
AM-DGCNN: Leveraging Graph Attention

Networks and Edge Attributes for Link

Classification in Knowledge Graphs

Dhroov Pandey+

Department of Computer Science and Engineering

University of North Texas, Denton, TX, USA

dhroovpandey@my.unt.edu

Tong Shu*

Department of Computer Science and Engineering

University of North Texas, Denton, TX, USA

tong.shu@unt.edu

Abstract—Graph-based representations are increasingly pop-
ular for storing and managing information through knowledge
graphs, which capture entities and their relationships. However,
these knowledge graphs often suffer from incomplete link in-
formation. To address this issue, link classification methods can
be used to predict and verify missing connections. Traditional
methods use heuristics to guess the associativity patterns of the
graph, but this results in a loss of generalizability. Recently,
supervised heuristic learning methods have improved the link
classification accuracy by learning the heuristic that fits best
for a particular graph. Specifically, the SEAL framework [37],
as a state-of-the-art supervised heuristic learning tool, excels
in learning associativity patterns by analyzing local enclosing
subgraphs to classify links. However, DGCNN, a graph neural
network (GNN) model in this framework, lacks the capability to
process edge attributes, leading to poor classification accuracy in
knowledge graphs with rich link information. Hence, this paper
proposes an Augmented Model of the DGCNN (AM-DGCNN)
by replacing Graph Convolution Networks with Graph Attention
Networks to better incorporate link information. With extensive
experiments, we demonstrate that our AM-DGCNN in the SEAL
framework can achieve up to 99% AUC and 97% precision for
classifying links in knowledge graphs.

Index Terms—Graph attention networks, edge attributes, link
classification/prediction, knowledge graphs

I. INTRODUCTION

Knowledge graphs are an efficient information represen-

tation form. They use nodes to indicate entities in a given

domain and define relationships between these entities with

edges/links. These knowledge graphs can be analyzed for

scientific discovery based on their structure, which encodes

various patterns of entity associations. Unfortunately, knowl-

edge graphs are often incomplete to represent full knowledge.

If these existing link patterns can be used to classify asso-

ciations between two entities with unknown relationship, it

will be more efficient for domain experts to make up missing

information in knowledge graphs. Therefore, it is critical to
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accurately predict the association types between two entities

with unknown relationship in knowledge graphs.

This is well-known as link prediction or classification

problems. In essence, link classification is a more general-

ized problem of link prediction, because link prediction can

be considered as binary link classification for existing and

no relationship between two entities. Specifically, the link

classification problem can be formulated as follows: Given

a knowledge graph G = (V,E) and a link e = (x, y) ∈ E,

we aim to classify the link e by determining the nature of the

relationship between these entities x and y.

Most of traditional link classification methods [3], [12]

use a graph structure-based heuristic (e.g., Adamic-Adar [2],

preferential attachment [17], common neighbors) to extract

topological graph features and translate them into scores,

which are used to judge the association between any two

nodes. If the heuristic explores the target node’s neighbor-

hoods within h hops, it is called h-order heuristic. Higher-

order heuristics, such as PageRank [5] and SimRank [10],

usually outperform lower order heuristics, such as common

neighbors, and thus are more widely adopted. However, the

performance of graph structure-based heuristics depends on

whether representative topological features can be extracted as

a good indicator of node associativity. Unfortunately, this is

not guaranteed. Furthermore, the link classification heuristics

only use the structural features and don’t take explicit node

features into account.

A more effective methodology used by link prediction

is supervised heuristic learning [36], [37], which refers to

learning the effective heuristics via machine learning. This

is usually done by processing the adjacency matrix of the

graph to generate a graph embedding that can be fed to a deep

neural network (DNN). However, this is often computationally

infeasible for very large graphs, such as biological knowledge

graphs. To address this issue, the existing methods usually

extract and process an enclosing subgraph, such as the union

of k-hop neighborhoods of the target nodes. This seems to

lose high-order heuristic features. Zhang et al. discovered a

theory that any high-order heuristic, if it is γ-decaying, can

be approximated by a low-order neighborhood [37]. Hence,



these enclosing subgraphs can be used to calculate all the

low-order heuristics and sufficiently approximate high-order

heuristics. Therefore, the Weisfeiler-Lehman Neural Machine

(WLNM) [36] uses DNNs to process enclosing subgraphs of

the target nodes and achieve a good performance. Further,

Zhang et al. upgraded WLNM in the SEAL framework [37] by

replacing the DNN with a standard dynamic graph convolu-

tional neural network (DGCNN) architecture [34], one type of

graph neural networks (GNNs) [13]. However, this architecture

fails to take into consideration link features, which are very

important for link classification.

