
A Deep Learning Approach to Maximizing

Electrostatic Sieve Efficiency in Regolith

Beneficiation

Kalpit M. Vadnerkar∗

Dept. of Electrical and Computer Engr.

Clemson University

Clemson, SC, USA

kvadner@clemson.edu

Emmanuela Amen Eze∗

Dept. of Mechanical and Aerospace Engr.

Missouri University of Science and

Technology, Rolla, MO, USA

eeze@mst.edu

Rinoj Gautam

Dept. of Computer Science and Engr.

University of North Texas

Denton, TX, USA

rinojgautam@my.unt.edu

Daoru Han

Dept. of Mechanical and Aerospace Engr.

Missouri University of Science and

Technology, Rolla, MO, USA

handao@mst.edu

Xin Liang

Department of Computer Science

University of Kentucky

Lexington, KY, USA

xliang@uky.edu

Tong Shu†

Dept. of Computer Science and Engineering

University of North Texas

Denton, TX, USA

tong.shu@unt.edu

Abstract—This study investigates the optimization of an elec-
trostatic sieve designed for lunar regolith beneficiation. Two pa-
rameters of the electrostatic sieve, 1) the voltage amplitude and 2)
angle of inclination, were chosen as variables in the optimization
process. Numerical simulations revealed that increasing voltage
amplitude significantly enhances sieve performance over the
sieve angle. However, optimal separation required careful voltage
adjustment for specific sieve angles. A comprehensive dataset
incorporating additional parameters was then created to train
Machine Learning (ML) and Deep Learning (DL) models for
further optimization. The ML/DL models were trained on a small
subset of the original dataset to predict the yield. We showcase the
benefits of leveraging DL techniques to improve the electrostatic
sieve for regolith beneficiation via tailored evaluations. Our
model, trained on lower-yield examples, accurately (92%) iden-
tifies parameter combinations that increase yields above 30%. It
leads to a near-optimal yield with 10× reduction on runtime when
compared with exhaustive simulations. This not only reduces
the reliance on resource-intensive numerical simulations but also
offers a rapid, validated approach to optimizing equipment for
lunar mining operations.

Index Terms—Electrostatic Sieve, Simulation, Sampling, Re-
gression, High Performance Computing, Machine Learning, Deep
Learning Model

I. INTRODUCTION

As NASA prepares to return to the Moon, renewed focus

on In-Situ Resource Utilization (ISRU) is critical. Efficiently

utilizing lunar resources like water, oxygen, and metals is key

to reducing dependence on Earth-based supplies [1]. Lunar

regolith contains valuable metals, but extracting them requires

pre-processing to separate the desired mineral-rich portions

from less valuable material. This beneficiation step improves

the efficiency of subsequent chemical extraction processes.

∗ These authors contributed equally to this work.
† Tong Shu’s ORCID iD: 0000-0001-8617-1772

The absence of standard ore grades on the Moon adds an-

other layer of complexity to ISRU efforts. Terrestrial particle

separation methods, such as cyclones and air classifiers, are

often power-hungry, bulky, and complex, making them unsuit-

able for lunar applications [1]–[3]. Simpler, more adaptable

solutions are needed. Electrostatic separation has emerged as

a promising approach due to its potential for compact, low-

power operation [4], [5]. Prior work by Kawamoto and Adachi

explored electrostatic sieves and filing separators for particle

classification, but achieved limited yields of fine particles (less

than 10µm) [2]. This paper builds on previous research in

particle dynamics within electric fields [6]–[9] and leverages

machine learning (ML) and deep learning (DL) techniques

to enhance the performance of electrostatic sieves for lunar

beneficiation.

A. Kinetic Modeling of an Electrostatic Sieve

The sieve modeling is similar to the work done by Ingram et

al. in [9]. Two parameters, the voltage amplitude and the angle

of inclination of the sieve were manipulated to run four cases

and observe the corresponding effect on the performance of the

sieve on Earth. The kinetic modeling of the sieve was carried

out using a FORTRAN code package designed to solve for the

electric potential and field in a particular domain of interest

and using the resulting electrostatic force from the field to

track the motion of lunar dust grains. Due to the expensive

simulation procedure, optimizing the performance of the sieve

is highly desired. This necessitates the use of ML and DL

models for fast and accurate prediction using the different

combinations of input parameters.



