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In the setting of lattice gauge theories with finite (possibly non-Abelian)
gauge groups at weak coupling, we prove exponential decay of correlations
for a wide class of gauge invariant functions, which in particular includes
arbitrary functions of Wilson loop observables.

1. Introduction. Lattice gauge theories are statistical mechanical models which arise as
discretizations of Yang—Mills theories. They were systematically introduced by Wilson [50]
in 1974, and since then they have been the subject of much study by both physicists and
mathematicians alike. The main physical motivation for the study of lattice gauge theories
is to understand the standard model of physics, which describes the behavior of elementary
particles at short distances. Mathematically, the goal is to construct a continuum Yang—Mills
theory, and one of the main approaches toward this is by taking a continuum limit of lattice
gauge theories. So far, this has not been achieved, but nonetheless there have been many sem-
inal works proving various aspects about the behavior of lattice gauge theories. For instance,
Bataban [6-19] proved ultraviolet stability (a notion of tightness) for lattice gauge theories
in 3D and 4D via a renormalization group approach. The monograph of Glimm and Jaffe
goes into significant detail on constructive field theory, including the rigorous construction
of U (1) theory in two-dimensions [38]. For results on quark confinement, see the works [22,
26, 36, 39, 40]. The works [20, 25, 27, 41] look at large N limits of lattice gauge theories and
resulting forms of gauge-string duality. We emphasize that we have left out many important
references in this paragraph; see [24] for a more complete list as well as a historical overview.

Associated to lattice gauge theories is a parameter G, which is typically taken to be a
Lie group. However, in this paper, we will make a mathematical simplification and take G
to be a finite group. Of course, this lessens the direct relevance to physics, but on the other
hand, lattice gauge theories with finite groups G have been previously studied in the physics
literature; see, for example, [3, 28, 35, 43, 45, 48, 49] for an incomplete list. Additionally,
from a statistical mechanical point of view, such models are interesting because they give
examples of discrete models with non-Abelian symmetries. These symmetries require the
use of topology to handle, and result in relations to knot theory as pointed out by [47]. Such
considerations do not appear in the usual discrete spin models such as the Ising or Potts
models.

This paper expands on the analysis of the works [1, 23] to answer a natural question in
this area. The purpose of those papers was to calculate (for finite gauge groups) the expec-
tations of certain natural observables associated to lattice gauge theories. Having computed
expectations of observables, a natural next step is to show decay of correlations of those same
observables. This is precisely the purpose of the present paper. In general, computing observ-
able expectations and showing correlation decay are two related problems which however
require different proof techniques, and thus the arguments of [1, 23] which give the former
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do not immediately give the latter. To prove correlation decay in this paper, we combine the
technical tools developed in the previous papers with some crucial additional proof ideas that
are tuned to the problem at hand.

The problem of showing exponential decay of correlations for a 4D lattice gauge theory
(with gauge group a non-Abelian Lie group, say SU(3)) is one of the central questions of lat-
tice gauge theory, as it is intimately related to showing the existence of a mass gap. Following
the discussion of [24], Section 5, let fg(x) denote the correlation between an appropriately
defined Wilson loop variable centered at O and another centered at x. Then, the existence
of a mass gap for a given 8 > 0 is equivalent to the following statement: there exists some
&(B) € (0, 0o) such that

1 1
lim 108 /p00)

_@ o [x]—>o00 |x|

The conjecture is that the above holds for all B > 0 (and we furthermore expect that
limg_, o §(B) = 00). Given this discussion, the main result of the present work can be in-
terpreted as showing the existence of a mass gap in the setting of finite (non-Abelian) gauge
groups at large 8. In general, it is more difficult to prove exponential decay of correlations
at large B compared to small B, as the latter case can usually be handled by a routine high-
temperature expansion, and this works not just for finite groups, but also non-Abelian Lie
groups (see [44]).

1.1. Previous work. There has been much recent interest in computing the expectations
of Wilson loop observables—Chatterjee [24] considered the case G = Z;, Forrstrom et al.
[32] handled finite Abelian G, and Cao [23] covered finite (possibly non-Abelian) G. There
is also recent work by Garban and Sepulveda [37] for G = U(1). For lattice gauge theories
with an additional Higgs field (i.e., lattice Higgs models), Forsstrom et al. [34] considered
the finite Abelian case, and Adhikari [1] considered the finite (non-Abelian) case. Forsstrom
[33] has also analyzed a more relevant class of observables for lattice Higgs models.

As for previous work on the decay of correlations, there is the classic monograph by Seiler
[45], which shows exponential decay of correlations for finite Abelian lattice gauge theories
in a variety of settings, using cluster expansion techniques.! There is also recent work by
Forsstrom [31], which also proves exponential decay in the Abelian case, using a certain
probabilistic swapping argument, which relates correlations to percolation probabilities of
the union of two independently sampled configurations. The general idea for this type of
argument previously appeared before in the literature in other settings; see, for example, [2].
We will also use this general principle, however there are significant difficulties that arise in
the non-Abelian case. We will discuss these difficulties, as well as difficulties in extending
the cluster expansion of [45] to our setting in Section 1.2.

Finally, for some recent work on decay of correlations for other statistical mechanical
models, see [4, 5, 29, 30, 42].

1.2. The difference between finite Abelian and finite non-Abelian. In this section, we
comment on the main differences between Abelian lattice gauge theories and non-Abelian
lattice gauge theories (here all groups are assumed to be finite). Actually, at a probabilistic
level, it is generally the case that there is no difference, in that whatever probabilistic state-
ment that is true in the finite Abelian case should also have an analog in the finite non-Abelian

t is claimed in the monograph that the given cluster expansions extend without difficulty from finite Abelian
groups to general finite groups. However, as pointed out by Borgs [21], Section 7, this is not the case.
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FIG. 1. An example of two defects which are topologically linked.

case. However, this always has to be proven, and the proofs are not merely technical improve-
ments on the arguments which work in the Abelian case. Rather, significant new ideas must
be developed to handle the non-Abelian case.

We now try to convey the reason why. The first part of the discussion will not be new to
those who are familiar with Pirogov—Sinai theory. Recall that we are always working at low
temperature (i.e., large ). As is usually the case for finite spin systems, at low temperatures
it is best to work in terms of “defects.” For example, for the Ising model, the defects are the
edges with spin disagreements. The benefit is that now there is a unique ground state, which
is the state with no defects (in the Ising model, this would be induced by either the all +
configuration or all — configuration). At low temperature, the system can be analyzed as a
small perturbation of this unique ground state. Mathematically, this is usually achieved by
writing the partition function as a convergent cluster expansion. Once this is done, many (if
not all) desired properties of the model can then be read off from general cluster expansion
results (see Seiler’s monograph [45]).

In order to write the partition function as a cluster expansion, the key property that one
needs is that the partition function obeys a certain factorization property, which in words
very roughly amounts to saying that disjoint defects appear independently of each other.
Now for finite Abelian theories, this factorization property can be proven directly (see e.g.,
[23], Lemma 3.2.3). However, for finite non-Abelian theories, the same proof does not work,
and indeed cannot possibly work, because the exact same factorization property is simply
not true anymore. To try to indicate why, consider an idealized situation with two defects as
pictured in Figure 1.

In the figure, the two defects are given by the two loops, and observe that they are linked.
In the Abelian case, the aforementioned factorization property holds for these two defects,
whereas in the non-Abelian case, factorization does not hold, even though the two defects
may be arbitrarily far apart from each other (see [47]). Thus in order to obtain some sort of
weaker factorization property, we must treat the above picture as a single “connected” defect,
even if there really are two connected components in the usual sense. This basic example
points to the fact that non-Abelian theories lead to nontrivial topological considerations, and
this seems to be a genuinely different phenomenon which is unseen elsewhere, as we are not
aware of any other statistical mechanical models which lead to such considerations about the
defects.

More generally, connected defects in non-Abelian theories can be thought of as elementary
links (in the sense of knot theory), although they are referred to as knots in [23, 47]. With this
notion, a weaker form of the factorization property may be proved (this itself is nontrivial and
requires algebraic topology—see [23], Section 4). However, even after arriving at the right
notion of connected defect in non-Abelian theories, there are additional difficulties that pre-
vent one from writing the partition function as a cluster expansion in this case.? Perhaps the

2In [47] a cluster expansion is claimed, however much of the proof is omitted, and we are unable to reconstruct
the proof from the arguments that are given.
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main difficulty is that the elementary defects now interact in a multi-body interaction, instead
of just a two-body interaction (and a cluster expansion typically requires the latter). This es-
sentially comes from the fact that one can have three knots which are linked yet pairwise
unlinked (the classic example being the Borromean rings).

Thus in summary, non-Abelian theories lead to a much more complicated notion of con-
nected defect, and do not (as of yet) admit a cluster expansion. This is why the previous
results [31, 45] on correlation decay only hold for Abelian groups—the former work relies
on standard cluster expansion results, while the latter paper gives a more probabilistic argu-
ment that does not use cluster expansion, but which in the end still crucially relies on the
decomposition into connected defects which (as we explained) is more straightforward in the
Abelian case.

By contrast, in this paper, we must delicately combine a probabilistic argument with a
careful handling of the topological effects that appear. This is due to the fact that the ele-
mentary defects are (1) now much more complicated to define (as we tried to convey) and
(2) having defined them, they are very delicate to work with. In particular, we need to have
a precise understanding of the associated topological difficulties in order to apply any sort of
probabilistic “swapping” argument. These difficulties have no analogue in the Abelian case.
In the end, we are forced to find novel arguments in order to combine the various intricate as-
pects that are present to arrive at our proof. For these reasons, we believe that our arguments
for the general non-Abelian case are substantial improvements over previous proofs which
work only in the Abelian case.

1.3. Definitions and notation. We proceed to give the basic definitions and then state our
main theorems. We start with a preliminary discussion of concepts and definitions necessary
to understand the paper; one can refer to [23] or [1] for more details.

Given an integer n > 1, define [n] := {1, ..., n}. Let G be a finite group, with the identity
denoted by 1. We will commonly refer to G as the gauge group. Let p be a unitary represen-
tation of G, with dimension d, and let x = Tr p be the character of p. From here on, fix a
finite lattice

A = ([a1,b1] x --- x [a4, b4]) N 72,

where b; — a; is the same for all i € [4]. The results of this paper apply to any such A. Let Ag
be the set of vertices of A. Let A be the set of (nearest-neighbor) edges of A. We implicitly
assume that each edge ¢ = (x, y) € A1 carries a positive orientation, that is, y = x + ¢;
for some i € [4]. In this paper, we only work in dimension four, as it is the most relevant
dimension for lattice gauge theories (see [24]). However, we expect that our results can be
extended to general dimensions, with some additional technical arguments.

We will refer to the elements o € G*! as “edge configurations” (because they assign edges
to group elements). Given an edge configuration o € G*! and an edge e = (x, y) € A1, we
can naturally extend o to the negatively oriented version of e by setting oy ) := 0, L

By a “plaquette” p in A, we mean a unit square whose four boundary edges are in A. Let
A» be the set of plaquettes in A. For p € A, suppose the vertices of p are x1, x3, x3, X4, in
(say) counter-clockwise order. In an abuse of notation, for o € G2, define

(1.1) Op += O0(x1,x2) 0 (x2,x3) O (x3,x4) O (x4,x1) -
Define
(1.2) Sa(o):= ) Re(x(1) = x(9,)).

PEA2
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(By the conjugacy invariance of x, it does not matter which vertex of p we choose to start at
when defining 0,.) For B > 0, let 15 g be the probability measure on G defined by

(13) /"LA,ﬁ(O-) = Zx’lﬁe_ﬁsA(U),

where Z, g is the normalizing constant. We say that g is the lattice gauge theory with
gauge group G, on A, with inverse coupling constant 8. In this paper, we will work in the
large B regime, which is also known as the weak coupling regime.

Let y be aclosed loop in A, denoted by its sequence of oriented edges ey, .. ., e,. We write
ly| for the length of y, that is, the number of edges in y. For o € G*!, define (in another
abuse of notation)

Oy :=0¢, "+ 0¢

We say that o, is the holonomy of o around y . Let x be a character of G (there is no relation

between yo and the character x which appears in the definition (1.2) of S ). The Wilson loop
observable W,, ,, associated to y, xo is defined as a function GA1 — C by the formula

Wy 40(0) = x0(0), o€ G .

Wilson loop observables are the main observables of interest in lattice gauge theories. See
[24], Section 4, for the physical motivation in defining these observables, as well as for further
discussion. Next, define

Ag :=minRe(x (1) — x(g))-

geG

g#l
We can almost state our main result. In the following, by the notation “X ~ p g,” we
mean that ¥ is a G*!-valued random variable with distribution 15 g. We say that a func-
tion f : G¥ > Cis conjugacy invariant if, for any gi1,...,gx € G and hy,..., hy € G, we
have that f(hl_lglhl, ey hk_lgkhk) = f(g1,...,8k). A rectangle B is a subset of A of the
form [x1, y1] X - - X [x4, y4], where we allow x; = y;. We let | B| be the number of plaquettes
contained in B.

THEOREM 1.1. Let 8 > A—lG(l 14 4+ 41og|G|). Let L > 0. Let By, By C A be rectangles
that are at a £*° distance at least L from each other (i.e., the £*° distance between any
vertex x of By and any vertex y of Bj is at least L). Let ki, ky > 1, and let fi : Gk - C,

f>: G*2 — C be conjugacy invariant functions. Fori = 1,2, let yl(i), ces yk(ii) be closed loops
contained in B;. Let ¥ ~ jup g. Then
|C0V(f1(2y1<1>, EV/ill))’ f2(2y1(2>, s Eyk(zm))’

B B _ _
<4(4- 102G ) BB £ oIl fallooe™ B/PAGED)

REMARK 1.2. Examples of fi, f> that one could take in the theorem are Wilson loop
observables, or, more generally, arbitrary functions of arbitrary numbers of Wilson loop ob-
servables.

