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Abstract—This study investigates the optimization of an elec-
trostatic sieve designed for lunar regolith beneficiation. Two pa-
rameters of the electrostatic sieve, 1) the voltage amplitude and 2)
angle of inclination, were chosen as variables in the optimization
process. Numerical simulations revealed that increasing voltage
amplitude significantly enhances sieve performance over the
sieve angle. However, optimal separation required careful voltage
adjustment for specific sieve angles. A comprehensive dataset
incorporating additional parameters was then created to train
Machine Learning (ML) and Deep Learning (DL) models for
further optimization. The ML/DL models were trained on a small
subset of the original dataset to predict the yield. We showcase the
benefits of leveraging DL techniques to improve the electrostatic
sieve for regolith beneficiation via tailored evaluations. Our
model, trained on lower-yield examples, accurately (92%) iden-
tifies parameter combinations that increase yields above 30%. It
leads to a near-optimal yield with 10x reduction on runtime when
compared with exhaustive simulations. This not only reduces
the reliance on resource-intensive numerical simulations but also
offers a rapid, validated approach to optimizing equipment for
lunar mining operations.

Index Terms—Electrostatic Sieve, Simulation, Sampling, Re-
gression, High Performance Computing, Machine Learning, Deep
Learning Model

I. INTRODUCTION

As NASA prepares to return to the Moon, renewed focus
on In-Situ Resource Utilization (ISRU) is critical. Efficiently
utilizing lunar resources like water, oxygen, and metals is key
to reducing dependence on Earth-based supplies [1]. Lunar
regolith contains valuable metals, but extracting them requires
pre-processing to separate the desired mineral-rich portions
from less valuable material. This beneficiation step improves
the efficiency of subsequent chemical extraction processes.
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The absence of standard ore grades on the Moon adds an-
other layer of complexity to ISRU efforts. Terrestrial particle
separation methods, such as cyclones and air classifiers, are
often power-hungry, bulky, and complex, making them unsuit-
able for lunar applications [1]-[3]. Simpler, more adaptable
solutions are needed. Electrostatic separation has emerged as
a promising approach due to its potential for compact, low-
power operation [4], [5]. Prior work by Kawamoto and Adachi
explored electrostatic sieves and filing separators for particle
classification, but achieved limited yields of fine particles (less
than 10pm) [2]. This paper builds on previous research in
particle dynamics within electric fields [6]-[9] and leverages
machine learning (ML) and deep learning (DL) techniques
to enhance the performance of electrostatic sieves for lunar
beneficiation.

A. Kinetic Modeling of an Electrostatic Sieve

The sieve modeling is similar to the work done by Ingram et
al. in [9]. Two parameters, the voltage amplitude and the angle
of inclination of the sieve were manipulated to run four cases
and observe the corresponding effect on the performance of the
sieve on Earth. The kinetic modeling of the sieve was carried
out using a FORTRAN code package designed to solve for the
electric potential and field in a particular domain of interest
and using the resulting electrostatic force from the field to
track the motion of lunar dust grains. Due to the expensive
simulation procedure, optimizing the performance of the sieve
is highly desired. This necessitates the use of ML and DL
models for fast and accurate prediction using the different
combinations of input parameters.



B. Leveraging Deep Learning for Optimization

Deep learning models offer a transformative approach to
electrostatic sieve optimization by leveraging existing data
to predict optimal operational parameters (e.g., voltage mag-
nitude, frequency, sieve angle, electrode pitch). Unlike tra-
ditional methods that rely heavily on scarce mathematical
models, deep neural networks (DNNs) are model-agnostic and
can be fine-tuned for superior performance, as highlighted by
Shlezinger et al. [10]. Yang et al. [11] show how deep learning
has been successfully applied to several application problems.
This data-driven approach has demonstrated remarkable suc-
cess in various fields, including the classification of handwrit-
ten digits [12], image recognition [13]-[15], natural language
understanding [16], and so on. In our study, we harness the
power of deep learning to develop a neural network that
predicts particle yield based on historical experimental data.
Due to its high inference speed (compared with simulations),
the neural network functions as a surrogate model, efficiently
optimizing operational parameters and significantly reducing
the time required for researchers to identify optimal input
combinations. Our methodology includes comprehensive data
processing and feature engineering techniques, which will be
detailed later. Additionally, we benchmark the performance of
our deep learning model against conventional machine learn-
ing approaches to showcase its effectiveness in this context.

