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Abstract—Modeling the electric potential profile above the
lunar surface is critical for understanding surface charging and
interactions with the space environment. Traditional methods
like Particle-in-Cell (PIC) simulations are highly accurate but
computationally expensive. To address this, we propose a hybrid
approach using a Multi-Layer Perceptron (MLP) architecture in
both data-driven neural networks and Physics-Informed Neural
Networks (PINNs). The PINN component incorporates physi-
cal laws directly into the training process, ensuring physical
consistency, while the data-driven component captures complex
patterns. This combination offers a significant reduction in
computational cost compared to PIC methods while maintaining
high modeling accuracy. Our results show that the proposed
method effectively represents the electric potential profile above
the lunar surface, even with limited data.

Index Terms—Physics-Informed Neural Network, Lunar Sur-
face Charging, electric potential profile.

I. INTRODUCTION

The Moon, as an airless celestial body, presents a unique

environment where its surface is continually exposed to the

surrounding space. This exposure leads to intricate interactions

between the lunar surface and the near-lunar plasma environ-

ment, making its study pivotal for understanding the broader

dynamics of space-surface interactions. Plasma, often termed

the fourth state of matter, comprises charged particles, namely

ions and electrons. Its presence around the Moon is a result of

various cosmic phenomena, including solar winds and cosmic

rays. When this plasma, coupled with solar ultraviolet (UV)

radiation, interacts with the lunar surface, it induces electrical

charges. This charging mechanism varies depending on the

Moon’s position relative to the Sun. On the dayside, where

the lunar surface is directly exposed to solar UV radiation,

photocharging becomes the primary mechanism. This process

results in the emission of photoelectrons from the surface,

leading to a net positive charge. The region immediately

above the surface, where this positive charge dominates, is

termed the ”photoelectron sheath.” This sheath is relatively

thin, extending roughly up to a meter above the surface.

In contrast, the nightside of the Moon, shielded from

direct solar UV radiation, experiences a different charging

mechanism. Here, the influx of plasma electrons from the

surrounding space causes the lunar surface to acquire a net

negative charge. This negatively charged region gives rise

to the ”Debye sheath,” which can be much thicker than its

dayside counterpart, extending up to a kilometer. The extent

of this sheath is governed by the Debye length, a fundamental

parameter in plasma physics. It quantifies the distance over

which electric fields in a plasma get screened or attenuated,

ensuring quasi-neutrality. Understanding the Debye length is

crucial as it provides insights into the electric field’s behavior

near the surface, influencing various phenomena like dust

levitation and surface arcing (fig 1) [1].

The interaction between the lunar surface and plasma is

further complicated by various factors such as solar UV

intensity, ambient plasma variations, surface composition,

magnetic anomalies, and the lunar wake. Additionally, the

Moon’s passage through the Earth’s magnetosphere introduces

complexities, especially in the plasma sheet, which is more

tenuous and hotter than the solar wind. Surface charging is

not merely a theoretical concern; it has practical implications

for lunar exploration. The differential charging of objects on

the surface could lead to unanticipated electrical discharges,

and the transport of charged dust presents potential hazards.

Understanding the near-lunar plasma environment is essential

for manned and robotic surface exploration activities, as well

as for scientific observations such as lunar-based astronomy.

Analytical solutions, rooted in mathematical principles,

often adopt simplifying assumptions to make the problem

tractable. While they provide a clear mathematical framework,

these solutions might overlook certain complexities inherent

to the real-world scenario. Particle-in-cell (PIC) methods,

as detailed in [3], stand out by simulating the collective



Fig. 1: The Lunar Dust-Plasma Environment [2]

behavior of individual charged particles as they interact with

electromagnetic fields. PIC operates by dividing the simulation

space into cells and tracking the motion of charged particles

through these cells, calculating particle dynamics based on lo-

cal electromagnetic fields. This fine-grained approach, though

offering a detailed representation, comes at the cost of high

computational overhead due to the necessity of simulating

each particle individually and updating fields at every time

step. The computational burden becomes significant because

accurate simulations require a large number of particles and

fine temporal and spatial resolutions to resolve complex charge

distributions and interactions. Consequently, PIC methods,

while precise, are resource-intensive, making them less prac-

tical for large-scale or real-time applications.

In contrast, neural networks have shown remarkable success

in learning and generalizing complex patterns from data. Neu-

ral networks provide a more computationally efficient solution

by approximating these complex relationships through learned

weights and activation functions, making predictions using

only matrix multiplications rather than solving differential

equations at each time step. Once trained, they can generate

accurate predictions almost instantaneously, resulting in a

significantly reduced computational load compared to PIC.

