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Abstract—Graph-based representations are increasingly pop-
ular for storing and managing information through knowledge
graphs, which capture entities and their relationships. However,
these knowledge graphs often suffer from incomplete link in-
formation. To address this issue, link classification methods can
be used to predict and verify missing connections. Traditional
methods use heuristics to guess the associativity patterns of the
graph, but this results in a loss of generalizability. Recently,
supervised heuristic learning methods have improved the link
classification accuracy by learning the heuristic that fits best
for a particular graph. Specifically, the SEAL framework [37],
as a state-of-the-art supervised heuristic learning tool, excels
in learning associativity patterns by analyzing local enclosing
subgraphs to classify links. However, DGCNN, a graph neural
network (GNN) model in this framework, lacks the capability to
process edge attributes, leading to poor classification accuracy in
knowledge graphs with rich link information. Hence, this paper
proposes an Augmented Model of the DGCNN (AM-DGCNN)
by replacing Graph Convolution Networks with Graph Attention
Networks to better incorporate link information. With extensive
experiments, we demonstrate that our AM-DGCNN in the SEAL
framework can achieve up to 99% AUC and 97% precision for
classifying links in knowledge graphs.

Index Terms—Graph attention networks, edge attributes, link
classification/prediction, knowledge graphs

I. INTRODUCTION

Knowledge graphs are an efficient information represen-
tation form. They use nodes to indicate entities in a given
domain and define relationships between these entities with
edges/links. These knowledge graphs can be analyzed for
scientific discovery based on their structure, which encodes
various patterns of entity associations. Unfortunately, knowl-
edge graphs are often incomplete to represent full knowledge.
If these existing link patterns can be used to classify asso-
ciations between two entities with unknown relationship, it
will be more efficient for domain experts to make up missing
information in knowledge graphs. Therefore, it is critical to
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accurately predict the association types between two entities
with unknown relationship in knowledge graphs.

This is well-known as link prediction or classification
problems. In essence, link classification is a more general-
ized problem of link prediction, because link prediction can
be considered as binary link classification for existing and
no relationship between two entities. Specifically, the link
classification problem can be formulated as follows: Given
a knowledge graph G = (V, E) and a link e = (z,y) € E,
we aim to classify the link e by determining the nature of the
relationship between these entities x and y.

Most of traditional link classification methods [3], [12]
use a graph structure-based heuristic (e.g., Adamic-Adar [2],
preferential attachment [17], common neighbors) to extract
topological graph features and translate them into scores,
which are used to judge the association between any two
nodes. If the heuristic explores the target node’s neighbor-
hoods within h hops, it is called h-order heuristic. Higher-
order heuristics, such as PageRank [5] and SimRank [10],
usually outperform lower order heuristics, such as common
neighbors, and thus are more widely adopted. However, the
performance of graph structure-based heuristics depends on
whether representative topological features can be extracted as
a good indicator of node associativity. Unfortunately, this is
not guaranteed. Furthermore, the link classification heuristics
only use the structural features and don’t take explicit node
features into account.

A more effective methodology used by link prediction
is supervised heuristic learning [36], [37], which refers to
learning the effective heuristics via machine learning. This
is usually done by processing the adjacency matrix of the
graph to generate a graph embedding that can be fed to a deep
neural network (DNN). However, this is often computationally
infeasible for very large graphs, such as biological knowledge
graphs. To address this issue, the existing methods usually
extract and process an enclosing subgraph, such as the union
of k-hop neighborhoods of the target nodes. This seems to
lose high-order heuristic features. Zhang et al. discovered a
theory that any high-order heuristic, if it is y-decaying, can
be approximated by a low-order neighborhood [37]. Hence,



these enclosing subgraphs can be used to calculate all the
low-order heuristics and sufficiently approximate high-order
heuristics. Therefore, the Weisfeiler-Lehman Neural Machine
(WLNM) [36] uses DNNs to process enclosing subgraphs of
the target nodes and achieve a good performance. Further,
Zhang et al. upgraded WLNM in the SEAL framework [37] by
replacing the DNN with a standard dynamic graph convolu-
tional neural network (DGCNN) architecture [34], one type of
graph neural networks (GNN5s) [13]. However, this architecture
fails to take into consideration link features, which are very
important for link classification.

