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In the setting of lattice gauge theories with finite (possibly non-Abelian)
gauge groups at weak coupling, we prove exponential decay of correlations
for a wide class of gauge invariant functions, which in particular includes
arbitrary functions of Wilson loop observables.

1. Introduction. Lattice gauge theories are statistical mechanical models which arise as
discretizations of Yang–Mills theories. They were systematically introduced by Wilson [50]
in 1974, and since then they have been the subject of much study by both physicists and
mathematicians alike. The main physical motivation for the study of lattice gauge theories
is to understand the standard model of physics, which describes the behavior of elementary
particles at short distances. Mathematically, the goal is to construct a continuum Yang–Mills
theory, and one of the main approaches toward this is by taking a continuum limit of lattice
gauge theories. So far, this has not been achieved, but nonetheless there have been many sem-
inal works proving various aspects about the behavior of lattice gauge theories. For instance,
Bałaban [6–19] proved ultraviolet stability (a notion of tightness) for lattice gauge theories
in 3D and 4D via a renormalization group approach. The monograph of Glimm and Jaffe
goes into significant detail on constructive field theory, including the rigorous construction
of U(1) theory in two-dimensions [38]. For results on quark confinement, see the works [22,
26, 36, 39, 40]. The works [20, 25, 27, 41] look at large N limits of lattice gauge theories and
resulting forms of gauge-string duality. We emphasize that we have left out many important
references in this paragraph; see [24] for a more complete list as well as a historical overview.

Associated to lattice gauge theories is a parameter G, which is typically taken to be a
Lie group. However, in this paper, we will make a mathematical simplification and take G

to be a finite group. Of course, this lessens the direct relevance to physics, but on the other
hand, lattice gauge theories with finite groups G have been previously studied in the physics
literature; see, for example, [3, 28, 35, 43, 45, 48, 49] for an incomplete list. Additionally,
from a statistical mechanical point of view, such models are interesting because they give
examples of discrete models with non-Abelian symmetries. These symmetries require the
use of topology to handle, and result in relations to knot theory as pointed out by [47]. Such
considerations do not appear in the usual discrete spin models such as the Ising or Potts
models.

This paper expands on the analysis of the works [1, 23] to answer a natural question in
this area. The purpose of those papers was to calculate (for finite gauge groups) the expec-
tations of certain natural observables associated to lattice gauge theories. Having computed
expectations of observables, a natural next step is to show decay of correlations of those same
observables. This is precisely the purpose of the present paper. In general, computing observ-
able expectations and showing correlation decay are two related problems which however
require different proof techniques, and thus the arguments of [1, 23] which give the former
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do not immediately give the latter. To prove correlation decay in this paper, we combine the
technical tools developed in the previous papers with some crucial additional proof ideas that
are tuned to the problem at hand.

The problem of showing exponential decay of correlations for a 4D lattice gauge theory
(with gauge group a non-Abelian Lie group, say SU(3)) is one of the central questions of lat-
tice gauge theory, as it is intimately related to showing the existence of a mass gap. Following
the discussion of [24], Section 5, let fβ(x) denote the correlation between an appropriately
defined Wilson loop variable centered at 0 and another centered at x. Then, the existence
of a mass gap for a given β ≥ 0 is equivalent to the following statement: there exists some
ξ(β) ∈ (0,∞) such that

− 1

ξ(β)
= lim|x|→∞

logfβ(x)

|x| .

The conjecture is that the above holds for all β ≥ 0 (and we furthermore expect that
limβ→∞ ξ(β) = ∞). Given this discussion, the main result of the present work can be in-
terpreted as showing the existence of a mass gap in the setting of finite (non-Abelian) gauge
groups at large β . In general, it is more difficult to prove exponential decay of correlations
at large β compared to small β , as the latter case can usually be handled by a routine high-
temperature expansion, and this works not just for finite groups, but also non-Abelian Lie
groups (see [44]).

1.1. Previous work. There has been much recent interest in computing the expectations
of Wilson loop observables—Chatterjee [24] considered the case G = Z2, Forrström et al.
[32] handled finite Abelian G, and Cao [23] covered finite (possibly non-Abelian) G. There
is also recent work by Garban and Sepúlveda [37] for G = U(1). For lattice gauge theories
with an additional Higgs field (i.e., lattice Higgs models), Forsström et al. [34] considered
the finite Abelian case, and Adhikari [1] considered the finite (non-Abelian) case. Forsström
[33] has also analyzed a more relevant class of observables for lattice Higgs models.

As for previous work on the decay of correlations, there is the classic monograph by Seiler
[45], which shows exponential decay of correlations for finite Abelian lattice gauge theories
in a variety of settings, using cluster expansion techniques.1 There is also recent work by
Forsström [31], which also proves exponential decay in the Abelian case, using a certain
probabilistic swapping argument, which relates correlations to percolation probabilities of
the union of two independently sampled configurations. The general idea for this type of
argument previously appeared before in the literature in other settings; see, for example, [2].
We will also use this general principle, however there are significant difficulties that arise in
the non-Abelian case. We will discuss these difficulties, as well as difficulties in extending
the cluster expansion of [45] to our setting in Section 1.2.

Finally, for some recent work on decay of correlations for other statistical mechanical
models, see [4, 5, 29, 30, 42].

1.2. The difference between finite Abelian and finite non-Abelian. In this section, we
comment on the main differences between Abelian lattice gauge theories and non-Abelian
lattice gauge theories (here all groups are assumed to be finite). Actually, at a probabilistic
level, it is generally the case that there is no difference, in that whatever probabilistic state-
ment that is true in the finite Abelian case should also have an analog in the finite non-Abelian

1It is claimed in the monograph that the given cluster expansions extend without difficulty from finite Abelian
groups to general finite groups. However, as pointed out by Borgs [21], Section 7, this is not the case.
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FIG. 1. An example of two defects which are topologically linked.

case. However, this always has to be proven, and the proofs are not merely technical improve-
ments on the arguments which work in the Abelian case. Rather, significant new ideas must
be developed to handle the non-Abelian case.

We now try to convey the reason why. The first part of the discussion will not be new to
those who are familiar with Pirogov–Sinai theory. Recall that we are always working at low
temperature (i.e., large β). As is usually the case for finite spin systems, at low temperatures
it is best to work in terms of “defects.” For example, for the Ising model, the defects are the
edges with spin disagreements. The benefit is that now there is a unique ground state, which
is the state with no defects (in the Ising model, this would be induced by either the all +
configuration or all − configuration). At low temperature, the system can be analyzed as a
small perturbation of this unique ground state. Mathematically, this is usually achieved by
writing the partition function as a convergent cluster expansion. Once this is done, many (if
not all) desired properties of the model can then be read off from general cluster expansion
results (see Seiler’s monograph [45]).

In order to write the partition function as a cluster expansion, the key property that one
needs is that the partition function obeys a certain factorization property, which in words
very roughly amounts to saying that disjoint defects appear independently of each other.
Now for finite Abelian theories, this factorization property can be proven directly (see e.g.,
[23], Lemma 3.2.3). However, for finite non-Abelian theories, the same proof does not work,
and indeed cannot possibly work, because the exact same factorization property is simply
not true anymore. To try to indicate why, consider an idealized situation with two defects as
pictured in Figure 1.

In the figure, the two defects are given by the two loops, and observe that they are linked.
In the Abelian case, the aforementioned factorization property holds for these two defects,
whereas in the non-Abelian case, factorization does not hold, even though the two defects
may be arbitrarily far apart from each other (see [47]). Thus in order to obtain some sort of
weaker factorization property, we must treat the above picture as a single “connected” defect,
even if there really are two connected components in the usual sense. This basic example
points to the fact that non-Abelian theories lead to nontrivial topological considerations, and
this seems to be a genuinely different phenomenon which is unseen elsewhere, as we are not
aware of any other statistical mechanical models which lead to such considerations about the
defects.

More generally, connected defects in non-Abelian theories can be thought of as elementary
links (in the sense of knot theory), although they are referred to as knots in [23, 47]. With this
notion, a weaker form of the factorization property may be proved (this itself is nontrivial and
requires algebraic topology—see [23], Section 4). However, even after arriving at the right
notion of connected defect in non-Abelian theories, there are additional difficulties that pre-
vent one from writing the partition function as a cluster expansion in this case.2 Perhaps the

2In [47] a cluster expansion is claimed, however much of the proof is omitted, and we are unable to reconstruct
the proof from the arguments that are given.
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main difficulty is that the elementary defects now interact in a multi-body interaction, instead
of just a two-body interaction (and a cluster expansion typically requires the latter). This es-
sentially comes from the fact that one can have three knots which are linked yet pairwise
unlinked (the classic example being the Borromean rings).

Thus in summary, non-Abelian theories lead to a much more complicated notion of con-
nected defect, and do not (as of yet) admit a cluster expansion. This is why the previous
results [31, 45] on correlation decay only hold for Abelian groups—the former work relies
on standard cluster expansion results, while the latter paper gives a more probabilistic argu-
ment that does not use cluster expansion, but which in the end still crucially relies on the
decomposition into connected defects which (as we explained) is more straightforward in the
Abelian case.

By contrast, in this paper, we must delicately combine a probabilistic argument with a
careful handling of the topological effects that appear. This is due to the fact that the ele-
mentary defects are (1) now much more complicated to define (as we tried to convey) and
(2) having defined them, they are very delicate to work with. In particular, we need to have
a precise understanding of the associated topological difficulties in order to apply any sort of
probabilistic “swapping” argument. These difficulties have no analogue in the Abelian case.
In the end, we are forced to find novel arguments in order to combine the various intricate as-
pects that are present to arrive at our proof. For these reasons, we believe that our arguments
for the general non-Abelian case are substantial improvements over previous proofs which
work only in the Abelian case.

1.3. Definitions and notation. We proceed to give the basic definitions and then state our
main theorems. We start with a preliminary discussion of concepts and definitions necessary
to understand the paper; one can refer to [23] or [1] for more details.

Given an integer n ≥ 1, define [n] := {1, . . . , n}. Let G be a finite group, with the identity
denoted by 1. We will commonly refer to G as the gauge group. Let ρ be a unitary represen-
tation of G, with dimension d , and let χ = Trρ be the character of ρ. From here on, fix a
finite lattice

� := ([a1, b1] × · · · × [a4, b4]) ∩Z
4,

where bi −ai is the same for all i ∈ [4]. The results of this paper apply to any such �. Let �0
be the set of vertices of �. Let �1 be the set of (nearest-neighbor) edges of �. We implicitly
assume that each edge e = (x, y) ∈ �1 carries a positive orientation, that is, y = x + ei

for some i ∈ [4]. In this paper, we only work in dimension four, as it is the most relevant
dimension for lattice gauge theories (see [24]). However, we expect that our results can be
extended to general dimensions, with some additional technical arguments.

We will refer to the elements σ ∈ G�1 as “edge configurations” (because they assign edges
to group elements). Given an edge configuration σ ∈ G�1 and an edge e = (x, y) ∈ �1, we
can naturally extend σ to the negatively oriented version of e by setting σ(y,x) := σ−1

e .
By a “plaquette” p in �, we mean a unit square whose four boundary edges are in �. Let

�2 be the set of plaquettes in �. For p ∈ �2, suppose the vertices of p are x1, x2, x3, x4, in
(say) counter-clockwise order. In an abuse of notation, for σ ∈ G�1 , define

(1.1) σp := σ(x1,x2)σ(x2,x3)σ(x3,x4)σ(x4,x1).

Define

(1.2) S�(σ) := ∑
p∈�2

Re
(
χ(1) − χ(σp)

)
.
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(By the conjugacy invariance of χ , it does not matter which vertex of p we choose to start at
when defining σp .) For β ≥ 0, let μ�,β be the probability measure on G�1 defined by

(1.3) μ�,β(σ ) := Z−1
�,βe−βS�(σ),

where Z�,β is the normalizing constant. We say that μ�,β is the lattice gauge theory with
gauge group G, on �, with inverse coupling constant β . In this paper, we will work in the
large β regime, which is also known as the weak coupling regime.

Let γ be a closed loop in �, denoted by its sequence of oriented edges e1, . . . , en. We write
|γ | for the length of γ , that is, the number of edges in γ . For σ ∈ G�1 , define (in another
abuse of notation)

σγ := σe1 · · ·σen.

We say that σγ is the holonomy of σ around γ . Let χ0 be a character of G (there is no relation
between χ0 and the character χ which appears in the definition (1.2) of S�). The Wilson loop
observable Wγ,χ0 associated to γ , χ0 is defined as a function G�1 →C by the formula

Wγ,χ0(σ ) := χ0(σγ ), σ ∈ G�1 .

Wilson loop observables are the main observables of interest in lattice gauge theories. See
[24], Section 4, for the physical motivation in defining these observables, as well as for further
discussion. Next, define

	G := min
g∈G
g �=1

Re
(
χ(1) − χ(g)

)
.

We can almost state our main result. In the following, by the notation “
 ∼ μ�,β ,” we
mean that 
 is a G�1 -valued random variable with distribution μ�,β . We say that a func-
tion f : Gk → C is conjugacy invariant if, for any g1, . . . , gk ∈ G and h1, . . . , hk ∈ G, we
have that f (h−1

1 g1h1, . . . , h
−1
k gkhk) = f (g1, . . . , gk). A rectangle B is a subset of � of the

form [x1, y1]× · · ·× [x4, y4], where we allow xi = yi . We let |B| be the number of plaquettes
contained in B .