In this paper, we employ a Multi-Layer Perceptron (MLP)

based Physics-Informed Neural Networks (PINNs), which

embed the governing physical laws directly into the train-

ing process. This incorporation of physics ensures that the

model adheres to known physical constraints, even in regions

with sparse data, while avoiding the need for particle-based

simulations. In this study, we leverage a combination of

PINNs and traditional data-driven neural networks to model

the electric potential profile above the lunar surface. The PINN

component enforces the physical consistency by minimizing

the residuals of the governing equations, while the data-

driven component captures complex patterns that might be

overlooked by purely physics-based models. This hybrid ap-

proach allows us to achieve a balance between computational

efficiency and physical accuracy, significantly reducing the

computational cost associated with traditional PIC methods

while maintaining high fidelity in modeling electric potential

profiles. The contributions of this paper are:

• Proposing a hybrid modeling approach that combines

PINNs and data-driven models to accurately capture the

electric potential profile with reduced computational cost.

• Providing an analysis of different loss functions and

optimization strategies to enhance the efficiency and per-

formance of neural network models in space environment

simulations.

The rest of the paper is organized as follows: In Section

2, we formulate the problem of surface charging. Section

3 introduces physics-informed neural networks (PINNs) as

the method to solve this problem, detailing the architecture

and training process that enable the network to capture the

underlying physics of surface charging. In Section 4, re-

sults are demonstrated, showcasing the effectiveness of the

proposed neural network approach in accurately modeling

the electric potential profile above the lunar surface. Finally,

Section 5 concludes the paper, summarizing the key findings

and highlighting the contributions of this work to the field of

space environment modeling.

II. PROBLEM FORMULATION

The governing equation pivotal to understanding surface

potential within a plasma environment is the Poisson equa-

tion. Rooted in the core principles of electromagnetism, this

equation emerges from Gauss’s law for electricity. The Poisson

equation serves as a mathematical representation that captures

the relationship between the distribution of electric charge in

space and the resulting electric potential. It is expressed as:

∇
2ϕ = −ρ/ϵ0 (1)

Where ϕ represents the electric potential, a scalar quantity

that describes the amount of potential energy a unit charge

would have at a specific location in space, ρ is the charge

density, which quantifies the amount of electric charge per unit

volume, and ϵ0 is the permittivity of free space. With these

definitions in place, equation (1) can be further transformed

and represented as an ordinary differential equation (ODE) [5]:
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Fig. 2: PINN structure using residual loss

Fig. 3: PINN structure using residual loss and data loss

Using the Taylor series, we can expand the right-hand terms

for ϕ̂ << 1:
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Our objective is to find ϕ̂ so that it satisfies the ordinary

differential equation (ODE) represented by equation (4). This

function represents the electric potential profile above the lunar

surface, capturing the essential physics of the problem.The

next sections will detail the specific architecture and training

process of the neural network, demonstrating how it is de-

signed to find ϕ̂ that satisfies the given ODE.

III. METHOD

In the context of modeling the electric potential profile

above the lunar surface, we employ a MLP-based Physics-

Informed Neural Networks (PINNs), which integrate known

physical laws directly into the training process [6]. Unlike

traditional neural networks, which are primarily data-driven

and learn patterns directly from the training data, PINNs are

designed to satisfy not only the data constraints but also

the governing differential equations that describe the physical

system. This dual nature of PINNs allows them to produce

predictions that are consistent with both the observed data and

the known physics of the problem, thereby reducing the risk

of generating physically implausible solutions [7].

Fig. 4: Data and Physics Scenarios [7]

This is achieved by introducing a loss function that can

consist of two main components: the residual loss [8] and the

data loss [9].

• The residual loss ensures that the predictions made by

the neural network are in alignment with the govern-

ing physical equations of the system. Specifically, it

quantifies the discrepancy between the derivatives of

the network’s output (as computed through automatic

differentiation) and the terms present in the differential

equations that describe the system. This component of the

loss function acts as a regularizer, guiding the network to

learn solutions that are not only consistent with the data

but also with the underlying physics.

• The data loss, on the other hand, is designed to measure

the difference between the network’s predictions and the

actual observed data. This is typically computed as a

mean squared error between the network’s output and

the known target values from the dataset. The data loss

ensures that the network is effectively learning from the

available data and is able to generalize well to new,

unseen data points.

By combining these two components into a single loss

function, PINNs are able to leverage the strengths of both

data-driven learning and physics-based modeling. This hy-

brid approach allows PINNs to effectively interpolate and

extrapolate in regions where data might be sparse, while still

maintaining physical plausibility. It also provides a natural way

to incorporate domain knowledge into the learning process,

which can be especially valuable when dealing with complex

systems where data is expensive or difficult to obtain [10]–

[12].

Furthermore, the use of PINNs in this context is particularly

advantageous as it allows for the incorporation of complex

boundary and initial conditions directly into the training pro-

cess. This is in contrast to traditional numerical methods,

which often require separate handling of such conditions.