In this paper, we proposed an Augmented Model of
DGCNN (AM-DGCNN), which incorporates both node and
link feature processing into the GNN architecture design
and outperforms vanilla DGCNN in the SEAL framework.
Also, we auto-tuned the hyperparameters of the AM-DGCNN
using DeepHyper [1] for the optimal performance. Extensive
experimental results over realistic knowledge graphs show that
AM-DGCNN can predict link classes with up to 98% accuracy.

II. BACKGROUND
A. Graph Neural Networks

Similar to specialized neural architectures utilized for image
classification, GNNs specialize in processing graph-structured
data and generate embeddings. They usually accept the ad-
jacency matrix, a node attribute matrix, and sometimes edge
attributes as inputs. GNNs extract node features from a graph
via a message passing scheme that progressively transforms
the graph attributes (e.g., node attribute vectors and edge
attributes) into representations that encapsulate the context
of the attribute in the graph. These representations can then
be aggregated by a graph aggregation layer [38] to generate
a graph representation vector which can be processed by
regular DNNs. GNNs are able to identify the associativity
patterns of various diverse networks and make them highly
generalizable for network analysis. Furthermore, GNNs can
generate associativity functions of a much broader range than
known heuristics.

Graph Convolution Networks (GCNs) [13]: Kipf et al.
applied convolution operations to transform node features and
follow a neighborhood aggregation scheme to propagate infor-
mation across the graph. The aggregation is usually achieved
by performing matrix multiplication between the adjacency
matrix, the node information matrix, and an intermediate
weight matrix that performs the convolution operation. GCNs
have achieved good performance for node classification in
balanced graphs [11], [35].

Graph Attention Networks (GATSs) [33]: Velickovic et al.
applied the principle of attention [4] to GNNs. A single graph
attention layer takes as input a set of node attribute vectors, and
applies a transformation to map those vectors to a new feature
space. Then, self-attention [32] is applied to each node to
determine the importance of the neighboring nodes’ features.
The attention coefficients are shared by all the nodes in the
network. This allows the model to give selective preference to
more relevant nodes in a node’s neighborhood as opposed to

Fig. 1: Local neighborhood intersection subgraph

GCN, which gives the entire neighborhood equal importance.
Furthermore, GAT is able to process edge attribute vectors and
utilizes them while calculating attention coefficients, hence,
incorporating link information into node transformations.

B. SEAL

We adapt a link prediction framework, SEAL [37], for
our link classification problem. Our underlying intuition is
that link prediction can be viewed as a binary classification
or existence classification problem. Therefore, SEAL can be
extended to other forms of link classification. This method
extracts local enclosing subgraphs around the target nodes.
Then, a node information matrix is constructed using node
attribute vectors composed of the following three parts: (i) a
double-radius node labeling (DRNL), (ii) a node embedding
generated by node2vec [8] and (iii) explicit node features. The
subgraph adjacency matrix along with the information matrix
is processed by a GNN to output classification results. Since
SEAL is a GNN-agnostic framework, Wang et al. applied
DGCNN as a GNN model in [34].

Theory of vy-decaying heuristics: In [37], it is shown that if
a high-order heuristic is a y-decaying heuristic [37], it can be
learnt from a k-hop enclosing subgraph, but the improvement
of approximation error decreases at least exponentially with k.
Also, it shows that popular high-order heuristics, such as Katz
Index [16], PageRank, and SimRank, can be classified as -
decaying heuristics. This has an intuitive justification, since it
is reasonable that nodes far away from the target nodes in the
graph would have very little effect on their associativity pat-
terns. Since processing an entire knowledge graph with a huge
number of nodes and a high degree density is computationally
expensive, we use local sub-graphs enclosing the two target
nodes, which include sufficient information for classifying the
link between the target nodes.

