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Abstract—Modeling the electric potential profile above the
lunar surface is critical for understanding surface charging and
interactions with the space environment. Traditional methods
like Particle-in-Cell (PIC) simulations are highly accurate but
computationally expensive. To address this, we propose a hybrid
approach using a Multi-Layer Perceptron (MLP) architecture in
both data-driven neural networks and Physics-Informed Neural
Networks (PINNs). The PINN component incorporates physi-
cal laws directly into the training process, ensuring physical
consistency, while the data-driven component captures complex
patterns. This combination offers a significant reduction in
computational cost compared to PIC methods while maintaining
high modeling accuracy. Our results show that the proposed
method effectively represents the electric potential profile above
the lunar surface, even with limited data.

Index Terms—Physics-Informed Neural Network, Lunar Sur-
face Charging, electric potential profile.

I. INTRODUCTION

The Moon, as an airless celestial body, presents a unique
environment where its surface is continually exposed to the
surrounding space. This exposure leads to intricate interactions
between the lunar surface and the near-lunar plasma environ-
ment, making its study pivotal for understanding the broader
dynamics of space-surface interactions. Plasma, often termed
the fourth state of matter, comprises charged particles, namely
ions and electrons. Its presence around the Moon is a result of
various cosmic phenomena, including solar winds and cosmic
rays. When this plasma, coupled with solar ultraviolet (UV)
radiation, interacts with the lunar surface, it induces electrical
charges. This charging mechanism varies depending on the
Moon’s position relative to the Sun. On the dayside, where
the lunar surface is directly exposed to solar UV radiation,
photocharging becomes the primary mechanism. This process
results in the emission of photoelectrons from the surface,
leading to a net positive charge. The region immediately
above the surface, where this positive charge dominates, is
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termed the “photoelectron sheath.” This sheath is relatively
thin, extending roughly up to a meter above the surface.

In contrast, the nightside of the Moon, shielded from
direct solar UV radiation, experiences a different charging
mechanism. Here, the influx of plasma electrons from the
surrounding space causes the lunar surface to acquire a net
negative charge. This negatively charged region gives rise
to the "Debye sheath,” which can be much thicker than its
dayside counterpart, extending up to a kilometer. The extent
of this sheath is governed by the Debye length, a fundamental
parameter in plasma physics. It quantifies the distance over
which electric fields in a plasma get screened or attenuated,
ensuring quasi-neutrality. Understanding the Debye length is
crucial as it provides insights into the electric field’s behavior
near the surface, influencing various phenomena like dust
levitation and surface arcing (fig 1) [1].

The interaction between the lunar surface and plasma is
further complicated by various factors such as solar UV
intensity, ambient plasma variations, surface composition,
magnetic anomalies, and the lunar wake. Additionally, the
Moon’s passage through the Earth’s magnetosphere introduces
complexities, especially in the plasma sheet, which is more
tenuous and hotter than the solar wind. Surface charging is
not merely a theoretical concern; it has practical implications
for lunar exploration. The differential charging of objects on
the surface could lead to unanticipated electrical discharges,
and the transport of charged dust presents potential hazards.
Understanding the near-lunar plasma environment is essential
for manned and robotic surface exploration activities, as well
as for scientific observations such as lunar-based astronomy.

Analytical solutions, rooted in mathematical principles,
often adopt simplifying assumptions to make the problem
tractable. While they provide a clear mathematical framework,
these solutions might overlook certain complexities inherent
to the real-world scenario. Particle-in-cell (PIC) methods,
as detailed in [3], stand out by simulating the collective
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Fig. 1: The Lunar Dust-Plasma Environment [2]

behavior of individual charged particles as they interact with
electromagnetic fields. PIC operates by dividing the simulation
space into cells and tracking the motion of charged particles
through these cells, calculating particle dynamics based on lo-
cal electromagnetic fields. This fine-grained approach, though
offering a detailed representation, comes at the cost of high
computational overhead due to the necessity of simulating
each particle individually and updating fields at every time
step. The computational burden becomes significant because
accurate simulations require a large number of particles and
fine temporal and spatial resolutions to resolve complex charge
distributions and interactions. Consequently, PIC methods,
while precise, are resource-intensive, making them less prac-
tical for large-scale or real-time applications.

In contrast, neural networks have shown remarkable success
in learning and generalizing complex patterns from data. Neu-
ral networks provide a more computationally efficient solution
by approximating these complex relationships through learned
weights and activation functions, making predictions using
only matrix multiplications rather than solving differential
equations at each time step. Once trained, they can generate
accurate predictions almost instantaneously, resulting in a
significantly reduced computational load compared to PIC.

