiency. We run each setting multiple times with
different initial evaluation sets. The averaged rewards across multi-
ple runs, together with the upper and lower bounds, are visualized
in the Fig. 8. The sudden drops and fluctuations in reward curves ob-
served during training are common in DRL and are often attributed
to catastrophic interference [17, 24, 32, 40, 53], which is primarily

8https://github.com/IntelliSys-Lab/MARLess-SoCC25

N

\\W‘”eg‘@ s

N2 a\Ce
VY VY s VQa™
N\p?\ \\P‘?\ \}\P?‘ N2
Figure 9: MARLess reduces training costs of vanilla IPPO,
IQL, MAPPO, and VDN in (a) simple-adversary, (b) simple-
spread, (c) 8m, and (d) 3s5z. Blue bars indicate the costs of
learner functions, and the rest represent the costs of actors.

caused by non-stationarity in multi-agent environments. Actor-
critic methods, such as IPPO and MAPPO, demonstrate greater
stability compared to value-based methods like IQL and VDN. Also,
centralized methods do not consistently outperform independent
methods, a trend also observed in prior work [12]. MARLess reduces
the end-to-end training time for all vanilla algorithms across all sce-
narios while maintaining or improving training quality, achieving
the same or higher final rewards. Compared to the vanilla algo-
rithms, MARLess accelerates the training process by up to 1.27x
when running IPPO on MPE’s simple-spread task.

Training Cost. Fig. 9 illustrates the training costs of the vanilla
algorithm baselines and their variants integrated with MARLess.

SoCC ’25, November 19-21, 2025, Online, USA

200 - RLlib MARLIib — MARLess
B _2 e enaenamn v T -200 S
- \ RE © < N
% 50 W % R
o280 g ~400
e [e L
Q-300LC ! 2 !
a 0 400 a 0 200
w Wall clock time (s) w Wall clock time (s)
(a) IPPO (b) IQL
p 2007 s | B-200F B
© WAE © > 7
= —250 Y = L\ \ ”
o _o80 o v \
£ , 2 -400 ~
Q300 & by 2 \
a 0 400 800 o 0 400
w Wall clock time (s) Wall clock time (s)
(c) MAPPO (d) VDN

Figure 10: MARLess achieves a better balance between train-
ing speed and training quality.

In MPE tasks, such as simple-adversary and simple-spread, actor
costs are lower compared to SMAC due to the simplicity and low
simulation cost of the MPE environment. In contrast, SMAC in-
volves intensive computation to simulate the StarCraft II game,
resulting in higher actor costs. Compared to the original algorithm
baselines, MARLess reduces training costs by up to 66% in the MPE
environment and up to 68% in the SMAC environment.

6.2.2 Performance Improvement in MARL Frameworks. We also
evaluate how MARLess accelerates the training process and re-
duces training costs compared to SOTA MARL frameworks. Two
popular MARL frameworks were selected for comparison with
MARLess: 1) Ray RLIib [37], an open-source, industrial-grade
DRL library built on the Ray [50] cluster for task scheduling. 2)
MARLIib [28], a SOTA MARL-optimized framework that includes
extensive implementations of various MARL algorithms, incorpo-
rating multiple implementation tricks from existing work [27]. Due
to page limitations, we tested IPPO, IQL, MAPPO, and VDN under
the simple-spread task for comparison. All algorithms use the same
settings as described in §6.2.1.

Training efficiency. Fig. 10 illustrates the episodic rewards
during training using four algorithms with MARLess, RLIib, and
MARLIib. The results show that MARLIib exhibits lower training
quality while achieving the fastest training speed for IPPO and VDN.
RLIlib maintains similar training quality compared to MARLess,
but has the slowest training speed for IPPO and VDN. In contrast,
MARLess strikes a balance between training speed and quality,
accelerating MARL training while maintaining training quality and
achieving comparable final rewards.

Training cost. Fig. 11 illustrates the training costs for MARLess,
RLIib, and MARLIib. MARLess achieves significant cost savings,
reducing training costs by up to 67% compared to RLlib and 61%
compared to MARLIib.

6.3 Effectiveness of MARLess

To validate MARLess’s core designs: dynamic learner sharing and
actor scaling, we run IPPO on MPE’s simple-spread task for 100
rounds. During training, we record the number of learner and actor

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

IPPO S QL & MAPPO VDN
MARLIib szzzzzz7z3- NSNS\ 777 7
RLlib pNrzzzzzzza- SNV 773+
MARLess vz heeewzH
MARLIib == 7 Y7 A
RLIib pSrzzzzzzza- S\ 77
MARLess =773 | Sl ol
0 05 0 0.05
Cost ($)

Figure 11: MARLess has lower training costs compared to
other MARL frameworks.