Double-Radius Node Labeling: Zhang et al. assign a non-
negative integer to each node as a label based on their distances
from the target nodes [37]. Specifically, let a and b be the two
target nodes; n indicates the node to be labeled. Then, the label
of node n is defined as the value of the symmetric function
D(z,y) = 1+min(z, y)+(z+y)[(z+y) /24 (z+y) %2—-1] /2,
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Fig. 2: AM-DGCNN architecture (leveraging GAT and taking the edge attributes as inputs)

where z € N is the shortest distance between n and a, and
y € N is the shortest distance between n and b. The target
nodes are given the distinctive label “1”. If the node is not
reachable by any one of the target nodes, it is given the null
label “0”. The DRNL label is appended to the node feature
vector to encode additional topological information.

III. METHODOLOGY

Based on the SEAL framework, our approach extracts a
local subgraph around the target nodes. Then, we generate
node and edge attribute matrices for the nodes and edges in the
subgraph. Next, the subgraph along with the attribute matrices
is processed by a GNN to generate a vector representation that
is enhanced by convolution and pooling operations and passed
through a dense layer for classification.

A. Subgraph Extraction

To extract the local subgraph, we consider the k-hop
neighborhoods of the target nodes and use the intersection
of these neighborhoods as the induced subgraph, as shown
in Fig. 1. Specifically, we use the intersection for the PrimeKG
graph (See Section IV), instead of a union operation, to
reduce the subgraph size, which has been verified empirically;
however, we use the union for the other knowledge graphs.
This subgraph contains all the nodes that lie on paths between
two target nodes with the length less than 2k. We chose
k = 2 for the following two reasons: 1) The target nodes (e.g.,
drug/disease) with high degrees have many neighborhoods
within k£ hops, so that the enclosing subgraphs are too big to
be processed for large k. 2) A low order local subgraph can be
used to approximate the high order heuristics with sufficient
accuracy as mentioned in [37].

B. Node and Edge Attribute Matrix Generation

Our node attribute vector is the concatenation of two
vectors. The first is a one hot encoding of the node type
in a knowledge graph. The second encapsulates structural
information as a one hot encoding of its DRNL [37]. We em-
pirically observed that Node2Vec embeddings did not enhance
prediction accuracy for knowledge graphs, such as PrimeKG.
Therefore, we ignore it for faster training and inference. To
generate the edge attribute matrix, we compressed the 30
relationships with two link types: encoding positive or negative
interaction. The edge attribute vectors are two-dimensional

one-hot encoding vectors with the encoding classes: positive
link and negative link. In a attribute matrix, each row repre-
sents the feature vectors of one node or edge and each column
represents a feature.

C. AM-DGCNN Architecture

We improve the original GNN link prediction architecture
(i.e., vanilla DGCNN [34]) in the SEAL framework. The
DGCNN uses multiple graph convolution layers sequentially
to generate node embeddings. Each subsequent layer is able
to aggregate more neighborhoods than the previous one. The
node embeddings from all the graph convolution layers are
concatenated to form the final node embeddings. All the
final node embeddings are aggregated by a sort pooling [38]
to generate an embedding for the entire graph. This graph
embedding is processed by convolution and pooling layers and
then fed into a dense classifier (i.e., a deep neural network)
for subsequent feature processing.

While the DGCNN is a very powerful architecture, it has
a serious shortcoming for link classification: it is unable to
process link attribute information, which is vital for processing
knowledge graphs. Therefore, in order to incorporate edge
features, we augment the DGCNN architecture by modifying
its message passing layers, i.e., replacing the GCNs with
GATs. The AM-DGCNN architecture is visualized by Fig. 2.

D. Hyperparameter Auto-Tuning

The prediction accuracy of the well-trained AM-DGCNN
relies on its hyperparameter settings in the training process.
To further enhance the performance of AM-DGCNN, we
auto-tune the hyperparameters of the AM-DGCNN, listed
in Tbl. I, using DeepHyper [1], which is a Python library to
automate machine learning processes, such as hyperparameter
tuning and neural architecture search. In DeepHyper, hyper-
parameter auto-tuning requires to define the search space of
the hyperparameter configurations and an evaluator function
that is used to indicate the prediction accuracy over differ-
ent hyperparameter configurations. The search strategy is an
optimization algorithm for exploring the search space and
identifying the best hyperparameter configuration according
to evaluator function values. Here, we selected the Centralized
Bayesian Optimization search strategy due to its computational
efficiency for large search spaces.