We now sketch the underlying idea of the proof, which is quite general and, in prin-
ciple, could be applied to other types of spin systems or statistical mechanical models.
For illustration purposes, suppose that we have some probability measure p on the space
Q = {£1}%0 of %1 spin configurations. Let u®> be the twofold product of 1, so that
w®? is a probability measure on Q2. Let fi, f> : 2 — R be functions. The key assump-
tion is: suppose that there is a bijection T : Q> — Q2 such that for all (o1, 02) € Q2, we
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have that u®*(T (01, 02)) = u®*(01, 02) and f1(01) f2(02) = f1(Ti(01,02)) f2(T1 (01, 02),
where here T} : 2 — Q is the first component function of 7. Think of 7' as a map that swaps
o1 and o, on some set of vertices (e.g., the support of f>), which somehow satisfies the first
condition (i.e., probabilities are preserved).

Now, let X, 2> Hd- . Observe that the first condition on 7 implies that 7 (X1, ¥7) 4

(X1, ¥»); indeed, that condition says that ,u®2 oT = ,u®2, and since T is a bijection, we
y ]

obtain u®2 o T~! = 4®2, and now note that £®? o T~ is the law of T(Z;, ¥») (and of

course, /L®2 is the law of (X1, 35)). Thus in particular, 77 (X1, ¥7) 4 1. Combining the
second condition on 7" with this observation, we obtain

E[f1(Z1) 2(Z)] =E[fi(T1(Z1, £2)) 2(T1(Z1, £2))] =E[ f1(Z1) f2(Z1)],

from which we obtain Cov(f1(X1), f2(2£1)) =0 (recall that X, ¥» - m).

Of course, in practice, we will not have the bijection T defined on all of Q2. Rather, we will
need to find a subset £ C Q2 on which we can define the bijection T : E — E which satisfies
the two listed properties. A modification of the previous argument then gives an upper bound
on Cov(f1(X1), f2(X1)) in terms of P((X1, X2) ¢ E) (so we want to take the set E as large
as possible).

Section 3 gives a more precise statement of this general argument. Needless to say, the
main difficulty will be in actually constructing 7 and E for given fi, f>, and then bounding
P((X1, X») ¢ E). For this, we will rely on some concepts introduced in [23], which we review
in Sections 2 and 4. Finally, if the reader is interested, in Appendices B and C, we show how
to handle Higgs models at large and small « (these models were recently analyzed in [1]).
The corresponding analysis for models with a Higgs’ field is more technical and requires
more notation that is not easy to unify with the existing arguments. Thus for the convenience
of the reader, we have placed the discussion of these ideas in the Appendices.

2. Preliminaries. In this section (following [23]), we rephrase everything in the lan-
guage of algebraic topology, using the starting observation that edge configurations o € G*!
can be thought of as homomorphisms of the fundamental group of the lattice. The main ben-
efit of this rephrasing is that it allows us to prove Lemma 4.9 (this was essentially already
done in [23], see the proof of [23], Lemma 4.2.21). This lemma, in turn, allows us to prove
Lemma 4.10 and Corollary 4.11, which form the main technical foundation for the proof of
Theorem 1.1.

Recall that a cell complex is a certain type of topological space obtained by assembling
cells of varying dimensions; see, for example, Section 0.2.4 of [46]. In our case, the cells will
be unit squares of dimension at most two, that is, vertices, edges, and plaquettes. So for us,
a one-dimensional cell complex, or 1-complex, is a space consisting of vertices and edges,
and thus it is a graph. A two-dimensional cell complex, or 2-complex, is a space consisting
of vertices, edges, and plaquettes.

In what follows, if we define a 1-complex by specifying a collection of edges, then that
1-complex is understood to also include the vertices of the edges in the collection. Similarly,
if we define a 2-complex by specifying a collection of plaquettes, then that 2-complex is
understood to also include the vertices and edges of the plaquettes in the collection.

Let S1(A) denote the 1-skeleton of A, that is, the 1-complex obtained from the edges
of A. Throughout this paper, fix some vertex xo € Ag. Recall that the fundamental group
m1(S1(A), x0) is a group of equivalence classes of closed loops starting and ending at xg. The
equivalence relation is given by setting equivalent any two loops of the form £;ee~'¢; and
€145, where e = (x, y) is an edge of S1(A), £1 is a path in S;(A) from xg to x, and £> is a
path in S7(A) from x to xg. The group operation is induced by loop concatenation.

Next, we observe that edge configurations o € G*! naturally induce a homomorphism
from 71 (S1(A), xp) to G.
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DEFINITION 2.1. Let Q2 :=Hom(m((S1(A), x0), G) be the set of homomorphisms from
m1(S1(A), x0) to G. Define the map ¥y, : GM — Q as follows. Let o € GA1. Given an
element & € w1 (S1(A), xg), suppose that £ can be represented as a loop that traverses the
edges ey, ..., e,. Define (Yy,(0))(§) := o, - - - 0,. Note that this is well defined, since if
ee~! appears, then this gives the term 0e0,—1 = 0,0, =1,

REMARK 2.2. The map vy, is exactly the same as the map ¥ defined in [23], Sec-
tion 4.1. The difference in notation is due to the fact that in [23], Section 4.1, a spanning tree
T of S1(A) is fixed, and 1//;0 is defined in terms of this spanning tree. It was not noted in that
paper, but it turns out that the definition of w;o is independent of 7', and thus we prefer to
write ¥y, in the present paper.

An immediate consequence of Definition 2.1 is the following lemma, whose proof is omit-
ted.

LEMMA 2.3. Let 0 € GM. For any loop y in A, and any path £ in A from xg to the
initial vertex of y, we have that o, is conjugate 1o (Y, (o)~ yo).

The following lemma is essentially [23], Lemma 4.1.1. Due to the differences in notation
between that paper and the present paper, we provide a proof of this lemma in Appendix A.1.

LEMMA 2.4. For any ¥ € Q, there are exactly |G|*01=! edge configurations o € G
such that Yy, (o) = V.

REMARK 2.5. This lemma shows that homomorphisms i € € can be thought of as
gauge equivalence classes.

Next, in the following sequence of definitions and lemmas culminating in Lemma 2.11
below, we proceed to reinterpret the lattice gauge theory (1.3) as giving a random homomor-
phism.

DEFINITION 2.6. For all x € Ay, fix an arbitrary path £(xg, x) from xg to x in S1(A). Let
y be aloop in A with the initial vertex x. Define &, := £(xo, x)y£(xo, X)L em(S1(A), xp).
For a plaquette p € A2, let y, be the same loop which traverses the boundary of p that was
used in the definition (1.1) of 0. Define &), :=§,,,.

DEFINITION 2.7. For ¢ € 2, define
supp(¥) :={p € Ay 1 Y (§p) # 1.

This definition does not depend on the particular choices of £(xg, x), x € Ao from Defini-
tion 2.6, as a consequence of Lemma 2.3 and the fact that ¥, : G — Q is onto (which
itself follows by Lemma 2.4).

The following fact was proven in [23], Lemma 4.3.7, and thus we omit the proof here.

LEMMA 2.8. Let P C Ajy. The number of ¥ € Q2 such that supp(yy) = P is at most
|G|IP|‘

DEFINITION 2.9. For B >0, define g5 : G — (0, 1] by
¢p(g) :=exp(—BRe(x (1) — x(g))), g€G.
Recalling the definition (1.2) of Sx, we have that e=54(9) = [Tpen, vp(op).



EXPONENTIAL DECAY OF CORRELATIONS 147

DEFINITION 2.10. Define the probability measure vj g on €2 as follows:

va W) = (23 5) " [T es(W (&),

PEA

where Z p 1s the normalizing constant.
LEMMA 2.11. Let ¥ ~ pup g. Then Yy, (X) ~ v g.

PROOF. For any ¢ € 2, we have that

Py () =v)=2Z35 > T[] eslon.
oeGMl peEN;

Vo @)=V

By Lemma 2.3, for any o € G2 such that VYxo(0) = ¥, we have that pg(o,) = pg(V(§)p))
for all p € A>. Combining this with Lemma 2.4, we obtain

Py (2) = 9) o |G TT wp(w&p) o< ] es(vEp)).

peNr peNr

The desired result now follows. O

LEMMA 2.12. Letk > 1, and let f := G¥ — C be a conjugacy invariant function. Let
Y1, ..., Yk be closed loops in A. Let ¥ ~ jup g, and let W ~ vy g. Then

Ef(Zy,,....5,)=Ef(¥(E,), ..., ¥(E,).
PROOF. By Lemma 2.3 and the assumption that f is conjugacy invariant, we have that

TEys e By) = F((Yag (D)) Epy)s s (Vg (B)) E))-

By Lemma 2.11, we have that ¥, (X) ~ va g. The desired result follows. []

We close this section by noting that v, is a bijection when restricted to certain subsets of
GM.

DEFINITION 2.13. Given a spanning tree T of S1(A), define

GF(T):={o e GM:g,=1foralle € A}.}.

Here “GF” stands for “gauge-fixed.”

The following lemma is essentially [23], Lemma 4.1.6. Due to the differences in notation
between that paper and the present paper, we provide a proof of this lemma in Appendix A.1.

LEMMA 2.14.  For any spanning tree T of S1(A), ¥y, : GF(T) — 2 is a bijection. More-
over, supp(o) = supp(Vy, (o)) for all o € GE(T). For any loop y in A, and any path £ in A
from xq to the initial vertex of y, we have that o, is conjugate to (Y, (o)~} yL).
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3. A general swapping argument. In this section, we give the general “swapping map”
idea behind our proof of decay of correlations, as previously sketched after the statement of
Theorem 1.1.

DEFINITION 3.1 (Swapping map). Let E C Q2. Let hy, hy : © — C be arbitrary func-
tions. Let 7 : E — E. We say that T is a swapping map with respect to (E, hy, ha, v g) if
T is a bijection, and if additionally the following hold for all (1, ¥») € E:

1. Let v%?ﬂ be the twofold product of vj g on Q2. Then v%?ﬁ(T(wl, Yn)) = v%’zﬂ((wl,

V2)). o
2. Let (Y1, ¥2) =T (Y1, ¥2). Then

(Y1) ha(Y2) = hi (Y1) ha ().

The following lemma shows that the existence of a swapping map leads to a covariance
bound.

LEMMA 3.2. Let E C Q2. Let hy, hy : Q — C be arbitrary functions. Let T : E — E be
a swapping map with respect to (E, hy, ha, va g). Let W1, W3 Hd- va,g. Then

|Cov(h1(W1), ha(¥D))] < 201A1 llc A2l P((W1, W2) ¢ E).

PROOF. Let F :={(¥1, ¥y) € E}. We claim that
3.1 E(h (WD)ha (W) 1F) = E(h1 (¥1)ha(¥2)1F).
Given this claim, we obtain
Cov(h1(W1), ha(¥1)) = E(h1(¥1)h2 (V1)) — E(h (V1) ha(¥2))
=E(hi (V) ho(¥1)Lre) — E(hi (¥1)ha(¥2)1Fe).
We may then trivially bound both
|E(h1 (W) ha(W1)1Ee)|, [E(h1 (V1) (W2)LFe)| < [1h1lloollh2llocP(FC),

from which the desired result follows.
Thus it just remains to show the claim (3.1). We have that

E(hi (W) (¥D1E) = Y v ﬁ((lﬂl V) (Y1) ha(Y1).
(Y1,y2)€E
Since T : E — E is a bijection, the right-hand side above is equal to
Yo (T W )i (Ti (. ) ha (T (Y1 ¥2)).
(Y1,Yy2)€E

where 77 : E — Q is the first coordinate function of 7. Using conditions (1) and (2) of
Definition 3.1, we obtain that the above is further equal to

Z VA,3((1//1,1/&))h1(1/f1)h2(1ﬁ2)— (h1 (WD) ha(¥2)1F),
(1, ¥2)€E

as desired. [

The following proposition shows that swapping maps exist for functions of the form spec-
ified in Theorem 1.1.
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PROPOSITION 3.3. Let B, L, By, By be as in Theorem 1.1. There exists a set
E(By, By) C Q2 such that for Wy, W, iid- VA, 8, we have

P((U1,W2) ¢ E(B1, By) <2(4- 102G )1 1HPle= P2 80L=D),

Moreover, there exists a bijection T : E(B1, By) — E(B1, By) such that T is a swapping map
with respect to (E(By, B2), h1, ha, va ), for any functions hy, hy : @ — C of the following
form. Let ki, ky > 1, and let f; : GY — C be a conjugacy invariant function for i = 1, 2. For
i=1,2,let yl(i), e, yk(ii) be closed loops contained in B;, and then for € 2, let h; (Yr) :=
fiWE o). ... W(Eyk(io))-

We next note that Theorem 1.1 follows directly from Proposition 3.3.

PROOF OF THEOREM 1.1. This is a direct consequence of Lemmas 2.12 and 3.2, and
Proposition 3.3. [

The remainder of the paper is devoted to proving Proposition 3.3. In Section 4, we in-
troduce the technical tools that are essential to the ensuing arguments. Then in Section 5,
we construct the event E (B, By) and the map T, and finally in Section 6, we bound the
probability P((\W1, W,) ¢ E(B1, B)).