In this paper, we employ a Multi-Layer Perceptron (MLP)
based Physics-Informed Neural Networks (PINNs), which
embed the governing physical laws directly into the train-
ing process. This incorporation of physics ensures that the
model adheres to known physical constraints, even in regions
with sparse data, while avoiding the need for particle-based
simulations. In this study, we leverage a combination of
PINNs and traditional data-driven neural networks to model
the electric potential profile above the lunar surface. The PINN
component enforces the physical consistency by minimizing
the residuals of the governing equations, while the data-
driven component captures complex patterns that might be

overlooked by purely physics-based models. This hybrid ap-
proach allows us to achieve a balance between computational
efficiency and physical accuracy, significantly reducing the
computational cost associated with traditional PIC methods
while maintaining high fidelity in modeling electric potential
profiles. The contributions of this paper are:

o Proposing a hybrid modeling approach that combines
PINNs and data-driven models to accurately capture the
electric potential profile with reduced computational cost.

e Providing an analysis of different loss functions and
optimization strategies to enhance the efficiency and per-
formance of neural network models in space environment
simulations.

The rest of the paper is organized as follows: In Section
2, we formulate the problem of surface charging. Section
3 introduces physics-informed neural networks (PINNs) as
the method to solve this problem, detailing the architecture
and training process that enable the network to capture the
underlying physics of surface charging. In Section 4, re-
sults are demonstrated, showcasing the effectiveness of the
proposed neural network approach in accurately modeling
the electric potential profile above the lunar surface. Finally,
Section 5 concludes the paper, summarizing the key findings
and highlighting the contributions of this work to the field of
space environment modeling.

II. PROBLEM FORMULATION

The governing equation pivotal to understanding surface
potential within a plasma environment is the Poisson equa-
tion. Rooted in the core principles of electromagnetism, this
equation emerges from Gauss’s law for electricity. The Poisson
equation serves as a mathematical representation that captures
the relationship between the distribution of electric charge in
space and the resulting electric potential. It is expressed as:

V2 = —p/eo (1)

Where ¢ represents the electric potential, a scalar quantity
that describes the amount of potential energy a unit charge
would have at a specific location in space, p is the charge
density, which quantifies the amount of electric charge per unit
volume, and ¢ is the permittivity of free space. With these
definitions in place, equation (1) can be further transformed
and represented as an ordinary differential equation (ODE) [5]:
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drifting velocity, K is Boltzmann constant, m; is mass of ion,
T, is electron temperature. Given the equation (2), we can
integrate both sides once by multiplying them by ¢’
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Fig. 2: PINN structure using residual loss
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Fig. 3: PINN structure using residual loss and data loss
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Our objective is to find qAﬁ so that it satisfies the ordinary
differential equation (ODE) represented by equation (4). This
function represents the electric potential profile above the lunar
surface, capturing the essential physics of the problem.The
next sections will detail the specific architecture and training
process of the neural network, demonstrating how it is de-
signed to find qAb that satisfies the given ODE.
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III. METHOD

In the context of modeling the electric potential profile
above the lunar surface, we employ a MLP-based Physics-
Informed Neural Networks (PINNs), which integrate known
physical laws directly into the training process [6]. Unlike
traditional neural networks, which are primarily data-driven
and learn patterns directly from the training data, PINNs are
designed to satisfy not only the data constraints but also
the governing differential equations that describe the physical
system. This dual nature of PINNs allows them to produce
predictions that are consistent with both the observed data and
the known physics of the problem, thereby reducing the risk
of generating physically implausible solutions [7].

Small data Some data Big data
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Fig. 4: Data and Physics Scenarios [7]

This is achieved by introducing a loss function that can
consist of two main components: the residual loss [8] and the
data loss [9].

o The residual loss ensures that the predictions made by
the neural network are in alignment with the govern-
ing physical equations of the system. Specifically, it
quantifies the discrepancy between the derivatives of
the network’s output (as computed through automatic
differentiation) and the terms present in the differential
equations that describe the system. This component of the
loss function acts as a regularizer, guiding the network to
learn solutions that are not only consistent with the data
but also with the underlying physics.

o The data loss, on the other hand, is designed to measure
the difference between the network’s predictions and the
actual observed data. This is typically computed as a
mean squared error between the network’s output and
the known target values from the dataset. The data loss
ensures that the network is effectively learning from the
available data and is able to generalize well to new,
unseen data points.

By combining these two components into a single loss
function, PINNs are able to leverage the strengths of both
data-driven learning and physics-based modeling. This hy-
brid approach allows PINNs to effectively interpolate and
extrapolate in regions where data might be sparse, while still
maintaining physical plausibility. It also provides a natural way
to incorporate domain knowledge into the learning process,
which can be especially valuable when dealing with complex
systems where data is expensive or difficult to obtain [10]-
[12].