In this paper, we proposed an Augmented Model of

DGCNN (AM-DGCNN), which incorporates both node and

link feature processing into the GNN architecture design

and outperforms vanilla DGCNN in the SEAL framework.

Also, we auto-tuned the hyperparameters of the AM-DGCNN

using DeepHyper [1] for the optimal performance. Extensive

experimental results over realistic knowledge graphs show that

AM-DGCNN can predict link classes with up to 98% accuracy.

II. BACKGROUND

A. Graph Neural Networks

Similar to specialized neural architectures utilized for image

classification, GNNs specialize in processing graph-structured

data and generate embeddings. They usually accept the ad-

jacency matrix, a node attribute matrix, and sometimes edge

attributes as inputs. GNNs extract node features from a graph

via a message passing scheme that progressively transforms

the graph attributes (e.g., node attribute vectors and edge

attributes) into representations that encapsulate the context

of the attribute in the graph. These representations can then

be aggregated by a graph aggregation layer [38] to generate

a graph representation vector which can be processed by

regular DNNs. GNNs are able to identify the associativity

patterns of various diverse networks and make them highly

generalizable for network analysis. Furthermore, GNNs can

generate associativity functions of a much broader range than

known heuristics.

Graph Convolution Networks (GCNs) [13]: Kipf et al.

applied convolution operations to transform node features and

follow a neighborhood aggregation scheme to propagate infor-

mation across the graph. The aggregation is usually achieved

by performing matrix multiplication between the adjacency

matrix, the node information matrix, and an intermediate

weight matrix that performs the convolution operation. GCNs

have achieved good performance for node classification in

balanced graphs [11], [35].

Graph Attention Networks (GATs) [33]: Velickovic et al.

applied the principle of attention [4] to GNNs. A single graph

attention layer takes as input a set of node attribute vectors, and

applies a transformation to map those vectors to a new feature

space. Then, self-attention [32] is applied to each node to

determine the importance of the neighboring nodes’ features.

The attention coefficients are shared by all the nodes in the

network. This allows the model to give selective preference to

more relevant nodes in a node’s neighborhood as opposed to

Fig. 1: Local neighborhood intersection subgraph

GCN, which gives the entire neighborhood equal importance.

Furthermore, GAT is able to process edge attribute vectors and

utilizes them while calculating attention coefficients, hence,

incorporating link information into node transformations.

B. SEAL

We adapt a link prediction framework, SEAL [37], for

our link classification problem. Our underlying intuition is

that link prediction can be viewed as a binary classification

or existence classification problem. Therefore, SEAL can be

extended to other forms of link classification. This method

extracts local enclosing subgraphs around the target nodes.

Then, a node information matrix is constructed using node

attribute vectors composed of the following three parts: (i) a

double-radius node labeling (DRNL), (ii) a node embedding

generated by node2vec [8] and (iii) explicit node features. The

subgraph adjacency matrix along with the information matrix

is processed by a GNN to output classification results. Since

SEAL is a GNN-agnostic framework, Wang et al. applied

DGCNN as a GNN model in [34].

Theory of γ-decaying heuristics: In [37], it is shown that if

a high-order heuristic is a γ-decaying heuristic [37], it can be

learnt from a k-hop enclosing subgraph, but the improvement

of approximation error decreases at least exponentially with k.

Also, it shows that popular high-order heuristics, such as Katz

Index [16], PageRank, and SimRank, can be classified as γ-

decaying heuristics. This has an intuitive justification, since it

is reasonable that nodes far away from the target nodes in the

graph would have very little effect on their associativity pat-

terns. Since processing an entire knowledge graph with a huge

number of nodes and a high degree density is computationally

expensive, we use local sub-graphs enclosing the two target

nodes, which include sufficient information for classifying the

link between the target nodes.