TABLE I: Hyperparameters of GNNs and their options

HyperParameters Options
Learning Rate [0.000001, 0.01]
GNN Layer (GAT/GCN) Hidden Dimensions 16, 32, 64, 128
Sort Aggregator k Value 5,6,---,150

IV. DATASETS

To test the generalizability of our methodology, we evaluate
the augmented model of DGCNN using three different datasets
of knowledge graphs with link features: PrimeKG [7], OGBL-
BioKG [9], and WordNet-18 [6], [15]. Also, we use the
Cora graph dataset without link features in the Planetoid
repositor as a benchmark to explain that the superiority of
our AM-DGCNN comes from its capacity of distinguishing
link features.

PrimeKG is a multi-modal knowledge graph with 129,375
nodes encompassing 10 major biological scales: proteins/-
genes, drugs, diseases, phenotypes, exposures, anatomical
regions, pathways, biological processes, cellular components
and molecular functions. It is designed to support precision
medicine analysis and has a dense collection of relationships
between nodes with 4,050,249 links with 30 relationships en-
coding “positive” and “negative” interactions. In our analysis,
we are going to be looking at the drug-disease links which
can be classified as “Indication” (i.e., positive link), “Off-label
use” (i.e., positive support link), and “Contra-indication” (i.e.,
negative link). PrimeKG contains 7,957 drug nodes and 17,080
disease nodes with 42,631 drug-disease interactions, providing
sufficiently large training and test data. We used 6000 training
links and 2000 testing links.

OGBL-BioKG is a biological knowledge graph with five
node types and 51 relationships/edge types for ample features.
It is a large graph with about 100,000 nodes and around
4,000,000 edges. In the prediction task, we intend to classify
the link between two protein nodes into seven possible rela-
tionships/link types. The bottleneck of the graph’s performance
is the limited number of data samples in the target category.
We used 1300 training links and 200 testing links.

WordNet-18 contains word senses and relates them to
lexical meaning and is commonly used for text analysis. This
knowledge graph contains 40943 nodes and about 150,000
edges. It has a homogeneous node topology (i.e., only one type
of nodes) and 18 edge classes. This dataset allows us to test
the impact of edge features in the absence of any node features
by measuring the GAT’s capability to extract information from
only link information. The vanilla DGCNN should not be able
to learn much meaningful information from the WordNet. We
used 13000 training links and 4000 testing links.

The Cora dataset in the Planetoid repository is a well-
known link prediction benchmarking dataset. It is a citation
network with 2708 nodes in seven classes and 5429 edges of
uniform topology (i.e., only one edge type). We use this dataset
to measure the performance of our AM-DGCNN against
vanilla DGCNN in the scenarios where edge features cannot
be exploited. In essence, this benchmark directly compares the
node feature message passing scheme of GAT and GCN. We
divided the links into an 80-20 train-test split.
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Table II summarizes the benchmark datasets.

TABLE II: Summary of Datasets

Dataset #Node types | #Edge types | #Nodes #Edges
PrimeKG 10 30 129,375 | 4,050,249
OGBL-BioKG 5 51 100k 4,000,000
WordNet-18 1 18 40,943 150k
Cora 7 1 2708 5429

V. EVALUATION

In this section, we compared the prediction accuracy of our
AM-DGCNN with the vanilla DGCNN over aforementioned
four knowledge graph datasets.

A. Metrics

To measure the prediction accuracy of GNN models for link
classification, we use the following two metrics:

1) Area Under the ROC Curve (AUC): A receiver
operating characteristic (ROC) curve is a graph showing the
performance of a classification model at all classification
thresholds by plotting the true positive rate (TPR) versus the
false positive rate (FPR) at different classification thresholds.
Here,

o TPR (i.e., recall) is TP/(TP + FN), where TP and
F'N are the numbers of true positives and false negatives,
respectively.

o FPRis F'P/(FP+TN), where F'P and TN are the num-
bers of false positives and true negatives, respectively.