Furthermore, the use of PINNs in this context is particularly
advantageous as it allows for the incorporation of complex
boundary and initial conditions directly into the training pro-
cess. This is in contrast to traditional numerical methods,
which often require separate handling of such conditions.
With PINNSs, these conditions are naturally embedded within
the loss function, ensuring that the trained model inherently
respects these critical constraints.

For the purpose of this research, we approached the problem
in three stages as depicted in (Fig 4): first, we used conven-
tional neural networks and data loss to model the problem.
Secondly, As the fundamental PINN training formulation is
unsupervised and does not require labeled data [13], such
as results from other simulations, we considered the PINN



structure with the loss function being the residual loss only
(Fig 2):
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where gz§ ~n is the prediction from the neural network.

This focus on the residual loss ensured that the model
aligned with the known physics of lunar surface charging,
providing a foundation that adheres to the underlying physical
principles. We then refined the approach by considering the
loss function as a combination of both residual loss and data
discrepancy (Fig 3), and compared the results with the results
of only data-driven network and fundamental PINN:
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where NV is the number of data points, d;z is the actual observed
value. The overall loss function for the PINN can then be
represented as:

(6)

Ldata =

Ltotal = aLres + ﬂLdataa (7)

where o and 3 are weighting factors that determine the relative
importance of the residual loss and data loss, respectively.

This combined loss function aimed to achieve a balanced
and accurate representation of the electric potential profile
above the lunar surface, leveraging both the physical con-
straints and the available data.

IV. RESULTS

In our endeavor to model the electric potential profile above
the lunar surface, we initially explored the use of conventional
neural networks. For this approach, the primary objective was
to minimize the data loss, which measures the discrepancy be-
tween the network’s predictions and the actual observed data.
This data-centric approach served as our baseline, allowing us
to compare the performance of conventional neural networks
with that of more sophisticated models. The results of this
initial exploration, as depicted in Figure 5, provided valuable
insights into the capabilities and limitations of using a purely
data-driven approach for this complex physical system.

We then employed neural networks comprising linear layers
and non-linear activation functions. Given that the input data
to the network consists of floating-point numbers representing
continuous variables, the use of complex layers such as convo-
lutional layers was deemed unnecessary. Instead, we focused
on employing simple linear layers coupled with non-linear
activation functions. This approach allowed us to approximate
the underlying functions governing the electric potential profile
effectively.

Our exploration included both shallow and deeper neural
network architectures. Figure 6:(a) and Figure 6: (b) illustrate
the predictions produced by these two distinct models. Inter-
estingly, the results reveal that both the shallow and deeper
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Fig. 5: Conventional (Data-Driven) Neural Network

networks yield similar predictions. This observation suggests
that, for this specific problem, increasing the complexity of
the network does not necessarily translate into significant
improvements in predictive accuracy.

This finding is particularly noteworthy as it challenges the
common notion that deeper networks are always superior for
complex tasks. In our case, it appears that a simpler, more
computationally efficient architecture is capable of capturing
the essential characteristics of the electric potential profile
above the lunar surface.

A. Activation Functions

Activation functions are fundamental components in neural
networks, introducing non-linearity into the model, which
allows it to capture complex relationships in the data. Without
activation functions, the neural network would simply be a
linear regression model, which has limited expressiveness.
Among the myriad of activation functions available, the sig-
moid, rectified linear unit (ReLU), and hyperbolic tangent
(tanh) stand out as the most popular and widely used in various
deep learning architectures.

e The sigmoid function, characterized by its classic S-
shaped curve, maps any real-valued number to a value
between O and 1. This makes it particularly useful in
scenarios like binary classification, where we need to
predict probabilities. However, one of its drawbacks is
the vanishing gradient problem, which can impede the
network’s learning in certain situations.

e The tanh function is quite similar to the sigmoid but
maps its input to a range between -1 and 1. This zero-
centered nature often makes it preferable over the sigmoid
in hidden layers of neural networks.

e ReLU, with its simple design, has become one of the
default choices for many deep learning models. It outputs
the input directly if it’s positive; otherwise, it outputs
zero. Its efficiency and computational simplicity make it
a favorite, though it’s not without its challenges, such as
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Fig. 6: Comparison of networks

the “dying ReLU” problem where neurons can sometimes
get stuck during training.

As depicted in Figure 6:(a) and Figure 6:(c), there is a
noticeable difference in the performance of models using these
two functions. The model employing the ReLU activation
(Figure 6:(c)), produces predictions that are less smooth com-
pared to the one using the sigmoid activation, evident from
Figure 6:(a). The jagged nature of the predictions from the
ReLU model might be due to its characteristic of outputting
zero for any negative input, which can sometimes lead to less
smooth approximations, especially when the model is trying
to capture intricate patterns.