4. Knot decomposition. In this section, we review the concept of “knot decomposition™
as well as some other results which were introduced in [23]. These results will allow us to
prove Lemma 4.10, which (along with Corollary 4.11, its immediate corollary) is the main
result of this section. Recall the discussion of 2-complexes at the beginning of Section 2. We
start with a series of definitions, most which have previously appeared in [23], Section 4.

DEFINITION 4.1.  Given a rectangle B contained in A, let S>(B) denote the 2-complex
obtained by including all plaquettes of B. Let .52(B) be the 2-complex obtained by including
all plaquettes which are on the boundary of B, but not on the boundary of A. Note if B is
contained in the interior of A, then d.S5>(B) is simply the 2-complex made of all boundary
plaquettes of B. Let S5(B) be the 2-complex obtained by including all plaquettes of A that
are not in B, as well as all plaquettes in d.52(B).

DEFINITION 4.2 (Well separated). Given plaquette sets Py, P, € Aj, we say that Py, P>
are well separated, or P; is well separated from P», if there exists a rectangle B in A such
that P; C S>(B), P, € S5(B), and no plaquettes of Py or P, are contained in 95>(B). For
such a B, we say that P;, P, are well separated by B, or that B well separates P;, P». Note
this definition is not symmetric in Py, P,.

Recall that a topological space is said to be simply connected if it is path connected and
has trivial fundamental group.

DEFINITION 4.3 (Good rectangle). Let B be a rectangle in A. We say that B is good if
$2(B), S5(B), and 95>(B) are all simply connected.

REMARK 4.4. The motivation for the preceding definition is to have Lemma 4.9 (see
also [23], Lemmas 4.1.9 and 4.2.21). Actually, this lemma should probably hold for general
rectangles, at the cost of an additional argument that we prefer not to give (we are trying to
keep the topological arguments to a minimum). Thus, we will work exclusively with good
rectangles in this paper.
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The following lemma gives the main examples of good rectangles that will be relevant for
us.

LEMMA 4.5. Let B be a rectangle in A such that either: (a) all side lengths of B are
strictly less than the side length of A, or (b) the vertices of B is a set of the form {x € Ay :
xi <k}or{x € Ao:x; >k} forsomei € |[4], k € Z (i.e., B is the intersection of A and a half
space which is parallel to one of the coordinate axes). Then B is a good rectangle.

Using the previously introduced notions, we can define a partition of any plaquette set
P C A, as follows.

DEFINITION 4.6 (Knot decomposition).  For every plaquette set P € A, we fix a max-
imal partition

P=K1U.--UK,,

such that for all 1 <i <m — 1, we have that K; is well separated from K; ;1 U---UK,, by a
good rectangle B; in A. Here, “maximal” means that for all 1 <i <m, there does not exist a
further partition K; = K U K’ such that K is well separated from K’ by a good rectangle B
in A. Such a maximal partition may not be unique; we just fix one. We refer to this partition
as the “knot decomposition” of P. Let K be the collection of all K € A, which appear in the
knot decomposition of some P C Aj. We refer to the elements K € K as “knots.”

REMARK 4.7. The definition of knot decomposition given here is slightly different than
the one given at the end of [23], Section 4.1. The slightly more complicated definition of [23]
was needed for precisely computing Wilson loop expectations, which was the main focus of
[23]. In the present paper, we are just trying to obtain upper bounds (on correlations), and so
we can make do with the simpler definition that is given.

The following lemma bounds the number of knots. This is essentially [23], Lemma 4.3.4.
However, because the definition of knot decomposition is slightly different than the one given
in [23], we give a proof in Appendix A.3.

LEMMA 4.8 (Cf. Lemma 4.3.4 of [23]). Let p € Aj. For any m > 1, the number of knots
K € K of size m which contain p is at most (10%4)™.

The following lemma is a slight generalization of [23], Lemma 4.2.21. The point of the
definitions of “well separated” and “good rectangle” (Definitions 4.2 and 4.3) is to have this
lemma.

LEMMA 4.9. Let Py, P, C A;. Suppose Py, P> are well separated by a good rectangle
B in A. Let T be a spanning tree of S1(A) which contains spanning trees of S2(B), S5(B),
and 08, (B). There is a bijection between the set of o € GF(T) such that supp(c) = P; U Ps,
and the set of tuples (o', 0?%) such that o' € GE(T), supp(cri) = P;,i =1,2. Moreover, if o
is mapped to (o!,6%), theno =olo?, 0l =10n S5(B), o2 =1 on S2(B). Consequently,

forall p € S2(B), 0[17 =0p, and for all p € S5(B), (71% =0p.
PROOF. This follows by [23], Lemma 4.1.9 (see the proof of [23], Lemma 4.1.21). [

Using Lemma 4.9, we can prove the next lemma, which will be important in constructing
an event E(B1, B>) and an associated swapping map 7.
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LEMMA 4.10. Let Py, P» C Ay be plaquette sets, and suppose that P is well separated
from P> by a good rectangle B in A. Then there is a bijection between

{¥ € Q:supp(yy) € P1 U P2}

and

{1, ¥2) € Q% supp(y) C Pi fori =1,2}.

Moreover, suppose that \r is mapped to (1, Yr2) by the bijection. Then for any p € As, we
have that 9p(¥r(£5)) = pp (V1 (Ep))9p (W2 (Ep)). We also have that

supp(¥) = supp(¥/1) U supp(2).

Finally, let By be a rectangle in A, and suppose that By C P; for some i =1, 2. Then for any
loop y in By, and any path £ from xq to the initial vertex of y, we have that ¥ (£~ 'y£) is
conjugate to y; (£~ 1y 0).

PROOF. Let
E:={y € Q:supp(y) € P U Pp},
and fori =1, 2, let
E;:={y € Q:supp(y) C P;}.

We want to construct a bijection between E and E| x E». Fix Tp, a spanning tree of Si(A)
which contains spanning trees of S>(B), S5(B) and 9S> (B) (to construct such a T, first take
a spanning tree T of 082(B), and then extend it to spanning trees 11, T2 of S2(B), S5(B)
respectively, and then define Tp := T1 U T>). By Lemma 2.14, the set E is in bijection with
the set ' := {0 € GF(Tp) : supp(c) € P1 U P»}. By Lemma 4.9 and the assumption that Pj is
well separated from P, by the good rectangle B, the set F is in bijection with the set F x F>,
where

F;:={o € GF(Tg) : supp(o) C P}, i=1,2,

and moreover if o is mapped to (o', %) under this bijection, then 0 = ¢'0%, 6! =1 on

S5(B), and 02 =1 on S>(B). Next, by Lemma 2.14, for i = 1, 2, F; is in bijection with E;.
We can thus obtain a bijection between E and E; x E>, by composing all the previously
mentioned bijections:

F< F<+ FixF)< E; xEj.

The various claimed properties of this bijection follow because (a) by Lemma 2.14, the bijec-
tions between E <> F and E; <> F; preserve conjugacy, and (b) in the bijection between
F < F| x F», we have that if o is mapped to (0'1,0'2), then o), = ol’; for p € P; and
op=1= a;o[% for p ¢ (P1 U P>), and if By € P; for some i = 1, 2, then for any loop y

in By, we have that 0, = o O

i
y
Lemma 4.10 immediately implies the following corollary, whose proof is omitted.

COROLLARY 4.11. Let Py,..., Pr € Ay be plaquette sets, such that for all 1 <i <
k — 1, P; is well separated from P;+1 U ---U Py by a good rectangle B; in A. Then there is a
bijection between

{y € Q:supp(y) S PiU---U Py}
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and

{(i,i € [k]) € QX : supp(y;) C P, forall i € [k]).

Moreover, suppose that  is mapped to (V;,i € [k]) by the bijection. Then for any p € Aj,
we have that og (VY (§p)) = ]_[ie[k] ep(Yi(§p)). We also have that

supp(¥) = | supp(y).

ielk]

Finally, let Bg be a rectangle in A, and suppose that By C P; for some i € |k]. Then for any
loop y in By, and any path £ from xq to the initial vertex of y, we have that (£~ y€) is
conjugate to ; (€~ y0).

DEFINITION 4.12. Given a plaquette set P C Aj,let P = K U---U K}, be the knot de-
composition of P. Let ®(P) be a bijection corresponding to K1, ..., K, asin Corollary 4.11.
Such a bijection may not be unique; we just fix one.

5. Construction of the swapping map. In this section, we construct an event E(B1, By)
and an associated swapping map 7, by using the notions introduced in Section 4. Throughout
this section, fix rectangles By, B> C A.

DEFINITION 5.1.  Let E(Bj, B>) C 2 be the set of pairs (¥, y2) such that the follow-
ing holds. Take the knot decomposition
supp(¥1) Usupp(y2) UB1 U By =K1 U+ UK.

For i = 1,2, let j; € [m] be such that B; C K, (the existence of such j; follows because
B; is a rectangle, and thus cannot be divided into separate knots, by the definition of knot
decomposition). Then the condition is that j; # j» (i.e., By, B are contained in different
knots).

We proceed to define a map T : E(By, B») — E(Bj1, By) with the properties required in
Definition 3.1.

DEFINITION 5.2. Let (Y1, ¥2) € E(B1, B2). As in the definition of E (B, B,), take the
knot decomposition
P :=supp(y1) Usupp(¥2) UBUBy =K U--- UKy,

and also let j, be as defined in that definition. Recalling Definition 4.12, let ® = ®(P).
Define the map U from the set

{(¥i,i € [m]) € Q" :supp(y;) C K; foralli € [m]}2
to itself as follows. Map
(10, €lm), (Yi,i € Iml)) = (P14, i € [m), (Y20, i € [m])),
where
= Y i #F 2
YL [1//2,1'2 i =2,

= Y i# ),
Vo= T
Yi,j, 1= j.
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In other words, U simply swaps the j>th coordinate. Let Uy, U, be the coordinate functions
of U, that is, they are such that U = (U1, U,). Finally, define T : E(B1, By) — E(Bq, B2) by

W1, ¥2) > (@71 (U1(O (W), O(¥n))), O~ U2(O(¥1), O(¥2)))).

This definition may not be very illuminating when written out, but just think of 7' as swapping
the joth coordinate (as in the definition of U'), once we have identified v, ¥» with the tuples
(Y1, 1 € [m]), (Y2,;, i € [m]) (and this identification is what ® is doing).

The next sequence of lemmas combine to show that T has all the desired properties.

LEMMA 5.3. Themap T is an involution, that is, for any (Y1, Y¥») € E(B1, Bz), we have
that Tz(xpl, Yn) = (Y1, ¥2). As an immediate consequence, T is a bijection.

PROOF. If we think of T as simply swapping the j>th coordinate, then it is clear that T
is an involution. This is the idea underlying the proof we proceed to give. Let T, T, be the
coordinate functions of 7. By the definition of 7 and Corollary 4.11, we have that

supp(¥1) U supp(¥2) = supp(T1 (Y1, ¥2)) U supp(T2 (Y1, ¥2)).

Let 1},- =T; (Y1, ¥rp) for i =1, 2. The above implies that we get the exact same knot decom-
position

supp(1) Usupp(¥2) UB{UBy =K U---UK,,.

Therefore in obtaining T(l}l, 1}2), we use the exact same maps ®, U as were used to define
T (Y1, ¥2). Now by definition, we have that

Ti(Yr1, ¥2) = O~ (U1(O© (Y1), ©())),
U =Ti(Y1, ¥2) = 0~ (U1(©(), O())),
U2 =T, ¥2) = 0~ (U2(O (Y1), ©1))).

Letn; = Ui(© (Y1), ©(¥2)) fori =1, 2. Note that (11, n2) = U (O (Y1), ©(2)). Combining
the above three displays, we obtain

T (Y1, 92) = O~ (Ui(n1. ) = 0~ (U1 (U(O(W1), O¥2)))).
Next, observe that U is by construction an involution, from which we further obtain
Ti (Y1, ¥2) = O~ (O(Y1)) = V1.

The same argument shows that T2(1/~/ L 1}2) = 9. The desired result now follows. []

LEMMA 5.4. Forany (Y1, Y¥) € E(B1, By), we have that

[T es(1Ep) ] es(v2Ep)

pPEN? PEN?

=[] es(TiW1, ¥ &) [ 021, ¥2)(&p)).

PEN? pEA;

As an immediate consequence, vf?ﬁ(T(wl, Yn)) = V%?ﬁ((l/fl, Y2)) (recall Definition 2.10).
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PROOF. Let all notation be as in Definition 5.2. Fori =1, 2, let © (v;) = (¥, j, j € [m]).
By Corollary 4.11, we have that

[T eswiEp)= ] [1 es(vij&p). i=1,2.

PEA PENy je[m]

It follows that

[T es(1Ep) ] es(w2Ep)

PEA2 PEA2

=TT (o6t &) TT on(01566))

PEA2 J#J2

% TT (090 TT o0 E0) ).