C. Technical Contributions

1) A feedforward neural network architecture for accurate
yield prediction on unseen data.

2) Comparison of machine learning and deep learning
models for inference speed and accuracy.

3) Integration of the model into the optimization approach,
enabling configuration recommendations and reduced
runtime.

The remainder of this paper is structured as follows: Section
IT introduces the kinetic modeling approach, which serves
as our data generator and a baseline for identifying the
best-fit configuration. Section III describes the design and
architecture of the proposed neural network, along with the
evaluation results for (1) comparison with traditional machine
learning approaches and (2) efficiency in finding the best-fit
configurations when compared with exhaustive simulations.
Section IV concludes the paper with a vision for future works.

II. KINETIC MODELING
A. Generating Particle Radii

Lunar regolith radii follows the Logarithmic-Normal Distri-
bution according to data acquired from the Apollo missions
[17]. Since, obtaining the inverse CDF of the Logarithmic-
Normal Distribution is not feasible, we use the Accept-Reject
method to generate particle sizes that follow the Logarithmic-
Normal Distribution using the Uniform Distribution which can
be easily sampled from [18].

B. Solving the Electric Field

Changing electric fields with respect to time are needed to
propel the lunar soil particles. These electric fields constitute a
multi-phase electrostatic traveling wave. In order to move the
particles, we have to solve for the electric potential, electric
field, and subsequently the electrostatic force caused by the
electrode configuration for each phase. For this work, the
Immersed Finite Element (IFE) - Poisson Solver was employed
to solve for the electric potential throughout the domain of
interest. The IFE - Poisson Solver has been utilized in solving
other problems related to particle dynamics in electrostatic
fields [19]-[29]. The electric potential and electric field are
obtained using Eq. (1) and Eq. (2), respectively, where & is
the electric potential and E is the electric field.

V2 =0 (1)

E=-V® )

C. Dust Particle Dynamics in Electric Fields

The motion of a charged dust particle influenced by both
electric and gravitational fields is described by Newton’s
second law, as expressed in Equation (3):

d .
di‘t, = QdE - Wldgk,

3)
where mgq = p§7r7"3
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In this equation, mg represents the mass of the dust particle
(assumed to be spherical), (4 is its charge, g is the gravita-
tional acceleration, and v is the dust particle’s velocity vector.
The instantaneous local electric field, E, varies depending on
the phase of the electrode bias, as each phase results in a
distinct electric field distribution due to the changing potentials
on the electrodes. We assume a lunar regolith density, p, of
2.65 g/cm? [30].

Qq = CPq = 4megra®q 4

In Equation (4), ®4 denotes the potential of the dust particle.
This potential is interpolated from the electric field data
generated by the biased electrodes at a specific phase. The
interpolation is based on the dust particle’s position within
the computational domain.

D. Cases

We conducted four case studies, summarized in Table I, to
analyze how electric potential and inclination angle impact
sieve performance in lunar conditions. These findings inform
the parameters used for our machine learning models, where
we explore variations in both declining and inclining sieve
configurations (Fig. 1) to evaluate their effects.
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Fig. 1: Setup and boundary conditions of the simulation
domain for an example case

TABLE I: Electrostatic Sieve Parameters (All dimensions are
in millimeters, except voltage amplitude in volts and sieve
angle in degrees)

Sieve Parameter Cases
Case 0 Casel Case2 Case3
Voltage Amplitude 600 1800 600 1800
Horizontal Pitch 20 20 20 20
Vertical Pitch 5 5 18 18
Sieve Angle 14 14 42 42
X-dimension 250 250 250 250
Z-dimension 100 100 250 250
Dust Gen. Zone - Zmin 55 55 190 190
Dust Gen. Zone - Zmax 65 65 200 200
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Fig. 2: Potential contours of each phase of the four-phase
electrostatic traveling wave.

The varied parameters include sieve inclination angle, elec-
trode number and dimensions, electric potential, wave fre-
quency and phase, lunar soil properties, computational domain
mesh size, gravity, phase shift, time step, particle density and
size, and electrode distance. The absolute angle of inclination

is used to connect the declining and inclining sieve setups.