B. Leveraging Deep Learning for Optimization

Deep learning models offer a transformative approach to

electrostatic sieve optimization by leveraging existing data

to predict optimal operational parameters (e.g., voltage mag-

nitude, frequency, sieve angle, electrode pitch). Unlike tra-

ditional methods that rely heavily on scarce mathematical

models, deep neural networks (DNNs) are model-agnostic and

can be fine-tuned for superior performance, as highlighted by

Shlezinger et al. [10]. Yang et al. [11] show how deep learning

has been successfully applied to several application problems.

This data-driven approach has demonstrated remarkable suc-

cess in various fields, including the classification of handwrit-

ten digits [12], image recognition [13]–[15], natural language

understanding [16], and so on. In our study, we harness the

power of deep learning to develop a neural network that

predicts particle yield based on historical experimental data.

Due to its high inference speed (compared with simulations),

the neural network functions as a surrogate model, efficiently

optimizing operational parameters and significantly reducing

the time required for researchers to identify optimal input

combinations. Our methodology includes comprehensive data

processing and feature engineering techniques, which will be

detailed later. Additionally, we benchmark the performance of

our deep learning model against conventional machine learn-

ing approaches to showcase its effectiveness in this context.

C. Technical Contributions

1) A feedforward neural network architecture for accurate

yield prediction on unseen data.

2) Comparison of machine learning and deep learning

models for inference speed and accuracy.

3) Integration of the model into the optimization approach,

enabling configuration recommendations and reduced

runtime.

The remainder of this paper is structured as follows: Section

II introduces the kinetic modeling approach, which serves

as our data generator and a baseline for identifying the

best-fit configuration. Section III describes the design and

architecture of the proposed neural network, along with the

evaluation results for (1) comparison with traditional machine

learning approaches and (2) efficiency in finding the best-fit

configurations when compared with exhaustive simulations.

Section IV concludes the paper with a vision for future works.

II. KINETIC MODELING

A. Generating Particle Radii

Lunar regolith radii follows the Logarithmic-Normal Distri-

bution according to data acquired from the Apollo missions

[17]. Since, obtaining the inverse CDF of the Logarithmic-

Normal Distribution is not feasible, we use the Accept-Reject

method to generate particle sizes that follow the Logarithmic-

Normal Distribution using the Uniform Distribution which can

be easily sampled from [18].

B. Solving the Electric Field

Changing electric fields with respect to time are needed to

propel the lunar soil particles. These electric fields constitute a

multi-phase electrostatic traveling wave. In order to move the

particles, we have to solve for the electric potential, electric

field, and subsequently the electrostatic force caused by the

electrode configuration for each phase. For this work, the

Immersed Finite Element (IFE) - Poisson Solver was employed

to solve for the electric potential throughout the domain of

interest. The IFE - Poisson Solver has been utilized in solving

other problems related to particle dynamics in electrostatic

fields [19]–[29]. The electric potential and electric field are

obtained using Eq. (1) and Eq. (2), respectively, where Φ is

the electric potential and E is the electric field.

∇
2Φ = 0 (1)

E = −∇Φ (2)

C. Dust Particle Dynamics in Electric Fields

The motion of a charged dust particle influenced by both

electric and gravitational fields is described by Newton’s

second law, as expressed in Equation (3):

F = md

dv

dt
= QdE−mdgk̂,

where md = ρ
4

3
πr3

(3)

In this equation, md represents the mass of the dust particle

(assumed to be spherical), Qd is its charge, g is the gravita-

tional acceleration, and v is the dust particle’s velocity vector.

The instantaneous local electric field, E, varies depending on

the phase of the electrode bias, as each phase results in a

distinct electric field distribution due to the changing potentials

on the electrodes. We assume a lunar regolith density, ρ, of

2.65 g/cm3 [30].

Qd = CΦd = 4πϵ0rdΦd (4)

In Equation (4), Φd denotes the potential of the dust particle.

This potential is interpolated from the electric field data

generated by the biased electrodes at a specific phase. The

interpolation is based on the dust particle’s position within

the computational domain.

D. Cases

We conducted four case studies, summarized in Table I, to

analyze how electric potential and inclination angle impact

sieve performance in lunar conditions. These findings inform

the parameters used for our machine learning models, where

we explore variations in both declining and inclining sieve

configurations (Fig. 1) to evaluate their effects.