THEOREM 1.1. Let β ≥ 1
	G

(114 + 4 log |G|). Let L ≥ 0. Let B1,B2 ⊆ � be rectangles
that are at a �∞ distance at least L from each other (i.e., the �∞ distance between any
vertex x of B1 and any vertex y of B2 is at least L). Let k1, k2 ≥ 1, and let f1 : Gk1 → C,
f2 : Gk2 →C be conjugacy invariant functions. For i = 1,2, let γ (i)

1 , . . . , γ
(i)
ki

be closed loops
contained in Bi . Let 
 ∼ μ�,β . Then∣∣Cov

(
f1(
γ

(1)
1

, . . . ,

γ

(1)
k1

), f2(
γ
(2)
1

, . . . ,

γ

(2)
k2

)
)∣∣

≤ 4
(
4 · 1024|G|2)|B1|+|B2|‖f1‖∞‖f2‖∞e−(β/2)	G(L−1).

REMARK 1.2. Examples of f1, f2 that one could take in the theorem are Wilson loop
observables, or, more generally, arbitrary functions of arbitrary numbers of Wilson loop ob-
servables.

We now sketch the underlying idea of the proof, which is quite general and, in prin-
ciple, could be applied to other types of spin systems or statistical mechanical models.
For illustration purposes, suppose that we have some probability measure μ on the space
� = {±1}�0 of ±1 spin configurations. Let μ⊗2 be the twofold product of μ, so that
μ⊗2 is a probability measure on �2. Let f1, f2 : � → R be functions. The key assump-
tion is: suppose that there is a bijection T : �2 → �2 such that for all (σ1, σ2) ∈ �2, we
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have that μ⊗2(T (σ1, σ2)) = μ⊗2(σ1, σ2) and f1(σ1)f2(σ2) = f1(T1(σ1, σ2))f2(T1(σ1, σ2)),
where here T1 : �2 → � is the first component function of T . Think of T as a map that swaps
σ1 and σ2 on some set of vertices (e.g., the support of f2), which somehow satisfies the first
condition (i.e., probabilities are preserved).

Now, let 
1, 
2
i.i.d.∼ μ. Observe that the first condition on T implies that T (
1,
2)

d=
(
1,
2); indeed, that condition says that μ⊗2 ◦ T = μ⊗2, and since T is a bijection, we
obtain μ⊗2 ◦ T −1 = μ⊗2, and now note that μ⊗2 ◦ T −1 is the law of T (
1,
2) (and of

course, μ⊗2 is the law of (
1,
2)). Thus in particular, T1(
1,
2)
d= 
1. Combining the

second condition on T with this observation, we obtain

E
[
f1(
1)f2(
2)

] = E
[
f1

(
T1(
1,
2)

)
f2

(
T1(
1,
2)

)] = E
[
f1(
1)f2(
1)

]
,

from which we obtain Cov(f1(
1), f2(
1)) = 0 (recall that 
1, 
2
i.i.d.∼ μ).

Of course, in practice, we will not have the bijection T defined on all of �2. Rather, we will
need to find a subset E ⊆ �2 on which we can define the bijection T : E → E which satisfies
the two listed properties. A modification of the previous argument then gives an upper bound
on Cov(f1(
1), f2(
1)) in terms of P((
1,
2) /∈ E) (so we want to take the set E as large
as possible).

Section 3 gives a more precise statement of this general argument. Needless to say, the
main difficulty will be in actually constructing T and E for given f1, f2, and then bounding
P((
1,
2) /∈ E). For this, we will rely on some concepts introduced in [23], which we review
in Sections 2 and 4. Finally, if the reader is interested, in Appendices B and C, we show how
to handle Higgs models at large and small κ (these models were recently analyzed in [1]).
The corresponding analysis for models with a Higgs’ field is more technical and requires
more notation that is not easy to unify with the existing arguments. Thus for the convenience
of the reader, we have placed the discussion of these ideas in the Appendices.

2. Preliminaries. In this section (following [23]), we rephrase everything in the lan-
guage of algebraic topology, using the starting observation that edge configurations σ ∈ G�1

can be thought of as homomorphisms of the fundamental group of the lattice. The main ben-
efit of this rephrasing is that it allows us to prove Lemma 4.9 (this was essentially already
done in [23], see the proof of [23], Lemma 4.2.21). This lemma, in turn, allows us to prove
Lemma 4.10 and Corollary 4.11, which form the main technical foundation for the proof of
Theorem 1.1.

Recall that a cell complex is a certain type of topological space obtained by assembling
cells of varying dimensions; see, for example, Section 0.2.4 of [46]. In our case, the cells will
be unit squares of dimension at most two, that is, vertices, edges, and plaquettes. So for us,
a one-dimensional cell complex, or 1-complex, is a space consisting of vertices and edges,
and thus it is a graph. A two-dimensional cell complex, or 2-complex, is a space consisting
of vertices, edges, and plaquettes.

In what follows, if we define a 1-complex by specifying a collection of edges, then that
1-complex is understood to also include the vertices of the edges in the collection. Similarly,
if we define a 2-complex by specifying a collection of plaquettes, then that 2-complex is
understood to also include the vertices and edges of the plaquettes in the collection.

Let S1(�) denote the 1-skeleton of �, that is, the 1-complex obtained from the edges
of �. Throughout this paper, fix some vertex x0 ∈ �0. Recall that the fundamental group
π1(S1(�), x0) is a group of equivalence classes of closed loops starting and ending at x0. The
equivalence relation is given by setting equivalent any two loops of the form �1ee

−1�2 and
�1�2, where e = (x, y) is an edge of S1(�), �1 is a path in S1(�) from x0 to x, and �2 is a
path in S1(�) from x to x0. The group operation is induced by loop concatenation.

Next, we observe that edge configurations σ ∈ G�1 naturally induce a homomorphism
from π1(S1(�), x0) to G.
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DEFINITION 2.1. Let � := Hom(π1(S1(�), x0),G) be the set of homomorphisms from
π1(S1(�), x0) to G. Define the map ψx0 : G�1 → � as follows. Let σ ∈ G�1 . Given an
element ξ ∈ π1(S1(�), x0), suppose that ξ can be represented as a loop that traverses the
edges e1, . . . , en. Define (ψx0(σ ))(ξ) := σe1 · · ·σen . Note that this is well defined, since if
ee−1 appears, then this gives the term σeσe−1 = σeσ

−1
e = 1.

REMARK 2.2. The map ψx0 is exactly the same as the map ψ
x0
T defined in [23], Sec-

tion 4.1. The difference in notation is due to the fact that in [23], Section 4.1, a spanning tree
T of S1(�) is fixed, and ψ

x0
T is defined in terms of this spanning tree. It was not noted in that

paper, but it turns out that the definition of ψ
x0
T is independent of T , and thus we prefer to

write ψx0 in the present paper.

An immediate consequence of Definition 2.1 is the following lemma, whose proof is omit-
ted.

LEMMA 2.3. Let σ ∈ G�1 . For any loop γ in �, and any path � in � from x0 to the
initial vertex of γ , we have that σγ is conjugate to (ψx0(σ ))(�−1γ �).

The following lemma is essentially [23], Lemma 4.1.1. Due to the differences in notation
between that paper and the present paper, we provide a proof of this lemma in Appendix A.1.

LEMMA 2.4. For any ψ ∈ �, there are exactly |G||�0|−1 edge configurations σ ∈ G�1

such that ψx0(σ ) = ψ .

REMARK 2.5. This lemma shows that homomorphisms ψ ∈ � can be thought of as
gauge equivalence classes.

Next, in the following sequence of definitions and lemmas culminating in Lemma 2.11
below, we proceed to reinterpret the lattice gauge theory (1.3) as giving a random homomor-
phism.

DEFINITION 2.6. For all x ∈ �0, fix an arbitrary path �(x0, x) from x0 to x in S1(�). Let
γ be a loop in � with the initial vertex x. Define ξγ := �(x0, x)γ �(x0, x)−1 ∈ π1(S1(�), x0).
For a plaquette p ∈ �2, let γp be the same loop which traverses the boundary of p that was
used in the definition (1.1) of σp . Define ξp := ξγp .

DEFINITION 2.7. For ψ ∈ �, define

supp(ψ) := {
p ∈ �2 : ψ(ξp) �= 1

}
.

This definition does not depend on the particular choices of �(x0, x), x ∈ �0 from Defini-
tion 2.6, as a consequence of Lemma 2.3 and the fact that ψx0 : G�1 → � is onto (which
itself follows by Lemma 2.4).

The following fact was proven in [23], Lemma 4.3.7, and thus we omit the proof here.

LEMMA 2.8. Let P ⊆ �2. The number of ψ ∈ � such that supp(ψ) = P is at most
|G||P |.

DEFINITION 2.9. For β ≥ 0, define ϕβ : G → (0,1] by

ϕβ(g) := exp
(−β Re

(
χ(1) − χ(g)

))
, g ∈ G.

Recalling the definition (1.2) of S�, we have that e−S�(σ) = ∏
p∈�2

ϕβ(σp).
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DEFINITION 2.10. Define the probability measure ν�,β on � as follows:

ν�,β(ψ) := (
Zν

�,β

)−1 ∏
p∈�2

ϕβ

(
ψ(ξp)

)
,

where Zν
�,β is the normalizing constant.

LEMMA 2.11. Let 
 ∼ μ�,β . Then ψx0(
) ∼ ν�,β .

PROOF. For any ψ ∈ �, we have that

P
(
ψx0(
) = ψ

) = Z−1
�,β

∑
σ∈G�1

ψx0 (σ )=ψ

∏
p∈�2

ϕβ(σp).

By Lemma 2.3, for any σ ∈ G�1 such that ψx0(σ ) = ψ , we have that ϕβ(σp) = ϕβ(ψ(ξp))

for all p ∈ �2. Combining this with Lemma 2.4, we obtain

P
(
ψx0(
) = ψ

) ∝ |G||�0|−1
∏

p∈�2

ϕβ

(
ψ(ξp)

) ∝ ∏
p∈�2

ϕβ

(
ψ(ξp)

)
.

The desired result now follows. �

LEMMA 2.12. Let k ≥ 1, and let f := Gk → C be a conjugacy invariant function. Let
γ1, . . . , γk be closed loops in �. Let 
 ∼ μ�,β , and let � ∼ ν�,β . Then

Ef (
γ1, . . . ,
γk
) = Ef

(
�(ξγ1), . . . ,�(ξγk

)
)
.

PROOF. By Lemma 2.3 and the assumption that f is conjugacy invariant, we have that

f (
γ1, . . . ,
γk
) = f

((
ψx0(
)

)
(ξγ1), . . . ,

(
ψx0(
)

)
(ξγk

)
)
.

By Lemma 2.11, we have that ψx0(
) ∼ ν�,β . The desired result follows. �

We close this section by noting that ψx0 is a bijection when restricted to certain subsets of
G�1 .

DEFINITION 2.13. Given a spanning tree T of S1(�), define

GF(T ) := {
σ ∈ G�1 : σe = 1 for all e ∈ �1.

}
.

Here “GF” stands for “gauge-fixed.”

The following lemma is essentially [23], Lemma 4.1.6. Due to the differences in notation
between that paper and the present paper, we provide a proof of this lemma in Appendix A.1.

LEMMA 2.14. For any spanning tree T of S1(�), ψx0 : GF(T ) → � is a bijection. More-
over, supp(σ ) = supp(ψx0(σ )) for all σ ∈ GF(T ). For any loop γ in �, and any path � in �

from x0 to the initial vertex of γ , we have that σγ is conjugate to (ψx0(σ ))(�−1γ �).
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3. A general swapping argument. In this section, we give the general “swapping map”
idea behind our proof of decay of correlations, as previously sketched after the statement of
Theorem 1.1.

DEFINITION 3.1 (Swapping map). Let E ⊆ �2. Let h1, h2 : � → C be arbitrary func-
tions. Let T : E → E. We say that T is a swapping map with respect to (E,h1, h2, ν�,β) if
T is a bijection, and if additionally the following hold for all (ψ1,ψ2) ∈ E:

1. Let ν⊗2
�,β be the twofold product of ν�,β on �2. Then ν⊗2

�,β(T (ψ1,ψ2)) = ν⊗2
�,β((ψ1,

ψ2)).
2. Let (ψ̃1, ψ̃2) = T (ψ1,ψ2). Then

h1(ψ1)h2(ψ2) = h1(ψ̃1)h2(ψ̃1).

The following lemma shows that the existence of a swapping map leads to a covariance
bound.

LEMMA 3.2. Let E ⊆ �2. Let h1, h2 : � →C be arbitrary functions. Let T : E → E be

a swapping map with respect to (E,h1, h2, ν�,β). Let �1, �2
i.i.d.∼ ν�,β . Then∣∣Cov

(
h1(�1), h2(�1)

)∣∣ ≤ 2‖h1‖∞‖h2‖∞P
(
(�1,�2) /∈ E

)
.

PROOF. Let F := {(�1,�2) ∈ E}. We claim that

(3.1) E
(
h1(�1)h2(�1)1F

) = E
(
h1(�1)h2(�2)1F

)
.

Given this claim, we obtain

Cov
(
h1(�1), h2(�1)

) = E
(
h1(�1)h2(�1)

) −E
(
h1(�1)h2(�2)

)
= E

(
h1(�1)h2(�1)1Fc

) −E
(
h1(�1)h2(�2)1Fc

)
.