PEA? J#J2

By Corollary 4.11 and the definition of 7', the right-hand side above is exactly
[T es(mn.v2Ep) [ es(2W1. ¥2)Ep)).

pPeEN? pPEN?

and thus the desired result follows. O

LEMMA5.5. Letki, k> 1,and let fi : GM' — C, f» : G2 — C be conjugacy invariant
functions. Fori = 1,2, let yl(’), R yk(il) be closed loops contained in B;. For any ({1, Y¥2) €
E(B1, By), the following holds. Let 1/~/1 = T1 (Y1, ¥2). Then we have that

(¥ €, m)s-os ¥ (Eylfl)))fz(llfz(éy(z)), e Kﬁz(f?y]gz)))
! 1 1 2
= fi (&1(%‘},1(10, e &1(5},151)))][2(&1 CHEIA 2 (Eyka)))-

PROOF. Let all notation be as in Definition 5.2. Fori =1, 2, let © (v;) = (¥ j, j € [m]).
By Corollary 4.11, we have that

5.1 /] (éyl(i)) is conjugate to v; j, (gylm), lelkl,i=1,2.
Now by construction, we have that

OW) = W11y s Wi jpm1s W2 jgs W jat1s -+ o WLm)-
Thus by Corollary 4.11 and equation (5.1), we have that

U (é‘yl(l)) is conjugate to ¥y j, (Syl(l)) is conjugate to y; (éyl(l)), l € k1]
1&1 (éyl(z)) is conjugate to V2 j, (";‘yla)) is conjugate to (Syl(z)), [ €lky].
Since fi, f> are conjugacy invariant, the desired result now follows. [

The previous few lemmas combine to immediately imply the following corollary.

COROLLARY 5.6. For any functions hy, hy : Q@ — C as in Proposition 3.3, T is a swap-
ping map with respect to (E(By, B2), hy, ha, va g).
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6. Probability bound. In this section, we prove the probability bound from Proposi-
tion 3.3.

PROPOSITION 6.1. Let B, L, By, By be as in Theorem 1.1. Let E(B1, By) be defined
ii.d.
using By, By, as in Definition 5.1. Let V1, V> P vA,g- Then

]P)((\p], \pz) ¢ E(B], BZ)) S 2(4 . 1024|G|2)|Bl|+|B2|e_(.8/2>AG(L_1)‘

As we will see, the proof is essentially a Peierls argument. To begin toward the proof, we
make the following definitions.

DEFINITION 6.2. Let P C Aj. Given yrq, Y € 2, define
suppp (Y1, ¥2) := supp(¥1) U supp(y2) U P.

DEFINITION 6.3. Let Py, P € Aj. Define
o2 Py:= Y 1 esiEn)esWaE):

Y1,92€Q PEN
suppp, (¥1,¥2)=P

Define ® (P) := q>§§) (P), that is, if there is no subscript, then by default we take Py to be
the empty set.

The following lemma shows that the function dDE,g) factors according to the notion of well
separated (recall Definition 4.2).

LEMMA 6.4. Let Py, Py € Aj be well separated by a good rectangle B in A. Then
P (P1U Py) = @P (P (Py).
Additionally, let Py C Ao, and suppose that Py C Py (resp. Py C Py). Then
2 2 2
P (P U P) = 02 (PO (Py)(resp. 22 (PR (Py).

PROOF. To show the first identity, we need to show that there is a bijection between the
sets

E :={(¥1,¥2) € Q° :supp(¥1, ¥2) = P U P}
and E| x E,, where

Ei =1, ¥2.0) € Q2 ssupp(Yrii, Yoi) = P}, i=1,2,

and moreover, if (Y1, ¥2) is mapped to ((¥1,1, ¥2.1), (1.2, ¥2.2)) by the bijection, then we
have that

[T e8(W1Ep)ep(v2(Ep))

PEA

= [ es(11Ep)ep(¥216p) [T 0s(¥1266p)0p(V226p)).
pPEA> pPEN>
Let ® be a bijection as in Corollary 4.11 corresponding to P;, P>. Given (Y1, y») € E
and i = 1,2, let ©(y;) = (Y1, ¥i2). Define the map E — E; x Ey by (Y1, yn) —
(1,1, ¥2,1), (¥1,2, ¥2,2)). The fact that this is a bijection with the required properties fol-
lows by Corollary 4.11. The second identity may be similarly argued. [J

By repeated applications of Lemma 6.4, we can obtain the following corollary. The proof
is omitted.
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COROLLARY 6.5. Let Py C Ajy. Let K C Aj be a knot such that K O Py. If P C Ay is
such that K appears in the knot decomposition of P, then

2 2
o (P) =R (K)®@ (P - K).

In the usual Peierls argument for long range order of the Ising model at low temperatures,
one shows that the presence of a large contour is exponentially unlikely in the length of the
contour. The following two lemmas combine to give the analogous statement for our setting.

LEMMA 6.6. Let Py C As. Let K C Ay be a knot such that K 2 Py. Let Wy, Wy "<&
VA, g, and let Fg be the event that K appears in the knot decomposition of supp PO(\IJ 1, ¥7).

Then P(Fg) < %) (K).

PROOF. For notational brevity, given P C Aj, let K € P to mean that K is in the knot
decomposition of P. We have that

2y yneq LK € suppp, (Y1, ¥2)) [1pen, 28 (W1(Ep))op(¥2(6p))
2 ne  pen, 98(W1Ep))pp(¥2(5p)) '

Observe that the denominator is equal to Y pcx, ®® (P), while the numerator is equal to

2 2
> P (P)=@p)(K) 3 0D(P-K),
PCA; PCA,
KeP KeP

P(Fg) =

where we have applied Corollary 6.5. We may further bound the right-hand side above by
o (K) Y. @ (p).
PCA>

The desired result now follows by combining the previous observations. [

LEMMA 6.7. Let Py, P C Ay. Then
(DSDZO)(P) < 4‘P‘|G|2|P|e_.3AG|P_P0|'

PROOF. In order for ¥, ¥2 € €2 to be such that suppp (Y1, ¥2) = P, we must have
that supp(v/1), supp(2) € P. Thus there are at most 4/ = 2IP12IPI possible choices of
(supp(¥r1), supp(¥2)). Now fix S, S» € P (such that S U S U Py = P). It remains to show
that

> [T es(W1E)es(va(Ep)

Y1,Y2€Q peP
supp(¥;)=S;,i=1,2
< |G|2|P|e_’3AG|P_PO|.

First, note that for any y1, ¥ € Q such that supp(¢;) = S; for i = 1, 2, we have that for any
peSi1US) —Py=P — P,

0p (V1 Ep))pp (Va(Ep)) < e PR

It thus follows that

[T 0s(W1Ep)ep(va(Ep)) < e PralP—Fol,

peP
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To finish, note that by Lemma 2.8, for i = 1, 2, the number of homomorphisms ¥ € 2 such
that supp(y) = S; is at most |G|l < |G|, O

The following lemma shows that if a knot K contains plaquettes which are very far apart
from each other, then the knot itself must be large (intuitively, this is true because knots are
in some sense “connected”). This is the last ingredient needed for our Peierls argument.

LEMMA 6.8. Let L > 0. Let Py, P, C Ay be plaquette sets such that the £*° distance
between any vertex of P and any vertex of P> is at least L. If K C Ay is a knot such that
K2 P UP,, then |[K|>|P1|+|P|+ L —1.

PROOF. By assumption, there is some coordinate direction i € [4] such that the distance
between P; and P in the ith coordinate is at least L. Thus (without loss of generality) we
can assume that there are integers m, my € Z such that m, —m > L, and for all vertices x
of a plaquette in Pp, and all vertices y of a plaquette in P», we have that x; <my, y; > m».
Form; + 1 <k <mjy — 1, let Ri be the rectangle in A defined by taking all vertices x € Ag
such that x; < k. Observe that for all k£, 0S2(Ry) is the set of plaquettes p € A, such that
all vertices x of p have x; = k. Thus the plaquette sets (052(Rx),m1 +1 <k <my — 1) are
mutually disjoint, and moreover 052 (Ry) is disjoint from PyU P, forallm;+1 <k <my—1.
By Lemma 4.5, Ry is a good rectangle, and thus by the definition of knot decomposition, we
must have that forallm; +1 <k <my—1, KN9dS2(Ry) # &. Combining these observations
with the assumption that K © P; U P,, we obtain that |K| > |P| + |P2| + (m2 —m1 — 1) >
|Pi] + |P2| + L — 1, as desired. [

We finally have enough to prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. Letmg :=|B|+|B2|. In order for (¥, ¥») ¢ E(By, B2),
there must be a knot K containing the plaquettes of By, By such that the event Fx occurs.
Thus by a union bound and Lemma 6.8, we have that

00
P((W1, W) ¢ E(B1, By)) < Z Z P(Fk).
m=mo+L—1 K aknot of size m

DBiUB,

Now combining Lemmas 4.8, 6.6, and 6.7, we further obtain (using the assumption that g is
large enough to ensure that the geometric series is summable)
o0
P((¥,¥2) ¢ E(B1, By)) < Y. (4-10%|G|?)" e Prctm=mo)
m=mo+L—1
o 4- 1024|G|Ze—,BAg)L—1
1 —4-10%|G|2e Prc ~

= (4-10%G|?)
To finish, note that the assumption on 8 implies that
4.10%*G2e /D26 < 1
and thus we obtain
P((¥1, ¥2) ¢ E(B1, By)) <2(4- 102G |?)"0 e~ B/2Ac (L=
as desired. [

PROOF OF PROPOSITION 3.3. This is a direct consequence of Corollary 5.6 and Propo-
sition 6.1. [
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APPENDIX A: TOPOLOGICAL FACTS

A.1. Edge configurations and homomorphisms. First, we recall an explicit set of gen-
erators of 1 (S1(A), xo) (for a reference, see e.g., [46], Section 2.1.7). Fix a spanning tree
T of S1(A). For any vertex x € Ag, let w, denote the unique path in 7 from x¢ to x. For
any edge e = (x, y) € S1(A), let a, be the closed loop obtained by starting at xg, following
wy to x, then traversing e = (x, y), then following the path wy in reverse, from y to xo.
Symbolically, we write

a, = wxewy_l.

(Note if e is in the spanning tree 7', and x is closer than y to xg (in the distance induced by 7T'),
then a, = wyw_1 is the path which starts at xo, follows the path wy, to y, and then retraces its
steps, following the path wy in reverse, from y to xo. Thus in this case a, is equivalent to the
trivial path.) Then for any closed loop y = e ---e, in S1(A) starting and ending at xp, we
have that y is equivalent to g, - - - a,. Thus if [a.] € w1 (S1(A), x¢) denotes the equivalence
class containing a,, we have that {[a.], e € S{(A) — T} is a generating set for 71 (S1(A), xg).

LEMMA A.1. Forany y € Q, there exists o € G such that Yy (o) =

PROOF. Fix a spanning tree T of S;(A). Define o € G*! as follows. For e € T, define
o.:=1. For e € S1(A) — T, define o, := ¥ ([a.]). By construction, we have that for all
e € S1(A) =T, (Yxo(0))([@e]) = 0. = Y ([ac]). Since {[ac], e € S1(A) — T} is a generating
set for 1 (S1(A), xo), it follows that v, (o) = ¥, as desired. [

LEMMA A.2. Leto,t € G™. Then Yy, (0) = Yy (7) if and only if there exists a function
h € G2 with hx, =1, such that for all edges e = (x, y) € S1(A), we have

O, = hxtehy_l.

PROOF. We prove the nontrivial direction. Suppose that ¥y, (0) = ¥,(7). We define
h € GMo as follows. Fix a spanning tree T of S1(A). First, as required, A, := 1. Now for any
edge e = (xg, x) € T, define h, so that

—1
O =hy,Teh, ",

that is,

|
hy:=0, .

More generally, for any x € Ag, suppose w, = €] - -- e, (recall the notation that w, is the
unique path in 7 from xg to x). Define

. —1
hy :=(0¢; -+ 0¢,)” Tey "+ Te,-

We now show that 4 is as required. Fix an edge e = (x, y). Suppose first that e € T. Without
loss of generality, suppose that y is further from the root xo of 7' than x, so that wy, = wye.
If wy =e1---¢,, then

1

-1 - -1
hxfehy :(Gel "‘Uen) Tey "'Te,,fe(fel "'fenfe) O¢y ***0¢,0¢ = O,

as desired. Now suppose e € S1(A)\T. Let wy =e;---e,, wy = f1--- f. Then

-1 -1 -1
]’leel’ly :(Gel “'Uen) rel “'tenTE(tfl tfm) Orfl'no_f

m

= (Uel ce O'en)il (l/fxo(f))([ae])o'fl O fe
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To finish, we want to show

(G, 0ey) " (Vo (D) ([@e)of, - - 05, = 0.

If we move all the o’s to the right-hand side, we see that we need to show

(1//)60 (T)) ([ae]) = (1//)60 (U)) ([ae])v

which is true by assumption. [

LEMMA A.3 (Lemma 4.1.3 of [23]). Leto € G\, and h € G™ with hy, = 1. Let T €
G be the edge configuration given by T, = hxcrehy_l for each e = (x,y) € Ay. If there
exists x € Ag such that hy # 1, then o # 1.