Double-Radius Node Labeling: Zhang et al. assign a non-

negative integer to each node as a label based on their distances

from the target nodes [37]. Specifically, let a and b be the two

target nodes; n indicates the node to be labeled. Then, the label

of node n is defined as the value of the symmetric function

D(x, y) = 1+min(x, y)+(x+y)[(x+y)/2+(x+y)%2−1]/2,



Fig. 2: AM-DGCNN architecture (leveraging GAT and taking the edge attributes as inputs)

where x ∈ N is the shortest distance between n and a, and

y ∈ N is the shortest distance between n and b. The target

nodes are given the distinctive label “1”. If the node is not

reachable by any one of the target nodes, it is given the null

label “0”. The DRNL label is appended to the node feature

vector to encode additional topological information.

III. METHODOLOGY

Based on the SEAL framework, our approach extracts a

local subgraph around the target nodes. Then, we generate

node and edge attribute matrices for the nodes and edges in the

subgraph. Next, the subgraph along with the attribute matrices

is processed by a GNN to generate a vector representation that

is enhanced by convolution and pooling operations and passed

through a dense layer for classification.

A. Subgraph Extraction

To extract the local subgraph, we consider the k-hop

neighborhoods of the target nodes and use the intersection

of these neighborhoods as the induced subgraph, as shown

in Fig. 1. Specifically, we use the intersection for the PrimeKG

graph (See Section IV), instead of a union operation, to

reduce the subgraph size, which has been verified empirically;

however, we use the union for the other knowledge graphs.

This subgraph contains all the nodes that lie on paths between

two target nodes with the length less than 2k. We chose

k = 2 for the following two reasons: 1) The target nodes (e.g.,

drug/disease) with high degrees have many neighborhoods

within k hops, so that the enclosing subgraphs are too big to

be processed for large k. 2) A low order local subgraph can be

used to approximate the high order heuristics with sufficient

accuracy as mentioned in [37].

B. Node and Edge Attribute Matrix Generation

Our node attribute vector is the concatenation of two

vectors. The first is a one hot encoding of the node type

in a knowledge graph. The second encapsulates structural

information as a one hot encoding of its DRNL [37]. We em-

pirically observed that Node2Vec embeddings did not enhance

prediction accuracy for knowledge graphs, such as PrimeKG.

Therefore, we ignore it for faster training and inference. To

generate the edge attribute matrix, we compressed the 30

relationships with two link types: encoding positive or negative

interaction. The edge attribute vectors are two-dimensional

one-hot encoding vectors with the encoding classes: positive

link and negative link. In a attribute matrix, each row repre-

sents the feature vectors of one node or edge and each column

represents a feature.

C. AM-DGCNN Architecture

We improve the original GNN link prediction architecture

(i.e., vanilla DGCNN [34]) in the SEAL framework. The

DGCNN uses multiple graph convolution layers sequentially

to generate node embeddings. Each subsequent layer is able

to aggregate more neighborhoods than the previous one. The

node embeddings from all the graph convolution layers are

concatenated to form the final node embeddings. All the

final node embeddings are aggregated by a sort pooling [38]

to generate an embedding for the entire graph. This graph

embedding is processed by convolution and pooling layers and

then fed into a dense classifier (i.e., a deep neural network)

for subsequent feature processing.

While the DGCNN is a very powerful architecture, it has

a serious shortcoming for link classification: it is unable to

process link attribute information, which is vital for processing

knowledge graphs. Therefore, in order to incorporate edge

features, we augment the DGCNN architecture by modifying

its message passing layers, i.e., replacing the GCNs with

GATs. The AM-DGCNN architecture is visualized by Fig. 2.

D. Hyperparameter Auto-Tuning

The prediction accuracy of the well-trained AM-DGCNN

relies on its hyperparameter settings in the training process.

To further enhance the performance of AM-DGCNN, we

auto-tune the hyperparameters of the AM-DGCNN, listed

in Tbl. I, using DeepHyper [1], which is a Python library to

automate machine learning processes, such as hyperparameter

tuning and neural architecture search. In DeepHyper, hyper-

parameter auto-tuning requires to define the search space of

the hyperparameter configurations and an evaluator function

that is used to indicate the prediction accuracy over differ-

ent hyperparameter configurations. The search strategy is an

optimization algorithm for exploring the search space and

identifying the best hyperparameter configuration according

to evaluator function values. Here, we selected the Centralized

Bayesian Optimization search strategy due to its computational

efficiency for large search spaces.