We may then trivially bound both∣∣E(
h1(�1)h2(�1)1Fc

)∣∣, ∣∣E(
h1(�1)h2(�2)1Fc

)∣∣ ≤ ‖h1‖∞‖h2‖∞P
(
Fc),

from which the desired result follows.
Thus it just remains to show the claim (3.1). We have that

E
(
h1(�1)h2(�1)1F

) = ∑
(ψ1,ψ2)∈E

ν⊗2
�,β

(
(ψ1,ψ2)

)
h1(ψ1)h2(ψ1).

Since T : E → E is a bijection, the right-hand side above is equal to∑
(ψ1,ψ2)∈E

ν⊗2
�,β

(
T (ψ1,ψ2)

)
h1

(
T1(ψ1,ψ2)

)
h2

(
T1(ψ1,ψ2)

)
,

where T1 : E → � is the first coordinate function of T . Using conditions (1) and (2) of
Definition 3.1, we obtain that the above is further equal to∑

(ψ1,ψ2)∈E

ν⊗2
�,β

(
(ψ1,ψ2)

)
h1(ψ1)h2(ψ2) = E

(
h1(�1)h2(�2)1F

)
,

as desired. �

The following proposition shows that swapping maps exist for functions of the form spec-
ified in Theorem 1.1.
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PROPOSITION 3.3. Let β , L, B1, B2 be as in Theorem 1.1. There exists a set

E(B1,B2) ⊆ �2 such that for �1, �2
i.i.d.∼ ν�,β , we have

P
(
(�1,�2) /∈ E(B1,B2)

) ≤ 2
(
4 · 1024|G|2)|B1|+|B2|e−(β/2)	G(L−1).

Moreover, there exists a bijection T : E(B1,B2) → E(B1,B2) such that T is a swapping map
with respect to (E(B1,B2), h1, h2, ν�,β), for any functions h1, h2 : � → C of the following
form. Let k1, k2 ≥ 1, and let fi : Gki → C be a conjugacy invariant function for i = 1,2. For
i = 1,2, let γ

(i)
1 , . . . , γ

(i)
ki

be closed loops contained in Bi , and then for ψ ∈ �, let hi(ψ) :=
fi(ψ(ξ

γ
(i)
1

), . . . ,ψ(ξ
γ

(i)
ki

)).

We next note that Theorem 1.1 follows directly from Proposition 3.3.

PROOF OF THEOREM 1.1. This is a direct consequence of Lemmas 2.12 and 3.2, and
Proposition 3.3. �

The remainder of the paper is devoted to proving Proposition 3.3. In Section 4, we in-
troduce the technical tools that are essential to the ensuing arguments. Then in Section 5,
we construct the event E(B1,B2) and the map T , and finally in Section 6, we bound the
probability P((�1,�2) /∈ E(B1,B2)).

4. Knot decomposition. In this section, we review the concept of “knot decomposition”
as well as some other results which were introduced in [23]. These results will allow us to
prove Lemma 4.10, which (along with Corollary 4.11, its immediate corollary) is the main
result of this section. Recall the discussion of 2-complexes at the beginning of Section 2. We
start with a series of definitions, most which have previously appeared in [23], Section 4.

DEFINITION 4.1. Given a rectangle B contained in �, let S2(B) denote the 2-complex
obtained by including all plaquettes of B . Let ∂S2(B) be the 2-complex obtained by including
all plaquettes which are on the boundary of B , but not on the boundary of �. Note if B is
contained in the interior of �, then ∂S2(B) is simply the 2-complex made of all boundary
plaquettes of B . Let Sc

2(B) be the 2-complex obtained by including all plaquettes of � that
are not in B , as well as all plaquettes in ∂S2(B).

DEFINITION 4.2 (Well separated). Given plaquette sets P1,P2 ⊆ �2, we say that P1, P2
are well separated, or P1 is well separated from P2, if there exists a rectangle B in � such
that P1 ⊆ S2(B), P2 ⊆ Sc

2(B), and no plaquettes of P1 or P2 are contained in ∂S2(B). For
such a B , we say that P1, P2 are well separated by B , or that B well separates P1, P2. Note
this definition is not symmetric in P1, P2.

Recall that a topological space is said to be simply connected if it is path connected and
has trivial fundamental group.

DEFINITION 4.3 (Good rectangle). Let B be a rectangle in �. We say that B is good if
S2(B), Sc

2(B), and ∂S2(B) are all simply connected.

REMARK 4.4. The motivation for the preceding definition is to have Lemma 4.9 (see
also [23], Lemmas 4.1.9 and 4.2.21). Actually, this lemma should probably hold for general
rectangles, at the cost of an additional argument that we prefer not to give (we are trying to
keep the topological arguments to a minimum). Thus, we will work exclusively with good
rectangles in this paper.
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The following lemma gives the main examples of good rectangles that will be relevant for
us.

LEMMA 4.5. Let B be a rectangle in � such that either: (a) all side lengths of B are
strictly less than the side length of �, or (b) the vertices of B is a set of the form {x ∈ �0 :
xi ≤ k} or {x ∈ �0 : xi ≥ k} for some i ∈ [4], k ∈ Z (i.e., B is the intersection of � and a half
space which is parallel to one of the coordinate axes). Then B is a good rectangle.

Using the previously introduced notions, we can define a partition of any plaquette set
P ⊆ �2, as follows.

DEFINITION 4.6 (Knot decomposition). For every plaquette set P ⊆ �2, we fix a max-
imal partition

P = K1 ∪ · · · ∪ Km,

such that for all 1 ≤ i ≤ m − 1, we have that Ki is well separated from Ki+1 ∪ · · · ∪ Km by a
good rectangle Bi in �. Here, “maximal” means that for all 1 ≤ i ≤ m, there does not exist a
further partition Ki = K ∪ K ′ such that K is well separated from K ′ by a good rectangle B

in �. Such a maximal partition may not be unique; we just fix one. We refer to this partition
as the “knot decomposition” of P . Let K be the collection of all K ⊆ �2 which appear in the
knot decomposition of some P ⊆ �2. We refer to the elements K ∈ K as “knots.”

REMARK 4.7. The definition of knot decomposition given here is slightly different than
the one given at the end of [23], Section 4.1. The slightly more complicated definition of [23]
was needed for precisely computing Wilson loop expectations, which was the main focus of
[23]. In the present paper, we are just trying to obtain upper bounds (on correlations), and so
we can make do with the simpler definition that is given.

The following lemma bounds the number of knots. This is essentially [23], Lemma 4.3.4.
However, because the definition of knot decomposition is slightly different than the one given
in [23], we give a proof in Appendix A.3.

LEMMA 4.8 (Cf. Lemma 4.3.4 of [23]). Let p ∈ �2. For any m ≥ 1, the number of knots
K ∈ K of size m which contain p is at most (1024)m.

The following lemma is a slight generalization of [23], Lemma 4.2.21. The point of the
definitions of “well separated” and “good rectangle” (Definitions 4.2 and 4.3) is to have this
lemma.

LEMMA 4.9. Let P1,P2 ⊆ �2. Suppose P1, P2 are well separated by a good rectangle
B in �. Let T be a spanning tree of S1(�) which contains spanning trees of S2(B), Sc

2(B),
and ∂S2(B). There is a bijection between the set of σ ∈ GF(T ) such that supp(σ ) = P1 ∪ P2,
and the set of tuples (σ 1, σ 2) such that σ i ∈ GF(T ), supp(σ i) = Pi , i = 1,2. Moreover, if σ

is mapped to (σ 1, σ 2), then σ = σ 1σ 2, σ 1 = 1 on Sc
2(B), σ 2 = 1 on S2(B). Consequently,

for all p ∈ S2(B), σ 1
p = σp , and for all p ∈ Sc

2(B), σ 2
p = σp .

PROOF. This follows by [23], Lemma 4.1.9 (see the proof of [23], Lemma 4.1.21). �

Using Lemma 4.9, we can prove the next lemma, which will be important in constructing
an event E(B1,B2) and an associated swapping map T .
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LEMMA 4.10. Let P1,P2 ⊆ �2 be plaquette sets, and suppose that P1 is well separated
from P2 by a good rectangle B in �. Then there is a bijection between{

ψ ∈ � : supp(ψ) ⊆ P1 ∪ P2
}

and {
(ψ1,ψ2) ∈ �2 : supp(ψi) ⊆ Pi for i = 1,2

}
.

Moreover, suppose that ψ is mapped to (ψ1,ψ2) by the bijection. Then for any p ∈ �2, we
have that ϕβ(ψ(ξp)) = ϕβ(ψ1(ξp))ϕβ(ψ2(ξp)). We also have that

supp(ψ) = supp(ψ1) ∪ supp(ψ2).

Finally, let B0 be a rectangle in �, and suppose that B0 ⊆ Pi for some i = 1,2. Then for any
loop γ in B0, and any path � from x0 to the initial vertex of γ , we have that ψ(�−1γ �) is
conjugate to ψi(�

−1γ �).

PROOF. Let

E := {
ψ ∈ � : supp(ψ) ⊆ P1 ∪ P2

}
,

and for i = 1,2, let

Ei := {
ψ ∈ � : supp(ψ) ⊆ Pi

}
.

We want to construct a bijection between E and E1 × E2. Fix TB , a spanning tree of S1(�)

which contains spanning trees of S2(B), Sc
2(B) and ∂S2(B) (to construct such a TB , first take

a spanning tree T̃ of ∂S2(B), and then extend it to spanning trees T1, T2 of S2(B), Sc
2(B)

respectively, and then define TB := T1 ∪ T2). By Lemma 2.14, the set E is in bijection with
the set F := {σ ∈ GF(TB) : supp(σ ) ⊆ P1 ∪P2}. By Lemma 4.9 and the assumption that P1 is
well separated from P2 by the good rectangle B , the set F is in bijection with the set F1 ×F2,
where

Fi := {
σ ∈ GF(TB) : supp(σ ) ⊆ Pi

}
, i = 1,2,

and moreover if σ is mapped to (σ 1, σ 2) under this bijection, then σ = σ 1σ 2, σ 1 = 1 on
Sc

2(B), and σ 2 = 1 on S2(B). Next, by Lemma 2.14, for i = 1,2, Fi is in bijection with Ei .
We can thus obtain a bijection between E and E1 × E2, by composing all the previously
mentioned bijections:

E ↔ F ↔ F1 × F2 ↔ E1 × E2.

The various claimed properties of this bijection follow because (a) by Lemma 2.14, the bijec-
tions between E ↔ F and Ei ↔ Fi preserve conjugacy, and (b) in the bijection between
F ↔ F1 × F2, we have that if σ is mapped to (σ 1, σ 2), then σp = σ i

p for p ∈ Pi and
σp = 1 = σ 1

pσ 2
p for p /∈ (P1 ∪ P2), and if B0 ⊆ Pi for some i = 1,2, then for any loop γ

in B0, we have that σγ = σ i
γ . �

Lemma 4.10 immediately implies the following corollary, whose proof is omitted.

COROLLARY 4.11. Let P1, . . . ,Pk ⊆ �2 be plaquette sets, such that for all 1 ≤ i ≤
k − 1, Pi is well separated from Pi+1 ∪ · · · ∪ Pk by a good rectangle Bi in �. Then there is a
bijection between {

ψ ∈ � : supp(ψ) ⊆ P1 ∪ · · · ∪ Pk

}
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and {(
ψi, i ∈ [k]) ∈ �k : supp(ψi) ⊆ Pi for all i ∈ [k]}.

Moreover, suppose that ψ is mapped to (ψi, i ∈ [k]) by the bijection. Then for any p ∈ �2,
we have that ϕβ(ψ(ξp)) = ∏

i∈[k] ϕβ(ψi(ξp)). We also have that

supp(ψ) = ⋃
i∈[k]

supp(ψi).

Finally, let B0 be a rectangle in �, and suppose that B0 ⊆ Pi for some i ∈ [k]. Then for any
loop γ in B0, and any path � from x0 to the initial vertex of γ , we have that ψ(�−1γ �) is
conjugate to ψi(�

−1γ �).

DEFINITION 4.12. Given a plaquette set P ⊆ �2, let P = K1 ∪ · · · ∪Km be the knot de-
composition of P . Let �(P ) be a bijection corresponding to K1, . . . ,Km as in Corollary 4.11.
Such a bijection may not be unique; we just fix one.

5. Construction of the swapping map. In this section, we construct an event E(B1,B2)

and an associated swapping map T , by using the notions introduced in Section 4. Throughout
this section, fix rectangles B1,B2 ⊆ �.

DEFINITION 5.1. Let E(B1,B2) ⊆ �2 be the set of pairs (ψ1,ψ2) such that the follow-
ing holds. Take the knot decomposition

supp(ψ1) ∪ supp(ψ2) ∪ B1 ∪ B2 = K1 ∪ · · · ∪ Km.

For i = 1,2, let ji ∈ [m] be such that Bi ⊆ Kji
(the existence of such ji follows because

Bi is a rectangle, and thus cannot be divided into separate knots, by the definition of knot
decomposition). Then the condition is that j1 �= j2 (i.e., B1, B2 are contained in different
knots).

We proceed to define a map T : E(B1,B2) → E(B1,B2) with the properties required in
Definition 3.1.