PROOF OF LEMMA 2.4. This follows by Lemmas A.1, A.2, and A.3. [J

PROOF OF LEMMA 2.14.  Let ¥ € Q. The existence of o € GF(T') such that ¥ (o) =¥
follows from the proof of Lemma A.1. For uniqueness, observe that for e € S{(A) — T, we

must have o, = (Yx,0)([ac]) = ¥ ([a.]). Thus ¥y, is a bijection. The various properties of
Yy, follow by Lemma 2.3. [

A.2. Good rectangles. PROOF OF LEMMA 4.5. Case (a) is [23], Lemma 4.1.20. For
case (b), first note that by [23], Lemma 4.1.20, S>(B) is simply connected, since B is a
rectangle. Now, suppose that the vertices of B are given by the set {x € Ag:x; <k} for some
i €[4], k € Z (the case x; > k follows by the same argument). This implies that 0.5, (B) is
the 2-complex obtained from the set of plaquettes p whose vertices all lie in the set {x € A :
x; = k}. This implies that S5(B) is also a rectangle (whose vertices are {x € Ao : x; > k}),
and thus by [23], Lemma 4.1.20, S5(B) is simply connected. To see why 3.5>(B) is simply
connected, note that it essentially is a rectangle in one lower dimension, that is, it is a 3D
rectangle. Following the proof of [23], Lemma 4.1.20, in [23], Appendix B, we may attach
to 35> (B) all 3-cells whose boundary plaquettes are all contained in dS,(B). This operation
does not change the fundamental group (see e.g., [46], Section 4.1.5), and the resulting space
is a 3D rectangle in R*, which is simply connected. [

A.3. Knot upper bound. Most of the following discussion is borrowed from [23], Sec-
tion 4.4. Indeed, to prove Lemma 4.8, we will show how to deduce it from [23], Corol-
lary 4.4.8.

DEFINITION A.4 (Cf. Definition 3.2.2 of [23]). Given a plaquette set P C A5, we may
obtain an undirected graph G(P) as follows. The vertices of the graph are the plaquettes of
P. Place an edge between any two plaquettes pp, p2» € P such that there is a 3-cell ¢ in A
which contains both py, p».

A vortex is a set V C A, such that G(V) is connected. For general plaquette sets P C
A», we may partition G (P) into connected components G1, ..., G, which corresponds to a
partition of P into vortices V1, ..., Vi, such that G; = G(V;) for all 1 <i < k. Observe that
as the partition of an undirected graph into connected components is unique, the resulting
partition of P into vortices is also unique.

Given a plaquette set P C A», let the unique partition of P into compatible vortices
Vi,..., Vi as previously described be called the vortex decomposition of P. For each
1 <i <k, we say that V; is a vortex of P.
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DEFINITION A.5. Given a plaquette set P € Aj, define B(P) as a cube of minimal side
length in A such that all plaquettes of P are in S>(B(P)), but notin 0.5>(B(P)). If the choice
of B(P) is not unique, fix one such cube. For P, P’ C A,, define the function

J(P, P'):= l

1 PﬂB(P/);égorP’ﬂB(P)#@,
0 otherwise.

To be clear, we are slightly abusing notation here by writing P N B(P’) # &; what this means
is that there is a plaquette p € P which is contained in B(P’).

DEFINITION A.6. We define a hierarchy of undirected graphs G* (P), for integers s > 0.
First, to define G°(P), consider the vortex decomposition P =V U---U V,,. Define Pl.0 =
Vi, 1 <i <no. The vertex set of GO(P) is {PIO, e P,?O}. The edge set is

(P, P} i), (P, P})=1}.

Now suppose for some s > 0, G*(P) is defined, with vertices Py, ..., P, C A which are
compatible (and thus disjoint), and such that P = P; U---U P . To define G* +L(P), first let
ns4+1 be the number of connected components of G*(P), with connected components given
by the partition Iy U --- U [ = [ns]. For 1 <i <ng1, define

Ns+1
s+1 . K
prh=J P
J€El;
The vertex set of GST1(P) is {Pf“, - P,f:}}, and the edge set is

1 . : 1 1
e ,P;+ Vii# g, J(PT ,P;+ )=1}.
Observe that if s > 1 is such that ny = 1, then G*~!(P) is connected.

DEFINITION A.7. For P C Aj, define s*(P) := min{s : ny = 1}. If ngy > 1 for all s,
define s*(P) = 0o. Let D be the collection of P C A such that s*(P) < oo, and such that
for all s < s*(P), any vertex of G*(K) is of size at least 2°. Observe that if P € D and
|P| =m, then s*(P) < |log, m], and consequently GUlogaml=1(py is connected. Now define

A(m,s):={P e D:|P|=m, G*(P) is connected}.

By the previous observation, note if s > [log, m| — 1, then A(m, s) = A(m, [logym] — 1).
Now for p € A», define

A(m,s, p):={P e A(m,s): P> p}.

LEMMA A.8 (Corollary 4.4.8 of [23]). Forallm>1,0<s <|logym] — 1, p € A2, we
have that

|A(m, s, p)| < (10°%)™.

LEMMA A.9. Let K € K, s > 0. Ifng > 1, then there are no isolated vertices of G*(K).
Consequently, every connected component of G*(K) is of size at least 2, and thus if also
s < s*(K), then for all vertices P} of G*(K), we have | P} | > 2*. Consequently, K € D.

PROOF. Let P} be a vertex of G*(K). Since ng > 1 by assumption, we have K — P # @.
Then by the definition of knot decomposition (Definition 4.6), there cannot exist a cube which
well separates P;’ from K — P; (note that such a cube would automatically have side length
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strictly less than the side length of A, and thus by Lemma 4.5, it would be a good rectangle).
Therefore we must have B(P) N (K — P;) # &, and thus P;' cannot be an isolated vertex in
G¥(K). O

PROOF OF LEMMA 4.8. By Lemma A.9, for any knot K € I, we have that K € D. Thus
if |K|=m, then K € A(m, [log, m| — 1). The desired result now follows by Lemma A.8.
O

APPENDIX B: HIGGS BOSON LARGE «

In this section, we will adapt our swapping argument technique to establish correlation
decay for Wilson loop observables for lattice Yang—Mills theories coupled to a Higgs boson.
This is the model treated in the work [1].

In said work, the analysis of the Higgs’ boson differed in two cases; namely, the cluster
expansion techniques used when x was large or when « was small were different. In this
section, we discuss briefly the case that « is large.

The main new term of the Hamiltonian, when coupled to the Higgs’ boson, is a term of
the form « Ze:(x’y)em Re[¢, Tr[p (oe)](ﬁ;l — Tr[p(1)]]. When « is large, this term tends to
force o, =1 as well as ¢, = ¢y.

The new difficulty introduced when applying our swapping argument is that we now need
to describe how one will swap the Higgs’ boson configuration appropriately. On a high level,
the appropriate “clusters” for the Higgs boson are found by locating the boundaries between
unequal ¢, and ¢,. The swapping map we design will preserve said boundaries as appropri-
ate. In what follows, we go into more detail on the construction.

B.1. Introduction. Our configurations consist of two components. The first is the gauge
field o : A1 — G with representation p. (We abuse notation slightly and use A to represent
all edges rather than just the positively oriented ones; similarly, A, will denote all of the
plaquettes, rather than just the positively oriented ones.) We have considered excitations of
this field in the previous sections. The second is a Higgs boson field that acts as a map from
the vertices A9 — H. H is a subgroup of the multiplicative group of the unit circle. The
Hamiltonian that we consider is,

Hypu(o.¢)= Y BTr[p((do),) — p(D)]

PEN)

+i Y Re[p: Tr[p(on)], ' — Tr[p(D]].

e=(x,y)eA|

(B.1)

If we consider computing the expectation of Gauge invariant functions, then we can make
the following simplification to the gauge group. We let H; be the set of elements /4, such that
there exists some g € G such that p(g) = h;1. Then, by an appropriate simultaneous gauge
transformation of o and ¢, we may consider the case that the Higgs field is a map from
Ao — H/H;. The benefit of this gauge transformation is that if ¢, Tr[p (0@)]¢y_1 =Tr[p(1)],
then necessarily ¢ = ¢ and o, = 1.

As such, we can have the following definition of support of our configuration.

DEFINITION B.1. Consider a configuration C = (o, ¢). We let EE, the set of our excited
edges, be defined as,

(B.2) EE:={e=(x,y) € A1 : ¢y # ¢y oro, #1}.
The definition of the support of our configuration is as follows,

(B.3) supp(C) ={p € Ay :3e € EE s.t. e € §p}.
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Namely, a plaquette p is in our support if there exists an edge e in the set of our excited edges
EE such that e is in the boundary of p.

Given two configurations C; and C,, the joint support of C; and C, will be the union of the
supports of C; and C,.

(B.4) supp p(C1, C2) = supp(C1) U supp(C2) U P.
Our goal in this section is to prove the following theorem,

THEOREM B.2. Consider two boxes By, By separated by €*° distance L. Additionally,
let f and g be functions such that f only depends on the values of o and ¢ in the box By,
while g depends only on the values of o and ¢ in the box B>. Furthermore, assume that
transformations of the form o, — n xoeny_l for some auxiliary field n : Ag — G, do not affect
the values of f or g. Then, for sufficiently large B and k, we have that

L—|B1UB>|
(B.5) Cov(f, 8) = Cll fllsollglloc| GI*“ H/ Hy [P exp[—cg] ,

where C is a constant that does not depend on |G|, |H/H;|, B or «, and ¢ is a constant
defined in Lemma B.7.

The statement can easily be generalized to the form phrased in Theorem 1.1 with little
difficulty.

B.2. Construction of the swapping map. We will restrict our analysis to the case that
H/H; is the group Z;. We can call one of the charge assignments + and the other charge
assignments —. Our assignment of Higgs boson fields would be analogous to the assignment
of charges in the Ising model.

Let B and B, be two boxes separated by distance at least L. Let C; = (01, ¢1) and Cr =
(02, ¢2) be two configurations of gauge and Higgs boson fields.

Let Vi UV, U--- U Vy be the vortex decomposition of supp BLUB, (C1,Cp). Assume that
B1 and B; are in different vortices of the vortex decomposition. Assume that By € V; and
By € V,. We will show that we can construct a swapping map in this case.

Observe from the definition of our support that o, = 1 for all edges e that are not boundary
plaquettes of some plaquette in supp(Cy, C2). It is very easy to define our exchange map for
o. We let Aj(V>) be the set of edges that form boundary vertices of plaquettes in V,. We set
01 to be equal to o1 on A1(V»)¢ and equal to o, on A1(V>). We set 67 to be equal to o, on
A1(V)€ and equal to o1 on A1(V5).

The difficulty is to assign the Higgs boson field charges. Notice that the component of
the support due to the assignment of Higgs boson fields is due to the presence of phase
boundaries. These phase boundaries will separate regions of + charge from regions of —
charge.

LEMMA B.3. Let ¢ be an assignment of Higgs boson charges. Let PB1 U - -- U PB,, be
some collection of phase boundaries found in ¢. There exists some map x : Ao — Z3 such
that ¢ x will have all the same phase boundaries of ¢ except for the union PB1 U --- U PBy.

PROOF. The basic geometry is that one can find islands of different charges with the
phase boundaries separating these islands. One can flip the innermost islands and iteratively
proceed outwards to get rid of all phase boundaries.

For an example of this construction, consider the case that there is a single phase boundary
PB;. This phase boundary surrounds some set of vertices V; all of the vertices inside V will
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have the same Higgs boson charge since there are no other phase boundaries. One can merely
flip all of the charges inside V' to match the charge outside V.

Now consider the case that we have two phase boundaries, PB; and PB,. Without loss
of generality, one can find two sets of vertices V| and V; such that PB, surrounds V5, PB
surrounds V1, and V, C V1. One can assert that all of the charges in V, are the same while all
of the charges of V; \ V; are the same. To find the map yx, one can first flip the vertices of V,
to match those of Vj; this will remove the phase boundary PB;. Afterward, one can flip all of
the vertices of V| to remove the phase boundary PB;. Ultimately, this amounts to fixing the
charge assignments of V; and flipping those of V1 \ Vo. O

Let PBI UPBL U- - - UPB} be the phase boundaries of C; found in V;, and PB3 UPB3...U
PB%1 be the phase boundaries of C, found in V;. Using Lemma B.3, one can find some map
X1 : Ao — Z3 such that the new field ¢ x; will have the same phase boundaries as ¢ outside
of the vortex V), but will get rid of the phase boundaries PB% U...PBlin V).

One can similarly find a map x» : Vy — Z; that removes the phase boundaries PB% U
-y PB,%l and otherwise fixes all other phase boundaries. We define é1 to be ¢ x1 Xy and
qSl =d2x2X| . We see that &1 will have the same phase boundary as ¢; outside of 1, and
will have the phase boundaries PB% U---u PBZm inside of V. ¢~>2 will have the phase boundary
as ¢» outside of 1, and the phase boundary PB% U---u PB,IZ inside of V.

Our swapping map sends Cy, C; — (é] , C~2) where C1 = (071, q~51) and Cy = (09, q~52).

LEMMA B.4. Under the construction above we have,

Supp,up, (C1. C2) = suppg 5, (C1, Ca).

As a consequence of the above, the swapping map constructed above is an involution, and
thus, a bijection.

PROOF. Part 1: Equality of the supports
Let p be a plaquette in supp BLUB, (C1,Cy). If p were in By U By, then it would still be in

Suppg,us, (C1,C>). Therefore, we only need to consider the case that p is in the support due
to having an excited edge on its boundary. Without loss of generality, assume that p has an
excited edge of C;.

Assume now that p is in the support due to having an edge with (o1), # 1. If e were
an edge of A1(}»), then (62), = (01)e # 1. Thus, e is an excited edge of 6, and p is in
the support of V. If e € A1(Vp)<, then (61). = (01)e, and e is an excited edge of él. Thus,
p €supp(Cy).

Now consider the case that p is in the support due to having an edge e = (x, y) in the
boundary with (¢1)x # (¢1),. This means that the edge e was part of a phase boundary in C;.
Assume that p is not in V,. This means that the phase boundary containing the edge e was not
one of the phase boundaries PB!,...,PB ,11 that were removed under the transformation C; —
él. Thus, (¢~51)x #+ (¢~>1)y, and p is in the support of él. If instead, p was in PB% U---u PB,ll,

then we would have (<]32) x F (<]32) y» and p would be in the support of C~2.
This shows that,

suppg,us, (C1. C2) C suppg, g, (1, Ca).