On the contrary, the sigmoid function, which maps its input
to a value between 0 and 1, produces smoother predictions.
This smoothness can be attributed to the sigmoid’s S-shaped
curve, which allows for a more gradual transition between
values. In the context of our study, this smooth transition
appears to be more aligned with the underlying patterns of
the data.

Given these observations, it becomes evident that the sig-
moid activation function is better suited for the specific task
explored in this paper. While both activation functions have
their merits and are widely used in various domains, the choice
of function should be informed by the nature of the data and
the specific requirements of the task at hand.

B. Optimizer

Optimizers are the driving force behind the learning process
of neural networks. They navigate the vast parameter space
to find the optimal values that reduce the error between
the predicted and actual outputs. By adjusting the model’s
weights in response to the computed gradients, optimizers
ensure that the network converges to a solution that best fits
the data. Among the plethora of optimizers available, Adam
[15] and SGD (Stochastic Gradient Descent) [16] are two of
the most widely used. Each optimizer has its unique approach
to updating the model’s parameters, and their effectiveness can
vary depending on the specific problem and dataset.

As illustrated in Figure 6:(a) and Figure 6:(d), there’s a
discernible difference in the performance of models trained
using these two optimizers. The model trained with the
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Fig. 7: Model performance using data loss and residual loss

Adam optimizer, as shown in Figure 6:(a), produces a more
refined and smoother prediction curve. This can be attributed
to Adam’s adaptive learning rate mechanism, which adjusts
the learning rate for each parameter based on the historical
gradient information. This feature allows Adam to converge
faster and often results in better generalization.

On the other hand, SGD (Figure 6:(d)), being a more
traditional and straightforward optimization method, updates
the model’s parameters using a fixed learning rate. While it has
been the go-to optimizer for many years, in certain scenarios,
especially with complex models and non-convex loss surfaces,
SGD might struggle to find the optimal solution as efficiently
as some of its more modern counterparts like Adam.

Given the observed results, it’s evident that the Adam
optimizer offers a more effective optimization strategy for the
task at hand. Howeyver, it’s essential to note that the choice of
optimizer should always be based on empirical evidence, as
different tasks and datasets might favor different optimization
techniques.



C. Loss Function

Initially, we adopted a physics-centric approach, where the
loss function was purely based on the physics governing the
lunar surface charging. This approach, while rooted in estab-
lished physical principles, aimed to ensure that the model’s
predictions were in harmony with the known behaviors of
the lunar surface in a plasma environment. The results from
this model were promising, showcasing its capability to grasp
and replicate the fundamental characteristics of the electric
potential profile.

However, recognizing the potential of data-driven insights,
we ventured into a more holistic approach. In this third model,
we amalgamated the residual loss with a data loss component.
This hybrid loss function was designed to strike a balance be-
tween the theoretical physics of the problem and the empirical
evidence from the data. The outcome was enlightening. The
model, guided by this combined loss function, demonstrated
enhanced performance, capturing the intricacies of the electric
potential profile with greater precision. It became evident that
by synergizing the foundational knowledge of physics with
the empirical patterns in the data, the model could achieve a
more comprehensive and accurate depiction of lunar surface
charging.

Figure 7 visually encapsulates the comparative performance
of the two models. It underscores the value of integrating both
physics-based reasoning and data-driven insights, highlighting
the efficacy of the combined loss function in addressing the
complex problem of lunar surface charging.

V. CONCLUSION

In conclusion, this research explored modeling the elec-
tric potential profile above the lunar surface using Physics-
Informed Neural Networks. We evaluated three loss models:
residual loss, data loss, and a hybrid approach combining
both. The hybrid model, integrating data and residual loss,
performed best by leveraging empirical data and adhering to
physics principles for robust and precise modeling.

The study also compared shallow and deep neural networks,
finding no significant advantage to deeper networks in this
context, emphasizing the need to tailor architecture to specific
problems. Moreover, we assessed various optimizers, high-
lighting their impact on performance.

These insights advance understanding of lunar surface
charging and neural network modeling. By evaluating loss
functions, network depth, and optimization techniques, we
identified areas for further research and demonstrated the
potential of neural networks in space environment modeling,
bridging theory, and practical application.

As we advance, our focus will be on incorporating uncer-
tainty into our models by varying M values within a specified
range and evolving them to process both M and Z inputs.
By doing so, we anticipate a richer, more comprehensive
understanding of the system dynamics, leading to predictions
that are not only accurate but also encompass the multifaceted
nature of the lunar electric potential profile.
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