AUC (between 0 and 1) measures the entire two-dimensional
area underneath the entire ROC curve (i.e., integral calculus)
from (0,0) to (1,1). “1” indicates the best prediction accuracy.
To plot the AUC, we randomly choose one class from all the
classes as the positive class and treat the rest of classes as
negative classes.

2) Average Precision (AP): Precision is TP/(TP + FP).
To calculate the precision of each class, we treat the observed
class as the positive class and the rest classes as negative
classes. Based on this, AP is the mean of precision values
for all the classes.

B. Experiment Design

We conducted the following two sets of experiments: (i) We
auto-tuned the hyperparameters of AM-DGCNN and vanilla
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TABLE III: Prediction accuracy of different GNNs

Dataset AM-DGCNN | Vanilla DGCNN
AUC AP AUC AP
PrimeKG 0.99 97% 0.75 55%
OGBL-BioKG 0.80 75% 0.66 40%
WordNet-18 0.85 89% 0.52 38%
[ Cora in Planetoid [ 091 [ 92% [ 084 [ 88% |

DGCNN for the Cora dataset to identify the optimal hyperpa-
rameter configurations, and evaluated their performance with
the same hyperparameter configurations for the other three
knowledge graphs with link features (i.e., PrimeKG, OGBL-
BioKG, and WordNet-18). (ii) We auto-tuned the hyperparam-
eters of AM-DGCNN and vanilla DGCNN for each of three
graphs with link features, respectively, and evaluated their
performance with the optimal hyperparameter configurations
in each scenario.

The reasons for such experimental design is that the Cora
dataset, due to its lack of edge attributes, would tune the
models solely for node attribute-based message passing, hence
maximizing the vanilla DGCNN’s performance capability
while not optimizing the GAT processing on edge attributes
(i.e., link features). Whereas in the second set of experi-
ments, the edge attribute processing would be fully tuned
and maximize its contribution. This allows us to observe the
effectiveness of edge attributes in a two-fold way: (i) the gen-
eral performance improvement resulting from incorporating
edge features into GNN models when ignoring the effect of
dedicated hyperparameter settings, and (ii) the maximum per-
formance improvement resulting from edge feature processing

AUC for WordNet-18

in GNN when taking hyperparameter optimization potential
into account.

C. Results on Prediction Accuracy

To compare the prediction accuracy of AM-DGCNN and
vanilla DGCNN, we list the AUC and AP of these two models
well-trained through entire training data in the second set of
experiment in Tbl. III, which shows that the AM-DGCNN
outperforms vanilla DGCNN for all the datasets. Despite the
lack of edge classes in the Cora dataset, attention-based graph
convolutions 1is still superior to standard GCN. Particularly,
AM-DGCNN has the most significant performance improve-
ment over vanilla DGCNN for the WordNet-18 dataset without
explicit node features. Since it is empirically observed that
the adjacency matrix does not contain sufficient features, the
important information to be encoded can only depends on the
edge features (less possibly topology). As a result, the vanilla
DGCNN performs like a random guesser when it fails to learn
any associativity patterns from pure geometrical topology.
Therefore, by effectively making use of edge attributes, AM-
DGCNN elevates its performance over the vanilla DGCNN.

D. Results on Time-Efficiency of Model Training

To compare the training time-efficiency of AM-DGCNN
and vanilla DGCNN, we measured AUC of these two models
after the different numbers of training epochs from 2 to 12 at
the interval of 2 over all the training samples of each dataset,
and plot the measurements in Figs. 3—-6. These figures shows
that the AUC of the AM-DGCNN is consistly higher than
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that of vanilla DGCNN during the entire training process,
which validates the superior time-efficiency of AM-DGCNN
training. Also, we discovered that these two models perform
best just after 10 training eporchs. Thus, we can conclude
that the AM-DGCNN obtains performance gains in terms of
prediction accuracy without sacrificing speed of learning.