— MARLess --- IPPO

® MARLess ™ Learner & Actor
5 2 1of’ [v 0.4 I
o C
#& b5 U

(0] —_ L
o £
= O ——
S5 -225 W 802
2 = (&)
& = 275w r
L9 B B ol | | |
55 4RI z
+* 8 20 L | . | ?\\,e%:s/e"ae’ \??O

0 50 100 \WR®

Round

(a) Training process (b) Training costs

Figure 12: MARLess reduces costs by combining dynamic
learner sharing and actor scaling with serverless computing,.

functions at each round, as shown in Fig. 12(a), to verify that MAR-
Less reduces training costs by releasing unnecessary actors and
learners. In addition to the serverful IPPO baseline, we also eval-
uate IPPO directly migrated to a serverless environment without
dynamic learner sharing or actor scaling, denoted as MARLess ™.
Since the unit price under this setting for serverless actors is higher
than that for serverful actors, directly using serverless platforms
without MARLess results in higher actor costs. With MARLess’s
dynamic learner sharing and actor scaling, training costs for server-
ful IPPO are reduced by 57%, and training costs for MARLess™ are
reduced by 43%, as shown in Fig. 12(b). Moreover, both the actor
scaling [84] and learner sharing [29, 87] have been theoretically
proved with a bounded convergence of the reward.

6.4 Ablation Study

To further validate the effectiveness of dynamic learner sharing and
scalable actors, we introduce two additional variants of MARLess
for comparison: 1) MARLess w/o scaling: This variant runs MAR-
Less with a fixed number of actors set to I;qx. 2) MARLess w/o
sharing: This variant runs MARLess with fixed learner functions,
disabling dynamic learner sharing. In this setup, the number of
learner functions corresponds to the number of agents.

We run IPPO in MPE’s simple-spread with the same setting as
described in §6.2.1. Fig. 13(a) shows that MARLess accelerates the
training process by up to 25% compared to its variants, without
compromising training quality. Fig. 13(b) demonstrates that MAR-
Less reduces actor costs by 33% through actor scaling compared
to w/o scaling, and lowers learner costs by 49% through learner
sharing among agents compared to w/o sharing. By combining both
features, MARLess achieves optimal resource efficiency.

Multi-Agent Reinforcement Learning with Serverless Computing

--- IPPO --- w/o scaling
w/o sharing — MARLess Learner & Actor
-200 04F
-E U
5] L B !
E o0] gozr
Q O r %
3 o LN NI N RN
0 S . . O
5-280 | N\ﬁ\;"’ig\‘i\%“‘\“%?
300 600 WO
Wall clock time (s) o
(a) Training performance (b) Training costs
Figure 13: Ablation study of MARLess.
§ §-200-
c = =
u.g_24071111 IIII IIII
~ r_. (@) (b) (c)
» 02
corbibl bk M
O [N N | [N e | (ISR R
S %% 222825 0220

Window size W Threshold 3 Threshold y
Figure 14: Sensitivity analysis of MARLess.

6.5 Sensitivity Analysis

We analyze the sensitivity of three parameters in MARLess: the
tolerant window size W, the scaling upper threshold f, and the
decrease detection threshold y. The same experiment described in
§6.2.1 is conducted, i.e., training IPPO on the simple-spread task,
with varying values for these parameters. Fig. 14 presents the sen-
sitivity analysis results for MARLess.

Tolerant window size W. In previous evaluation experiments,
the window size W was set to 10. For sensitivity analysis, we vary
W from 5 to 20 in steps of 5. As shown in Fig. 14(a), increasing W
reduces the training cost since MARLess switches strategies less
frequently. However, when W exceeds 10, the final reward starts to
decline because MARLess becomes slower at adapting the correct
sharing strategy when rewards are low.

Scaling threshold . In the evaluation section, the upper thresh-
old B for scaling actors is set to 0.5. For sensitivity analysis, f is
varied from 0.1 to 0.7 in steps of 0.2. As shown in Fig. 14(b), increas-
ing f reduces training costs because MARLess scales the number of
actors to the maximum required amount less frequently. However,
when f reaches 0.7 or higher, the final reward decreases due to
insufficient data for effective training.

Decrease detection threshold y. The value of y is influenced by
the choice of algorithm and the MARL environment used in MAR-
Less. A lower y triggers more frequent sharing strategy switches,
typically reducing learner costs but potentially increasing actor
costs due to frequent refreshing of the tolerant window. Excessive
switching can also harm training quality, as illustrated in Fig. 14(c).
If users prefer not to tune this parameter for specific settings, setting
y to 0 provides a relatively balanced performance.

6.6 Scalability

Actor scalability on HPC cluster. We evaluate the scalability of
MARLess by varying the maximum number of actors, increasing

SoCC ’25, November 19-21, 2025, Online, USA

3 IPPO IQL MAPPO = VDN
0 300 3 - + i i
£ Foog EH 3 ¥ +
= 2001 3 7 T 1
£ F - : ; T
c Loz ¥ = kS -
® 100 T \ I I I
= 50 500 950 1400 1850
of actors

(a) Actor scalability in HPC cluster

4K —

. —o- Training time

G ZKE MARLess overhead J
g -

= 40? T

ok Ll Ll Ll
10K 100K 1000K
of params.