TABLE I: Hyperparameters of GNNs and their options
HyperParameters Options

Learning Rate [0.000001, 0.01]

GNN Layer (GAT/GCN) Hidden Dimensions 16, 32, 64, 128

Sort Aggregator k Value 5, 6, · · · , 150

IV. DATASETS

To test the generalizability of our methodology, we evaluate

the augmented model of DGCNN using three different datasets

of knowledge graphs with link features: PrimeKG [7], OGBL-

BioKG [9], and WordNet-18 [6], [15]. Also, we use the

Cora graph dataset without link features in the Planetoid

repositor as a benchmark to explain that the superiority of

our AM-DGCNN comes from its capacity of distinguishing

link features.

PrimeKG is a multi-modal knowledge graph with 129,375

nodes encompassing 10 major biological scales: proteins/-

genes, drugs, diseases, phenotypes, exposures, anatomical

regions, pathways, biological processes, cellular components

and molecular functions. It is designed to support precision

medicine analysis and has a dense collection of relationships

between nodes with 4,050,249 links with 30 relationships en-

coding “positive” and “negative” interactions. In our analysis,

we are going to be looking at the drug-disease links which

can be classified as “Indication” (i.e., positive link), “Off-label

use” (i.e., positive support link), and “Contra-indication” (i.e.,

negative link). PrimeKG contains 7,957 drug nodes and 17,080

disease nodes with 42,631 drug-disease interactions, providing

sufficiently large training and test data. We used 6000 training

links and 2000 testing links.

OGBL-BioKG is a biological knowledge graph with five

node types and 51 relationships/edge types for ample features.

It is a large graph with about 100,000 nodes and around

4,000,000 edges. In the prediction task, we intend to classify

the link between two protein nodes into seven possible rela-

tionships/link types. The bottleneck of the graph’s performance

is the limited number of data samples in the target category.

We used 1300 training links and 200 testing links.

WordNet-18 contains word senses and relates them to

lexical meaning and is commonly used for text analysis. This

knowledge graph contains 40943 nodes and about 150,000

edges. It has a homogeneous node topology (i.e., only one type

of nodes) and 18 edge classes. This dataset allows us to test

the impact of edge features in the absence of any node features

by measuring the GAT’s capability to extract information from

only link information. The vanilla DGCNN should not be able

to learn much meaningful information from the WordNet. We

used 13000 training links and 4000 testing links.

The Cora dataset in the Planetoid repository is a well-

known link prediction benchmarking dataset. It is a citation

network with 2708 nodes in seven classes and 5429 edges of

uniform topology (i.e., only one edge type). We use this dataset

to measure the performance of our AM-DGCNN against

vanilla DGCNN in the scenarios where edge features cannot

be exploited. In essence, this benchmark directly compares the

node feature message passing scheme of GAT and GCN. We

divided the links into an 80-20 train-test split.

2 4 6 8 10 12

#Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Vanilla DGCNN

AM-DGCNN

Fig. 3: Effect of the number of epochs on AUC for Cora with

auto-tuned hyperparameters

Table II summarizes the benchmark datasets.

TABLE II: Summary of Datasets
Dataset #Node types #Edge types #Nodes #Edges

PrimeKG 10 30 129,375 4,050,249

OGBL-BioKG 5 51 1̃00k 4̃,000,000

WordNet-18 1 18 40,943 1̃50k

Cora 7 1 2708 5429

V. EVALUATION

In this section, we compared the prediction accuracy of our

AM-DGCNN with the vanilla DGCNN over aforementioned

four knowledge graph datasets.

A. Metrics

To measure the prediction accuracy of GNN models for link

classification, we use the following two metrics:

1) Area Under the ROC Curve (AUC): A receiver

operating characteristic (ROC) curve is a graph showing the

performance of a classification model at all classification

thresholds by plotting the true positive rate (TPR) versus the

false positive rate (FPR) at different classification thresholds.

Here,

• TPR (i.e., recall) is TP/(TP + FN), where TP and

FN are the numbers of true positives and false negatives,

respectively.