DEFINITION 5.2. Let (ψ1,ψ2) ∈ E(B1,B2). As in the definition of E(B1,B2), take the
knot decomposition

P := supp(ψ1) ∪ supp(ψ2) ∪ B1 ∪ B2 = K1 ∪ · · · ∪ Km,

and also let j2 be as defined in that definition. Recalling Definition 4.12, let � = �(P ).
Define the map U from the set{(

ψi, i ∈ [m]) ∈ �m : supp(ψi) ⊆ Ki for all i ∈ [m]}2

to itself as follows. Map((
ψ1,i , i ∈ [m]), (

ψ2,i , i ∈ [m])) �→ ((
ψ̃1,i , i ∈ [m]), (

ψ̃2,i , i ∈ [m])),
where

ψ̃1,i :=
{
ψ1,i i �= j2,

ψ2,j2 i = j2,

ψ̃2,i :=
{
ψ2,i i �= j2,

ψ1,j2 i = j2.
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In other words, U simply swaps the j2th coordinate. Let U1, U2 be the coordinate functions
of U , that is, they are such that U = (U1,U2). Finally, define T : E(B1,B2) → E(B1,B2) by

(ψ1,ψ2) �→ (
�−1(

U1
(
�(ψ1),�(ψ2)

))
,�−1(

U2
(
�(ψ1),�(ψ2)

)))
.

This definition may not be very illuminating when written out, but just think of T as swapping
the j2th coordinate (as in the definition of U ), once we have identified ψ1, ψ2 with the tuples
(ψ1,i , i ∈ [m]), (ψ2,i , i ∈ [m]) (and this identification is what � is doing).

The next sequence of lemmas combine to show that T has all the desired properties.

LEMMA 5.3. The map T is an involution, that is, for any (ψ1,ψ2) ∈ E(B1,B2), we have
that T 2(ψ1,ψ2) = (ψ1,ψ2). As an immediate consequence, T is a bijection.

PROOF. If we think of T as simply swapping the j2th coordinate, then it is clear that T

is an involution. This is the idea underlying the proof we proceed to give. Let T1, T2 be the
coordinate functions of T . By the definition of T and Corollary 4.11, we have that

supp(ψ1) ∪ supp(ψ2) = supp
(
T1(ψ1,ψ2)

) ∪ supp
(
T2(ψ1,ψ2)

)
.

Let ψ̃i = Ti(ψ1,ψ2) for i = 1,2. The above implies that we get the exact same knot decom-
position

supp(ψ̃1) ∪ supp(ψ̃2) ∪ B1 ∪ B2 = K1 ∪ · · · ∪ Km.

Therefore in obtaining T (ψ̃1, ψ̃2), we use the exact same maps �, U as were used to define
T (ψ1,ψ2). Now by definition, we have that

T1(ψ̃1, ψ̃2) = �−1(
U1

(
�(ψ̃1),�(ψ̃2)

))
,

ψ̃1 = T1(ψ1,ψ2) = �−1(
U1

(
�(ψ1),�(ψ2)

))
,

ψ̃2 = T2(ψ1,ψ2) = �−1(
U2

(
�(ψ1),�(ψ2)

))
.

Let ηi = Ui(�(ψ1),�(ψ2)) for i = 1,2. Note that (η1, η2) = U(�(ψ1),�(ψ2)). Combining
the above three displays, we obtain

T1(ψ̃1, ψ̃2) = �−1(
U1(η1, η2)

) = �−1(
U1

(
U

(
�(ψ1),�(ψ2)

)))
.

Next, observe that U is by construction an involution, from which we further obtain

T1(ψ̃1, ψ̃2) = �−1(
�(ψ1)

) = ψ1.

The same argument shows that T2(ψ̃1, ψ̃2) = ψ2. The desired result now follows. �

LEMMA 5.4. For any (ψ1,ψ2) ∈ E(B1,B2), we have that∏
p∈�2

ϕβ

(
ψ1(ξp)

) ∏
p∈�2

ϕβ

(
ψ2(ξp)

)

= ∏
p∈�2

ϕβ

(
T1(ψ1,ψ2)(ξp)

) ∏
p∈�2

ϕβ

(
T2(ψ1,ψ2)(ξp)

)
.

As an immediate consequence, ν⊗2
�,β(T (ψ1,ψ2)) = ν⊗2

�,β((ψ1,ψ2)) (recall Definition 2.10).
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PROOF. Let all notation be as in Definition 5.2. For i = 1,2, let �(ψi) = (ψi,j , j ∈ [m]).
By Corollary 4.11, we have that∏

p∈�2

ϕβ

(
ψi(ξp)

) = ∏
p∈�2

∏
j∈[m]

ϕβ

(
ψi,j (ξp)

)
, i = 1,2.

It follows that ∏
p∈�2

ϕβ

(
ψ1(ξp)

) ∏
p∈�2

ϕβ

(
ψ2(ξp)

)

= ∏
p∈�2

(
ϕβ

(
ψ2,j2(ξp)

) ∏
j �=j2

ϕβ

(
ψ1,j (ξp)

))

× ∏
p∈�2

(
ϕβ

(
ψ1,j2(ξp)

) ∏
j �=j2

ϕβ

(
ψ2,j (ξp)

))
.

By Corollary 4.11 and the definition of T , the right-hand side above is exactly∏
p∈�2

ϕβ

(
T1(ψ1,ψ2)(ξp)

) ∏
p∈�2

ϕβ

(
T2(ψ1,ψ2)(ξp)

)
,

and thus the desired result follows. �

LEMMA 5.5. Let k1, k2 ≥ 1, and let f1 : Gk1 →C, f2 : Gk2 →C be conjugacy invariant
functions. For i = 1,2, let γ (i)

1 , . . . , γ
(i)
ki

be closed loops contained in Bi . For any (ψ1,ψ2) ∈
E(B1,B2), the following holds. Let ψ̃1 = T1(ψ1,ψ2). Then we have that

f1
(
ψ1(ξγ

(1)
1

), . . . ,ψ1(ξγ
(1)
k1

)
)
f2

(
ψ2(ξγ

(2)
1

), . . . ,ψ2(ξγ
(2)
k2

)
)

= f1
(
ψ̃1(ξγ

(1)
1

), . . . , ψ̃1(ξγ
(1)
k1

)
)
f2

(
ψ̃1(ξγ

(2)
1

), . . . , ψ̃1(ξγ
(2)
k2

)
)
.

PROOF. Let all notation be as in Definition 5.2. For i = 1,2, let �(ψi) = (ψi,j , j ∈ [m]).
By Corollary 4.11, we have that

(5.1) ψi(ξγ
(i)
l

) is conjugate to ψi,ji
(ξ

γ
(i)
l

), l ∈ [ki], i = 1,2.

Now by construction, we have that

�(ψ̃1) = (ψ1,1, . . . ,ψ1,j2−1,ψ2,j2,ψ1,j2+1, . . . ,ψ1,m).

Thus by Corollary 4.11 and equation (5.1), we have that

ψ̃1(ξγ
(1)
l

) is conjugate to ψ1,j1(ξγ
(1)
l

) is conjugate to ψ1(ξγ
(1)
l

), l ∈ [k1]
ψ̃1(ξγ

(2)
l

) is conjugate to ψ2,j2(ξγ
(2)
l

) is conjugate to ψ2(ξγ
(2)
l

), l ∈ [k2].
Since f1, f2 are conjugacy invariant, the desired result now follows. �

The previous few lemmas combine to immediately imply the following corollary.

COROLLARY 5.6. For any functions h1, h2 : � →C as in Proposition 3.3, T is a swap-
ping map with respect to (E(B1,B2), h1, h2, ν�,β).
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6. Probability bound. In this section, we prove the probability bound from Proposi-
tion 3.3.

PROPOSITION 6.1. Let β , L, B1, B2 be as in Theorem 1.1. Let E(B1,B2) be defined

using B1, B2, as in Definition 5.1. Let �1, �2
i.i.d.∼ ν�,β . Then

P
(
(�1,�2) /∈ E(B1,B2)

) ≤ 2
(
4 · 1024|G|2)|B1|+|B2|e−(β/2)	G(L−1).

As we will see, the proof is essentially a Peierls argument. To begin toward the proof, we
make the following definitions.

DEFINITION 6.2. Let P ⊆ �2. Given ψ1,ψ2 ∈ �, define

suppP (ψ1,ψ2) := supp(ψ1) ∪ supp(ψ2) ∪ P.

DEFINITION 6.3. Let P0,P ⊆ �2. Define

�
(2)
P0

(P ) := ∑
ψ1,ψ2∈�

suppP0
(ψ1,ψ2)=P

∏
p∈�2

ϕβ

(
ψ1(ξp)

)
ϕβ

(
ψ2(ξp)

)
.

Define �(2)(P ) := �
(2)
∅ (P ), that is, if there is no subscript, then by default we take P0 to be

the empty set.

The following lemma shows that the function �
(2)
P factors according to the notion of well

separated (recall Definition 4.2).

LEMMA 6.4. Let P1,P2 ⊆ �2 be well separated by a good rectangle B in �. Then

�(2)(P1 ∪ P2) = �(2)(P1)�
(2)(P2).

Additionally, let P0 ⊆ �2, and suppose that P0 ⊆ P1 (resp. P0 ⊆ P2). Then

�
(2)
P0

(P1 ∪ P2) = �
(2)
P0

(P1)�
(2)(P2)

(
resp. �(2)(P1)�

(2)
P0

(P2)
)
.

PROOF. To show the first identity, we need to show that there is a bijection between the
sets

E := {
(ψ1,ψ2) ∈ �2 : supp(ψ1,ψ2) = P1 ∪ P2

}
and E1 × E2, where

Ei := {
(ψ1,i ,ψ2,i) ∈ �2 : supp(ψ1,i ,ψ2,i) = Pi

}
, i = 1,2,

and moreover, if (ψ1,ψ2) is mapped to ((ψ1,1,ψ2,1), (ψ1,2,ψ2,2)) by the bijection, then we
have that ∏

p∈�2

ϕβ

(
ψ1(ξp)

)
ϕβ

(
ψ2(ξp)

)

= ∏
p∈�2

ϕβ

(
ψ1,1(ξp)

)
ϕβ

(
ψ2,1(ξp)

) ∏
p∈�2

ϕβ

(
ψ1,2(ξp)

)
ϕβ

(
ψ2,2(ξp)

)
.

Let � be a bijection as in Corollary 4.11 corresponding to P1, P2. Given (ψ1,ψ2) ∈ E

and i = 1,2, let �(ψi) = (ψi,1,ψi,2). Define the map E → E1 × E2 by (ψ1,ψ2) �→
((ψ1,1,ψ2,1), (ψ1,2,ψ2,2)). The fact that this is a bijection with the required properties fol-
lows by Corollary 4.11. The second identity may be similarly argued. �

By repeated applications of Lemma 6.4, we can obtain the following corollary. The proof
is omitted.
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COROLLARY 6.5. Let P0 ⊆ �2. Let K ⊆ �2 be a knot such that K ⊇ P0. If P ⊆ �2 is
such that K appears in the knot decomposition of P , then

�
(2)
P0

(P ) = �
(2)
P0

(K)�(2)(P − K).

In the usual Peierls argument for long range order of the Ising model at low temperatures,
one shows that the presence of a large contour is exponentially unlikely in the length of the
contour. The following two lemmas combine to give the analogous statement for our setting.

LEMMA 6.6. Let P0 ⊆ �2. Let K ⊆ �2 be a knot such that K ⊇ P0. Let �1, �2
i.i.d.∼

ν�,β , and let FK be the event that K appears in the knot decomposition of suppP0
(�1,�2).

Then P(FK) ≤ �
(2)
P0

(K).

PROOF. For notational brevity, given P ⊆ �2, let K ∈ P to mean that K is in the knot
decomposition of P . We have that

P(FK) =
∑

ψ1,ψ2∈� 1(K ∈ suppP0
(ψ1,ψ2))

∏
p∈�2

ϕβ(ψ1(ξp))ϕβ(ψ2(ξp))∑
ψ1,ψ2∈�

∏
p∈�2

ϕβ(ψ1(ξp))ϕβ(ψ2(ξp))
.

Observe that the denominator is equal to
∑

P⊆�2
�(2)(P ), while the numerator is equal to∑

P⊆�2
K∈P

�
(2)
P0

(P ) = �
(2)
P0

(K)
∑

P⊆�2
K∈P

�(2)(P − K),

where we have applied Corollary 6.5. We may further bound the right-hand side above by

�
(2)
P0

(K)
∑

P⊆�2

�(2)(P ).

The desired result now follows by combining the previous observations. �

LEMMA 6.7. Let P0,P ⊆ �2. Then

�
(2)
P0

(P ) ≤ 4|P ||G|2|P |e−β	G|P−P0|.

PROOF. In order for ψ1,ψ2 ∈ � to be such that suppP0
(ψ1,ψ2) = P , we must have

that supp(ψ1), supp(ψ2) ⊆ P . Thus there are at most 4|P | = 2|P |2|P | possible choices of
(supp(ψ1), supp(ψ2)). Now fix S1, S2 ⊆ P (such that S1 ∪ S2 ∪ P0 = P ). It remains to show
that ∑

ψ1,ψ2∈�
supp(ψi)=Si,i=1,2

∏
p∈P

ϕβ

(
ψ1(ξp)

)
ϕβ

(
ψ2(ξp)

)

≤ |G|2|P |e−β	G|P−P0|.

First, note that for any ψ1,ψ2 ∈ � such that supp(ψi) = Si for i = 1,2, we have that for any
p ∈ (S1 ∪ S2) − P0 = P − P0,

ϕβ

(
ψ1(ξp)

)
ϕβ

(
ψ2(ξp)

) ≤ e−β	G.