Fig. 1: Setup and boundary conditions of the simulation

domain for an example case

TABLE I: Electrostatic Sieve Parameters (All dimensions are

in millimeters, except voltage amplitude in volts and sieve

angle in degrees)

Sieve Parameter Cases

Case 0 Case 1 Case 2 Case 3

Voltage Amplitude 600 1800 600 1800
Horizontal Pitch 20 20 20 20

Vertical Pitch 5 5 18 18
Sieve Angle 14 14 42 42
X-dimension 250 250 250 250
Z-dimension 100 100 250 250

Dust Gen. Zone - Zmin 55 55 190 190
Dust Gen. Zone - Zmax 65 65 200 200

(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Fig. 2: Potential contours of each phase of the four-phase

electrostatic traveling wave.

The varied parameters include sieve inclination angle, elec-

trode number and dimensions, electric potential, wave fre-

quency and phase, lunar soil properties, computational domain

mesh size, gravity, phase shift, time step, particle density and

size, and electrode distance. The absolute angle of inclination

is used to connect the declining and inclining sieve setups.

1) Electrostatic Sieve Parameters: Some of the parameters

for the cases run are shown in Table I. The acceleration due

to gravity used for all four cases is that of the lunar surface

(1.62 m/s2). The voltage amplitude is the amplitude of the

electrostatic traveling wave. The horizontal or x pitch is the

horizontal distance between the center-lines of two consecutive

electrodes. The sieve angle is the angle of inclination of

the electrostatic sieve. The dust generation zone - Zmin and

Zmax are the minimum and maximum positions of the dust

generations on the z-axis.

2) Computational Domain: The computational domain

consists of the array of electrodes, the dust generation zone,

dust collection zone, and boundary conditions. In Fig. 1, the

simulation and boundary conditions are depicted.

3) Potential Contours: For each case, the magnitude of the

electric potential on all the electrodes is the same but the

polarity is switched in order to the generate an electrostatic

traveling wave. The frequency of the wave is 10 Hz. Each

electrode embedded in the domain is a 2mm cube. The array of

electrodes for the four example cases is declining. The electric

potential contour for each phase of the wave for an example

case is shown in Fig. 2. Switching from one phase to the next

phase transports the particles in the desired direction.

(a) 0.005 sec (b) 0.05 sec

(c) 0.10 sec (d) 0.30 sec

Fig. 3: Dust particle trajectory at selected time steps. Dust

grains are colored by size. Electrodes are shown as light gray

boxes.

4) Motion of Charged Dust: 1 million dust particles are

loaded at the initial time step into the sieve through the

dust generation zone. For the four example cases, the dust

generation zone is located from 5 to 15 mm along the x-axis.

The minimum and maximum radii used for sampling with

Accept-Reject method are 0 and 2000 µm. In order to closely



model the FSJ-1 simulant and generate a large range of lunar

regolith particle sizes, the mean and standard deviation of the

particle sizes used are 36 and 1200 µm [31].

The lunar dust particles are injected into the computational

domain, only once, at the beginning of the simulation, through

the dust generation zone. Figure 3 shows the trajectory of the

dust grains at different time steps. After injection, the dust

grains start to move. Initially, they are above the first electrode.

Afterwards, they start to loft due to the the electrostatic force

created by the electrodes. The heavier particles due to the

action of the gravitational force fall through the computational

domain while the lighter ones travel in the direction of the

electrodes and get to the dust collection zone. The particles

that get to the dust collection zone are called ’classified’.

E. Results and Inference

Figure 4 shows the comparison of the particle size distribu-

tion of the collected dust grains for all four cases.

Fig. 4: The comparison of histograms of collected dust grains

for four cases.

Case 0 exhibits the lowest quantity and range of classified

particles. In contrast, Cases 1 and 3 show the highest quantity

and range of classified particle sizes, with Case 3 demonstrat-

ing a wider range of collected particles compared to Case 1.