E. Results on Data-Efficiency of Model Training

To evaluate the training data-efficiency of these two models,
we measured the AUC of the well-trained models (after 10
eporchs) based on different number of training samples in
each dataset, and plot the measurements in Figs. 7-9. From
these figures, we can see that the AUC of the AM-DGCNN
is always greater than that of vanilla DGCNN for all the
numbers of training samples, which shows the better data-
efficiency of AM-DGCNN training. Particularly, the AUC of
AM-DGCNN is beyond 0.9 with a half of training samples
from PrimeKG, because PrimeKG has sufficient data samples
and richer explicit node information. Also, the AUC of AM-
DGCNN can still reach 0.8 with around 2/3 of training samples
from OGBL-BioKG, which has a very limited total number
of training samples (no more than 1100), and WordNet-18,
which lacks node features. Therefore, the data-efficiency of
AM-DGCNN is much better than vanilla DGCNN.

F. Results on Hyperparameter Sensitivity Analysis

In general, the prediction accuracy of a machine learning
model is affected by its hyperparameter settings, but hyper-
parameter tuning involves an extremely high training cost.

samples on AUC for OGBL-BioKG

samples on AUC for WordNet-18

Therefore, it is important to analyze the effect of hyperparam-
eter configurations on the performance of our AM-DGCNN.
In view of this, we plot the AUC of AM-DGCNN and
vanilla DGCNN with default hyperparameters and auto-tuned
hyperparameters in Figs. 4-9. Here, default hyperparameters
are hyperparameters auto-tuned for the Cora dataset without
edge features. By comparing each pair of figures (a) and (b)
in Figs. 4-9, we observed that the AM-DGCNN’s performance
gains are insensitive to hyperparameter configurations. The
AM-DGCNN outperforms the vanilla DGCNN with similar
margins in the default and auto-tuned hyperparameter set-
tings. Therefore, the superiority of AM-DGCNN over vanilla
DGCNN is very stable. In addition, the cost of hyperparameter
auto-tuning is savable for AM-DGCNN, even through it is
computationally expensive.

VI. RELATED WORK

Existing link classification methods can be classified into
two categories: heuristics based approaches and supervised
heuristic learning approaches.

A. Heuristic-based Approaches

A common methodology for link classification is utilizing
network heuristics. There are several heuristic methods to
translate topological node features to scores and associate
them with nodes in a graph. These scores can then be
utilized by classifiers to learn a threshold value for separating
classes. The order of a heuristic is defined as the radius
of the neighborhood that the heuristic processes. A k-order



heuristic processes the k-hop neighborhood of the node being
scored. Generally, high-order heuristics outperform low-order
ones. Katragadda et al. use Common Neighbor, Adamic-Adar
Index [2], Jaccard coefficient, preferential attachment [17], and
edge weight in heuristics to extract features, which are then
processed by a decision tree-based classifier for edge classifi-
cation [12]. In [31], Vasavada et al. utilize Common Neighbor,
Adamic Adar, Node Degree, and PageRank [5] in topological
heuristics to generate features. Then, these features along with
explicit node attributes are taken as inputs by classifiers based
on Logistic Regression, Feed-forward Neural Network, and
Long Short term Memory Network (LSTM) [30]. While these
classifiers are able to learn from these features, (similar to the
paradigm in image classification) a better approach is to let
the model learn to extract features from the network context
(e.g., topology and attributes).

The existing heuristics-based approach has the following
three issues.

Generalizability: Arbitrary given heuristic is universally
inappropriate. In other words, even if a heuristic performs
well for a certain graph structure and domain, it would not
necessarily perform well for a different structure and domain.
For instance, the common neighbor heuristic is very good at
predicting links in social networks, because a person is highly
likely to have a relationship with the friends of his friends in
this domain. However, it has contra-positive results in protein-
protein interaction (PPI) networks because any two proteins
having a common interactive protein makes it less possible
for them to interact [37].

Theoretical Limits: Various complex networks in unex-
plored domains might have associativity patterns that are
not encoded into any known heuristics. Furthermore, there
might be unknown heuristics that can outperform the existing
methodologies of network analysis in a domain. Hence, heuris-
tic methods are limited by theoretically discovered topological
features of a graph.