It thus follows that ∏
p∈P

ϕβ

(
ψ1(ξp)

)
ϕβ

(
ψ2(ξp)

) ≤ e−β	G|P−P0|.
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To finish, note that by Lemma 2.8, for i = 1,2, the number of homomorphisms ψ ∈ � such
that supp(ψ) = Si is at most |G||Si | ≤ |G||P |. �

The following lemma shows that if a knot K contains plaquettes which are very far apart
from each other, then the knot itself must be large (intuitively, this is true because knots are
in some sense “connected”). This is the last ingredient needed for our Peierls argument.

LEMMA 6.8. Let L ≥ 0. Let P1,P2 ⊆ �2 be plaquette sets such that the �∞ distance
between any vertex of P1 and any vertex of P2 is at least L. If K ⊆ �2 is a knot such that
K ⊇ P1 ∪ P2, then |K| ≥ |P1| + |P2| + L − 1.

PROOF. By assumption, there is some coordinate direction i ∈ [4] such that the distance
between P1 and P2 in the ith coordinate is at least L. Thus (without loss of generality) we
can assume that there are integers m1,m2 ∈ Z such that m2 − m1 ≥ L, and for all vertices x

of a plaquette in P1, and all vertices y of a plaquette in P2, we have that xi ≤ m1, yi ≥ m2.
For m1 + 1 ≤ k ≤ m2 − 1, let Rk be the rectangle in � defined by taking all vertices x ∈ �0
such that xi ≤ k. Observe that for all k, ∂S2(Rk) is the set of plaquettes p ∈ �2 such that
all vertices x of p have xi = k. Thus the plaquette sets (∂S2(Rk),m1 + 1 ≤ k ≤ m2 − 1) are
mutually disjoint, and moreover ∂S2(Rk) is disjoint from P1 ∪P2 for all m1 +1 ≤ k ≤ m2 −1.
By Lemma 4.5, Rk is a good rectangle, and thus by the definition of knot decomposition, we
must have that for all m1 +1 ≤ k ≤ m2 −1, K ∩∂S2(Rk) �= ∅. Combining these observations
with the assumption that K ⊇ P1 ∪ P2, we obtain that |K| ≥ |P1| + |P2| + (m2 − m1 − 1) ≥
|P1| + |P2| + L − 1, as desired. �

We finally have enough to prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. Let m0 := |B1|+|B2|. In order for (�1,�2) /∈ E(B1,B2),
there must be a knot K containing the plaquettes of B1, B2 such that the event FK occurs.
Thus by a union bound and Lemma 6.8, we have that

P
(
(�1,�2) /∈ E(B1,B2)

) ≤
∞∑

m=m0+L−1

∑
K a knot of size m

K⊇B1∪B2

P(FK).

Now combining Lemmas 4.8, 6.6, and 6.7, we further obtain (using the assumption that β is
large enough to ensure that the geometric series is summable)

P
(
(�1,�2) /∈ E(B1,B2)

) ≤
∞∑

m=m0+L−1

(
4 · 1024|G|2)m

e−β	G(m−m0)

= (
4 · 1024|G|2)m0 (4 · 1024|G|2e−β	G)L−1

1 − 4 · 1024|G|2e−β	G
.

To finish, note that the assumption on β implies that

4 · 1024|G|2e−(β/2)	G ≤ 1,

and thus we obtain

P
(
(�1,�2) /∈ E(B1,B2)

) ≤ 2
(
4 · 1024|G|2)m0e−(β/2)	G(L−1),

as desired. �

PROOF OF PROPOSITION 3.3. This is a direct consequence of Corollary 5.6 and Propo-
sition 6.1. �
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APPENDIX A: TOPOLOGICAL FACTS

A.1. Edge configurations and homomorphisms. First, we recall an explicit set of gen-
erators of π1(S1(�), x0) (for a reference, see e.g., [46], Section 2.1.7). Fix a spanning tree
T of S1(�). For any vertex x ∈ �0, let wx denote the unique path in T from x0 to x. For
any edge e = (x, y) ∈ S1(�), let ae be the closed loop obtained by starting at x0, following
wx to x, then traversing e = (x, y), then following the path wy in reverse, from y to x0.
Symbolically, we write

ae = wxew
−1
y .

(Note if e is in the spanning tree T , and x is closer than y to x0 (in the distance induced by T ),
then ae = wyw

−1
y is the path which starts at x0, follows the path wy to y, and then retraces its

steps, following the path wy in reverse, from y to x0. Thus in this case ae is equivalent to the
trivial path.) Then for any closed loop γ = e1 · · · en in S1(�) starting and ending at x0, we
have that γ is equivalent to ae1 · · ·aen . Thus if [ae] ∈ π1(S1(�), x0) denotes the equivalence
class containing ae, we have that {[ae], e ∈ S1(�) − T } is a generating set for π1(S1(�), x0).

LEMMA A.1. For any ψ ∈ �, there exists σ ∈ G�1 such that ψx0(σ ) = ψ .

PROOF. Fix a spanning tree T of S1(�). Define σ ∈ G�1 as follows. For e ∈ T , define
σe := 1. For e ∈ S1(�) − T , define σe := ψ([ae]). By construction, we have that for all
e ∈ S1(�) − T , (ψx0(σ ))([ae]) = σe = ψ([ae]). Since {[ae], e ∈ S1(�) − T } is a generating
set for π1(S1(�), x0), it follows that ψx0(σ ) = ψ , as desired. �

LEMMA A.2. Let σ, τ ∈ G�1 . Then ψx0(σ ) = ψx0(τ ) if and only if there exists a function
h ∈ G�0 with hx0 = 1, such that for all edges e = (x, y) ∈ S1(�), we have

σe = hxτeh
−1
y .

PROOF. We prove the nontrivial direction. Suppose that ψx0(σ ) = ψx0(τ ). We define
h ∈ G�0 as follows. Fix a spanning tree T of S1(�). First, as required, hx0 := 1. Now for any
edge e = (x0, x) ∈ T , define hx so that

σe = hx0τeh
−1
x ,

that is,

hx := σ−1
e τe.

More generally, for any x ∈ �0, suppose wx = e1 · · · en (recall the notation that wx is the
unique path in T from x0 to x). Define

hx := (σe1 · · ·σen)
−1τe1 · · · τen.

We now show that h is as required. Fix an edge e = (x, y). Suppose first that e ∈ T . Without
loss of generality, suppose that y is further from the root x0 of T than x, so that wy = wxe.
If wx = e1 · · · en, then

hxτeh
−1
y = (σe1 · · ·σen)

−1τe1 · · · τenτe(τe1 · · · τenτe)
−1σe1 · · ·σenσe = σe,

as desired. Now suppose e ∈ S1(�)\T . Let wx = e1 · · · en, wy = f1 · · ·fm. Then

hxτeh
−1
y = (σe1 · · ·σen)

−1τe1 · · · τenτe(τf1 · · · τfm)−1σf1 · · ·σfm

= (σe1 · · ·σen)
−1(

ψx0(τ )
)([ae])σf1 · · ·σfm.
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To finish, we want to show

(σe1 · · ·σen)
−1(

ψx0(τ )
)([ae])σf1 · · ·σfm = σe.

If we move all the σ ’s to the right-hand side, we see that we need to show(
ψx0(τ )

)([ae]) = (
ψx0(σ )

)([ae]),
which is true by assumption. �

LEMMA A.3 (Lemma 4.1.3 of [23]). Let σ ∈ G�1 , and h ∈ G�0 with hx0 = 1. Let τ ∈
G�1 be the edge configuration given by τe := hxσeh

−1
y for each e = (x, y) ∈ �1. If there

exists x ∈ �0 such that hx �= 1, then σ �= τ .

PROOF OF LEMMA 2.4. This follows by Lemmas A.1, A.2, and A.3. �

PROOF OF LEMMA 2.14. Let ψ ∈ �. The existence of σ ∈ GF(T ) such that ψx0(σ ) = ψ

follows from the proof of Lemma A.1. For uniqueness, observe that for e ∈ S1(�) − T , we
must have σe = (ψx0σ)([ae]) = ψ([ae]). Thus ψx0 is a bijection. The various properties of
ψx0 follow by Lemma 2.3. �

A.2. Good rectangles. PROOF OF LEMMA 4.5. Case (a) is [23], Lemma 4.1.20. For
case (b), first note that by [23], Lemma 4.1.20, S2(B) is simply connected, since B is a
rectangle. Now, suppose that the vertices of B are given by the set {x ∈ �0 : xi ≤ k} for some
i ∈ [4], k ∈ Z (the case xi ≥ k follows by the same argument). This implies that ∂S2(B) is
the 2-complex obtained from the set of plaquettes p whose vertices all lie in the set {x ∈ �0 :
xi = k}. This implies that Sc

2(B) is also a rectangle (whose vertices are {x ∈ �0 : xi ≥ k}),
and thus by [23], Lemma 4.1.20, Sc

2(B) is simply connected. To see why ∂S2(B) is simply
connected, note that it essentially is a rectangle in one lower dimension, that is, it is a 3D
rectangle. Following the proof of [23], Lemma 4.1.20, in [23], Appendix B, we may attach
to ∂S2(B) all 3-cells whose boundary plaquettes are all contained in ∂S2(B). This operation
does not change the fundamental group (see e.g., [46], Section 4.1.5), and the resulting space
is a 3D rectangle in R

4, which is simply connected. �

A.3. Knot upper bound. Most of the following discussion is borrowed from [23], Sec-
tion 4.4. Indeed, to prove Lemma 4.8, we will show how to deduce it from [23], Corol-
lary 4.4.8.

DEFINITION A.4 (Cf. Definition 3.2.2 of [23]). Given a plaquette set P ⊆ �2, we may
obtain an undirected graph G(P ) as follows. The vertices of the graph are the plaquettes of
P . Place an edge between any two plaquettes p1,p2 ∈ P such that there is a 3-cell c in �

which contains both p1, p2.
A vortex is a set V ⊆ �2 such that G(V ) is connected. For general plaquette sets P ⊆

�2, we may partition G(P ) into connected components G1, . . . ,Gk , which corresponds to a
partition of P into vortices V1, . . . , Vk , such that Gi = G(Vi) for all 1 ≤ i ≤ k. Observe that
as the partition of an undirected graph into connected components is unique, the resulting
partition of P into vortices is also unique.

Given a plaquette set P ⊆ �2, let the unique partition of P into compatible vortices
V1, . . . , Vk as previously described be called the vortex decomposition of P . For each
1 ≤ i ≤ k, we say that Vi is a vortex of P .
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DEFINITION A.5. Given a plaquette set P ⊆ �2, define B(P ) as a cube of minimal side
length in � such that all plaquettes of P are in S2(B(P )), but not in ∂S2(B(P )). If the choice
of B(P ) is not unique, fix one such cube. For P,P ′ ⊆ �2, define the function

J
(
P,P ′) :=

{
1 P ∩ B

(
P ′) �=∅ or P ′ ∩ B(P ) �= ∅,

0 otherwise.

To be clear, we are slightly abusing notation here by writing P ∩B(P ′) �= ∅; what this means
is that there is a plaquette p ∈ P which is contained in B(P ′).

DEFINITION A.6. We define a hierarchy of undirected graphs Gs(P ), for integers s ≥ 0.
First, to define G0(P ), consider the vortex decomposition P = V1 ∪ · · · ∪ Vn0 . Define P 0

i :=
Vi , 1 ≤ i ≤ n0. The vertex set of G0(P ) is {P 0

1 , . . . ,P 0
n0

}. The edge set is{{
P 0

i , P 0
j

} : i �= j, J
(
P 0

i , P 0
j

) = 1
}
.

Now suppose for some s ≥ 0, Gs(P ) is defined, with vertices P s
1 , . . . ,P s

ns
⊆ �2 which are

compatible (and thus disjoint), and such that P = P s
1 ∪ · · · ∪P s

ns
. To define Gs+1(P ), first let

ns+1 be the number of connected components of Gs(P ), with connected components given
by the partition I1 ∪ · · · ∪ Ins+1 = [ns]. For 1 ≤ i ≤ ns+1, define

P s+1
i := ⋃

j∈Ii

P s
j .

The vertex set of Gs+1(P ) is {P s+1
1 , . . . ,P s+1

ns+1
}, and the edge set is

{{
P s+1

i , P s+1
j

} : i �= j, J
(
P s+1

i , P s+1
j

) = 1
}
.

Observe that if s ≥ 1 is such that ns = 1, then Gs−1(P ) is connected.

DEFINITION A.7. For P ⊆ �2, define s∗(P ) := min{s : ns = 1}. If ns > 1 for all s,
define s∗(P ) = ∞. Let D be the collection of P ⊆ �2 such that s∗(P ) < ∞, and such that
for all s ≤ s∗(P ), any vertex of Gs(K) is of size at least 2s . Observe that if P ∈ D and
|P | = m, then s∗(P ) ≤ �log2 m�, and consequently G�log2 m�−1(P ) is connected. Now define

A(m, s) := {
P ∈ D : |P | = m,Gs(P ) is connected

}
.

By the previous observation, note if s ≥ �log2 m� − 1, then A(m, s) = A(m, �log2 m� − 1).
Now for p ∈ �2, define

A(m, s,p) := {
P ∈ A(m, s) : P � p

}
.

LEMMA A.8 (Corollary 4.4.8 of [23]). For all m ≥ 1, 0 ≤ s ≤ �log2 m� − 1, p ∈ �2, we
have that ∣∣A(m, s,p)

∣∣ ≤ (
1024)m

.