The sieve’s performance is gauged by its percentage yield,

calculated as the percentage ratio of the weight of collected

particles smaller than 10 µm (Wcollected,<10µm) to weight of

fed particles with size less than 10 µm (Wfed,<10µm), as can

be seen in Eq. (5) [1].

yield(%) =
Wcollected,<10µm

Wfed,<10µm

× 100% (5)

Table II presents the yield, average, and maximum lunar

regolith radii classified. The table reveals that tripling the

applied voltage amplitude results in a doubling of the average

radius classified. On the other hand, tripling the electrostatic

sieve angle only increases the average radius classified by a

factor of approximately 1.3. This indicates that increasing the

applied voltage has a significantly more pronounced effect

on the yield and average radius of collected particles than

increasing the sieve angle. Furthermore, a comparison of Cases

1 and 3 demonstrates that increasing the voltage amplitude

beyond a certain threshold for a given sieve angle leads to a

decrease in the sieve’s yield. Examining the collected particle

radii, it’s evident that to collect particle sizes within a specific

range, the voltage must be limited to a certain value. This

observation aligns with the results obtained from modeling

the electrostatic sieve as if it were operating on Earth [9].

TABLE II: Percentage Yield, Average and Maximum Classi-

fied Radii

Case 0 Case 1 Case 2 Case 3

Yield (%) 1.062 29.938 2.641 29.031
Avg. Classified Radius (µm) 2.489 5.770 3.266 7.415
Max. Classified Radius (µm) 8.24 24.817 7.603 22.599

III. MACHINE LEARNING AND DEEP LEARNING MODELS

A. Approach

Our ML/DL models aim to predict the yield of an electro-

static sieve based on a variety of input parameters, including

the sieve’s physical configuration, operational settings, the

properties of the lunar soil particles, etc. To create a compre-

hensive dataset, a FORTRAN-based simulator was employed

to model the kinetic behavior of the sieve under varying con-

ditions. The dataset contains over 1500 data points (referred

to as configurations in the later text), each mapping a specific

combination of input parameters to the resulting yield. The

simulator takes five minutes to generate one data point. The

yield, representing the fraction of particles below a certain size

successfully collected, was normalized for consistency. Due

to the diverse scales of the input parameters, preprocessing

steps were taken to ensure effective model training. This

includes scaling numerical features and encoding categorical

variables. The dataset is then partitioned into an 80% training

set and a 20% testing set, facilitating evaluation of the model’s

generalization performance.

B. Model Architecture and Training Strategy

We evaluate four traditional machine learning models: lin-

ear, ridge, LASSO, and polynomial regression. To this end,

we propose to leverage a feedforward neural network [32] to

further improve the efficiency. The neural network architecture

was carefully designed and optimized through a series of ex-

periments. These experiments explored the impact of different

activation functions, network depth (number of layers), and

network width (hidden layer size) on both training and test

loss. The neural network architecture we use comprises several

key components:

1) Input Layer: The input layer is dimensioned to ac-

commodate the number of relevant input features, which

captures the initial state of the electrostatic sieve con-

figuration.



2) Network Depth: As shown in Figure 5, the number

of layers in the network has a significant impact on

model performance. A two-layer architecture appears to

strike an optimal balance between model complexity and

generalization ability. While a single layer shows higher

loss, indicating underfitting, three layers begin to show

signs of overfitting with increased test loss despite lower

training loss. This guided our decision to use two hidden

layers in the final architecture.

3) Hidden Layer Size: Figure 6 illustrates the effect of

hidden layer size on model performance. The graph

shows that increasing the number of neurons in the

hidden layers generally improves performance up to

a point, after which returns diminish and the risk of

overfitting increases. Based on this, we choose a hidden

layer size of 64 neurons, which provides a good trade-off

between model capacity and generalization.

4) Activation Function: Figure 7 compares the perfor-

mance of different activation functions. The results show

that LeakyReLU slightly outperforms ReLU, with both

achieving lower loss compared to using no activation

function or the hyperbolic tangent (tanh) function. This

suggests that the use of rectified linear units helps the

model learn non-linear relationships in the data more

effectively. As such, we selected ReLU as the activation

function in our implementation.

5) Output Layer: A single-neuron output layer generates

the final yield prediction. This neuron’s output is trans-

formed by a sigmoid function shown in equation (6) to

ensure the predicted yield falls within the valid range of

[0, 1].

σ(x) =
1

1 + e−x
(6)

Fig. 5: Impact of Layer Count (Width of the NN) on the Neural

Network Performance

C. Loss Function

To train the model effectively, we leverage the Root Mean

Squared Error (RMSE) as our loss function. RMSE quanti-

fies the average discrepancy between the model’s predicted

Fig. 6: Impact of Layer Size (Height of the NN) on the Neural

Network Performance

Fig. 7: Impact of Different Activation Functions on the Neural

Network Performance

yield values and the corresponding ground-truth yield values,

providing a clear metric for evaluating model performance.