1) Electrostatic Sieve Parameters: Some of the parameters
for the cases run are shown in Table I. The acceleration due
to gravity used for all four cases is that of the lunar surface
(1.62 m/s?). The voltage amplitude is the amplitude of the
electrostatic traveling wave. The horizontal or x pitch is the
horizontal distance between the center-lines of two consecutive
electrodes. The sieve angle is the angle of inclination of
the electrostatic sieve. The dust generation zone - Zmin and
Zmax are the minimum and maximum positions of the dust
generations on the z-axis.

2) Computational Domain: The computational domain
consists of the array of electrodes, the dust generation zone,
dust collection zone, and boundary conditions. In Fig. 1, the
simulation and boundary conditions are depicted.

3) Potential Contours: For each case, the magnitude of the
electric potential on all the electrodes is the same but the
polarity is switched in order to the generate an electrostatic
traveling wave. The frequency of the wave is 10 Hz. Each
electrode embedded in the domain is a 2mm cube. The array of
electrodes for the four example cases is declining. The electric
potential contour for each phase of the wave for an example
case is shown in Fig. 2. Switching from one phase to the next
phase transports the particles in the desired direction.
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Fig. 3: Dust particle trajectory at selected time steps. Dust
grains are colored by size. Electrodes are shown as light gray
boxes.

4) Motion of Charged Dust: 1 million dust particles are
loaded at the initial time step into the sieve through the
dust generation zone. For the four example cases, the dust
generation zone is located from 5 to 15 mm along the x-axis.
The minimum and maximum radii used for sampling with
Accept-Reject method are 0 and 2000 pm. In order to closely



model the FSJ-1 simulant and generate a large range of lunar
regolith particle sizes, the mean and standard deviation of the
particle sizes used are 36 and 1200 pum [31].

The lunar dust particles are injected into the computational
domain, only once, at the beginning of the simulation, through
the dust generation zone. Figure 3 shows the trajectory of the
dust grains at different time steps. After injection, the dust
grains start to move. Initially, they are above the first electrode.
Afterwards, they start to loft due to the the electrostatic force
created by the electrodes. The heavier particles due to the
action of the gravitational force fall through the computational
domain while the lighter ones travel in the direction of the
electrodes and get to the dust collection zone. The particles
that get to the dust collection zone are called ’classified’.

E. Results and Inference

Figure 4 shows the comparison of the particle size distribu-
tion of the collected dust grains for all four cases.
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Fig. 4: The comparison of histograms of collected dust grains
for four cases.

Case 0 exhibits the lowest quantity and range of classified
particles. In contrast, Cases 1 and 3 show the highest quantity
and range of classified particle sizes, with Case 3 demonstrat-
ing a wider range of collected particles compared to Case 1.
The sieve’s performance is gauged by its percentage yield,
calculated as the percentage ratio of the weight of collected
particles smaller than 10 pm (Weonected,<10um) to weight of
fed particles with size less than 10 pum (Wteq,<10um), as can
be seen in Eq. (5) [1].

Wcollected,<10um % 100% (5)

YIeld(%) erd,<10,um

Table II presents the yield, average, and maximum lunar
regolith radii classified. The table reveals that tripling the
applied voltage amplitude results in a doubling of the average
radius classified. On the other hand, tripling the electrostatic
sieve angle only increases the average radius classified by a
factor of approximately 1.3. This indicates that increasing the

applied voltage has a significantly more pronounced effect
on the yield and average radius of collected particles than
increasing the sieve angle. Furthermore, a comparison of Cases
1 and 3 demonstrates that increasing the voltage amplitude
beyond a certain threshold for a given sieve angle leads to a
decrease in the sieve’s yield. Examining the collected particle
radii, it’s evident that to collect particle sizes within a specific
range, the voltage must be limited to a certain value. This
observation aligns with the results obtained from modeling
the electrostatic sieve as if it were operating on Earth [9].