(b) Model size scalability
Figure 15: MARLess’s scalability.

--- LLWM — MARLess Learner Y Actor

o 200 601

S ~

S ® 40

) BT

Q o

5 O 20

2 r

(& —200 - oL KN
L | L | L S

0 1000 2000 s

Wall clock time (s) N\a

(a) Training performance (b) Training costs

Figure 16: MARLess speeds up the training and reduces the
costs for large-scale scientific MARL workload.

the limit from 50 to 1,850 in increments of 450. Using the settings
described in §6.2.1, we run IPPO, IQL, MAPPO, and VDN on MPE’s
simple-spread task and measure the end-to-end training time. The
experiments are conducted on a simulated HPC cluster consisting of
fifteen AWS EC2 c6a. 32x1arge instances. We limit each training
run to 50 rounds. Fig. 15(a) presents the average total training
time for the four algorithms across different actor amounts. The
training time of IPPO and MAPPO decreases as the number of actors
increases because both are on-policy methods that may trigger
multiple sampling rounds per update. More actors provide larger
batches per round, reducing the number of sampling triggers. When
the actor count exceeds 160, only one sampling trigger is needed,
so further scaling brings no speedup. In contrast, IQL and VDN
slow down with more actors due to the overhead of the Prioritized
Experience Replay (PER) [65] buffer, which must preprocess data
and compute priority scores for each trajectory before storage.
Model size scalability. To test MARLess with model size scal-
ability, we run IPPO on MPE’s simple-spread task using models
ranging from 4K to 10K parameters, which are aligned with typical
MARL settings [12, 21, 29, 40, 82]. We measure total training time
and MARLess overhead, defined as the total time minus actor sam-
pling and learner updates, using the setup described in §6.2.1. As
shown in Fig. 15(b), training time increases sharply with model size,
while MARLess overhead remains small and grows much slower.
Large-scale scientific workload. To further validate our sys-
tem in real-world scenarios, we integrate and run a turbulent
flow simulation MARL workload [7] using MARLess. This work-
load applies a MARL algorithm to train the log-law-based wall

SoCC ’25, November 19-21, 2025, Online, USA

8 Scaling overhead & Detection overhead Actor
([Sharing overhead & /0 overhead Learner

VDN V8
MAPPO N
oL SN
IPPO Szl |
0 1 2 3 4 5 6

Latency (s)

Figure 17: Latency breakdown when running four algorithms
with MARLess in one single round.

model (LLWM) for turbulent flow simulation. We conduct the large-
scale scientific MARL experiment on our HPC testbed. Fig. 16 shows
that MARLess achieves an average of 34% cost reduction and 1.1X
speedup compared to the serverful baseline.

6.7 Latency Breakdown and Overheads

We categorize the latency and overheads into the following compo-
nents: 1) I/O overhead includes time spent saving and retrieving
states from external storage. 2) Actor sampling time is the time
actors take to sample trajectories. 3) Learner updating time is the
time spent when the learner updates policies and critic networks.
4) Decrease detection overhead is the time spent detecting per-
formance decreases. 5) Learner sharing overhead is the time
incurred by the dynamic learner sharing mechanism. 6) Actor scal-
ing overhead is the time required to calculate ideal actor numbers
and scale actors dynamically based on needs. Fig. 17 presents the
latency breakdown and overheads for a single round when run-
ning simple-spread with four different algorithms. The experimental
setup follows the same configuration as described in §6.2.1.

7 Related Work

MARL algorithms. Existing MARL algorithms can be catego-
rized based on two key aspects. First, by policy construction, they
are divided into value-based methods (e.g., IQL [76], VDN [74],
QMIX [59]) derived from DQN [48], and actor-critic methods (e.g.,
IPPO [12], MAPPO [82], MADDPG [40]) extended from Soft Actor-
Critic (SAC) [22]. Second, by training scheme, they are classified
into independent learning [12, 76], where each agent trains sepa-
rately, and centralized learning [40, 59, 74, 82], which utilizes shared
information for improved training.

MARL frameworks. On the other hand, several MARL frame-
works have been proposed recently [27, 28, 37, 44, 44, 54, 64, 80, 90].
We choose RLIib [37] and MARLIib [28] as baselines because RL-
lib offers industry-level scalability for heavy MARL workloads,
and MARLIib builds on RLIlib to implement diverse algorithms.
On the contrary, PyYMARL [64] and PyMARL2 [27] support only
value-based algorithms, EpyMARL [54] is limited to RNN-based
architectures, and MALIib [90] prioritizes model searching over
single-training optimization. SRL [44] focuses on optimizing het-
erogeneous resource allocation for actors and learners, which is
orthogonal to MARLess and can be easily integrated with it.
Learner sharing in MARL. Learner sharing was first explored
to enable cooperation among agents in early research comparing
independent and cooperative agents [77]. It is widely applied in

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

cooperative MARL tasks with homogeneous agents [12, 21, 26, 33].
Indexed learner sharing [18] uses an index as input to policy models
to generate agent-specific actions. Selective learner sharing [10]
trains an encoder to create latent representations for grouping
agents before training. MAPD [29] dynamically updates policy
assignments using an encoder based on the agent’s information.
GoMARL [87] employs fine-grained subgroups for partially shared
parameters in value-based algorithms. Unlike these methods, MAR-
Less leverages a lightweight dynamic learner sharing approach
based on KL divergence from previous trajectories.