Now, we show the other inclusion. Let p be a plaquette in suppg,p, (C1,C>) and assume

that p is notin By U B;. Without loss of generality, assume that p is in supp(C~ 1). Now assume
that p is in this support because there is an edge ¢ € §p with (61), # 1. If the edge ¢ was in



164 A. ADHIKARI AND S. CAO

A1(Vy), then (02), = (61)e # 1. Thus, e is an excited edge of 07, and p € supp(62). If instead
e was in A1(V»)¢, then (01). = (61)., and e is an excited edge of o;. Thus, p € supp(ol)

Now consider the case that p has a boundary edge e = (x, y) with (A1)« £ (¢1) y. Thus,
the edge e is part of a phase boundary. The only phase boundaries found in ¢; are those phase
boundaries of ¢; that lie outside of V, (namely, all phase boundaries except for PB% U---U
PB,ll) or one of the phase boundaries PB% U---u PB,%Q of o, that were in V5. In the former
case, e would be part of a phase boundary in ¢, while it would be part of a phase boundary
in ¢ in the other. In either case, we see that p would be in suppg 5,(C1, C2).

This shows the other inclusion and, thus, we have equality of supports.

Part 2: Showing the map is an involution

Now, since the supports are equal, we would have the same vortex decomposition. Thus,
the definition of V, would be the same whether we consider the pair (C, C;) or (él , 52).
The exchange map for the gauge field configuration o only depends on knowing the edges of
E(V3), so it is clearly an involution on these gauge field configurations.

Furthermore, one can see that the relevant phase boundaries of ¢~31 are PB% U-..-u PBfn,
while the relevant phase boundaries of ¢ are PB1 -UPB. We see that the map x2 would
remove the phase boundary of ¢1 while x| would remove the phase boundary of ¢2 We see
that the map applied to &1 sends ¢ to 1 x2 X7 1 =P1X1Xy X2 X, = ¢1.Similarly, é> would
be sent to ¢». Thus, we see that our proposed map is an involution. [

LEMMA B.5. Let P be the measure generated by the Hamiltonian Hy g . Then,

(B.6) P(C1)P(C2) = P(C)P(Ca).

PROOF. It would suffice to show two equations.
First, we have to show,

> [Trlp(o),)] = T{p(D]]+ 3 [Tr[p((don) )] = Tr[p(D]]

PEA? pEA;

= Y [Tr{p((de1)p)] — Te[pD]] + D [Tr[p((d62),)] — Tr[p(D]]-

peN; peN;

B.7)

The only nontrivial terms on both sides correspond to plaquettes with (do), # 0. Let p
be a plaquette with (doy), # 0. There exists some edge e € §p with (o1), # 0. Thus, the
plaquette p must belong to supp(o1, 02) ,uB,- Thus, it suffices to prove the above inequality
when restricted to the support S := suppg, 5, (01, 02) = suppg, g, (01, 02).

Let p be a plaquette in the support S. If all of the boundary edges of p are in A;(V>),
then (o1), = (62). and (02). = (61), for all boundary edges of p. This would imply that
Tr[p((doy)p)] = Tr[p((do2) )] and Tr[p((do?) »)] = Tr[p((do1) »)]. We could apply similar
logic if all of the boundary edges of p are in A1(V»)°.

We now need to consider the case that some boundary edges of p are in A1(),) while
others are in the complement. We first claim that if some boundary edge e of p isin A;(V»),
then (o1). = (02), = 1. If this were not the case, this would imply that e is an excited edge
and, therefore, p must lie in V,. But, this would imply that all boundary edges of p are in
A1(V>). This contradicts our assumption on p. Therefore, (o1), = (02). = 1. Furthermore,
(61)e = (62). = 1. We can use this conclusion to show that (o7), = (61). and (02). = (62).
for all edges in the boundary of p. As before, this would show that the sums of the Wilson
loop actions are the same. This completes the proof of our first equality.
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Second, we have to show,

Yo @D Trp(eD)]@D; + D (@)« Tr[p((02))](92);

(B 8) e=(x,y)eN; e=(x,y)eEN]
= > @:Tr[p(GD)]@D; + Y @) Tr[p((62)2)](@2); !
e=(x,y)eNA e=(x,y)eNA|

It suffices to prove the above identity as a sum over activated edges. Let e be an activated
edge. If e were in A;()»), this would mean that (o1) = (02), and (02)e = (01),. Further-
more, (¢1)x(1)y" = ($2)x(¢2);" and (¢2)x(¢2)y" = ($1)x(é1); . This is due to the fact
if e were part of a phase boundary in A1(V2), then we would perform a flipping so that the
phase boundaries of ¢; match those of ¢, while the phase boundaries of ¢, match those of
¢1 in V. Otherwise, e is not part of a phase boundary, and all quantities are trivially equal to
1.

Ultimately, this means that, (¢1)x Trlp((61))1(@1)}" = (¢2)x Trp((52)e)](2); " and
(@2))x Tr[p((02))1($2); ! = (@1D)x Trlp((G1))1(P1);

If, instead, e was in A{(}2), we would know that (¢1)y Tr[,o((al)e)](qﬁl)y_1 = (¢1)x X

Tr[p((61)e)1(@1); ! and (¢2)x Trlp((02))1($2); " = ($2)x Trlp((62))1(¢2); ! We can sum
this relationship over all edges to get the desired energy equality. [

B.3. Completing the argument. The discussion of the previous section establishes that
we have a swapping map. At this point, we can apply Lemma 3.2 to derive our decay of
correlation bounds. The only possibility we need to exclude is that there is a vortex that
would connect boxes B and B, that are separated by distance L. The probability of this event
occurring can be followed by using the polymer counting functions of Section 6. We remark
that our bounds are even easier since the condition for splitting vortices is only determined
by the condition of compatibility, that is, whether they are adjacent to each other or not. We
give the following definition:

DEFINITION B.6. Our polymer counting function QD%O) is defined as follows:

2
B9) R (P)= > exp[Hy . (C1)]exp[ Hy .« (C2)]-
supp p, (C1=(01,41),Co=(02,¢2))=P
ZueAO (@1 >Oq2veA0 ZUEAO (¢2)v>0

This polymer counting function satisfies properties similar to those outlined in Lemmas
6.4 and 6.6. Just as these lemmas are consequences of splittings applied to each individual
component (either ¥| or ;) independently, we can apply the arguments of [1], Lemma 2, to
C1 and C; separately to derive these splitting lemmas (for vortices rather than knots). The only
lemma we would need to change is the quantitative probability bound derived in Lemma 6.7;
to bound the total probability percolation, one can sum quantities of the form (Dgl)u 5 (V)
over appropriate vortices V using an argument similar to the proof of Proposition 6.1.

In the next lemma, we derive an analog of the bound in Lemma 6.7. An argument similar
to the proof of Proposition 6.1 to bound the probability of percolation using estimates on

GDgl)U B, (P) is left to the reader.

LEMMA B.7. Let P be a plaquette set that cannot be decomposed into disjoint vortices.
Assume that P contains the boxes B and B> that are separated by distance K . Furthermore,
define the constant ¢ as

¢i= Z(Q’gligcl’])Re[Tr[ap(b)] —Tr[p(D]],
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where a can vary over entries in H/H;, and b can vary over entries in G. Then, we have the
following bound on @gl)u B,

K

2 Pl 8P 8|P PI=IBUB
(B.10) % up, <4PNGIP PN H/HP |exp[—cg]

PROOF.  Consider two configurations C; and C; such that suppg 5, (Ci,C2) = P. Then,

supp(Cy) and supp(Co) must be subsets of P. There are thus 4/° ways to choose the supports
supp(C1) and supp(C,). Furthermore, the only edges that have a nontrivial gauge field are
those on the boundary of the plaquettes of P. There are at most 4| P| of these boundary edges
and |G|8PI ways to assign the o’s for C; or C,. Similarly, the only nontrivial Higgs boson
values with ¢, # 1 are those found on boundary vertices of P. This will give us |H /H; |3
ways to assign ¢; and ¢».

Finally, we remark that each plaquette p € P \ (B; U B>) must be excited by having an
excited edge e on the boundary. Furthermore, an excited edge can excite at most 6 plaquettes.
Therefore, we must have at least w excited edges. Each of these excited edges will
contribute exp[—cx]. [

APPENDIX C: HIGGS BOSON SMALL «

The previously discussed paper [1] also considered the case when « is small. In contrast
to the case when « is large, there is no longer any compulsion for ¢, = ¢,. Clusters are no
longer defined by looking at the boundaries between distinct ¢, .

Instead, the main idea of [1] was to expand the part of the exponential contain-
ing « Ze:(x’y)eAllt [2Re[¢, Tr[p (O'e)]¢;1] + c] in the Hamiltonian using the power series
explx] = X7, f—i This introduces the new random variable i, representing the power used
in the expansion along each edge. The swapping argument used in this section will not in-
volve swapping the values of the Higgs field ¢,. The method, instead, will involve swapping
the values of the field 7, while summing over the Higgs field values ¢. We will give the
details in what follows.

C.1. Introduction to the model. To deal with the small x case, we first have to expand
the Hamiltonian via the random current expansion.
Let ¢ be a constant such that,

2Re[¢y Tr{p(00)]b; '] + ¢ > 0,

for all values of ¢,, ¢y, and o.
We can consider the Hamiltonian,

Hy g, (0,9)=8 Y Tr[p(oe) — p(1)]

ec\

+x Y [2Re[¢y Ti[p(0)]d; '] +c],

e=(x,y)eA]

(C.1)

where the sum e € A is over the set of unoriented edges. Namely, instead of oriented pairs
e and —e, we only include a single unoriented edge.
The random current expansion of this Hamiltonian would be,

Hy pulo, ¢, 1)=B Y Tr[p(oe) — p(1)]

ec\
(C.2)
+x Y I(e)log[2Re[¢y Tr[p(00)]p; '] + c] — log I (e)!.
e=(x,y)eA]
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We have a new field 7 (e) that takes nonnegative integer values. Marginalizing over the
I (e) variables would return our original Hamiltonian H 1{, B We have a new definition of
support according to our new Hamiltonian Hy g .

DEFINITION C.1. We define our set of activated edges AE to be those edges e with
I(e) #0.

(C.3) AE = {e :1(e) # 0},
and the set of activated vertices AV is the set,
(C4) AV :={v:de € AEs.t. v € §e}.

We can now define the support of our configuration C = (o, ¢, I) to consist of those pla-
quettes which have a boundary vertex in AV or those plaquettes with (do), # 1.

(C.5) supp(C) ={p € Py :Jv € AV s.t. v € 88p or (do), # 1}.
Given two configurations C; and C,, we define

(C.6) suppp(Cy, C2) = supp(C1) U supp(C2) U P.

Instead of directly swapping configurations of our Hamiltonian, we consider a swapping
model on our associated reduced Gibbs’ measure. We can parameterize our configurations on
our reduced Gibbs’ measure as (y, ¢, 1), where ¥ € Hom(w{(S1(A), xg), G). For each ¥,
let X denote the set of gauge field configurations o that map to .

Our reduced Gibbs’ measure has the following distribution,

1
(C.7) G, ¢, D=3 —exp[Hn p.c(o. ¢, D]

oEX

Our goal in this section is to prove the following theorem,

THEOREM C.2. Consider two boxes By, By separated by £*° distance L. Additionally,
f and g be functions such that f only depends on the values of o and ¢ in the box B,
while g depends only on the values of o and ¢ in the box By. Furthermore, assume that
transformations of the form g, — 10, ny_l for some auxiliary field n : Aoy — G, do not affect
the values of [ or g. Then, for sufficiently large B and k, we have that

C8) Cov(f, &) = Cll fllooligllool GI*- - T1PIVE2L,

where C is a constant that does not depend on |G|, |H|, B, or k, and ¢ is a constant defined
in Lemma C.7.

Our gauge invariance condition includes examples of actions such as Wilson loop expecta-
tions. Furthermore, the gauge invariance condition means that we would only need to consider
functions of i rather than o and, therefore, we could consider the auxiliary Hamiltonian ‘H
and reduced Gibbs’ measure G. In the remainder of this section, we prove this theorem by
defining a swapping map for this reduced Gibbs’ measure.
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C.2. Swapping on reduced configurations. This section will construct an almost swap-
ping for the gauge class.

Namely, we will do the following. Let RCy = (Y1, ¢1, I1) and RCy = (Y2, ¢2, I7) be two
reduced configurations. We denote by X; the set of all o’s that will map to the homomor-
phism | and by 3> the set of o’s that map to the homomorphism ;.

Let By and B, be two boxes separated by distance L. Let K1 U --- U K, be the knot
decomposition corresponding to suppg g, (C1, C2). Observe that if we replace o with any
other gauge field assignment in X;, we would have the same knot decomposition. Assume
that By isin K; and B, isin K fori # j.

Apply the mapping T : (1, ¥2) — (1, ¥2) according to the knot decomposition K| U

U K, as in Section 5. Let £; and £, be the sets of configurations that correspond to /|
and 1//2 In addition to this, switch I (e), I>(e) on the set of activated edges of K; and switch
¢1, ¢ on the activated vertices of K;; these switches will glve us 11, 12 and ¢1 ¢2 We

denote the full map from (Y1, ¢1, 1), (Y2, 2, [) — (1, ¢1, 1), (Y2, 2, I) as T. We will
first show that T is an involution.