• FPR is FP/(FP+TN), where FP and TN are the num-

bers of false positives and true negatives, respectively.

AUC (between 0 and 1) measures the entire two-dimensional

area underneath the entire ROC curve (i.e., integral calculus)

from (0,0) to (1,1). “1” indicates the best prediction accuracy.

To plot the AUC, we randomly choose one class from all the

classes as the positive class and treat the rest of classes as

negative classes.

2) Average Precision (AP): Precision is TP/(TP + FP ).
To calculate the precision of each class, we treat the observed

class as the positive class and the rest classes as negative

classes. Based on this, AP is the mean of precision values

for all the classes.

B. Experiment Design

We conducted the following two sets of experiments: (i) We

auto-tuned the hyperparameters of AM-DGCNN and vanilla
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Fig. 4: Effect of the number of epochs on

AUC for PrimeKG
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Fig. 5: Effect of the number of epochs on

AUC for OGBL-BioKG
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Fig. 6: Effect of the number of epochs on

AUC for WordNet-18

TABLE III: Prediction accuracy of different GNNs

Dataset
AM-DGCNN Vanilla DGCNN

AUC AP AUC AP

PrimeKG 0.99 97% 0.75 55%

OGBL-BioKG 0.80 75% 0.66 40%

WordNet-18 0.85 89% 0.52 38%

Cora in Planetoid 0.91 92% 0.84 88%

DGCNN for the Cora dataset to identify the optimal hyperpa-

rameter configurations, and evaluated their performance with

the same hyperparameter configurations for the other three

knowledge graphs with link features (i.e., PrimeKG, OGBL-

BioKG, and WordNet-18). (ii) We auto-tuned the hyperparam-

eters of AM-DGCNN and vanilla DGCNN for each of three

graphs with link features, respectively, and evaluated their

performance with the optimal hyperparameter configurations

in each scenario.

The reasons for such experimental design is that the Cora

dataset, due to its lack of edge attributes, would tune the

models solely for node attribute-based message passing, hence

maximizing the vanilla DGCNN’s performance capability

while not optimizing the GAT processing on edge attributes

(i.e., link features). Whereas in the second set of experi-

ments, the edge attribute processing would be fully tuned

and maximize its contribution. This allows us to observe the

effectiveness of edge attributes in a two-fold way: (i) the gen-

eral performance improvement resulting from incorporating

edge features into GNN models when ignoring the effect of

dedicated hyperparameter settings, and (ii) the maximum per-

formance improvement resulting from edge feature processing

in GNN when taking hyperparameter optimization potential

into account.

C. Results on Prediction Accuracy

To compare the prediction accuracy of AM-DGCNN and

vanilla DGCNN, we list the AUC and AP of these two models

well-trained through entire training data in the second set of

experiment in Tbl. III, which shows that the AM-DGCNN

outperforms vanilla DGCNN for all the datasets. Despite the

lack of edge classes in the Cora dataset, attention-based graph

convolutions is still superior to standard GCN. Particularly,

AM-DGCNN has the most significant performance improve-

ment over vanilla DGCNN for the WordNet-18 dataset without

explicit node features. Since it is empirically observed that

the adjacency matrix does not contain sufficient features, the

important information to be encoded can only depends on the

edge features (less possibly topology). As a result, the vanilla

DGCNN performs like a random guesser when it fails to learn

any associativity patterns from pure geometrical topology.

Therefore, by effectively making use of edge attributes, AM-

DGCNN elevates its performance over the vanilla DGCNN.

D. Results on Time-Efficiency of Model Training

To compare the training time-efficiency of AM-DGCNN

and vanilla DGCNN, we measured AUC of these two models

after the different numbers of training epochs from 2 to 12 at

the interval of 2 over all the training samples of each dataset,

and plot the measurements in Figs. 3–6. These figures shows

that the AUC of the AM-DGCNN is consistly higher than
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Fig. 7: Effect of the number of training

samples on AUC for PrimeKG
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Fig. 8: Effect of the number of training

samples on AUC for OGBL-BioKG
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Fig. 9: Effect of the number of training

samples on AUC for WordNet-18

that of vanilla DGCNN during the entire training process,

which validates the superior time-efficiency of AM-DGCNN

training. Also, we discovered that these two models perform

best just after 10 training eporchs. Thus, we can conclude

that the AM-DGCNN obtains performance gains in terms of

prediction accuracy without sacrificing speed of learning.

