
Probability Theory and Related Fields (2024) 189:879–907
https://doi.org/10.1007/s00440-024-01261-9

Spectral gap estimates for mixed p-spin models at high
temperature

Arka Adhikari1 · Christian Brennecke2 · Changji Xu3 · Horng-Tzer Yau4

Received: 8 November 2022 / Revised: 24 November 2023 / Accepted: 24 January 2024 /
Published online: 17 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We consider general mixed p-spin mean field spin glass models and provide a method
to prove that the spectral gap of the Dirichlet form associated with the Gibbs measure
is of order one at sufficiently high temperature. Our proof is based on an iteration
scheme relating the spectral gap of the N -spin system to that of suitably conditioned
subsystems.

Mathematics Subject Classification 60K35 · 60J27 · 74E35

1 Introduction

In this paper we consider general mixed p-spin mean field models with energies
described by the Hamiltonian HN : �N := {−1, 1}N → R of the form

HN (σ ) :=
∑

p≥2

βp

N (p−1)/2

∑

1≤i1,...,i p≤N

gi1i2...i pσi1 . . . σi p +
∑

1≤i≤N

ηiσi ,
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for σ = (σ1, σ2, . . . , σN ) ∈ �N . Here, the gi1i2...i p are i.i.d. standardGaussian random
variables for all tuples (i1, i2 . . . , i p) ∈ N

p with ik �= il for each 1 ≤ k �= l ≤ p
and p ∈ N. If two indices ik = il coincide, we set gi1...ik ...il ...i p ≡ 0. We remark
here that if one appropriately changes the values of the inverse temperature couplings
β2, . . . , βp, . . .; this is equivalent to the multi-linear model in which gi1,...,i p is a
standard normal variable for all choices of indices i1, . . . , i p. Moreover, we assume
that the temperature coefficients βp ≥ 0 are summable and the external field strengths
are denoted by ηi ∈ R. The Gibbs measure μN : P(�N ) → (0, 1) that corresponds
to HN is defined by

μN (σ ) := 1

ZN
eHN (σ ), ZN :=

∑

σ∈�N

eHN (σ ),

where ZN denotes the partition function of the system. In the following, we write 〈·〉
and 〈· ; ·〉 for the expectation and covariance, respectively, relative to μN , that is

〈 f 〉 :=
∑

σ∈�N

f (σ )μN (σ ), 〈 f ; g〉 :=
∑

σ∈�N

( f (σ ) − 〈 f (σ )〉)(g(σ ) − 〈g(σ )〉)μN (σ ).

We are interested in the spectral gap of the Dirichlet formw.r.t.μN . More precisely,
denote the discrete partial derivative in direction σi , i ∈ {1, . . . , N }, by

(∂i f )(σ ) := 1

2

(
f (σ ) − f (σ̂i )

)
, where σ̂i := (σ1, . . . ,−σi , . . . , σN ).

Then we can write HN (σ ) = Bj (σ )σ j +H ( j)
N (σ ) s.t. the j-th cavity field Bj : �N →

R, defined by

Bj (σ ) = σ j∂ j HN (σ ),

and H ( j)
N = HN − Bj do not depend on σ j (notice that ∂iσ j = δi jσ j ). Heuristically,

one may think of Bj as the effective magnetic field acting on σ j that is caused by the
remaining spins σi for i �= j .

With these definitions, we define the Dirichlet form weighted by the cavity fields
Bj through

D( f ) :=
N∑

j=1

〈
cosh−2(Bj )(∂ j f )

2
〉

(1.1)

for every f : �N → R and the (inverse of its) spectral gap by

aHN := sup
f :�N→R,
f �=const .

〈 f ; f 〉
D( f )

.
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Spectral gap estimates for mixed p-spin models at high temperature 881

We remark here that the Dirichlet form in (1.1) is the same as the one in [8, Eq. (4)]
for the Glauber Dynamics, namely

D( f ) = 1

N

N∑

i=1

〈Var( f (σ )|σ−i )〉,

where conditioning on σ−i means that we fix all spins except the i th one. Our main
result is the following theorem.

Theorem 1.1 For every ε > 0, if β := ∑
p≥2

√
p3 log p βp is sufficiently small

(depending on ε), then there exist constants c,C > 0, not depending on N ∈ N,
s.t.

P
({aHN > 1 + ε}) ≤ C exp(−c N ).

Remarks 1. We clearly have D( f ) = 0 if and only if f is constant, i.e. f ≡ 〈 f 〉.
Projecting onto the orthogonal complement of such functions in L2(dμN ), observe
that aHN is indeed the inverse of the spectral gap of D (extended in the obvious
way to a non-negative quadratic form in L2(dμN )) above its zero ground state
energy. Theorem 1.1 shows that, at sufficiently high temperature, the spectral gap
is of order one.

2. Notice that, due to the weight factors cosh−2(Bj ) ≤ 1, Theorem 1.1 implies also
that the Dirichlet form of [4] in L2(dμN ) has a spectral gap of order one, at
sufficiently high temperature.