Equation (7) shows the mathematical formulation of our loss

function.

L =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (7)

where n is the number of samples, yi is the true yield value

for the i-th sample, and ŷi is the predicted yield value for the

i-th sample.

D. Optimization Strategy

Optimization of the model’s parameters is achieved through

the Adaptive Moment Estimation (Adam) algorithm intro-

duced by Kingma in [33]. Adam is a widely adopted op-

timization technique renowned for its efficiency and adapt-

ability in training deep neural networks [34]. It intelligently

adjusts learning rates for individual parameters, accelerating

convergence and enhancing model performance. It combines

the benefits of two other optimization methods:



• Momentum: Accelerates optimization by considering

past gradients.

• RMSprop: Adapts learning rates based on the magni-

tudes of recent gradients.

E. Results and Comparison

We showcase how our methods accelerate the electrostatic

sieve for lunar regolith beneficiation using the experimental

setting below. As a baseline, our vanilla approach evaluates

15,000 configurations of input parameters using the Kinetic

Modeling Simulator and picks the optimal one that produces

the highest yield. We further leverage an optimized approach

that trains machine learning and deep learning models using

only the 1,500 training data (10% of the total number of con-

figurations), predicts the other 90% with the trained models,

and then selects the configuration with the highest predicted

yield. In the following, we show the trade-off in performance

(in terms of execution time) and efficiency (in terms of the

value of yield).

Performance: We present the performance of the Kinetic

Modeling Simulator and ML/DL models in Figure 8. While

the baseline approach is able to find the best configuration,

it has a high runtime overhead that cannot be overlooked

(1500 ∗ 300 = 450000 seconds). In contrast, the inference

time of the used ML/DL models is orders of magnitude lower

and thus negligible compared with the simulation time. This

leads to a 10× reduction in the time for finding an acceptable

configuration using the optimized approach with any of the

models.

Fig. 8: Comparison of Inference Time of ML/DL models with

the Kinetic Modeling Simulator

Efficiency: We then present the accuracy of different models

in the optimized approach and compare their efficiency. The

training and test losses are shown in Figure 9. According to the

figure, it is observed that the neural network produced the best

results. Looking at the magnitudes of the model coefficients

we can interpret that the most significant predictors of yield

were the absolute angle of inclination, number of electrodes,

voltage magnitude, electrode dimension, dist. dust generation

zone to first electrode, and gravitational force.

Fig. 9: Comparison of Deep and Machine Learning Models

We then integrate the deep learning model into the opti-

mized approach and compare its efficiency with the baseline.

Specifically, we use this model to predict the yield for all

15,000 candidate configurations evaluated in the baseline and

identify the highest predicted yield among them. Using this

approach, we obtain a predicted yield of 33.79% with the

following parameter values:

• absolute angle of inclination = 335°

• number of electrodes = 4

• voltage magnitude = 2000 volts

• voltage frequency = 5 Hz

• electrode dimension = 6 mm

• x pitch = 20 mm

This produces an actual yield of 38.54% when running another

Kinetic Modeling simulation using these parameters.

As a comparison, exhausting all the 15,000 combinations

leads to an optimal yield of 38.79%. This result demonstrates

that the proposed approach is able to produce a near-optimal

configuration with significantly reduced runtime.

IV. CONCLUSION

This study demonstrates the potential of neural networks

on the electrostatic sieve for lunar regolith beneficiation.

They exhibit better quality on yield prediction than traditional

machine learning methods such as regression. Their ability

to learn complex relationships surpasses linear and nonlinear

regression, offering a more accurate representation of the

underlying relationship. We intend to further explore physics-

informed neural networks, which promise even better perfor-

mance on unseen data due to their adherence to fundamental

laws. Ultimately, these advanced techniques serve as powerful

surrogate models, drastically reducing the time and resources

required for scientific experimentation. By combining the

speed of machine learning and deep learning with the pre-

cision of established scientific methods, we pave the way

for accelerated optimization and innovation in this field. As

validated in our evaluation, the DL model leads to almost



the same yield compared with exhaustive simulation while

reducing the runtime by 10×. This significantly reduces the

time and resources for the electrostatic sieve.