LEMMA A.9. Let K ∈ K, s ≥ 0. If ns > 1, then there are no isolated vertices of Gs(K).
Consequently, every connected component of Gs(K) is of size at least 2, and thus if also
s ≤ s∗(K), then for all vertices P s

i of Gs(K), we have |P s
i | ≥ 2s . Consequently, K ∈ D.

PROOF. Let P s
i be a vertex of Gs(K). Since ns > 1 by assumption, we have K −P s

i �= ∅.
Then by the definition of knot decomposition (Definition 4.6), there cannot exist a cube which
well separates P s

i from K − P s
i (note that such a cube would automatically have side length
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strictly less than the side length of �, and thus by Lemma 4.5, it would be a good rectangle).
Therefore we must have B(P s

i ) ∩ (K − P s
i ) �= ∅, and thus P s

i cannot be an isolated vertex in
Gs(K). �

PROOF OF LEMMA 4.8. By Lemma A.9, for any knot K ∈ K, we have that K ∈ D. Thus
if |K| = m, then K ∈ A(m, �log2 m� − 1). The desired result now follows by Lemma A.8.

�

APPENDIX B: HIGGS BOSON LARGE κ

In this section, we will adapt our swapping argument technique to establish correlation
decay for Wilson loop observables for lattice Yang–Mills theories coupled to a Higgs boson.
This is the model treated in the work [1].

In said work, the analysis of the Higgs’ boson differed in two cases; namely, the cluster
expansion techniques used when κ was large or when κ was small were different. In this
section, we discuss briefly the case that κ is large.

The main new term of the Hamiltonian, when coupled to the Higgs’ boson, is a term of
the form κ

∑
e=(x,y)∈�1

Re[φx Tr[ρ(σe)]φ−1
y − Tr[ρ(1)]]. When κ is large, this term tends to

force σe = 1 as well as φx = φy .
The new difficulty introduced when applying our swapping argument is that we now need

to describe how one will swap the Higgs’ boson configuration appropriately. On a high level,
the appropriate “clusters” for the Higgs boson are found by locating the boundaries between
unequal φx and φy . The swapping map we design will preserve said boundaries as appropri-
ate. In what follows, we go into more detail on the construction.

B.1. Introduction. Our configurations consist of two components. The first is the gauge
field σ : �1 → G with representation ρ. (We abuse notation slightly and use �1 to represent
all edges rather than just the positively oriented ones; similarly, �2 will denote all of the
plaquettes, rather than just the positively oriented ones.) We have considered excitations of
this field in the previous sections. The second is a Higgs boson field that acts as a map from
the vertices �0 → H . H is a subgroup of the multiplicative group of the unit circle. The
Hamiltonian that we consider is,

HN,β,κ(σ,φ) = ∑
p∈�2

β Tr
[
ρ

(
(dσ)p

) − ρ(1)
]

+ κ
∑

e=(x,y)∈�1

Re
[
φx Tr

[
ρ(σe)

]
φ−1

y − Tr
[
ρ(1)

]]
.

(B.1)

If we consider computing the expectation of Gauge invariant functions, then we can make
the following simplification to the gauge group. We let Ht be the set of elements ht such that
there exists some g ∈ G such that ρ(g) = htI . Then, by an appropriate simultaneous gauge
transformation of σ and φ, we may consider the case that the Higgs field is a map from
�0 → H/Ht . The benefit of this gauge transformation is that if φx Tr[ρ(σe)]φ−1

y = Tr[ρ(1)],
then necessarily φx = φy and σe = 1.

As such, we can have the following definition of support of our configuration.

DEFINITION B.1. Consider a configuration C = (σ,φ). We let EE, the set of our excited
edges, be defined as,

(B.2) EE := {
e = (x, y) ∈ �1 : φx �= φy or σe �= 1

}
.

The definition of the support of our configuration is as follows,

(B.3) supp(C) = {p ∈ �2 : ∃e ∈ EE s.t. e ∈ δp}.
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Namely, a plaquette p is in our support if there exists an edge e in the set of our excited edges
EE such that e is in the boundary of p.

Given two configurations C1 and C2, the joint support of C1 and C2 will be the union of the
supports of C1 and C2.

(B.4) suppP (C1,C2) = supp(C1) ∪ supp(C2) ∪ P.

Our goal in this section is to prove the following theorem,

THEOREM B.2. Consider two boxes B1, B2 separated by �∞ distance L. Additionally,
let f and g be functions such that f only depends on the values of σ and φ in the box B1,
while g depends only on the values of σ and φ in the box B2. Furthermore, assume that
transformations of the form σe → ηxσeη

−1
y for some auxiliary field η : �0 → G, do not affect

the values of f or g. Then, for sufficiently large β and κ , we have that

(B.5) Cov(f, g) ≤ C‖f ‖∞‖g‖∞|G|8L|H/Ht |8L exp
[
−c

κ

6

]L−|B1∪B2|
,

where C is a constant that does not depend on |G|, |H/Ht |, β or κ , and c is a constant
defined in Lemma B.7.

The statement can easily be generalized to the form phrased in Theorem 1.1 with little
difficulty.

B.2. Construction of the swapping map. We will restrict our analysis to the case that
H/Ht is the group Z2. We can call one of the charge assignments + and the other charge
assignments −. Our assignment of Higgs boson fields would be analogous to the assignment
of charges in the Ising model.

Let B1 and B2 be two boxes separated by distance at least L. Let C1 = (σ1, φ1) and C2 =
(σ2, φ2) be two configurations of gauge and Higgs boson fields.

Let V1 ∪ V2 ∪ · · · ∪ VN be the vortex decomposition of suppB1∪B2
(C1,C2). Assume that

B1 and B2 are in different vortices of the vortex decomposition. Assume that B1 ∈ V1 and
B2 ∈ V2. We will show that we can construct a swapping map in this case.

Observe from the definition of our support that σe = 1 for all edges e that are not boundary
plaquettes of some plaquette in supp(C1,C2). It is very easy to define our exchange map for
σ . We let �1(V2) be the set of edges that form boundary vertices of plaquettes in V2. We set
σ̃1 to be equal to σ1 on �1(V2)

c and equal to σ2 on �1(V2). We set σ̃2 to be equal to σ2 on
�1(V2)

c and equal to σ1 on �1(V2).
The difficulty is to assign the Higgs boson field charges. Notice that the component of

the support due to the assignment of Higgs boson fields is due to the presence of phase
boundaries. These phase boundaries will separate regions of + charge from regions of −
charge.

LEMMA B.3. Let φ be an assignment of Higgs boson charges. Let PB1 ∪ · · · ∪ PBn be
some collection of phase boundaries found in φ. There exists some map χ : �0 → Z2 such
that φχ will have all the same phase boundaries of φ except for the union PB1 ∪ · · · ∪ PBN .

PROOF. The basic geometry is that one can find islands of different charges with the
phase boundaries separating these islands. One can flip the innermost islands and iteratively
proceed outwards to get rid of all phase boundaries.

For an example of this construction, consider the case that there is a single phase boundary
PB1. This phase boundary surrounds some set of vertices V ; all of the vertices inside V will
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have the same Higgs boson charge since there are no other phase boundaries. One can merely
flip all of the charges inside V to match the charge outside V .

Now consider the case that we have two phase boundaries, PB1 and PB2. Without loss
of generality, one can find two sets of vertices V1 and V2 such that PB2 surrounds V2, PB1
surrounds V1, and V2 ⊂ V1. One can assert that all of the charges in V2 are the same while all
of the charges of V1 \ V2 are the same. To find the map χ , one can first flip the vertices of V2
to match those of V1; this will remove the phase boundary PB2. Afterward, one can flip all of
the vertices of V1 to remove the phase boundary PB1. Ultimately, this amounts to fixing the
charge assignments of V2 and flipping those of V1 \ V2. �

Let PB1
1 ∪ PB1

2 ∪ · · ·∪ PB1
n be the phase boundaries of C1 found in V1, and PB2

1 ∪ PB2
2 . . .∪

PB2
m be the phase boundaries of C2 found in V2. Using Lemma B.3, one can find some map

χ1 : �0 → Z2 such that the new field φ1χ1 will have the same phase boundaries as φ1 outside
of the vortex V2 but will get rid of the phase boundaries PB1

1 ∪ . . .PB1
n in V1.

One can similarly find a map χ2 : VN → Z2 that removes the phase boundaries PB2
1 ∪

· · · ∪ PB2
m and otherwise fixes all other phase boundaries. We define φ̃1 to be φ1χ1χ

−1
2 and

φ̃1 = φ2χ2χ
−1
1 . We see that φ̃1 will have the same phase boundary as φ1 outside of V2 and

will have the phase boundaries PB2
1 ∪· · ·∪PB2

m inside of V1. φ̃2 will have the phase boundary
as φ2 outside of V2 and the phase boundary PB1

1 ∪ · · · ∪ PB1
n inside of V2.

Our swapping map sends C1,C2 → (C̃1, C̃2) where C1 = (σ̃1, φ̃1) and C2 = (σ̃2, φ̃2).

LEMMA B.4. Under the construction above we have,

suppB1∪B2
(C1,C2) = suppB1∪B2

(C̃1, C̃2).

As a consequence of the above, the swapping map constructed above is an involution, and
thus, a bijection.

PROOF. Part 1: Equality of the supports
Let p be a plaquette in suppB1∪B2

(C1,C2). If p were in B1 ∪ B2, then it would still be in

suppB1∪B2
(C̃1, C̃2). Therefore, we only need to consider the case that p is in the support due

to having an excited edge on its boundary. Without loss of generality, assume that p has an
excited edge of C1.

Assume now that p is in the support due to having an edge with (σ1)e �= 1. If e were
an edge of �1(V2), then (σ̃2)e = (σ1)e �= 1. Thus, e is an excited edge of σ̃2 and p is in
the support of V2. If e ∈ �1(V2)

c, then (σ̃1)e = (σ1)e, and e is an excited edge of C̃1. Thus,
p ∈ supp(C̃1).

Now consider the case that p is in the support due to having an edge e = (x, y) in the
boundary with (φ1)x �= (φ1)y . This means that the edge e was part of a phase boundary in C1.
Assume that p is not in V2. This means that the phase boundary containing the edge e was not
one of the phase boundaries PB1

1, . . . ,PB1
n that were removed under the transformation C1 →

C̃1. Thus, (φ̃1)x �= (φ̃1)y , and p is in the support of C̃1. If instead, p was in PB1
1 ∪ · · · ∪ PB1

n,
then we would have (φ̃2)x �= (φ̃2)y , and p would be in the support of C̃2.

This shows that,

suppB1∪B2
(C1,C2) ⊂ suppB1∪B2

(C̃1, C̃2).

Now, we show the other inclusion. Let p be a plaquette in suppB1∪B2
(C̃1, C̃2) and assume

that p is not in B1 ∪B2. Without loss of generality, assume that p is in supp(C̃1). Now assume
that p is in this support because there is an edge e ∈ δp with (σ̃1)e �= 1. If the edge e was in
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�1(V2), then (σ2)e = (σ̃1)e �= 1. Thus, e is an excited edge of σ2, and p ∈ supp(σ̃2). If instead
e was in �1(V2)

c, then (σ1)e = (σ̃1)e, and e is an excited edge of σ1. Thus, p ∈ supp(σ1).
Now consider the case that p has a boundary edge e = (x, y) with (φ̃1)x �= (φ̃1)y . Thus,

the edge e is part of a phase boundary. The only phase boundaries found in φ̃1 are those phase
boundaries of φ1 that lie outside of V2 (namely, all phase boundaries except for PB1

1 ∪ · · · ∪
PB1

n) or one of the phase boundaries PB2
1 ∪ · · · ∪ PB2

m of σ2 that were in V2. In the former
case, e would be part of a phase boundary in φ1, while it would be part of a phase boundary
in φ2 in the other. In either case, we see that p would be in suppB1∪B2

(C1,C2).
This shows the other inclusion and, thus, we have equality of supports.
Part 2: Showing the map is an involution
Now, since the supports are equal, we would have the same vortex decomposition. Thus,

the definition of V2 would be the same whether we consider the pair (C1,C2) or (C̃1, C̃2).
The exchange map for the gauge field configuration σ only depends on knowing the edges of
E(V2), so it is clearly an involution on these gauge field configurations.

Furthermore, one can see that the relevant phase boundaries of φ̃1 are PB2
1 ∪ · · · ∪ PB2

m,
while the relevant phase boundaries of φ̃2 are PB1

1 ∪ · · · ∪ PB1
n. We see that the map χ2 would

remove the phase boundary of φ̃1 while χ1 would remove the phase boundary of φ̃2. We see
that the map applied to φ̃1 sends φ̃1 to φ̃1χ2χ

−1
1 = φ1χ1χ

−1
2 χ2χ

−1
1 = φ1. Similarly, φ̃2 would

be sent to φ2. Thus, we see that our proposed map is an involution. �

LEMMA B.5. Let P be the measure generated by the Hamiltonian HN,β,κ . Then,

(B.6) P(C1)P(C2) = P(C̃1)P(C̃2).

PROOF. It would suffice to show two equations.
First, we have to show,

(B.7)

∑
p∈�2

[
Tr

[
ρ

(
(dσ1)p

)] − Tr
[
ρ(1)

]] + ∑
p∈�2

[
Tr

[
ρ

(
(dσ2)p

)] − Tr
[
ρ(1)

]]

= ∑
p∈�2

[
Tr

[
ρ

(
(dσ̃1)p

)] − Tr
[
ρ(1)

]] + ∑
p∈�2

[
Tr

[
ρ

(
(dσ̃2)p

)] − Tr
[
ρ(1)

]]
.