Scalable DRL training with serverless computing. In recent
years, serverless DRL training frameworks have been proposed [84—
86]. MinionsRL [85] firstly introduced a serverless paradigm for
DRL training, employing a DRL-driven scheduler to scale actors
dynamically. Nitro [84] advanced this approach by leveraging the
Hessian matrix to capture the convexity of the objective surface
curvature. Stellaris [86], on the other hand, focuses on asynchro-
nous training. However, all of the above research primarily focuses
on SARL, and their serverless-specific optimizations are not com-
patible with MARL training. Existing serverless RL frameworks
fail to explore the potential benefits of serverless computing for
distributed MARL. MARLess is the first framework designed specif-
ically for serverless MARL training.

8 Conclusion

This paper proposes MARLess, the first serverless MARL train-
ing paradigm, which is compatible with a wide range of MARL
algorithms. By combining MARL training with the flexibility and
scalability of serverless computing, MARLess leverages dynamic
agent similarities and varying data requirements. It features a novel
dynamic learner sharing technique and an actor scaling rule tai-
lored for MARL, balancing the diverse data demands among policies.
We evaluate MARLess with four representative MARL algorithms
and compare it against two popular frameworks. Experiments on
AWS EC2 testbeds show that MARLess outperforms state-of-the-
art MARL baselines, achieving up to 1.27x faster training speeds
and reducing training costs by up to 68%. Experimental results
from a simulated HPC cluster with 1,920 vCPUs demonstrate MAR-
Less’s scalability. Moreover, MARLess achieves a 34% cost reduction
and 1.1x speedup on large-scale scientific MARL workloads of wall-
models for turbulent flow simulation, further validating its potential
for real-world tasks with intensive computational demands.

Acknowledgments

The work of Rui Wei, Hanfei Yu, and Hao Wang was supported in
part by NSF 2527416, 2534241, 2534286, and 2523997, and the AWS
Cloud Credit for Research program. The work of Devesh Tiwari
was supported in part by NSF 2124897. The work of Jian Li was
supported in part by NSF 2315614 and 2337914. This research was
supported by the National Artificial Intelligence Research Resource
(NAIRR) Pilot allocation 240269. This work used Jetstream2 at In-
diana University through allocation 240498 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Science Foun-
dation grants 2138259, 2138286, 2138307, 2137603, and 2138296.

Multi-Agent Reinforcement Learning with Serverless Computing

References
[1] Akshat Agarwal, Sumit Kumar, and Katia Sycara. 2019. Learning Transferable

[2

3

[

=

[11]

[12

[13

[14

(15

[16

(7

(18

[19

[20

[21

[22

]

]

]

Cooperative Behavior in Multi-Agent Teams. arXiv:1906.01202 [cs.LG] https:
//arxiv.org/abs/1906.01202

Akash Agrawal, Sung Jun Won, Tushar Sharma, Mayuri Deshpande, and Christo-
pher McComb. 2021. A multi-agent reinforcement learning framework for intel-
ligent manufacturing with autonomous mobile robots. Proceedings of the Design
Society 1 (2021), 161-170.

Hanane Allioui, Mazin Abed Mohammed, Narjes Benameur, Belal Al-Khateeb,
Karrar Hameed Abdulkareem, Begonya Garcia-Zapirain, Robertas Damasevicius,
and Rytis Maskelitnas. 2022. A multi-agent deep reinforcement learning ap-
proach for enhancement of COVID-19 CT image segmentation. Journal of per-
sonalized medicine 12, 2 (2022), 309.

Amazon Web Services. 2025. AWS Elastic Compute Cloud. https://aws.amazon.
com/ec2/.

Amazon Web Services. 2025. AWS Lambda pricing rules. https://aws.amazon.
com/lambda/pricing/.

Apache. 2018. Apache OpenWhisk Official Website. https://openwhisk.apache.
org.

H Jane Bae and Petros Koumoutsakos. 2022. Scientific multi-agent reinforcement
learning for wall-models of turbulent flows. Nature Communications 13, 1 (2022),
1443.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156-172.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make Serverless
Fast. In Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys).

Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Al-
brecht. 2021. Scaling Multi-Agent Reinforcement Learning with Selective Pa-
rameter Sharing. ArXiv abs/2102.07475 (2021). https://api.semanticscholar.org/
CorpusID:231924963

Cloud Native Computing Foundation. 2018. Knative. https://knative.dev/docs/.
Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip H. S. Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is In-
dependent Learning All You Need in the StarCraft Multi-Agent Challenge?
arXiv:2011.09533 [cs.Al] https://arxiv.org/abs/2011.09533

Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. AdaBatch:
Adaptive Batch Sizes for Training Deep Neural Networks. CoRR abs/1712.02029
(2017). arXiv:1712.02029 http://arxiv.org/abs/1712.02029

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun,
Anuj Mahajan, Jakob Nicolaus Foerster, and Shimon Whiteson. 2023. SMACv2:
An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning.
In Thirty-seventh Conference on Neural Information Processing Systems Datasets
and Benchmarks Track. https://openreview.net/forum?id=50jLGiJW3u

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski.
2020. SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference.
arXiv:1910.06591 [cs.LG] https://arxiv.org/abs/1910.06591

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and
Koray Kavukcuoglu. 2018. IMPALA: Scalable Distributed Deep-RL with Im-
portance Weighted Actor-Learner Architectures. In Proceedings of the 35th In-
ternational Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 1407-1416.
https://proceedings.mlr.press/v80/espeholt18a.html

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip
H. S. Torr, Pushmeet Kohli, and Shimon Whiteson. 2018. Stabilising Experience
Replay for Deep Multi-Agent Reinforcement Learning. arXiv:1702.08887 [cs.Al]
https://arxiv.org/abs/1702.08887

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
2016. Learning to communicate with Deep multi-agent reinforcement learning. In
Proceedings of the 30th International Conference on Neural Information Processing
Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA,
2145-2153.

Google Cloud Platform. 2025. GCP Compute Engine Instance. https://cloud.
google.com/compute/docs/instances.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois
Knoll, and Yaodong Yang. 2023. Safe multi-agent reinforcement learning for
multi-robot control. Artificial Intelligence 319 (2023), 103905.

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Autonomous Agents
and Multiagent Systems, Gita Sukthankar and Juan A. Rodriguez-Aguilar (Eds.).
Springer International Publishing, Cham, 66-83.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and
Sergey Levine. 2018. Soft Actor-Critic Algorithms and Applications. CoRR

[23]

[24]

[25

™
2

[27

[28

[29

[30

[31

[32

(33]

&
=)

[35

[36

®
=

[38

[39

[42

SoCC ’25, November 19-21, 2025, Online, USA

abs/1812.05905 (2018). arXiv:1812.05905 http://arxiv.org/abs/1812.05905

Jinbo Han, Xingda Wei, Rong Chen, and Haibo Chen. 2024. Seraph: A
Performance-Cost Aware Tuner for Training Reinforcement Learning Model
on Serverless Computing. In Proceedings of the 15th ACM SIGOPS Asia-Pacific
Workshop on Systems. 95-101.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2019. A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity. arXiv:1707.09183 [cs.MA] https://arxiv.org/abs/1707.09183
Geoffrey Hinton, Nish Srivastava, and Kevin Swersky. 2017. Lecture 6e rmsprop:
Divide the gradient by a running average of its recent magnitude. https://
www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf Lecture slides,
CsC321.

Hengyuan Hu and Jakob N. Foerster. 2019. Simplified Action Decoder for Deep
Multi-Agent Reinforcement Learning. ArXiv abs/1912.02288 (2019). https:
//api.semanticscholar.org/CorpusID:208637067

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih wei Liao.
2023. Rethinking the Implementation Tricks and Monotonicity Constraint in
Cooperative Multi-Agent Reinforcement Learning. arXiv:2102.03479 [cs.LG]
https://arxiv.org/abs/2102.03479

Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang,
Zhihui Li, Xiaojun Chang, and Yaodong Yang. 2023. MARLIib: A Scalable and Ef-
ficient Multi-agent Reinforcement Learning Library. Journal of Machine Learning
Research (2023).

Tianyi Hu, Zhiqiang Pu, Xiaolin Ai, Tenghai Qiu, and Jiangiang Yi. 2024. Measur-
ing Policy Distance for Multi-Agent Reinforcement Learning. In Proceedings of
the 23rd International Conference on Autonomous Agents and Multiagent Systems.
834-842.

Sham Kakade and John Langford. 2020. A Closer Look at Deep Policy Gradients.
In International Conference on Learning Representations (ICLR).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences 114, 13 (March 2017), 3521-3526.
https://doi.org/10.1073/pnas.1611835114

Jakub Grudzien Kuba, Ruiging Chen, Munning Wen, Ying Wen, Fanglei Sun,
Jun Wang, and Yaodong Yang. 2021. Trust Region Policy Optimisation in
Multi-Agent Reinforcement Learning. ArXiv abs/2109.11251 (2021). https:
//api.semanticscholar.org/CorpusID:237605219

Marius Kurz, Philipp Offenhiuser, Dominic Viola, Oleksandr Shcherbakov,
Michael Resch, and Andrea Beck. 2022. Deep reinforcement learning for compu-
tational fluid dynamics on HPC systems. Journal of Computational Science 65
(2022), 101884

Yujing Li, Su Su, Minghao Zhang, Qiujiang Liu, Xiaobo Nie, Mingchao Xia, and
Dan D Micu. 2023. Multi-agent graph reinforcement learning method for electric
vehicle on-route charging guidance in coupled transportation electrification.
IEEE Transactions on Sustainable Energy 15, 2 (2023), 1180-1193.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, et al. 2022. Help Rather Than Recycle: Allevi-
ating Cold Startup in Serverless Computing Through Inter-Function Container
Sharing. In 2022 USENIX annual technical conference (USENIX ATC).