TABLE II: Percentage Yield, Average and Maximum Classi-
fied Radii

Case 0 Case I Case2 Case 3

Yield (%) 1.062 29.938 2.641 29.031

Avg. Classified Radius (pm) 2.489 5.770 3.266 7.415
Max. Classified Radius (um) 8.24 24.817 7.603 22.599

III. MACHINE LEARNING AND DEEP LEARNING MODELS
A. Approach

Our ML/DL models aim to predict the yield of an electro-
static sieve based on a variety of input parameters, including
the sieve’s physical configuration, operational settings, the
properties of the lunar soil particles, etc. To create a compre-
hensive dataset, a FORTRAN-based simulator was employed
to model the kinetic behavior of the sieve under varying con-
ditions. The dataset contains over 1500 data points (referred
to as configurations in the later text), each mapping a specific
combination of input parameters to the resulting yield. The
simulator takes five minutes to generate one data point. The
yield, representing the fraction of particles below a certain size
successfully collected, was normalized for consistency. Due
to the diverse scales of the input parameters, preprocessing
steps were taken to ensure effective model training. This
includes scaling numerical features and encoding categorical
variables. The dataset is then partitioned into an 80% training
set and a 20% testing set, facilitating evaluation of the model’s
generalization performance.

B. Model Architecture and Training Strategy

We evaluate four traditional machine learning models: lin-
ear, ridge, LASSO, and polynomial regression. To this end,
we propose to leverage a feedforward neural network [32] to
further improve the efficiency. The neural network architecture
was carefully designed and optimized through a series of ex-
periments. These experiments explored the impact of different
activation functions, network depth (number of layers), and
network width (hidden layer size) on both training and test
loss. The neural network architecture we use comprises several
key components:

1) Input Layer: The input layer is dimensioned to ac-
commodate the number of relevant input features, which
captures the initial state of the electrostatic sieve con-
figuration.



2) Network Depth: As shown in Figure 5, the number
of layers in the network has a significant impact on
model performance. A two-layer architecture appears to
strike an optimal balance between model complexity and
generalization ability. While a single layer shows higher
loss, indicating underfitting, three layers begin to show
signs of overfitting with increased test loss despite lower
training loss. This guided our decision to use two hidden
layers in the final architecture.

3) Hidden Layer Size: Figure 6 illustrates the effect of
hidden layer size on model performance. The graph
shows that increasing the number of neurons in the
hidden layers generally improves performance up to
a point, after which returns diminish and the risk of
overfitting increases. Based on this, we choose a hidden
layer size of 64 neurons, which provides a good trade-off
between model capacity and generalization.

4) Activation Function: Figure 7 compares the perfor-
mance of different activation functions. The results show
that LeakyReL U slightly outperforms ReLU, with both
achieving lower loss compared to using no activation
function or the hyperbolic tangent (tanh) function. This
suggests that the use of rectified linear units helps the
model learn non-linear relationships in the data more
effectively. As such, we selected ReLU as the activation
function in our implementation.

5) Output Layer: A single-neuron output layer generates
the final yield prediction. This neuron’s output is trans-
formed by a sigmoid function shown in equation (6) to
ensure the predicted yield falls within the valid range of
[0, 1].

1

o)==

(6)
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Fig. 5: Impact of Layer Count (Width of the NN) on the Neural
Network Performance

C. Loss Function

To train the model effectively, we leverage the Root Mean
Squared Error (RMSE) as our loss function. RMSE quanti-
fies the average discrepancy between the model’s predicted

Train/Test Loss for Hidden Layer Size (Width)

[0 Train Loss
I Test Loss

®

Error in Predicted Yield (%)

4 8 16 32 64 128
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Fig. 6: Impact of Layer Size (Height of the NN) on the Neural
Network Performance

Train/Test Loss for Different Activation Functions
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Fig. 7: Impact of Different Activation Functions on the Neural
Network Performance

yield values and the corresponding ground-truth yield values,
providing a clear metric for evaluating model performance.
Equation (7) shows the mathematical formulation of our loss
function.

(7

where n is the number of samples, y; is the true yield value
for the ¢-th sample, and ¢; is the predicted yield value for the
i-th sample.

D. Optimization Strategy

Optimization of the model’s parameters is achieved through
the Adaptive Moment Estimation (Adam) algorithm intro-
duced by Kingma in [33]. Adam is a widely adopted op-
timization technique renowned for its efficiency and adapt-
ability in training deep neural networks [34]. It intelligently
adjusts learning rates for individual parameters, accelerating
convergence and enhancing model performance. It combines
the benefits of two other optimization methods:



o« Momentum: Accelerates optimization by considering
past gradients.

« RMSprop: Adapts learning rates based on the magni-
tudes of recent gradients.