E. Results on Data-Efficiency of Model Training

To evaluate the training data-efficiency of these two models,

we measured the AUC of the well-trained models (after 10

eporchs) based on different number of training samples in

each dataset, and plot the measurements in Figs. 7–9. From

these figures, we can see that the AUC of the AM-DGCNN

is always greater than that of vanilla DGCNN for all the

numbers of training samples, which shows the better data-

efficiency of AM-DGCNN training. Particularly, the AUC of

AM-DGCNN is beyond 0.9 with a half of training samples

from PrimeKG, because PrimeKG has sufficient data samples

and richer explicit node information. Also, the AUC of AM-

DGCNN can still reach 0.8 with around 2/3 of training samples

from OGBL-BioKG, which has a very limited total number

of training samples (no more than 1100), and WordNet-18,

which lacks node features. Therefore, the data-efficiency of

AM-DGCNN is much better than vanilla DGCNN.

F. Results on Hyperparameter Sensitivity Analysis

In general, the prediction accuracy of a machine learning

model is affected by its hyperparameter settings, but hyper-

parameter tuning involves an extremely high training cost.

Therefore, it is important to analyze the effect of hyperparam-

eter configurations on the performance of our AM-DGCNN.

In view of this, we plot the AUC of AM-DGCNN and

vanilla DGCNN with default hyperparameters and auto-tuned

hyperparameters in Figs. 4–9. Here, default hyperparameters

are hyperparameters auto-tuned for the Cora dataset without

edge features. By comparing each pair of figures (a) and (b)

in Figs. 4–9, we observed that the AM-DGCNN’s performance

gains are insensitive to hyperparameter configurations. The

AM-DGCNN outperforms the vanilla DGCNN with similar

margins in the default and auto-tuned hyperparameter set-

tings. Therefore, the superiority of AM-DGCNN over vanilla

DGCNN is very stable. In addition, the cost of hyperparameter

auto-tuning is savable for AM-DGCNN, even through it is

computationally expensive.

VI. RELATED WORK

Existing link classification methods can be classified into

two categories: heuristics based approaches and supervised

heuristic learning approaches.

A. Heuristic-based Approaches

A common methodology for link classification is utilizing

network heuristics. There are several heuristic methods to

translate topological node features to scores and associate

them with nodes in a graph. These scores can then be

utilized by classifiers to learn a threshold value for separating

classes. The order of a heuristic is defined as the radius

of the neighborhood that the heuristic processes. A k-order



heuristic processes the k-hop neighborhood of the node being

scored. Generally, high-order heuristics outperform low-order

ones. Katragadda et al. use Common Neighbor, Adamic-Adar

Index [2], Jaccard coefficient, preferential attachment [17], and

edge weight in heuristics to extract features, which are then

processed by a decision tree-based classifier for edge classifi-

cation [12]. In [31], Vasavada et al. utilize Common Neighbor,

Adamic Adar, Node Degree, and PageRank [5] in topological

heuristics to generate features. Then, these features along with

explicit node attributes are taken as inputs by classifiers based

on Logistic Regression, Feed-forward Neural Network, and

Long Short term Memory Network (LSTM) [30]. While these

classifiers are able to learn from these features, (similar to the

paradigm in image classification) a better approach is to let

the model learn to extract features from the network context

(e.g., topology and attributes).

The existing heuristics-based approach has the following

three issues.

Generalizability: Arbitrary given heuristic is universally

inappropriate. In other words, even if a heuristic performs

well for a certain graph structure and domain, it would not

necessarily perform well for a different structure and domain.

For instance, the common neighbor heuristic is very good at

predicting links in social networks, because a person is highly

likely to have a relationship with the friends of his friends in

this domain. However, it has contra-positive results in protein-

protein interaction (PPI) networks because any two proteins

having a common interactive protein makes it less possible

for them to interact [37].

Theoretical Limits: Various complex networks in unex-

plored domains might have associativity patterns that are

not encoded into any known heuristics. Furthermore, there

might be unknown heuristics that can outperform the existing

methodologies of network analysis in a domain. Hence, heuris-

tic methods are limited by theoretically discovered topological

features of a graph.