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. 2017. RLIib: Ab-
stractions for Distributed Reinforcement Learning. In International Conference
on Machine Learning. https://api.semanticscholar.org/CorpusID:49546141
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2019. Continuous control
with deep reinforcement learning. arXiv:1509.02971 [cs.LG] https://arxiv.org/
abs/1509.02971

Zongkai Liu, Chao Yu, Yaodong Yang, peng sun, Zifan Wu, and Yuan Li.
2022. A Unified Diversity Measure for Multiagent Reinforcement Learning.
In Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 10339-10352. https://proceedings.neurips.cc/paper_files/paper/2022/file/
435cce71b4007699041dfffa4f034079-Paper-Conference.pdf

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
Neural Information Processing Systems (NIPS) (2017).

Rohan Mahapatra, Soroush Ghodrati, Byung Hoon Ahn, Sean Kinzer, Shu-Ting
Wang, Hanyang Xu, Lavanya Karthikeyan, Hardik Sharma, Amir Yazdanbakhsh,
Mohammad Alian, et al. 2024. In-storage Domain-Specific Acceleration for
Serverless Computing. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh Elnikety, So-
mali Chaterji, and Saurabh Bagchi. 2022. ORION and the Three Rights: Sizing,

https://arxiv.org/abs/1906.01202
https://arxiv.org/abs/1906.01202
https://arxiv.org/abs/1906.01202
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://openwhisk.apache.org
https://openwhisk.apache.org
https://api.semanticscholar.org/CorpusID:231924963
https://api.semanticscholar.org/CorpusID:231924963
https://knative.dev/docs/
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/2011.09533
https://arxiv.org/abs/1712.02029
http://arxiv.org/abs/1712.02029
https://openreview.net/forum?id=5OjLGiJW3u
https://arxiv.org/abs/1910.06591
https://arxiv.org/abs/1910.06591
https://proceedings.mlr.press/v80/espeholt18a.html
https://arxiv.org/abs/1702.08887
https://arxiv.org/abs/1702.08887
https://cloud.google.com/compute/docs/instances
https://cloud.google.com/compute/docs/instances
https://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1707.09183
https://arxiv.org/abs/1707.09183
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://api.semanticscholar.org/CorpusID:208637067
https://api.semanticscholar.org/CorpusID:208637067
https://arxiv.org/abs/2102.03479
https://arxiv.org/abs/2102.03479
https://doi.org/10.1073/pnas.1611835114
https://api.semanticscholar.org/CorpusID:237605219
https://api.semanticscholar.org/CorpusID:237605219
https://api.semanticscholar.org/CorpusID:49546141
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://proceedings.neurips.cc/paper_files/paper/2022/file/435cce71b4007699041dfffa4f034079-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/435cce71b4007699041dfffa4f034079-Paper-Conference.pdf

SoCC ’25, November 19-21, 2025, Online, USA

[43]

[44

[45]

S
&

[47

[48]

[49

[50

[51]

[52]

[53

[54

[55]

[56]

[57

[58

[59]

[60]
[61

[62

[63

[64

[65]

[66]

Bundling, and Prewarming for Serverless DAGs. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Association,
Carlsbad, CA, 303-320. https://www.usenix.org/conference/osdi22/presentation/
mahgoub

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018.
An Empirical Model of Large-Batch Training. CoRR abs/1812.06162 (2018).
arXiv:1812.06162 http://arxiv.org/abs/1812.06162

Zhiyu Mei, Wei Fu, Jiaxuan Gao, Guangju Wang, Huanchen Zhang, and Yi Wu.
2024. SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand
Cores. arXiv:2306.16688 [cs.DC] https://arxiv.org/abs/2306.16688

Dirk Merkel et al. 2014. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux Journal (2014).

Microsoft Azure. 2025. Microsoft Azure Functions. https://azure.microsoft.com/
pricing/details/functions/.

Microsoft Azure. 2025. Microsoft Azure Virtual Machines. https://azure.microsoft.
com/pricing/details/virtual-machines/.

Volodymyr Mnih. 2013. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 (2013).

Volodymyr Mnih, Adria Puigdomeénech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. arXiv:1602.01783 [cs.LG]
https://arxiv.org/abs/1602.01783

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
arXiv:1712.05889 [cs.DC] https://arxiv.org/abs/1712.05889

Guido Novati, Hugues Lascombes de Laroussilhe, and Petros Koumoutsakos.
2021. Automating turbulence modelling by multi-agent reinforcement learning.
Nature Machine Intelligence 3, 1 (2021), 87-96.

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018 USENIX annual technical
conference (USENIX ATC).