The only nontrivial terms on both sides correspond to plaquettes with (dσ)p �= 0. Let p

be a plaquette with (dσ1)p �= 0. There exists some edge e ∈ δp with (σ1)e �= 0. Thus, the
plaquette p must belong to supp(σ1, σ2)B1∪B2 . Thus, it suffices to prove the above inequality
when restricted to the support S := suppB1∪B2

(σ1, σ2) = suppB1∪B2
(σ̃1, σ̃2).

Let p be a plaquette in the support S. If all of the boundary edges of p are in �1(V2),
then (σ1)e = (σ̃2)e and (σ2)e = (σ̃1)e for all boundary edges of p. This would imply that
Tr[ρ((dσ1)p)] = Tr[ρ((dσ̃2)p)] and Tr[ρ((dσ2)p)] = Tr[ρ((dσ̃1)p)]. We could apply similar
logic if all of the boundary edges of p are in �1(V2)

c.
We now need to consider the case that some boundary edges of p are in �1(V2) while

others are in the complement. We first claim that if some boundary edge e of p is in �1(V2),
then (σ1)e = (σ2)e = 1. If this were not the case, this would imply that e is an excited edge
and, therefore, p must lie in V2. But, this would imply that all boundary edges of p are in
�1(V2). This contradicts our assumption on p. Therefore, (σ1)e = (σ2)e = 1. Furthermore,
(σ̃1)e = (σ̃2)e = 1. We can use this conclusion to show that (σ1)e = (σ̃1)e and (σ2)e = (σ̃2)e
for all edges in the boundary of p. As before, this would show that the sums of the Wilson
loop actions are the same. This completes the proof of our first equality.
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Second, we have to show,

(B.8)

∑
e=(x,y)∈�1

(φ1)x Tr
[
ρ

(
(σ1)e

)]
(φ1)

−1
y + ∑

e=(x,y)∈�1

(φ2)x Tr
[
ρ

(
(σ2)e

)]
(φ2)

−1
y

= ∑
e=(x,y)∈�1

(φ̃1)x Tr
[
ρ

(
(σ̃1)e

)]
(φ̃1)

−1
y + ∑

e=(x,y)∈�1

(φ̃e)x Tr
[
ρ

(
(σ̃2)2

)]
(φ̃2)

−1
y .

It suffices to prove the above identity as a sum over activated edges. Let e be an activated
edge. If e were in �1(V2), this would mean that (σ1)e = (σ̃2)e and (σ2)e = (σ̃1)e. Further-
more, (φ1)x(φ1)

−1
y = (φ̃2)x(φ̃2)

−1
y and (φ2)x(φ2)

−1
y = (φ̃1)x(φ̃1)

−1
y . This is due to the fact

if e were part of a phase boundary in �1(V2), then we would perform a flipping so that the
phase boundaries of φ1 match those of φ̃2 while the phase boundaries of φ2 match those of
φ̃1 in V2. Otherwise, e is not part of a phase boundary, and all quantities are trivially equal to
1.

Ultimately, this means that, (φ1)x Tr[ρ((σ1)e)](φ1)
−1
y = (φ̃2)x Tr[ρ((σ̃2)e)](φ̃2)

−1
y and

(φ2))x Tr[ρ((σ2)e)](φ2)
−1
y = (φ̃1)x Tr[ρ((σ̃1)e)](φ̃1)

−1
y .

If, instead, e was in �1(V2), we would know that (φ1)x Tr[ρ((σ1)e)](φ1)
−1
y = (φ̃1)x ×

Tr[ρ((σ̃1)e)](φ̃1)
−1
y and (φ2)x Tr[ρ((σ2)e)](φ2)

−1
y = (φ̃2)x Tr[ρ((σ̃2)e)](φ̃2)

−1
y . We can sum

this relationship over all edges to get the desired energy equality. �

B.3. Completing the argument. The discussion of the previous section establishes that
we have a swapping map. At this point, we can apply Lemma 3.2 to derive our decay of
correlation bounds. The only possibility we need to exclude is that there is a vortex that
would connect boxes B1 and B2 that are separated by distance L. The probability of this event
occurring can be followed by using the polymer counting functions of Section 6. We remark
that our bounds are even easier since the condition for splitting vortices is only determined
by the condition of compatibility, that is, whether they are adjacent to each other or not. We
give the following definition:

DEFINITION B.6. Our polymer counting function �
(2)
P0

is defined as follows:

(B.9) �
(2)
P0

(P ) = ∑
suppP0

(C1=(σ1,φ1),C2=(σ2,φ2))=P∑
v∈�0

(φ1)v>0,
∑

v∈�0

∑
v∈�0

(φ2)v>0

exp
[
HN,β,κ(C1)

]
exp

[
HN,β,κ(C2)

]
.

This polymer counting function satisfies properties similar to those outlined in Lemmas
6.4 and 6.6. Just as these lemmas are consequences of splittings applied to each individual
component (either ψ1 or ψ2) independently, we can apply the arguments of [1], Lemma 2, to
C1 and C2 separately to derive these splitting lemmas (for vortices rather than knots). The only
lemma we would need to change is the quantitative probability bound derived in Lemma 6.7;
to bound the total probability percolation, one can sum quantities of the form �

(2)
B1∪B2

(V )

over appropriate vortices V using an argument similar to the proof of Proposition 6.1.
In the next lemma, we derive an analog of the bound in Lemma 6.7. An argument similar

to the proof of Proposition 6.1 to bound the probability of percolation using estimates on
�

(2)
B1∪B2

(P ) is left to the reader.

LEMMA B.7. Let P be a plaquette set that cannot be decomposed into disjoint vortices.
Assume that P contains the boxes B1 and B2 that are separated by distance K . Furthermore,
define the constant c as

c := 2 max
(a,b) �=(1,1)

Re
[
Tr

[
aρ(b)

] − Tr
[
ρ(1)

]]
,
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where a can vary over entries in H/Ht , and b can vary over entries in G. Then, we have the
following bound on �

(2)
B1∪B2

.

(B.10) �2
B1∪B2

≤ 4|P ||G|8|P ||H/Ht |8|P | exp
[
−c

κ

6

]|P |−|B1∪B2|
.

PROOF. Consider two configurations C1 and C2 such that suppB1∪B2
(C1,C2) = P . Then,

supp(C1) and supp(C2) must be subsets of P . There are thus 4|P | ways to choose the supports
supp(C1) and supp(C2). Furthermore, the only edges that have a nontrivial gauge field are
those on the boundary of the plaquettes of P . There are at most 4|P | of these boundary edges
and |G|8|P | ways to assign the σ ’s for C1 or C2. Similarly, the only nontrivial Higgs boson
values with φv �= 1 are those found on boundary vertices of P . This will give us |H/Ht |8|P |
ways to assign φ1 and φ2.

Finally, we remark that each plaquette p ∈ P \ (B1 ∪ B2) must be excited by having an
excited edge e on the boundary. Furthermore, an excited edge can excite at most 6 plaquettes.
Therefore, we must have at least (|P |−|B1∪B2)

6 excited edges. Each of these excited edges will
contribute exp[−cκ]. �

APPENDIX C: HIGGS BOSON SMALL κ

The previously discussed paper [1] also considered the case when κ is small. In contrast
to the case when κ is large, there is no longer any compulsion for φx = φy . Clusters are no
longer defined by looking at the boundaries between distinct φx .

Instead, the main idea of [1] was to expand the part of the exponential contain-
ing κ

∑
e=(x,y)∈�u

1
[2 Re[φx Tr[ρ(σe)]φ−1

y ] + c] in the Hamiltonian using the power series

exp[x] = ∑∞
i=0

xi

i! . This introduces the new random variable i, representing the power used
in the expansion along each edge. The swapping argument used in this section will not in-
volve swapping the values of the Higgs field φx . The method, instead, will involve swapping
the values of the field I , while summing over the Higgs field values φ. We will give the
details in what follows.

C.1. Introduction to the model. To deal with the small κ case, we first have to expand
the Hamiltonian via the random current expansion.

Let c be a constant such that,

2 Re
[
φx Tr

[
ρ(σe)

]
φ−1

y

] + c > 0,

for all values of φx , φy , and σe.
We can consider the Hamiltonian,

H 1
N,β,κ(σ,φ) = β

∑
e∈�1

Tr
[
ρ(σe) − ρ(1)

]

+ κ
∑

e=(x,y)∈�u
1

[
2 Re

[
φx Tr

[
ρ(σe)

]
φ−1

y

] + c
]
,

(C.1)

where the sum e ∈ �u
1 is over the set of unoriented edges. Namely, instead of oriented pairs

e and −e, we only include a single unoriented edge.
The random current expansion of this Hamiltonian would be,

(C.2)

HN,β,κ(σ,φ, I ) = β
∑
e∈�1

Tr
[
ρ(σe) − ρ(1)

]

+ κ
∑

e=(x,y)∈�u
1

I (e) log
[
2 Re

[
φx Tr

[
ρ(σe)

]
φ−1

y

] + c
] − log I (e)!.
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We have a new field I (e) that takes nonnegative integer values. Marginalizing over the
I (e) variables would return our original Hamiltonian H 1

N,β,κ . We have a new definition of
support according to our new Hamiltonian HN,β,κ .

DEFINITION C.1. We define our set of activated edges AE to be those edges e with
I (e) �= 0.

(C.3) AE := {
e : I (e) �= 0

}
,

and the set of activated vertices AV is the set,

(C.4) AV := {v : ∃e ∈ AE s.t. v ∈ δe}.
We can now define the support of our configuration C = (σ,φ, I ) to consist of those pla-

quettes which have a boundary vertex in AV or those plaquettes with (dσ)p �= 1.

(C.5) supp(C) = {
p ∈ PN : ∃v ∈ AV s.t. v ∈ δδp or (dσ)p �= 1

}
.

Given two configurations C1 and C2, we define

(C.6) suppP (C1,C2) = supp(C1) ∪ supp(C2) ∪ P.

Instead of directly swapping configurations of our Hamiltonian, we consider a swapping
model on our associated reduced Gibbs’ measure. We can parameterize our configurations on
our reduced Gibbs’ measure as (ψ,φ, I ), where ψ ∈ Hom(π1(S1(�), x0),G). For each ψ ,
let 
 denote the set of gauge field configurations σ that map to ψ .

Our reduced Gibbs’ measure has the following distribution,

(C.7) G(ψ,φ, I ) = ∑
σ∈


1

Z
exp

[
HN,β,κ(σ,φ, I )

]
.

Our goal in this section is to prove the following theorem,

THEOREM C.2. Consider two boxes B1, B2 separated by �∞ distance L. Additionally,
f and g be functions such that f only depends on the values of σ and φ in the box B1,
while g depends only on the values of σ and φ in the box B2. Furthermore, assume that
transformations of the form σe → ηxσeη

−1
y for some auxiliary field η : �0 → G, do not affect

the values of f or g. Then, for sufficiently large β and κ , we have that

(C.8) Cov(f, g) ≤ C‖f ‖∞‖g‖∞|G|2LcL−|B1∪B2|,

where C is a constant that does not depend on |G|, |H |, β , or κ , and c is a constant defined
in Lemma C.7.

Our gauge invariance condition includes examples of actions such as Wilson loop expecta-
tions. Furthermore, the gauge invariance condition means that we would only need to consider
functions of ψ rather than σ and, therefore, we could consider the auxiliary Hamiltonian H
and reduced Gibbs’ measure G. In the remainder of this section, we prove this theorem by
defining a swapping map for this reduced Gibbs’ measure.
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C.2. Swapping on reduced configurations. This section will construct an almost swap-
ping for the gauge class.

Namely, we will do the following. Let RC1 = (ψ1, φ1, I1) and RC2 = (ψ2, φ2, I2) be two
reduced configurations. We denote by 
1 the set of all σ ’s that will map to the homomor-
phism ψ1 and by 
2 the set of σ ’s that map to the homomorphism ψ2.

Let B1 and B2 be two boxes separated by distance L. Let K1 ∪ · · · ∪ Kn be the knot
decomposition corresponding to suppB1∪B2

(C1,C2). Observe that if we replace σ1 with any
other gauge field assignment in 
1, we would have the same knot decomposition. Assume
that B1 is in Ki and B2 is in Kj for i �= j .

Apply the mapping T : (ψ1,ψ2) → (ψ̃1, ψ̃2) according to the knot decomposition K1 ∪
· · · ∪ Kn as in Section 5. Let 
̃1 and 
̃2 be the sets of configurations that correspond to ψ̃1
and ψ̃2. In addition to this, switch I1(e), I2(e) on the set of activated edges of Kj and switch
φ1, φ2 on the activated vertices of Kj ; these switches will give us Ĩ1, Ĩ2 and φ̃1, φ̃2. We
denote the full map from (ψ1, φ1, I1), (ψ2, φ2, I2) → (ψ̃1, φ̃1, Ĩ1), (ψ̃2, φ̃2, Ĩ2) as T̂ . We will
first show that T̂ is an involution.

LEMMA C.3. Consider two configurations RC1 = (ψ1, φ1, I1) and RC2 = (ψ2, φ2, I2).
We first have that,

(C.9) suppB1∪B2
(RC1,RC2) = suppB1∪B2

(
T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2)

.

As a consequence of the above statement on the supports, we can argue that T̂ is an
involution and, thus, a bijection.