ACKNOWLEDGMENT

This research is sponsored by the National Science Foun-

dation under Grant No. OAC-2306184 with the University

of North Texas and Grant No. OAC-2330364 with the Uni-

versity of Kentucky and NASA Lunar Surface Technology

Research (LuSTR) program. The simulations presented here

were carried out with computing resources provided by the

Center for High Performance Computing Research at Missouri

University of Science and Technology through an NSF grant

OAC-1919789.

REFERENCES

[1] H. Kawamoto, H. Morooka, and H. Nozaki, “Improved electrodynamic
particle-size sorting system for lunar regolith,” Journal of Aerospace

Engineering, vol. 35, no. 1, p. 04021115, 2022.
[2] H. Kawamoto and M. Adachi, “Electrostatic particle-size classification

of lunar regolith for in-situ resource utilization,” in AIAA SciTech Forum

2014, no. AIAA 2014-0341, (National Harbor, Maryland), 2014.
[3] H. Kawamoto, H. Morooka, and H. Nozaki, “Vertical transport of lunar

regolith and ice particles using electrodynamic traveling wave,” Journal

of Aerospace Engineering, vol. 34, no. 4, p. 04021042, 2021.
[4] R. J. Williams, D. S. McKay, D. Giles, and T. E. Bunch, “Mining and

beneficiation of lunar ores,” Tech. Rep. V-6, NASA, 1979.
[5] W. N. Agosto, “Electrostatic concentration of lunar soil minerals,” in

Lunar Bases and Space Activities of the 21st Century (W. W. Mendell,
ed.), (Houston, TX), p. p.453, 1985.

[6] J. Zhao, X. He, G. Yan, and D. Han, “Kinetic Particle Simulations
of Plasma and Dust Environments at Robotic Construction Sites near
the Lunar Terminator,” Journal of Aerospace Engineering, vol. 35,
p. 04022095, November 2022.

[7] J. Zhao, D. Lund, and D. Han, “Development of a fully kinetic
particle simulation code for coupled plasma-dust transport,” in 16th

Spacecraft Charging and Technology Conference (SCTC), SCTC 2022-
075, (Virtual), April 4-8, 2022.

[8] J. Zhao, G. Yan, X. He, and D. Han, “Kinetic Particle Simulations
of Plasma Charging and Dust Transport near Uneven Lunar Surface
Terrain,” in AIAA SciTech 2022, AIAA 2022-1988, (San Diego, CA &
Virtual), January 3-7, 2022.

[9] E. Ingram, A. Eze, J. Smith, F. Rezaei, D. Bayless, W. Schonberg, and
D. Han, “Kinetic modeling of electrostatic sieving for lunar regolith
beneficiation: Case studies,” in AIAA SciTech Forum, AIAA 24-2540,
(Orlando, Florida), January 2024.

[10] N. Shlezinger, Y. C. Eldar, and S. P. Boyd, “Model-based deep learning:
On the intersection of deep learning and optimization,” IEEE Access,
vol. 10, pp. 115384–115398, 2022.

[11] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An
introductory review of deep learning for prediction models with big
data,” Frontiers in Artificial Intelligence, vol. 3, p. 4, 2020.

[12] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regular-
ization of neural networks using dropconnect,” in Proceedings of the

30th International Conference on Machine Learning (S. Dasgupta and
D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning

Research, (Atlanta, Georgia, USA), pp. 1058–1066, PMLR, 17–19 Jun
2013.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-

tion processing systems, vol. 25, 2012.
[14] K. Vadnerkar and M. E. Patil, “Design and implementation of intelligent

recommendation system for farmers using cnn and rnn,” International

Journal of Innovative Research in Science, Engineering and Technology,
vol. 7, 2018.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[16] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief
networks for natural language understanding,” IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 22, no. 4, pp. 778–
784, 2014.

[17] J. Park, Y. Liu, K. D. Kihm, and L. A. Taylor, “Characterization of
lunar dust for toxicological studies i: Particle size distribution,” Journal

of Aerospace Engineering, vol. 21, no. 4, pp. 266–271, 2008.
[18] L. Martino, D. Luengo, and J. Miguez, Independent Random Sampling

Methods. Springer International Publishing, 2018.
[19] R. Kafafy and J. Wang, “Whole subscale ion optics simula-

tion: Direct ion impingement and electron backstreaming,” in 41st

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA
2005-3691, (Tucson, Arizona), July 2005.