Node Feature Utilization: In the majority of knowledge
networks, feature vectors associated with nodes can be in-
corporated into network analysis. However, several heuristic
methods only consider the structural graph features and disre-
gard the node features.

B. Supervised Heuristic Learning Approaches

Weisfeiler-Lehman Neural Machine (WLNM) [36] is an
early supervised graph heuristic learning methodology. The
methodology involves extracting the union of the k-hop
neighborhoods of the target nodes. The vertices are then
relabeled and reordered according to the Weisfeiler-Lehman
algorithm [36] to encode structural information. The updated
adjacency matrix is processed by a DNN to learn graph
patterns. This approach, however, has several drawbacks. First,
it is implicitly feeding heuristics to its DNN by re-labeling the
nodes via a topological scheme instead of letting the DNN
learn the topology heuristics entirely on its own. Second,
the adjacency matrix for the graph needs to be of a fixed
size because a feed-forward network can only process tensors

with a fixed size. Hence, the enclosing subgraphs have to
be truncated or padded with zeros, resulting in a loss or
dilution of structural features. Moreover, the WLNM cannot
learn from explicit node features due to limitations of the
adjacency matrix representation and hence, misses out on
important graph attribute information.

VII. CONCLUSION

In this work, we enhanced the GNN architecture in the
SEAL framework and propose AM-DGCNN by modifying
the DGCNN architecture to incorporate link information into
the graph embedding process. Also, we adapted the SEAL
framework to make it fit for our AM-DGCNN. We found
that attention-based node processing outperforms GCNs and
edge features significantly boost the GNN’s performance with-
out a significant cost to computational latency. The AM-
DGCNN architecture was able to obtain better prediction
accuracy than the vanilla DGCNN model in all the cases of
our experiments. The performance difference become more
substantial when datasets included edge features. We conclude
that AM-DGCNN is a suitable model for link classification in
knowledge graphs.

To further validate the advantage of leveraging GATs and
edge attributes for link classification, we will apply the
AM-DGCNN to predict data transfer in extensive graph-
based scenarios beyond knowledge graphs, such as distributed
neural network models [14], [18], directed acyclic graph
(DAG)-structured workflows [19], [20], [24], [26]-[28], high-
performance networks [25], [29], and wireless mesh net-
works [21]-[23], in the future.
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ARTIFACT DESCRIPTION/EVALUATION APPENDIX
A. Summary of the Experiments Reported

1) Abstract: We provide this artifact appendix to make our
results reproducible. Our main results are Model AUC and
Model Precision. We used the metrics subpackage from the
torch library to compute our benchmarks.

2) Artifacts: source code GitHub Link

git clone https://github.com/SHUs-Lab/MLGHPCE24DP.git

3) Relevant Hardware Details: The experiments were per-
formed on NVIDIA A40 GPU with CUDA 11.8

4) Applications and Versions:

o Python 3.9
5) Libraries and Versions:

o Pytorch 2.1.2+cull8
« Pytorch geometric 2.4.0
o numpy 1.24.1

B. Evaluation Experiments

1) Experiment 1: For recording the model performance
across epochs, do the following:

Cora: Edit the file ‘Planetoid_bench.ipynb’ by modifying
line 1 of block 11 to adjust the number of epochs.

OGBL-BioKG: Edit the file ‘bio_kg_bench.ipynb’ by mod-
ifying line 1 of block 20 to adjust the number of epochs.

WN18: Edit the file “‘WN18_benchmark.ipynb’ by modify-
ing line 1 of block 11 to adjust the number of epochs.

PrimeKG: Edit the file ‘GNN.ipynb’ by modifying line 1
of block 7 to adjust the number of epochs.

2) Experiment 2: For recording model performance across
the number of training samples, do the following:

OGBL-BioKG: Edit the file ‘bio_kg_bench.ipynb’ by mod-
ifying line 6 of block 19 to adjust the number of batches to
train.

WNI18: Edit the file “WN18_benchmark.ipynb’ by modi-
fying lines 6, 8 and 10 of block 6 to adjust the number of
training samples in the trainer.

PrimeKG: Edit the file ‘GNN.ipynb’ by modifying line 3
of block 7 to adjust the number of batches to train.