Node Feature Utilization: In the majority of knowledge

networks, feature vectors associated with nodes can be in-

corporated into network analysis. However, several heuristic

methods only consider the structural graph features and disre-

gard the node features.

B. Supervised Heuristic Learning Approaches

Weisfeiler-Lehman Neural Machine (WLNM) [36] is an

early supervised graph heuristic learning methodology. The

methodology involves extracting the union of the k-hop

neighborhoods of the target nodes. The vertices are then

relabeled and reordered according to the Weisfeiler-Lehman

algorithm [36] to encode structural information. The updated

adjacency matrix is processed by a DNN to learn graph

patterns. This approach, however, has several drawbacks. First,

it is implicitly feeding heuristics to its DNN by re-labeling the

nodes via a topological scheme instead of letting the DNN

learn the topology heuristics entirely on its own. Second,

the adjacency matrix for the graph needs to be of a fixed

size because a feed-forward network can only process tensors

with a fixed size. Hence, the enclosing subgraphs have to

be truncated or padded with zeros, resulting in a loss or

dilution of structural features. Moreover, the WLNM cannot

learn from explicit node features due to limitations of the

adjacency matrix representation and hence, misses out on

important graph attribute information.

VII. CONCLUSION

In this work, we enhanced the GNN architecture in the

SEAL framework and propose AM-DGCNN by modifying

the DGCNN architecture to incorporate link information into

the graph embedding process. Also, we adapted the SEAL

framework to make it fit for our AM-DGCNN. We found

that attention-based node processing outperforms GCNs and

edge features significantly boost the GNN’s performance with-

out a significant cost to computational latency. The AM-

DGCNN architecture was able to obtain better prediction

accuracy than the vanilla DGCNN model in all the cases of

our experiments. The performance difference become more

substantial when datasets included edge features. We conclude

that AM-DGCNN is a suitable model for link classification in

knowledge graphs.

To further validate the advantage of leveraging GATs and

edge attributes for link classification, we will apply the

AM-DGCNN to predict data transfer in extensive graph-

based scenarios beyond knowledge graphs, such as distributed

neural network models [14], [18], directed acyclic graph

(DAG)-structured workflows [19], [20], [24], [26]–[28], high-

performance networks [25], [29], and wireless mesh net-

works [21]–[23], in the future.
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ARTIFACT DESCRIPTION/EVALUATION APPENDIX

A. Summary of the Experiments Reported

1) Abstract: We provide this artifact appendix to make our

results reproducible. Our main results are Model AUC and

Model Precision. We used the metrics subpackage from the

torch library to compute our benchmarks.

2) Artifacts: source code GitHub Link

git clone https://github.com/SHUs-Lab/MLGHPCE24DP.git

3) Relevant Hardware Details: The experiments were per-

formed on NVIDIA A40 GPU with CUDA 11.8

4) Applications and Versions:

• Python 3.9

5) Libraries and Versions:

• Pytorch 2.1.2+cu118

• Pytorch geometric 2.4.0

• numpy 1.24.1

B. Evaluation Experiments

1) Experiment 1: For recording the model performance

across epochs, do the following:

Cora: Edit the file ‘Planetoid_bench.ipynb’ by modifying

line 1 of block 11 to adjust the number of epochs.

OGBL-BioKG: Edit the file ‘bio_kg_bench.ipynb’ by mod-

ifying line 1 of block 20 to adjust the number of epochs.

WN18: Edit the file ‘WN18_benchmark.ipynb’ by modify-

ing line 1 of block 11 to adjust the number of epochs.

PrimeKG: Edit the file ‘GNN.ipynb’ by modifying line 1

of block 7 to adjust the number of epochs.

2) Experiment 2: For recording model performance across

the number of training samples, do the following:

OGBL-BioKG: Edit the file ‘bio_kg_bench.ipynb’ by mod-

ifying line 6 of block 19 to adjust the number of batches to

train.

WN18: Edit the file ‘WN18_benchmark.ipynb’ by modi-

fying lines 6, 8 and 10 of block 6 to adjust the number of

training samples in the trainer.

PrimeKG: Edit the file ‘GNN.ipynb’ by modifying line 3

of block 7 to adjust the number of batches to train.