With PINNs, these conditions are naturally embedded within

the loss function, ensuring that the trained model inherently

respects these critical constraints.

For the purpose of this research, we approached the problem

in three stages as depicted in (Fig 4): first, we used conven-

tional neural networks and data loss to model the problem.

Secondly, As the fundamental PINN training formulation is

unsupervised and does not require labeled data [13], such

as results from other simulations, we considered the PINN



structure with the loss function being the residual loss only

(Fig 2):
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where ϕ̂NN is the prediction from the neural network.

This focus on the residual loss ensured that the model

aligned with the known physics of lunar surface charging,

providing a foundation that adheres to the underlying physical

principles. We then refined the approach by considering the

loss function as a combination of both residual loss and data

discrepancy (Fig 3), and compared the results with the results

of only data-driven network and fundamental PINN:

Ldata =
1

N
ΣN

i=1
(ϕ̂NN,i − ϕ̂i)

2, (6)

where N is the number of data points, ϕ̂i is the actual observed

value. The overall loss function for the PINN can then be

represented as:

Ltotal = αLres + βLdata, (7)

where α and β are weighting factors that determine the relative

importance of the residual loss and data loss, respectively.

This combined loss function aimed to achieve a balanced

and accurate representation of the electric potential profile

above the lunar surface, leveraging both the physical con-

straints and the available data.

IV. RESULTS

In our endeavor to model the electric potential profile above

the lunar surface, we initially explored the use of conventional

neural networks. For this approach, the primary objective was

to minimize the data loss, which measures the discrepancy be-

tween the network’s predictions and the actual observed data.

This data-centric approach served as our baseline, allowing us

to compare the performance of conventional neural networks

with that of more sophisticated models. The results of this

initial exploration, as depicted in Figure 5, provided valuable

insights into the capabilities and limitations of using a purely

data-driven approach for this complex physical system.

We then employed neural networks comprising linear layers

and non-linear activation functions. Given that the input data

to the network consists of floating-point numbers representing

continuous variables, the use of complex layers such as convo-

lutional layers was deemed unnecessary. Instead, we focused

on employing simple linear layers coupled with non-linear

activation functions. This approach allowed us to approximate

the underlying functions governing the electric potential profile

effectively.

Our exploration included both shallow and deeper neural

network architectures. Figure 6:(a) and Figure 6: (b) illustrate

the predictions produced by these two distinct models. Inter-

estingly, the results reveal that both the shallow and deeper

Fig. 5: Conventional (Data-Driven) Neural Network

networks yield similar predictions. This observation suggests

that, for this specific problem, increasing the complexity of

the network does not necessarily translate into significant

improvements in predictive accuracy.

This finding is particularly noteworthy as it challenges the

common notion that deeper networks are always superior for

complex tasks. In our case, it appears that a simpler, more

computationally efficient architecture is capable of capturing

the essential characteristics of the electric potential profile

above the lunar surface.

A. Activation Functions

Activation functions are fundamental components in neural

networks, introducing non-linearity into the model, which

allows it to capture complex relationships in the data. Without

activation functions, the neural network would simply be a

linear regression model, which has limited expressiveness.

Among the myriad of activation functions available, the sig-

moid, rectified linear unit (ReLU), and hyperbolic tangent

(tanh) stand out as the most popular and widely used in various

deep learning architectures.

• The sigmoid function, characterized by its classic S-

shaped curve, maps any real-valued number to a value

between 0 and 1. This makes it particularly useful in

scenarios like binary classification, where we need to

predict probabilities. However, one of its drawbacks is

the vanishing gradient problem, which can impede the

network’s learning in certain situations.

• The tanh function is quite similar to the sigmoid but

maps its input to a range between -1 and 1. This zero-

centered nature often makes it preferable over the sigmoid

in hidden layers of neural networks.

• ReLU, with its simple design, has become one of the

default choices for many deep learning models. It outputs

the input directly if it’s positive; otherwise, it outputs

zero. Its efficiency and computational simplicity make it

a favorite, though it’s not without its challenges, such as



(a) Network depth: shallow,
activation function: Sigmoid,

Optimizer: Adam

(b) Network depth: deep,
activation function: Sigmoid,

Optimizer: Adam

(c) Network depth: shallow,
activation function: ReLU,

Optimizer: Adam

(d) Network depth: shallow,
activation function: Sigmoid,

Optimizer: SGD

Fig. 6: Comparison of networks

the ”dying ReLU” problem where neurons can sometimes

get stuck during training.