LEMMA C.3. Consider two configurations RCy = (Y1, ¢1, I1) and RCy = (Y2, ¢2, ).
We first have that,

(C.9) supp g, up, (RC1. RC2) = suppg, s, (T (RCy, RC2)|1, T(RCy, RCo)2).

As a consequence of the above statement on the supports, we can argue that T is an
involution and, thus, a bijection.

PROOF. Let p be a plaquette in the support suppg, 5, (RCi, RC2) that is not part of
B U B;. This support has the knot decomposition Ky U... K, where K; contains By, and K ;
contains By with K; # K;. There are two possibilities for p: either there is a boundary vertex
of p that is simultaneously a boundary vertex for some activated edge in AE; (the activated
edges of RCy) or AE; (the activated edges of RC,), or we have a nontrivial current around a
vertex with 1 (§,) # 1 or ¥r1(§p) # 1.

Now, consider the first case that p shares a boundary vertex with an edge of AE| or AE,.
Without loss of generality, we may assume that this is an edge e of AE;. If this plaquette were
part of the knot K ;, then e would be an activated edge of the configuration T(RC1, RC2)|2 by
our definition of the map T. Thus, p would be part of the support of f(RCl, RC»)|»> and also
in suppBlUBz(f“(Rcl, RC)|1, T(RC1, RCy)|2). If, instead, the plaquette p was not part of the

knot K ;, then e would instead be an activated edge of the configuration f"(RC 1, RCy)|1, and
we could apply the same logic.

If we consider the case that p has nontrivial current ¥y (§,) # 1 or ¥2(§),) # 1, then the fact
that p € SUPPB,UBZ(f(RCh RCY|1, f"(RCl, RC5)1») is true from the corresponding property
of T in Lemma 5.3.

This shows that

suppg, s, (RC1. RC2) C suppy, 5, (T (RC. RC)|1. T (RCy, RCy)12).
The other inclusion is similar. If p were in

suppg,us, (T (RC1, RC)|1, T (RC1, RC)2),

then either p shares a boundary vertex with an activated edge in one of T(RCy, RCy)|1 or
f"(RCl, RC>)|2, or it has a nontrivial current with some ¥ (§,,) # 1.

The case that p has a nontrivial current was again treated in Lemma 5.3. Now we consider
the case that p shares a boundary vertex with an activated edge. Without loss of generality,
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assume the activated edge was in f"(RCl, RC»)|1. All activated edges of f(RCl, RC>) come
from an activated edge in RC; (if p was not part of K ;) or an activated edge in RC, (if p was
part of K ;). Thus, p still shares a boundary vertex of an activated edge either in RC; or in
RC>. In either case, p would belong to supp B|U Bz(RC 1, RC») as desired.

This shows the other inclusion,

SUpPpPg,uUB, (T(RCy, RC)11, T(RC1, RC)|2) C suppp,ug, (RC1, RCy).

Since the supports of both sides are equal, we see that both supports would have the same
knot decomposition K1 U --- U K,,. By the definition of T T applied to T(RC 1s RC») would
reverse the switching of the activated edges in K; we performed in the first T.Lemma 5.3
additionally shows that T will be an involution when restricted to the coordinates (Y1, ¥2)
(since T is equal to 7" on this pair). [J

The remainder of this section is devoted to showing that T preserves probability.
It will be a consequence of the following lemma.

LEMMA C.4. Let RC = (¥, ¢, I) have a support with knot decomposition K1 UK, ... U
K. Let By be the box that separates K| from K, U ---U K,,. Let ¥ be the set of all configu-
rations o that map to V.

Now, we can define notions that are related to our splitting. Let ™, I'™ denote the values
of ¢ and I restricted to the activated vertices and edges in K (so ¢™ and I'™ take trivial
values for all other vertices and edges). We similarly let ¢°" and I°" denote the values of ¢
and I not included in ™ and I in (so they would take trivial values on the activated vertices
and edges in K1). Finally, let (y™, ") denote the splitting of the homomorphism ¥ in
accordance with the separation by the box By in Lemma 4.10. Let =™ (£°U) be the set of all
gauge configurations o that map to the homomorphism W™ (y°U).

Then, we have that,

1
|G||Ao\ 1 Z exp[Hn . g (0, ¢, )]
1 : .
(C.10) = R Z exp[Hw puc (0, o™, I™)]
oexin
1
x W Z eXp[HN"B’K(O-’ ¢0ut, Iou[)].

oexout

One can iterate this construction to derive components ¢in’j i in, j s > at the iteration
of splitting K ; from K j11 U ... K,,. (With ¢'™! = ¢'™).
As a consequence, we notice that,

1
1G[IAo—T > exp[Hy g0, 6. 1]
oceX
(C.11) ) € 1
H |G 1Aol=t > exp[Hn puc(o. g™ 1)),

oex/

PROOF. With respect to Bj, one can choose a representative ¢ in X such that ¢ can
decompose as a product oo™, oM satisfies the property that its only nontrivial edge values
are inside the box By, and o°" has its only nontrivial edges outside the box Bj.
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By introducing an auxiliary field n, we see that we have,

1
AT 2 X[y (@. 6. D)]
oceX

1
= I oV &) gm0
n

pehy A—G

X exp[ Z I(e)

e=(x,y):1(e)#0

x log[2Re[(¢x) Tr[p (1) p((01)e) p((02)e) o (1; )] (@) '] + c]]

in !
= [l e gmamn 2

Ar(K in. N
(C.12) PEA2(KY) nin:Ag(K1)—G
Xexp[ Z 1™ (e)

e=(x,y):1"(e)#0

 log[2Rel Tep (1) () (1) )(6) ']+ 1]

1
< 1 wﬁ(l/fom(é‘p))m 2

peA (K1) Ut AG(K )= G

X exp[ Z 1°%(e)

e=(x,y):1°U=£0

 log[2Relg2" T p (1) (0o (15") ) )(65™) ']+ ]|

The first equality merely reparameterizes the configurations in o in terms of the auxiliary
field 5. The point of the last two lines is that By can split the connected clusters of /™ and
1°" of the box Bj. This causes the Higgs boson interaction to split so that the Higgs boson
interaction inside the box only depends on [/ in, ¢i“, o1, and ni“.

One can create dummy summation variables to turn 7™ and 7°'* into full auxil-
iary fields rather than restricted auxiliary fields. Once this is done and a compensat-
ing power of \?ll is added, one sees that the last two lines are a representation of

t

Wzgezoul explHn .« (o, 9", 1°")], and the two lines preceding those represent

Gt ez xp[Hy g (0 ¢ IM)]. O
An immediate corollary of the above fact is our desired multiplicative identity.

COROLLARY C.5. Let RCi = (Y1, ¢1, I1) and RCy = (Y2, ¢, I2) be two configurations
with SuppB]UBz(RCI’ RCy)) =K U---UK, with By in K; and By in K; with j # 1. Let
the configurations after switching be Rél = (&1 , d~>|, fl) and Réz = (&2, QNSZ, fz). After the
switching, we have the probability conservation relation:

1
|GRAI—2 >0 > exp[Hn.puc(o.d1, 1] x exp[Hy g (0, $2, 1)]

OEX | 0EY)

(C.13)
l e jod ~ ~
=GN > > exp[Hn pac(o. b1, ID)] x exp[Hn g (0, ¢2, 1))

Ueildézz
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PROOF. By using Lemma C.4, we see that we can decompose each sum of the form

1 Lin Li Lin _ .
TR Y sex, eXplHN . g« (0, ¢1, I1)] into its constituent parts wl "¢, and I with
respect to the division given by the knot decomposition K1 U Ko U --- U K, and write it as a
product.

1
|G |1A0—T Z exp[Hn, g« (0, d1. I1)]
oeX
- 1 I, l
~igrmer L ewlilo. o™ 1")
(C ]4) =1 O’GEim
' 1
1GTAo=T Y exp[Hn (0, ¢2, 1)]
gEX)
n 1 l l
:HIGHW Z exp[Hn g« (0, ¢21n’ m)]'
=1

l,in
0€Xy

Now, the configurations (1, 1, I1) and (1}1 $, Ib) are formed by exchanging the com-
ponents (1/f] /in ¢>J /in IJ ln) and (1//’ ,in ¢>J /in IJ ln) Thus, we have that,

1
|G[Aol=1 > exp[Hn.puclo. 1. )]
oey
! 1,i 1
(C15) == l_[ W Z eXp[HN ﬂ K(O ¢1 11'17 11’1)]
I#j UEEII in
1
X W Z exp[’HN B, K(U ¢] ,in I] ln)]‘

j.in
o€y

A similar expression holds for (1/72, 432, fz). From these explicit decompositions, one can
see that the products of the expressions are the same. This shows that the swapping T pre-
serves probabilities. [J

A consequence of the preceding corollary is that Tisa swapping map on reduced config-
urations.

C.3. Probability bounds. As we have mentioned in the last section, we have constructed
a swapping map that allows one to switch reduced configurations as long as that, in the knot
decomposition, the boxes By and B, are in different knots in the support. Thus, we have a
decay of correlation bound whose error probability is bounded by the probability that B and
B> belong in the same knot in the knot decomposition. In this section, we define a polymer
counting function that allows us to bound the probability of this event.

DEFINITION C.6. Out polymer counting function CD ) is defined as follows:

1
C.16) P (p)= exp[Hn, 8. (CD) ] exp[Hn, g, (C2)].
Fo (|G||H/HI|)2|AO‘_2 supppog;(fz)ZP p[ " 1] p[ " 2]
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The main property we need regarding the above polymer counting function is that it splits
as a product when there are two sets P; and P> in the support that are separated by a box
B. This is an analog of Lemma 6.4 and can be proved using the methods of [1], Lemma 9.
A consequence of this splitting is that the probability that there is a knot K that contains
both boxes Bj and B is bounded by CIDgI)U ,(K). Once we have a quantitative bound on

CIDES,Z])U BZ(K ) based on exp[—c|K|] for some ¢, we can bound the contribution of all knots
by using the arguments in the proof of Proposition 6.1. Our next lemma gives a bound on
QDgl)U ,(K), and we leave the full details of the bounds coming from summing up knots to
the reader.

LEMMA C.7. We have the following bound on CIDS.;O)(P).
We define ¢ as,

¢i= max(exp[ﬂ(r;iiQRe[Tr[p(g) - p(l)]])],

(C.17) .
2 exp[lglié((Z Re[a Tr[p(b)]] + C)D
(C.18) cpng)(p) < 16/P1G2PI128IPIIPI=IPol

PROOF. Consider two configurations C; and C, with joint support P. This means that the
supports of C and C, are subsets of P. There are 4/ P| ways to choose the support of C; and
C,. Furthermore, the set of plaquettes p with nontrivial circulation (do # 1) in C; is a subset
of the support of C; (and similar with C»). Thus, there are at most 4/ P| ways to choose the
set of plaquettes P; (resp. P») with nontrivial circulation in C; (resp. C2). This gives us our
first factor of 16/”! in equation (C.18).

Given the set of plaquettes Py with nontrivial circulation, there are at most |G|/*1l homo-
morphisms | that will have P as the subset with nontrivial circulation. Similarly, there are
at most |G|/ homomorphisms ¥, with P, as the subset with nontrivial circulation. The
factor of |G|~U%0I=D will cancel out the factor coming from considering the gauge configu-
rations o that would map to a homomorphism 1 or . This explains the factor |G|?'*! in
equation (C.18).

Furthermore, the only activated edges in our configuration must be boundary edges of
plaquettes in P. There are at most 2*!/PI ways to choose the set of activated edges in C; and
24Pl ways to choose the set of activated edges in C,. This explains the third factor 28/”! in
equation (C.18).

Finally, we remark that if a plaquette is in P \ Py, then either the plaquette has nontrivial
circulation in one of C; or C; or there is an activated edge in C; or C; that shares a boundary
vertex with p. The first quantity in the minimum appearing in ¢ bounds the contribution from
a plaquette with nontrivial circulation. The second factor bounds the contribution from the
existence of an activated edge. The bound comes from summing over [ (¢) from 1 to oo and
further noticing that a single activated edge could result in at most 24 plaquettes appearing in
the support. This gives us our last factor of ¢/?I=1%0l

Acknowledgements. We thank Sourav Chatterjee for suggesting this problem, as well
as for helpful conversations.

Funding. A.A. was supported by NSF award 2102842 for its support.



(1]

(2]

(3]

(4]

(5]

[6]
7]
18]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

EXPONENTIAL DECAY OF CORRELATIONS 173

REFERENCES

ADHIKARI, A. (2024). Wilson Loop Expectations for Non-Abelian Finite Gauge Fields Coupled to a Higgs
Boson at Low and High Disorder. Comm. Math. Phys. 405 117. MR4737292 https://doi.org/10.1007/
$00220-024-04998-5

AIZENMAN, M. (1982). Geometric analysis of (p4 fields and Ising models. I, II. Comm. Math. Phys. 86
1-48. MR0678000

AIZENMAN, M. and FROHLICH, J. (1984). Topological anomalies in the » dependence of the n-states Potts
lattice gauge theory. Nuclear Phys. B 235 1-18. MR0740980 https://doi.org/10.1016/0550-3213(84)
90144-5

AIZENMAN, M., HAREL, M. and PELED, R. (2020). Exponential decay of correlations in the
2D random field Ising model. J. Stat. Phys. 180 304-331. MR4130991 https://doi.org/10.1007/
$10955-019-02401-5

AIZENMAN, M. and PELED, R. (2019). A power-law upper bound on the correlations in the 2D ran-
dom field Ising model. Comm. Math. Phys. 372 865-892. MR4034778 https://doi.org/10.1007/
s00220-019-03450-3

BALABAN, T. (1983). Regularity and decay of lattice Green’s functions. Comm. Math. Phys. 89 571-597.
MRO0713686

BAEABAN, T. (1984). Renormalization group methods in non-abelian gauge theories. Harvard preprint,
HUTMP B134.