[20] R. Kafafy and J. Wang, “Whole ion optics gridlet simulations using
a hybrid-grid immersed-finite-element particle-in-cell code,” Journal of

Propulsion and Power, vol. 23, pp. 59–68, January-February 2007.
[21] R. I. Kafafy and J. Wang, “A hybrid grid immersed finite element

particle-in-cell algorithm for modeling spacecraft-plasma interactions,”
IEEE Transactions on Plasma Science, vol. 34, pp. 2114–2124, October
2006.

[22] J. Wang, Y. Cao, R. Kafafy, J. Pierru, and V. K. Decyk, “Simulations
of ion thruster plume-spacecraft interactions on parallel supercomputer,”
IEEE Transactions on Plasma Science, vol. 34, pp. 2148–2158, October
2006.

[23] D. Han and J. J. Wang, “Simulations of ion thruster plume con-
tamination with a whole grid sputtered mo source model,” in 49th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA
2013-3888, (San Jose, California), July 2013.

[24] D. Han, Particle-in-Cell Simulations of Plasma Interactions with Aster-

oidal and Lunar Surfaces. PhD thesis, University of Southern California,
2015.

[25] D. Han, P. Wang, X. He, T. Lin, and J. Wang, “A 3D immersed finite
element method with non-homogeneous interface flux jump for applica-
tions in particle-in-cell simulations of plasma-lunar surface interactions,”
Journal of Computational Physics, vol. 321, pp. 965–980, September
2016.

[26] D. Han, J. Wang, and X. He, “A Nonhomogeneous Immersed-Finite-
Element Particle-in-Cell Method for Modeling Dielectric Surface Charg-
ing in Plasmas,” IEEE Transactions on Plasma Science, vol. 44,
pp. 1326–1332, August 2016.

[27] D. Han, J. Wang, and X. He, “ Immersed Finite Element Particle-in-Cell
Simulations of Plasma Charging at the Lunar Terminator,” Journal of

Spacecraft and Rockets, vol. 55, pp. 1490–1497, November-December
2018.

[28] D. Han and J. Wang, “3-D Fully-Kinetic Particle-in-Cell Simulations
of Small Asteroid Charging in the Solar Wind,” IEEE Transactions on

Plasma Science, vol. 47, pp. 3682–3688, August 2019.
[29] W. Yu, D. Han, and J. Wang, “Numerical Simulations of Dust Dynam-

ics Around Small Asteroids,” IEEE Transactions on Plasma Science,
vol. 47, pp. 3724–3730, August 2019.

[30] G. H. Heiken, D. T. Vaniman, and B. M. French, Lunar Sourcebook: A

User’s Guide to the Moon. Cambridge, England: Cambridge University
Press, 1991.

[31] Shimizu, “FJS-1 / FJS-1g Shimizu Lunar Soil Simulant.”
https://www.shimz.co.jp/en/, 2022.

[32] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and
architectures,” IEEE access, vol. 7, pp. 53040–53065, 2019.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[34] S. Bock and M. Weiß, “A proof of local convergence for the adam
optimizer,” in 2019 international joint conference on neural networks

(IJCNN), pp. 1–8, IEEE, 2019.



ARTIFACT DESCRIPTION/EVALUATION APPENDIX

A. Summary of the Experiments Reported

1) Abstract: We provide this artifact appendix to make

our results reproducible. We measure two main results: i)

The inference time of models in seconds, and ii) The model

performance through Root Mean Squared (RMSE) values.

2) Artifacts: The GitHub Link to the source code:

https://github.com/Kalpit-Vadnerkar/DL-GPU-Electrostatic-

Sieve

B. Experimental Setup

1) Relevant Hardware Details:

• Tesla V100-PCIE-16GB

• Driver Version: 550.54.15

2) Operating Systems and Versions:

• Operation System: Rocky Linux

• version: 8.8 (Green Obsidian)

3) Compilers and Versions:

• GCC 11.2

• Python 3.11.10

4) Libraries and Versions:

• pandas: 2.2.3

• scikit-learn: 1.5.2

• pytorch: 2.3.0

• pytorch-cuda: 11.8

• numpy: 2.0.0

• matplotlib: 3.9.2

5) Input Datasets and Versions: Over 15000 data points

were generated and are stored across multiple .txt files in the

”Dataset” folder within the project repository.