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Al-
brecht. 2019. Dealing with non-stationarity in multi-agent deep reinforcement
learning. arXiv preprint arXiv:1906.04737 (2019).

Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V. Albrecht.
2021. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks (NeurIPS). http://arxiv.org/abs/2006.07869
Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer,
Alistair Letcher, Alexander Peysakhovich, Aldo Pacchiano, and Jakob Foerster.
2020. Ridge rider: Finding Diverse Solutions by Following Eigenvectors of the
Hessian. Advances in Neural Information Processing Systems (NIPS) (2020).
Python. 2008. CloudPickle — Extension of Pickle. https://pypi.org/project/
cloudpickle/.

Python. 2008. Pickle — Python Object Serialization. https://docs.python.org/3/
library/pickle.html.

PyTorch. 2018. PyTorch: Tensors and Dynamic Neural Networks in Python with
Strong GPU Acceleration. https://pytorch.org.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory
Farquhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic
Value Function Factorisation for Deep Multi-Agent Reinforcement Learning.
arXiv:1803.11485 [cs.LG] https://arxiv.org/abs/1803.11485

Redis. 2009. Redis Official Website. http://redis.io/.

Francisco Romero, Gohar Irfan Chaudhry, iﬁigo Goiri, Pragna Gopa, Paul Batum,
Neeraja] Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bianchini.
2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC).

Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video
Analytics Pipelines. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 1-17. https://doi.org/10.1145/3472883.3486972

Pranab Sahoo, Ashutosh Tripathi, Sriparna Saha, and Samrat Mondal. 2024.
Fedmrl: Data heterogeneity aware federated multi-agent deep reinforcement
learning for medical imaging. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer, 640-649.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,
Jakob Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge.
CoRR abs/1902.04043 (2019).

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. arXiv:1511.05952 [cs.LG] https://arxiv.org/abs/1511.05952
Paul Maria Scheikl, Balazs Gyenes, Tornike Davitashvili, Rayan Younis, André
Schulze, Beat P Miiller-Stich, Gerhard Neumann, Martin Wagner, and Franziska

Rui Wei, Hanfei Yu, Xikang Song, Jian Li, Devesh Tiwari, Ying Mao, and Hao Wang

Mathis-Ullrich. 2021. Cooperative assistance in robotic surgery through multi-
agent reinforcement learning. In 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 1859-1864.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]
https://arxiv.org/abs/1707.06347

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX annual technical
conference (USENIX ATC).

Thanveer Shaik, Xiaohui Tao, Lin Li, Haoran Xie, Hong-Ning Dai, Feng Zhao,
and Jianming Yong. 2023. Adaptive Multi-Agent Deep Reinforcement Learning
for Timely Healthcare Interventions. arXiv preprint arXiv:2309.10980 (2023).
Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv preprint
arXiv:1610.03295 (2016).

Yifan Sui, Hanfei Yu, Yitao Hu, Jianxun Li, and Hao Wang. 2024. Pre-Warming is
Not Enough: Accelerating Serverless Inference With Opportunistic Pre-Loading.
In Proceedings of the 2024 ACM Symposium on Cloud Computing (SoCC).
Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multiagent
Communication with Backpropagation. arXiv:1605.07736 [cs.LG] https://arxiv.
org/abs/1605.07736

Ryan Sullivan, Justin K Terry, Benjamin Black, and John P Dickerson. 2022. Cliff
Diving: Exploring Reward Surfaces in Reinforcement Learning Environments. In
Nineteenth International Conference on Machine Learning (ICML).

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl
Tuyls, and Thore Graepel. 2017. Value-Decomposition Networks For Cooperative
Multi-Agent Learning. arXiv:1706.05296 [cs.AI] https://arxiv.org/abs/1706.05296
Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy gradient methods for reinforcement learning with function approximation.
In Proceedings of the 12th International Conference on Neural Information Processing
Systems (Denver, CO) (NIPS’99). MIT Press, Cambridge, MA, USA, 1057-1063.
Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-
jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2015. Multiagent cooperation and
competition with deep reinforcement learning. PLoS ONE 12 (2015). https:
//api.semanticscholar.org/CorpusID:12046082

Ming Tan. 1997. Multi-Agent Reinforcement Learning: Independent versus
Cooperative Agents. In International Conference on Machine Learning. https:
//api.semanticscholar.org/CorpusID:274281842

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo
Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent reinforcement learn-
ing. Advances in Neural Information Processing Systems 34 (2021), 15032-15043.
Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola,
Tristan Deleu, Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG,
Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan,
and Omar G. Younis. 2024. Gymnasium: A Standard Interface for Reinforcement
Learning Environments. arXiv:2407.17032 [cs.LG] https://arxiv.org/abs/2407.
17032

Nicholas Ustaran-Anderegg, Michael Pratt, and Jaime Sabal-Bermudez. [n.d.].
AgileRL. https://github.com/AgileRL/AgileRL

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael Mahoney. 2020. PyHessian:
Neural Networks Through the Lens of the Hessian. arXiv:1912.07145 [cs.LG]
https://arxiv.org/abs/1912.07145