PROOF. Let p be a plaquette in the support suppB1∪B2
(RC1,RC2) that is not part of

B1 ∪B2. This support has the knot decomposition K1 ∪ . . .Kn where Ki contains B1, and Kj

contains B2 with Kj �= Ki . There are two possibilities for p: either there is a boundary vertex
of p that is simultaneously a boundary vertex for some activated edge in AE1 (the activated
edges of RC1) or AE2 (the activated edges of RC2), or we have a nontrivial current around a
vertex with ψ1(ξp) �= 1 or ψ1(ξp) �= 1.

Now, consider the first case that p shares a boundary vertex with an edge of AE1 or AE2.
Without loss of generality, we may assume that this is an edge e of AE1. If this plaquette were
part of the knot Kj , then e would be an activated edge of the configuration T̂ (RC1,RC2)|2 by
our definition of the map T̂ . Thus, p would be part of the support of T̂ (RC1,RC2)|2 and also
in suppB1∪B2

(T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2). If, instead, the plaquette p was not part of the

knot Kj , then e would instead be an activated edge of the configuration T̂ (RC1,RC2)|1, and
we could apply the same logic.

If we consider the case that p has nontrivial current ψ1(ξp) �= 1 or ψ2(ξp) �= 1, then the fact
that p ∈ suppB1∪B2

(T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2) is true from the corresponding property
of T in Lemma 5.3.

This shows that

suppB1∪B2
(RC1,RC2) ⊂ suppB1∪B2

(
T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2)

.

The other inclusion is similar. If p were in

suppB1∪B2

(
T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2)

,

then either p shares a boundary vertex with an activated edge in one of T̂ (RC1,RC2)|1 or
T̂ (RC1,RC2)|2, or it has a nontrivial current with some ψ(ξp) �= 1.

The case that p has a nontrivial current was again treated in Lemma 5.3. Now we consider
the case that p shares a boundary vertex with an activated edge. Without loss of generality,
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assume the activated edge was in T̂ (RC1,RC2)|1. All activated edges of T̂ (RC1,RC2) come
from an activated edge in RC1 (if p was not part of Kj ) or an activated edge in RC2 (if p was
part of Kj ). Thus, p still shares a boundary vertex of an activated edge either in RC1 or in
RC2. In either case, p would belong to suppB1∪B2

(RC1,RC2) as desired.
This shows the other inclusion,

suppB1∪B2

(
T̂ (RC1,RC2)|1, T̂ (RC1,RC2)|2) ⊂ suppB1∪B2

(RC1,RC2).

Since the supports of both sides are equal, we see that both supports would have the same
knot decomposition K1 ∪ · · · ∪ Kn. By the definition of T̂ , T̂ applied to T̂ (RC1,RC2) would
reverse the switching of the activated edges in Kj we performed in the first T̂ . Lemma 5.3
additionally shows that T̂ will be an involution when restricted to the coordinates (ψ1,ψ2)

(since T̂ is equal to T on this pair). �

The remainder of this section is devoted to showing that T̂ preserves probability.
It will be a consequence of the following lemma.

LEMMA C.4. Let RC = (ψ,φ, I ) have a support with knot decomposition K1 ∪K2 . . .∪
Kn. Let B1 be the box that separates K1 from K2 ∪ · · · ∪ Kn. Let 
 be the set of all configu-
rations σ that map to ψ .

Now, we can define notions that are related to our splitting. Let φin, I in denote the values
of φ and I restricted to the activated vertices and edges in K1 (so φin and I in take trivial
values for all other vertices and edges). We similarly let φout and I out denote the values of φ

and I not included in φin and I in (so they would take trivial values on the activated vertices
and edges in K1). Finally, let (ψ in,ψout) denote the splitting of the homomorphism ψ in
accordance with the separation by the box B1 in Lemma 4.10. Let 
in (
out) be the set of all
gauge configurations σ that map to the homomorphism ψ in (ψout).

Then, we have that,

(C.10)

1

|G||�0|−1

∑
σ∈


exp
[
HN,β,κ(σ,φ, I )

]

= 1

|G||�0|−1

∑
σ∈
in

exp
[
HN,β,κ

(
σ,φin, I in)]

× 1

|G||�0|−1

∑
σ∈
out

exp
[
HN,β,κ

(
σ,φout, I out)].

One can iterate this construction to derive components φin,j , I in,j , 
in,j at the iteration
of splitting Kj from Kj+1 ∪ . . .Kn. (With φin,1 = φin).

As a consequence, we notice that,

1

|G||�0|−1

∑
σ∈


exp
[
HN,β,κ(σ,φ, I )

]

=
n∏

j=1

1

|G||�0|−1

∑
σ∈
j

exp
[
HN,β,κ

(
σ,φin,j , I in,j )]

.

(C.11)

PROOF. With respect to B1, one can choose a representative σ in 
 such that σ can
decompose as a product σ inσ out. σ in satisfies the property that its only nontrivial edge values
are inside the box B1, and σ out has its only nontrivial edges outside the box B1.



170 A. ADHIKARI AND S. CAO

By introducing an auxiliary field η, we see that we have,

(C.12)

1

|G||�0|−1

∑
σ∈


exp
[
HN,β,κ(σ,φ, I )

]

= ∏
p∈�2

ϕβ

(
ψ(ξp)

) 1

|G||�0|
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× exp
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e=(x,y):I (e) �=0

I (e)

× log
[
2 Re

[
(φx)Tr
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ρ(ηx)ρ
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(σ1)e

)
ρ

(
(σ2)e

)
ρ

(
η−1

y

)]
(φy)

−1] + c
]]

= ∏
p∈�2(K1)

ϕβ

(
ψ in(ξp)

) 1

|G||�0(K1)|
∑

ηin:�0(K1)→G

× exp
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e=(x,y):I in(e) �=0

I in(e)

× log
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2 Re
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φin

x Tr
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ρ

(
ηin

x

)
ρ

(
(σ1)e

)
ρ

((
ηin

y

)−1)](
φin

y

)−1] + c
]]

× ∏
p∈�2(K1)

ϕβ

(
ψout(ξp)

) 1

|G||�0(K1)|c
∑

ηout:�0(K1)
c→G

× exp
[ ∑
e=(x,y):I out �=0

I out(e)

× log
[
2 Re

[
φout

x Tr
[
ρ

(
ηout

x

)
ρ

(
(σ2)e

)
ρ

((
ηout

y

)−1)](
φout

y

)−1] + c
]]

.

The first equality merely reparameterizes the configurations in σ in terms of the auxiliary
field η. The point of the last two lines is that B1 can split the connected clusters of I in and
I out of the box B1. This causes the Higgs boson interaction to split so that the Higgs boson
interaction inside the box only depends on I in, φin, σ1, and ηin.

One can create dummy summation variables to turn ηin and ηout into full auxil-
iary fields rather than restricted auxiliary fields. Once this is done and a compensat-
ing power of 1

|G| is added, one sees that the last two lines are a representation of
1

|G||�0|−1

∑
σ∈
out exp[HN,β,κ(σ,φout, I out)], and the two lines preceding those represent

1
|G||�0|−1

∑
σ∈
in exp[HN,β,κ(σ,φin, I in)]. �

An immediate corollary of the above fact is our desired multiplicative identity.

COROLLARY C.5. Let RC1 = (ψ1, φ1, I1) and RC2 = (ψ2, φ2, I2) be two configurations
with suppB1∪B2

(RC1,RC2) = K1 ∪ · · · ∪ Kn with B1 in Ki and B2 in Kj with j �= 1. Let

the configurations after switching be RC̃1 = (ψ̃1, φ̃1, Ĩ1) and RC̃2 = (ψ̃2, φ̃2, Ĩ2). After the
switching, we have the probability conservation relation:

(C.13)

1

|G|2|�0|−2

∑
σ∈
1

∑
σ∈
2

exp
[
HN,β,κ(σ,φ1, I1)

] × exp
[
HN,β,κ(σ,φ2, I2)

]

= 1

|G|2|�0|−2

∑
σ∈
̃1

∑
σ∈
2

exp
[
HN,β,κ(σ, φ̃1, Ĩ1)

] × exp
[
HN,β,κ(σ, φ̃2, Ĩ2)

]
.
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PROOF. By using Lemma C.4, we see that we can decompose each sum of the form
1

|G||�0|−1

∑
σ∈
1

exp[HN,β,κ(σ,φ1, I1)] into its constituent parts ψ
l,in
1 , φ

l,in
1 , and I

l,in
1 with

respect to the division given by the knot decomposition K1 ∪ K2 ∪ · · · ∪ Kn and write it as a
product.

(C.14)

1
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1

exp
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]
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(
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1
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2

exp
[
HN,β,κ(σ,φ2, I2)

]

=
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l=1

1

|G||�0|−1
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l,in
2

exp
[
HN,β,κ

(
σ,φ

l,in
2 , I

l,in
2

)]
.

Now, the configurations (ψ̃1, φ̃1, Ĩ1) and (ψ̃1, φ̃2, Ĩ2) are formed by exchanging the com-
ponents (ψ

j,in
1 , φ

j,in
1 , I

j,in
1 ) and (ψ

j,in
2 , φ

j,in
2 , I

j,in
2 ). Thus, we have that,

(C.15)

1

|G||�0|−1
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̃1

exp
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HN,β,κ(σ, φ̃1, Ĩ1)

]

= ∏
l �=j

1

|G||�0|−1

∑
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l,in
1

exp
[
HN,β,κ

(
σ,φ

l,in
1 , I

l,in
1

)]

× 1

|G||�0|−1

∑
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j,in
2

exp
[
HN,β,κ

(
σ,φ

j,in
2 , I

j,in
2

)]
.

A similar expression holds for (ψ̃2, φ̃2, Ĩ2). From these explicit decompositions, one can
see that the products of the expressions are the same. This shows that the swapping T̂ pre-
serves probabilities. �

A consequence of the preceding corollary is that T̂ is a swapping map on reduced config-
urations.

C.3. Probability bounds. As we have mentioned in the last section, we have constructed
a swapping map that allows one to switch reduced configurations as long as that, in the knot
decomposition, the boxes B1 and B2 are in different knots in the support. Thus, we have a
decay of correlation bound whose error probability is bounded by the probability that B1 and
B2 belong in the same knot in the knot decomposition. In this section, we define a polymer
counting function that allows us to bound the probability of this event.

DEFINITION C.6. Out polymer counting function �
(2)
P0

is defined as follows:

(C.16) �
(2)
P0

(P ) = 1

(|G||H/Ht |)2|�0|−2

∑
suppP0

(C1,C2)=P

exp
[
HN,β,κ(C1)

]
exp

[
HN,β,κ(C2)

]
.
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The main property we need regarding the above polymer counting function is that it splits
as a product when there are two sets P1 and P2 in the support that are separated by a box
B . This is an analog of Lemma 6.4 and can be proved using the methods of [1], Lemma 9.
A consequence of this splitting is that the probability that there is a knot K that contains
both boxes B1 and B2 is bounded by �

(2)
B1∪B2

(K). Once we have a quantitative bound on

�
(2)
B1∪B2

(K) based on exp[−c|K|] for some c, we can bound the contribution of all knots
by using the arguments in the proof of Proposition 6.1. Our next lemma gives a bound on
�

(2)
B1∪B2

(K), and we leave the full details of the bounds coming from summing up knots to
the reader.

LEMMA C.7. We have the following bound on �
(2)
P0

(P ).
We define c as,

c := max
(

exp
[
β

(
max
g �=1

2 Re
[
Tr

[
ρ(g) − ρ(1)

]])]
,

κ

24
exp

[
max
a �=b

(
2 Re

[
a Tr

[
ρ(b)

]] + c
)])(C.17)

�
(2)
P0

(P ) ≤ 16|P |G2|P |28|P |c|P |−|P0|.(C.18)

PROOF. Consider two configurations C1 and C2 with joint support P . This means that the
supports of C1 and C2 are subsets of P . There are 4|P | ways to choose the support of C1 and
C2. Furthermore, the set of plaquettes p with nontrivial circulation (dσ �= 1) in C1 is a subset
of the support of C1 (and similar with C2). Thus, there are at most 4|P | ways to choose the
set of plaquettes P1 (resp. P2) with nontrivial circulation in C1 (resp. C2). This gives us our
first factor of 16|P | in equation (C.18).

Given the set of plaquettes P1 with nontrivial circulation, there are at most |G||P1| homo-
morphisms ψ1 that will have P1 as the subset with nontrivial circulation. Similarly, there are
at most |G||P2| homomorphisms ψ2 with P2 as the subset with nontrivial circulation. The
factor of |G|−(|�0|−1) will cancel out the factor coming from considering the gauge configu-
rations σ that would map to a homomorphism ψ1 or ψ2. This explains the factor |G|2|P | in
equation (C.18).

Furthermore, the only activated edges in our configuration must be boundary edges of
plaquettes in P . There are at most 24|P | ways to choose the set of activated edges in C1 and
24|P | ways to choose the set of activated edges in C2. This explains the third factor 28|P | in
equation (C.18).

Finally, we remark that if a plaquette is in P \ P0, then either the plaquette has nontrivial
circulation in one of C1 or C2 or there is an activated edge in C1 or C2 that shares a boundary
vertex with p. The first quantity in the minimum appearing in c bounds the contribution from
a plaquette with nontrivial circulation. The second factor bounds the contribution from the
existence of an activated edge. The bound comes from summing over I (e) from 1 to ∞ and
further noticing that a single activated edge could result in at most 24 plaquettes appearing in
the support. This gives us our last factor of c|P |−|P0|. �
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