6) Other Installation Software:

• CUDA Version: 12.4

C. Evaluation Experiments

This section details the experiments performed for evalu-

ating electrostatic sieve configurations and developing predic-

tive models for sieve performance. The code for all exper-

iments is available in the accompanying Jupyter notebooks.

The ′Optimization.ipynb′ notebook goes through the entire

dataset analyzing and identifying the best electrostatic sieve

configurations. Finally it displays the filtered data with con-

figurations providing the maximum yields.

1) Experiment 1: The ′DataProcessing.ipynb′ notebook

covers the following steps:

• Data Loading and Visualization: The code reads and

loads the data from the ”Dataset” folder. Numerical

features are visualized using histograms to understand

their distributions.

• Data Splitting and Preprocessing: The dataset is shuffled

and split into an 80-20 train-test split. A data processing

pipeline is constructed to encode the data using sklearn’s

RobustScaler for numerical features and OrdinalEncoder

for categorical features. This ensures robust handling

of outliers and prepares the data for machine learning

models.

• Regression Model Evaluation: Multiple regression mod-

els are trained and evaluated using the Root Mean

Squared Error (RMSE) as the performance metric. This

includes both linear and non-linear models.

• Hyperparameter Tuning: Grid search and cross-validation

techniques are employed to identify the optimal hyperpa-

rameters for the non-linear regression models, ensuring

the models are well-tuned to the data.

• Inference Time Measurement: The code measures the

inference time for each model to predict a single data

point, providing insights into the computational efficiency

of different models.

2) Experiment 2: The ′MPL.ipynb′ notebook focuses on

developing a deep learning model for prediction:

• Data Preparation: A random subset of 10% of the entire

dataset is selected to manage computational resources

during deep learning training.

• Custom Dataset and Dataloader: A CustomDataset class

is implemented to create a dataloader, facilitating efficient

batching and shuffling of data for the neural network.

• Model Training: A feed-forward neural network is initial-

ized and trained for 100 epochs with a batch size of 32.

The RMSE serves as the loss function for optimization.

• Architecture Search and Cross-Validation: Different neu-

ral network architectures are explored, varying the num-

ber of layers and neurons (width and depth). Cross-

validation is used to evaluate the performance of each

architecture and prevent overfitting.

• Model Selection: The notebook provides summaries of

two promising architectures that achieved similar per-

formance, highlighting the trade-offs between model

complexity and predictive accuracy. The best-performing

architecture is presented in the main paper.

Two interesting feed-forward Neural Network architectures

that produced similar results are summarized below:

• Model Summary 1:

– Structure: This model has three layers: An input layer

with 9 features (think of these as 9 input variables).

A hidden layer with 64 neurons. An output layer with

1 neuron (suggesting this model predicts a single

value).

– Activation Function: ReLU (Rectified Linear Unit)

is used to introduce non-linearity. ReLU sets any

negative input values to 0 and keeps positive values

unchanged. This helps the network learn complex

patterns.

Net(

(layers): ModuleList(

(0): Linear(in_features=9,

out_features=64,

bias=True)

(1): Linear(in_features=64,

out_features=64,



bias=True)

(2): Linear(in_features=64,

out_features=1,

bias=True)

)

(activation_function):

ReLU()

)

• Model Summary 2:

– Structure: This model has four layers: An input layer

with 9 features (same as Model 1). Three hidden

layers with 32, 16, and 8 neurons respectively. This

creates a more gradual decrease in the number of

neurons compared to Model 1. An output layer with

1 neuron.

– Activation Function: LeakyReLU is a variation of

ReLU. Instead of setting negative values to 0,

LeakyReLU allows a small, non-zero gradient for

negative inputs. This can sometimes help prevent

issues that can occur with ReLU.

Net(

(layers): ModuleList(

(0): Linear(in_features=9,

out_features=32,

bias=True)

(1): Linear(in_features=32,

out_features=16,

bias=True)

(2): Linear(in_features=16,

out_features=8,

bias=True)

(3): Linear(in_features=8,

out_features=1,

bias=True)

)

(activation_function):

LeakyReLU(negative_slope=0.01)

)