E. Results and Comparison

We showcase how our methods accelerate the electrostatic

sieve for lunar regolith beneficiation using the experimental
setting below. As a baseline, our vanilla approach evaluates
15,000 configurations of input parameters using the Kinetic
Modeling Simulator and picks the optimal one that produces
the highest yield. We further leverage an optimized approach
that trains machine learning and deep learning models using
only the 1,500 training data (10% of the total number of con-
figurations), predicts the other 90% with the trained models,
and then selects the configuration with the highest predicted
yield. In the following, we show the trade-off in performance
(in terms of execution time) and efficiency (in terms of the
value of yield).
Performance: We present the performance of the Kinetic
Modeling Simulator and ML/DL models in Figure 8. While
the baseline approach is able to find the best configuration,
it has a high runtime overhead that cannot be overlooked
(1500 * 300 = 450000 seconds). In contrast, the inference
time of the used ML/DL models is orders of magnitude lower
and thus negligible compared with the simulation time. This
leads to a 10x reduction in the time for finding an acceptable
configuration using the optimized approach with any of the
models.

Inference Time for Various Models (Log Scale)
300
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107t

0.0342 0.0360

Inference Time (seconds)
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0.0022

Simulator Linear Reg. Ridge Reg. Lasso Reg.
Model

Poly Reg. Neural Net
Fig. 8: Comparison of Inference Time of ML/DL models with
the Kinetic Modeling Simulator

Efficiency: We then present the accuracy of different models
in the optimized approach and compare their efficiency. The
training and test losses are shown in Figure 9. According to the
figure, it is observed that the neural network produced the best
results. Looking at the magnitudes of the model coefficients
we can interpret that the most significant predictors of yield
were the absolute angle of inclination, number of electrodes,
voltage magnitude, electrode dimension, dist. dust generation
zone to first electrode, and gravitational force.

Train and Test Loss for Different Models
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Fig. 9: Comparison of Deep and Machine Learning Models

We then integrate the deep learning model into the opti-
mized approach and compare its efficiency with the baseline.
Specifically, we use this model to predict the yield for all
15,000 candidate configurations evaluated in the baseline and
identify the highest predicted yield among them. Using this
approach, we obtain a predicted yield of 33.79% with the
following parameter values:

« absolute angle of inclination = 335°

o number of electrodes = 4

« voltage magnitude = 2000 volts

« voltage frequency = 5 Hz

o clectrode dimension = 6 mm

e X pitch = 20 mm
This produces an actual yield of 38.54% when running another
Kinetic Modeling simulation using these parameters.

As a comparison, exhausting all the 15,000 combinations
leads to an optimal yield of 38.79%. This result demonstrates
that the proposed approach is able to produce a near-optimal
configuration with significantly reduced runtime.

IV. CONCLUSION

This study demonstrates the potential of neural networks
on the electrostatic sieve for lunar regolith beneficiation.
They exhibit better quality on yield prediction than traditional
machine learning methods such as regression. Their ability
to learn complex relationships surpasses linear and nonlinear
regression, offering a more accurate representation of the
underlying relationship. We intend to further explore physics-
informed neural networks, which promise even better perfor-
mance on unseen data due to their adherence to fundamental
laws. Ultimately, these advanced techniques serve as powerful
surrogate models, drastically reducing the time and resources
required for scientific experimentation. By combining the
speed of machine learning and deep learning with the pre-
cision of established scientific methods, we pave the way
for accelerated optimization and innovation in this field. As
validated in our evaluation, the DL model leads to almost



the same yield compared with exhaustive simulation while
reducing the runtime by 10x. This significantly reduces the
time and resources for the electrostatic sieve.
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ARTIFACT DESCRIPTION/EVALUATION APPENDIX
A. Summary of the Experiments Reported

1) Abstract: We provide this artifact appendix to make
our results reproducible. We measure two main results: i)
The inference time of models in seconds, and ii) The model
performance through Root Mean Squared (RMSE) values.

2) Artifacts: The GitHub Link to the source code:
https://github.com/Kalpit-Vadnerkar/DL-GPU-Electrostatic-
Sieve

B. Experimental Setup
1) Relevant Hardware Details:

o Tesla V100-PCIE-16GB
e Driver Version: 550.54.15

2) Operating Systems and Versions:

e Operation System: Rocky Linux
o version: 8.8 (Green Obsidian)

3) Compilers and Versions:

« GCC11.2

o Python 3.11.10

4) Libraries and Versions:

e pandas: 2.2.3

o scikit-learn: 1.5.2

e pytorch: 2.3.0

e pytorch-cuda: 11.8

o numpy: 2.0.0

« matplotlib: 3.9.2

5) Input Datasets and Versions: Over 15000 data points
were generated and are stored across multiple .txt files in the
“Dataset” folder within the project repository.