BALABAN, T. (1984). Propagators and renormalization transformations for lattice gauge theories. I. Comm.
Math. Phys. 95 17-40.

BALABAN, T. (1984). Propagators and renormalization transformations for lattice gauge theories. II. Comm.
Math. Phys. 96 223-250.

BALABAN, T. (1984). Recent results in constructing gauge fields. Phys. A 124 79-90.

BALABAN, T. (1985). Averaging operations for lattice gauge theories. Comm. Math. Phys. 98 17-51.

BALABAN, T. (1985). Spaces of regular gauge field configurations on a lattice and gauge fixing conditions.
Comm. Math. Phys. 99 75-102.

BALABAN, T. (1985). Propagators for lattice gauge theories in a background field. Comm. Math. Phys. 99
389-434.

BALABAN, T. (1985). Ultraviolet stability of three-dimensional lattice pure gauge field theories. Comm.
Math. Phys. 102 255-275.

BALABAN, T. (1985). The variational problem and background fields in renormalization group method for
lattice gauge theories. Comm. Math. Phys. 102 277-309.

BALABAN, T. (1987). Renormalization group approach to lattice gauge field theories. I. Generation of effec-
tive actions in a small field approximation and a coupling constant renormalization in four dimensions.
Comm. Math. Phys. 109 249-301. MR0880416

BALABAN, T. (1988). Convergent renormalization expansions for lattice gauge theories. Comm. Math. Phys.
119 243-285. MR0968698

BALABAN, T. (1989). Large field renormalization. I. The basic step of the R operation. Comm. Math. Phys.
122 175-202.

BAEABAN, T. (1989). Large field renormalization. II. Localization, exponentiation, and bounds for the R
operation. Comm. Math. Phys. 122 355-392.

BAsu, R. and GANGULY, S. (2018). SO(N) lattice gauge theory, planar and beyond. Comm. Pure Appl.
Math. 71 2016-2064. MR3861073 https://doi.org/10.1002/cpa.21788

BORGS, C. (1984). Translation symmetry breaking in four-dimensional lattice gauge theories. Comm. Math.
Phys. 96 251-284. MR0768257

BORGS, C. (1988). Confinement, deconfinement and freezing in lattice Yang-Mills theories with continuous
time. Comm. Math. Phys. 116 309-342. MR0939050

CAo0, S. (2020). Wilson loop expectations in lattice gauge theories with finite gauge groups. Comm. Math.
Phys. 380 1439-1505. MR4179732 https://doi.org/10.1007/s00220-020-03912-z

CHATTERIJEE, S. (2018). Yang-Mills for probabilists. In Probability and Analysis in Interacting Particle
Systems—in Honor of S.R.S. Varadhan.

CHATTERIJEE, S. (2019). Rigorous solution of strongly coupled SO (N) lattice gauge theory in the large N
limit. Comm. Math. Phys. 366 203—268. MR3919447 https://doi.org/10.1007/s00220-019-03353-3

CHATTERIEE, S. (2021). A probabilistic mechanism for quark confinement. Comm. Math. Phys. 385 1007—
1039. MR4278289 https://doi.org/10.1007/s00220-021-04086-y

CHATTERIEE, S. and JAFAROV, J. (2016). The 1/N expansion for SO(N) lattice gauge theory at strong
coupling. Preprint. Available at arXiv:1604.04777.


https://mathscinet.ams.org/mathscinet-getitem?mr=4737292
https://doi.org/10.1007/s00220-024-04998-5
https://mathscinet.ams.org/mathscinet-getitem?mr=0678000
https://mathscinet.ams.org/mathscinet-getitem?mr=0740980
https://doi.org/10.1016/0550-3213(84)90144-5
https://mathscinet.ams.org/mathscinet-getitem?mr=4130991
https://doi.org/10.1007/s10955-019-02401-5
https://mathscinet.ams.org/mathscinet-getitem?mr=4034778
https://doi.org/10.1007/s00220-019-03450-3
https://mathscinet.ams.org/mathscinet-getitem?mr=0713686
https://mathscinet.ams.org/mathscinet-getitem?mr=0880416
https://mathscinet.ams.org/mathscinet-getitem?mr=0968698
https://mathscinet.ams.org/mathscinet-getitem?mr=3861073
https://doi.org/10.1002/cpa.21788
https://mathscinet.ams.org/mathscinet-getitem?mr=0768257
https://mathscinet.ams.org/mathscinet-getitem?mr=0939050
https://mathscinet.ams.org/mathscinet-getitem?mr=4179732
https://doi.org/10.1007/s00220-020-03912-z
https://mathscinet.ams.org/mathscinet-getitem?mr=3919447
https://doi.org/10.1007/s00220-019-03353-3
https://mathscinet.ams.org/mathscinet-getitem?mr=4278289
https://doi.org/10.1007/s00220-021-04086-y
http://arxiv.org/abs/1604.04777
https://doi.org/10.1007/s00220-024-04998-5
https://doi.org/10.1016/0550-3213(84)90144-5
https://doi.org/10.1007/s10955-019-02401-5
https://doi.org/10.1007/s00220-019-03450-3

174
(28]
[29]

[30]

(31]

(32]

(33]
[34]
(35]
[36]

(37]

(38]
(39]
[40]
(41]

[42]

[43]
[44]
[45]
[46]
[47]
(48]
[49]

[50]

A. ADHIKARI AND S. CAO

CREUTZ, M., JACOBS, L. and REBBI, C. (1979). Monte Carlo study of Abelian lattice gauge theories.
Phys. Rev. D 20 1915-1922.

DING, J. and X1A, J. (2021). Exponential decay of correlations in the two-dimensional random field Ising
model. Invent. Math. 224 999-1045. MR4258059 https://doi.org/10.1007/s00222-020-01024-y
DUMINIL-COPIN, H., PELED, R., SAMOTI, W. and SPINKA, Y. (2017). Exponential decay of loop lengths
in the loop O (n) model with large n. Comm. Math. Phys. 349 777-817. MR3602816 https://doi.org/10.

1007/s00220-016-2815-4

FORSSTROM, M. P. (2022). Decay of correlations in finite Abelian lattice gauge theories. Comm. Math.
Phys. 393 1311-1346. MR4453235 https://doi.org/10.1007/s00220-022-04391-0

FORSSTROM, M. P., LENELLS, J. and VIKLUND, F. (2022). Wilson loops in finite Abelian lattice gauge
theories. Ann. Inst. Henri Poincaré Probab. Stat. 58 2129-2164. MR4492974 https://doi.org/10.1214/
21-aihp1227

FORSSTROM, M. P., LENELLS, J. and VIKLUND, F. (2023). Wilson loops in the Abelian lattice Higgs
model. Probab. Math. Phys. 4 257-329. MR4595389 https://doi.org/10.2140/pmp.2023.4.257

FORSSTROM, M. P., LENELLS, J. and VIKLUND, F. (2023). Wilson loops in the Abelian lattice Higgs
model. Probab. Math. Phys. 4 257-329. MR4595389 https://doi.org/10.2140/pmp.2023.4.257

FROHLICH, J. (1979). Confinement in Z,, lattice gauge theories implies confinement in SU(n) lattice Higgs
theories. Phys. Lett. B 83 195-198.

FROHLICH, J. and SPENCER, T. (1982). Massless phases and symmetry restoration in Abelian gauge theo-
ries and spin systems. Comm. Math. Phys. 83 411-454. MR0649811

GARBAN, C. and SEPULVEDA, A. (2023). Improved spin-wave estimate for Wilson loops in U (1) lattice
gauge theory. Int. Math. Res. Not. IMRN 21 18142-18198. MR4665622 https://doi.org/10.1093/imrn/
rnac356

GLIMM, J. and JAFFE, A. (1987). Quantum Physics. A Functional Integral Point of View, 2nd ed. Springer,
New York. MR0887102 https://doi.org/10.1007/978-1-4612-4728-9

GOPFERT, M. and MACK, G. (1981/82). Proof of confinement of static quarks in 3-dimensional U(1) lattice
gauge theory for all values of the coupling constant. Comm. Math. Phys. 82 545-606. MR0641914

GUTH, A. H. (1980). Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory.
Phys. Rev. D (3) 21 2291-2307. MR0570926 https://doi.org/10.1103/PhysRevD.21.2291

JAFAROV, J. (2016). Wilson loop expectations in SU(N) lattice gauge theory. Preprint. Available at
arXiv:1610.03821.

LEES, B. and TAGGI, L. (2021). Exponential decay of transverse correlations for O (N) spin systems and
related models. Probab. Theory Related Fields 180 1099—-1133. MR4288338 https://doi.org/10.1007/
s00440-021-01053-5

MACK, G. and PETKOVA, V. B. (1979). Comparison of lattice gauge theories with gauge groups Z, and
SU(2). Ann. Physics 123 442-467. MR0556082 https://doi.org/10.1016/0003-4916(79)90346-4

OSTERWALDER, K. and SEILER, E. (1978). Gauge field theories on a lattice. Ann. Physics 110 440-471.
MRO0459367 https://doi.org/10.1016/0003-4916(78)90039-8

SEILER, E. (1982). Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical
Mechanics. Lecture Notes in Physics 159. Springer, Berlin. MR0785937

STILLWELL, J. (1993). Classical Topology and Combinatorial Group Theory, 2nd ed. Graduate Texts in
Mathematics 72. Springer, New York. MR1211642 https://doi.org/10.1007/978-1-4612-4372-4

SZLACHANYI, K. and VECSERNYES, P. (1989). Cluster expansion in terms of knots in gauge theories with
finite nonabelian gauge groups. J. Math. Phys. 30 2156-2159. MR1009933 https://doi.org/10.1063/1.
528218

ToMBOULIS, E. T. (1993). Confinement via dynamical monopoles. Phys. Lett. B 303 103-108.

WEGNER, F. J. (1971). Duality in generalized Ising models and phase transitions without local order pa-
rameters. J. Math. Phys. 12 2259-2272. MR0289087 https://doi.org/10.1063/1.1665530

WILSON, K. G. (1974). Confinement of quarks. Phys. Rev. D 10 2445-2459.


https://mathscinet.ams.org/mathscinet-getitem?mr=4258059
https://doi.org/10.1007/s00222-020-01024-y
https://mathscinet.ams.org/mathscinet-getitem?mr=3602816
https://doi.org/10.1007/s00220-016-2815-4
https://mathscinet.ams.org/mathscinet-getitem?mr=4453235
https://doi.org/10.1007/s00220-022-04391-0
https://mathscinet.ams.org/mathscinet-getitem?mr=4492974
https://doi.org/10.1214/21-aihp1227
https://mathscinet.ams.org/mathscinet-getitem?mr=4595389
https://doi.org/10.2140/pmp.2023.4.257
https://mathscinet.ams.org/mathscinet-getitem?mr=4595389
https://doi.org/10.2140/pmp.2023.4.257
https://mathscinet.ams.org/mathscinet-getitem?mr=0649811
https://mathscinet.ams.org/mathscinet-getitem?mr=4665622
https://doi.org/10.1093/imrn/rnac356
https://mathscinet.ams.org/mathscinet-getitem?mr=0887102
https://doi.org/10.1007/978-1-4612-4728-9
https://mathscinet.ams.org/mathscinet-getitem?mr=0641914
https://mathscinet.ams.org/mathscinet-getitem?mr=0570926
https://doi.org/10.1103/PhysRevD.21.2291
http://arxiv.org/abs/1610.03821
https://mathscinet.ams.org/mathscinet-getitem?mr=4288338
https://doi.org/10.1007/s00440-021-01053-5
https://mathscinet.ams.org/mathscinet-getitem?mr=0556082
https://doi.org/10.1016/0003-4916(79)90346-4
https://mathscinet.ams.org/mathscinet-getitem?mr=0459367
https://doi.org/10.1016/0003-4916(78)90039-8
https://mathscinet.ams.org/mathscinet-getitem?mr=0785937
https://mathscinet.ams.org/mathscinet-getitem?mr=1211642
https://doi.org/10.1007/978-1-4612-4372-4
https://mathscinet.ams.org/mathscinet-getitem?mr=1009933
https://doi.org/10.1063/1.528218
https://mathscinet.ams.org/mathscinet-getitem?mr=0289087
https://doi.org/10.1063/1.1665530
https://doi.org/10.1007/s00220-016-2815-4
https://doi.org/10.1214/21-aihp1227
https://doi.org/10.1093/imrn/rnac356
https://doi.org/10.1007/s00440-021-01053-5
https://doi.org/10.1063/1.528218

	Introduction
	Previous work
	The difference between ﬁnite Abelian and ﬁnite non-Abelian
	Deﬁnitions and notation

	Preliminaries
	A general swapping argument
	Knot decomposition
	Construction of the swapping map
	Probability bound
	Appendix A: Topological facts
	Edge conﬁgurations and homomorphisms
	Good rectangles
	Knot upper bound

	Appendix B: Higgs boson large k
	Introduction
	Construction of the swapping map
	Completing the argument

	Appendix C: Higgs boson small k
	Introduction to the model
	Swapping on reduced conﬁgurations
	Probability bounds

	Acknowledgements
	Funding
	References