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The Surprising Effectiveness of PPO in Cooperative Multi-
Agent Games. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian Li, Hong
Zhang, Hao Wang, and Seung-Jong Park. 2024. RainbowCake: Mitigating Cold-
starts in Serverless with Layer-wise Container Caching and Sharing. In Pro-
ceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Hanfei Yu, Jacob Carter, Hao Wang, Devesh Tiwari, Jian Li, and Seung-Jong
Park. 2025. Nitro: Boosting Distributed Reinforcement Learning with Serverless
Computing. In 51st International Conference on Very Large Data Bases (VLDB).
Hanfei Yu, Jian Li, Yang Hua, Xu Yuan, and Hao Wang. 2024. Cheaper and
Faster: Distributed Deep Reinforcement Learning with Serverless Computing. In
Proceedings of the AAAI Conference on Artificial Intelligence.

Hanfei Yu, Hao Wang, Devesh Tiwari, Jian Li, and Seung-Jong Park. 2024. Stellaris:
Staleness-Aware Distributed Reinforcement Learning with Serverless Computing.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC).

Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng.
2023. Automatic Grouping for Efficient Cooperative Multi-Agent Reinforcement

https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://www.usenix.org/conference/osdi22/presentation/mahgoub
https://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
https://arxiv.org/abs/2306.16688
https://arxiv.org/abs/2306.16688
https://azure.microsoft.com/pricing/details/functions/
https://azure.microsoft.com/pricing/details/functions/
https://azure.microsoft.com/pricing/details/virtual-machines/
https://azure.microsoft.com/pricing/details/virtual-machines/
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/2006.07869
https://pypi.org/project/cloudpickle/
https://pypi.org/project/cloudpickle/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://pytorch.org
https://arxiv.org/abs/1803.11485
https://arxiv.org/abs/1803.11485
http://redis.io/
https://doi.org/10.1145/3472883.3486972
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1605.07736
https://arxiv.org/abs/1605.07736
https://arxiv.org/abs/1605.07736
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://api.semanticscholar.org/CorpusID:12046082
https://api.semanticscholar.org/CorpusID:12046082
https://api.semanticscholar.org/CorpusID:274281842
https://api.semanticscholar.org/CorpusID:274281842
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
https://github.com/AgileRL/AgileRL
https://arxiv.org/abs/1912.07145
https://arxiv.org/abs/1912.07145

Multi-Agent Reinforcement Learning with Serverless Computing

[88

[89

[o1]

Learning. In Advances in Neural Information Processing Systems, A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran
Associates, Inc., 46105-46121. https://proceedings.neurips.cc/paper_files/paper/
2023/file/906¢860f1b7515a8ffec02dcdac74048-Paper-Conference.pdf

Weijia Zhang, Hao Liu, Fan Wang, Tong Xu, Haoran Xin, Dejing Dou, and Hui
Xiong. 2021. Intelligent electric vehicle charging recommendation based on
multi-agent reinforcement learning. In Proceedings of the Web Conference 2021.
1856-1867.

Weijia Zhang, Hao Liu, Hui Xiong, Tong Xu, Fan Wang, Haoran Xin, and Hua Wu.
2022. RLCharge: Imitative multi-agent spatiotemporal reinforcement learning
for electric vehicle charging station recommendation. IEEE Transactions on
Knowledge and Data Engineering 35, 6 (2022), 6290-6304.

Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen, Runzhe Wu, Ying Wen,
Yaodong Yang, Yong Yu, Jun Wang, and Weinan Zhang. 2023. MALib: A Parallel
Framework for Population-based Multi-agent Reinforcement Learning. Journal
of Machine Learning Research 24, 150 (2023), 1-12. http://jmlr.org/papers/v24/22-
0169.html

Yutai Zhou, Shawn Manuel, Peter Morales, Sheng Li, Jaime Pena, and Ross Allen.
2020. Towards a distributed framework for multi-agent reinforcement learning
research. In 2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 1-9.

SoCC ’25, November 19-21, 2025, Online, USA

https://proceedings.neurips.cc/paper_files/paper/2023/file/906c860f1b7515a8ffec02dcdac74048-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/906c860f1b7515a8ffec02dcdac74048-Paper-Conference.pdf
http://jmlr.org/papers/v24/22-0169.html
http://jmlr.org/papers/v24/22-0169.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SARL v.s. MARL
	2.2 Motivating Dynamic Learner Sharing
	2.3 Motivating Actor Scaling
	2.4 Motivating MARL with Serverless

	3 Objectives and Challenges
	4 MARLess's Design
	4.1 Overview
	4.2 Decomposing Diverse MARL Algorithms
	4.3 Dynamic Learner Sharing
	4.4 Actor Scaling

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Overall Performance
	6.3 Effectiveness of MARLess
	6.4 Ablation Study
	6.5 Sensitivity Analysis
	6.6 Scalability
	6.7 Latency Breakdown and Overheads

	7 Related Work
	8 Conclusion
	References