6) Other Installation Software:

o CUDA Version: 12.4

C. Evaluation Experiments

This section details the experiments performed for evalu-
ating electrostatic sieve configurations and developing predic-
tive models for sieve performance. The code for all exper-
iments is available in the accompanying Jupyter notebooks.
The 'Optimization.ipynb’ notebook goes through the entire
dataset analyzing and identifying the best electrostatic sieve
configurations. Finally it displays the filtered data with con-
figurations providing the maximum yields.

1) Experiment 1: The 'DataProcessing.ipynb’ notebook
covers the following steps:

o Data Loading and Visualization: The code reads and
loads the data from the “Dataset” folder. Numerical
features are visualized using histograms to understand
their distributions.

« Data Splitting and Preprocessing: The dataset is shuffled
and split into an 80-20 train-test split. A data processing
pipeline is constructed to encode the data using sklearn’s
RobustScaler for numerical features and OrdinalEncoder
for categorical features. This ensures robust handling

of outliers and prepares the data for machine learning
models.

o Regression Model Evaluation: Multiple regression mod-
els are trained and evaluated using the Root Mean
Squared Error (RMSE) as the performance metric. This
includes both linear and non-linear models.

o Hyperparameter Tuning: Grid search and cross-validation
techniques are employed to identify the optimal hyperpa-
rameters for the non-linear regression models, ensuring
the models are well-tuned to the data.

o Inference Time Measurement: The code measures the
inference time for each model to predict a single data
point, providing insights into the computational efficiency
of different models.

2) Experiment 2: The 'M P L.ipynb’ notebook focuses on
developing a deep learning model for prediction:

o Data Preparation: A random subset of 10% of the entire
dataset is selected to manage computational resources
during deep learning training.

o Custom Dataset and Dataloader: A CustomDataset class
is implemented to create a dataloader, facilitating efficient
batching and shuffling of data for the neural network.

o Model Training: A feed-forward neural network is initial-
ized and trained for 100 epochs with a batch size of 32.
The RMSE serves as the loss function for optimization.

« Architecture Search and Cross-Validation: Different neu-
ral network architectures are explored, varying the num-
ber of layers and neurons (width and depth). Cross-
validation is used to evaluate the performance of each
architecture and prevent overfitting.

e Model Selection: The notebook provides summaries of
two promising architectures that achieved similar per-
formance, highlighting the trade-offs between model
complexity and predictive accuracy. The best-performing
architecture is presented in the main paper.

Two interesting feed-forward Neural Network architectures
that produced similar results are summarized below:

e Model Summary 1:

— Structure: This model has three layers: An input layer
with 9 features (think of these as 9 input variables).
A hidden layer with 64 neurons. An output layer with
1 neuron (suggesting this model predicts a single
value).

— Activation Function: ReLU (Rectified Linear Unit)
is used to introduce non-linearity. ReLU sets any
negative input values to 0 and keeps positive values
unchanged. This helps the network learn complex
patterns.

Net (
(layers) : ModuleList (

(0) : Linear (in_features=9,
out_features=64,
bias=True)

Linear (in_features=64,

out_features=64,

(1):



bias=True)

(2): Linear (in_features=64,
out_features=1,
bias=True)

)
(activation_function) :
ReLU ()

¢ Model Summary 2:

— Structure: This model has four layers: An input layer
with 9 features (same as Model 1). Three hidden
layers with 32, 16, and 8 neurons respectively. This
creates a more gradual decrease in the number of
neurons compared to Model 1. An output layer with
1 neuron.

— Activation Function: LeakyReLU is a variation of
ReLU. Instead of setting negative values to 0,
LeakyReLU allows a small, non-zero gradient for
negative inputs. This can sometimes help prevent
issues that can occur with ReLU.

Net (
(layers) : ModuleList (

(0) : Linear (in_features=9,
out_features=32,
bias=True)

(1) : Linear (in_features=32,
out_features=16,
bias=True)

(2) : Linear (in_features=16,
out_features=8,
bias=True)

(3) : Linear (in_features=8,
out_features=1,
bias=True)

)
(activation_function) :
LeakyReLU (negative_slope=0.01)