As depicted in Figure 6:(a) and Figure 6:(c), there is a

noticeable difference in the performance of models using these

two functions. The model employing the ReLU activation

(Figure 6:(c)), produces predictions that are less smooth com-

pared to the one using the sigmoid activation, evident from

Figure 6:(a). The jagged nature of the predictions from the

ReLU model might be due to its characteristic of outputting

zero for any negative input, which can sometimes lead to less

smooth approximations, especially when the model is trying

to capture intricate patterns.

On the contrary, the sigmoid function, which maps its input

to a value between 0 and 1, produces smoother predictions.

This smoothness can be attributed to the sigmoid’s S-shaped

curve, which allows for a more gradual transition between

values. In the context of our study, this smooth transition

appears to be more aligned with the underlying patterns of

the data.

Given these observations, it becomes evident that the sig-

moid activation function is better suited for the specific task

explored in this paper. While both activation functions have

their merits and are widely used in various domains, the choice

of function should be informed by the nature of the data and

the specific requirements of the task at hand.

B. Optimizer

Optimizers are the driving force behind the learning process

of neural networks. They navigate the vast parameter space

to find the optimal values that reduce the error between

the predicted and actual outputs. By adjusting the model’s

weights in response to the computed gradients, optimizers

ensure that the network converges to a solution that best fits

the data. Among the plethora of optimizers available, Adam

[15] and SGD (Stochastic Gradient Descent) [16] are two of

the most widely used. Each optimizer has its unique approach

to updating the model’s parameters, and their effectiveness can

vary depending on the specific problem and dataset.

As illustrated in Figure 6:(a) and Figure 6:(d), there’s a

discernible difference in the performance of models trained

using these two optimizers. The model trained with the

Fig. 7: Model performance using data loss and residual loss

Adam optimizer, as shown in Figure 6:(a), produces a more

refined and smoother prediction curve. This can be attributed

to Adam’s adaptive learning rate mechanism, which adjusts

the learning rate for each parameter based on the historical

gradient information. This feature allows Adam to converge

faster and often results in better generalization.

On the other hand, SGD (Figure 6:(d)), being a more

traditional and straightforward optimization method, updates

the model’s parameters using a fixed learning rate. While it has

been the go-to optimizer for many years, in certain scenarios,

especially with complex models and non-convex loss surfaces,

SGD might struggle to find the optimal solution as efficiently

as some of its more modern counterparts like Adam.

Given the observed results, it’s evident that the Adam

optimizer offers a more effective optimization strategy for the

task at hand. However, it’s essential to note that the choice of

optimizer should always be based on empirical evidence, as

different tasks and datasets might favor different optimization

techniques.



C. Loss Function

Initially, we adopted a physics-centric approach, where the

loss function was purely based on the physics governing the

lunar surface charging. This approach, while rooted in estab-

lished physical principles, aimed to ensure that the model’s

predictions were in harmony with the known behaviors of

the lunar surface in a plasma environment. The results from

this model were promising, showcasing its capability to grasp

and replicate the fundamental characteristics of the electric

potential profile.

However, recognizing the potential of data-driven insights,

we ventured into a more holistic approach. In this third model,

we amalgamated the residual loss with a data loss component.

This hybrid loss function was designed to strike a balance be-

tween the theoretical physics of the problem and the empirical

evidence from the data. The outcome was enlightening. The

model, guided by this combined loss function, demonstrated

enhanced performance, capturing the intricacies of the electric

potential profile with greater precision. It became evident that

by synergizing the foundational knowledge of physics with

the empirical patterns in the data, the model could achieve a

more comprehensive and accurate depiction of lunar surface

charging.

Figure 7 visually encapsulates the comparative performance

of the two models. It underscores the value of integrating both

physics-based reasoning and data-driven insights, highlighting

the efficacy of the combined loss function in addressing the

complex problem of lunar surface charging.

V. CONCLUSION

In conclusion, this research explored modeling the elec-

tric potential profile above the lunar surface using Physics-

Informed Neural Networks. We evaluated three loss models:

residual loss, data loss, and a hybrid approach combining

both. The hybrid model, integrating data and residual loss,

performed best by leveraging empirical data and adhering to

physics principles for robust and precise modeling.

The study also compared shallow and deep neural networks,

finding no significant advantage to deeper networks in this

context, emphasizing the need to tailor architecture to specific

problems. Moreover, we assessed various optimizers, high-

lighting their impact on performance.

These insights advance understanding of lunar surface

charging and neural network modeling. By evaluating loss

functions, network depth, and optimization techniques, we

identified areas for further research and demonstrated the

potential of neural networks in space environment modeling,

bridging theory, and practical application.

As we advance, our focus will be on incorporating uncer-

tainty into our models by varying M values within a specified

range and evolving them to process both M and Z inputs.

By doing so, we anticipate a richer, more comprehensive

understanding of the system dynamics, leading to predictions

that are not only accurate but also encompass the multifaceted

nature of the lunar electric potential profile.
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