3. Choosing linear functions f =∑N
j=1 c jσ j for ‖c‖2 �= 0, Theorem 1.1 implies in

particular that the correlation matrix M = (〈σi ; σ j 〉)1≤i, j≤N has operator norm
bounded by 1 + ε with high probability, if β is small enough.

4. In principle, our arguments can be used to determine an explicit smallness thresh-
old on β up to which our proof is valid. We have not optimized our constants, but
rough estimates suggest that the largest β is of order O(10−4). Since the small-
ness condition is due to technical limitations of our method, but without physical
significance, we refrain from providing further details on this.

Spectral gap inequalities appear most prominently in the study of Markov chains.
The difference between the largest and second largest eigenvalues of theMarkov chain
essentially dictates how fast the chain can equilibriate; with a large spectral gap, one
can expect exponentially fast equilibriation. Markov chain Monte Carlo is one of the
most efficient tools used to model physical systems. Thus, establishing a spectral
gap inequality for a particular Markov chain model of interest would be critical to
show numerical modelers that their results would result in accurate predictions of the
behavior of these statistical models here. One classical Markov chain algorithm is the
Glauber dynamics; the spectral gap we prove shows that the Glauber dynamics on the
hypercube for the p-spin spin glass will equilibriate very quickly.

Due to its importance in the numerical sampling of statistical models, spectral gap
inequalities have been of central interest to researchers. In the special case β2 > 0
and βp = 0 for p > 2, our model reduces to the well-known Sherrington-Kirkpatrick
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model [13]. In this case, a logarithmic Sobolev inequality (LSI) for a slightly different
Dirichlet form follows forβ < 1/4 from themain result of [4], whose proof is based on
a single-step renormalisation and Bakry-Émery theory [3]. However, the proof applied
in this case is not readily generalizable to general mixed p-spin models. Indeed, the
quadratic nature of the Sherrington-Kirkpatrick model allowed the authors of [4] to
‘complete the square’ on the Sherrington-Kirkpatrick Hamiltonian (in fact, the results
of [4] apply to general quadratic models) and represent it as the convolution of a
continuous model with a coupled Bernoulli variable. At this point, one can prove
an LSI separately for each part by classical methods and then prove an LSI for the
convolution through a short computation. The fact that the interaction in HN , defined
above, is not quadratic means that this method fails at the first step and there seems to
be no natural way to decompose the p-spin model into simpler models as in [4].

The papers [2, 7, 8], prove spectral gap inequalities or LSI via a method of
stochastic localization. Thesemethods allow the authors to interpolate the Sherrington-
Kirkpatrick model to a mixture of 2-spin Ising models with a rank 1 quadratic
interaction. This reduces the question of the spectral gap of the SK model to the
spectral gap of a simpler model. Since the p-spin models have a more complicated
spin interaction, it is unclear that current methods would allow one to easily decom-
pose the interaction of the p-spin model to simpler parts. The paper [1] combines
stochastic localization with approximate message passing in order to sample distribu-
tions from the Sherrington-Kirkpatrick models; this method is different from Markov
chain Monte Carlo. The paper [9] treats the technically simpler spherical case, where
one has access to Bakry-Emery type methods.

For spectral gap estimates in the physically very different low temperature regime,
see, however, [5] and the references therein, where it is shown under rather general
conditions that a spectral gap inequality as implied by Theorem 1.1 does not hold true.

Since these methods do not readily extend to p-spin case, we use a different
approach inspired by ideas related to self-consistent relations and martingale argu-
ments as introduced in [11, 12]. Theorem 1.1 is the first spectral gap bound for general
mixed p-spin models at sufficiently high temperature on the hypercube.

2 Outline of the proof of Theorem 1.1

A simple computation shows that the spectral gap of a system with only one spin is
equal to one (see Sect. 5 below for the short argument). In order to estimate the spectral
gap of the N -spin system, we proceed iteratively over the system size. To this end, let
us first introduce some additional notation. For disjoint subsets A, B ⊂ {1, . . . , N },
we define H [A,B]

N ≡ H [A,B]
N ,σA

: �N−|A∪B| → R by

H [A,B]
N ,σA

(σ(A∪B)c ) =
∑

p≥2

βp

N (p−1)/2

∑

i1,...,i p∈Bc

gi1i2...i pσi1 . . . σi p +
∑

i∈Bc

ηiσi ,

where Sc = {1, . . . , N } \ S for S ⊂ {1, . . . , N }, σS denotes σS := (σi )i∈S (in
particular, we identify σi = σ{i}) and where the coordinates of σA are understood to
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Spectral gap estimates for mixed p-spin models at high temperature 883

befixed.Observe that H [A,B]
N plays the role of the energy of the subsystemconsisting of

the spinsσi , i ∈ (A∪B)c, conditionally on the spinsσ j for j ∈ A andwith the particles
σ j for j ∈ B removed from the system. We then denote by 〈·〉[A,B] ≡ 〈·〉[A,B](σA)

the conditional Gibbs measure induced by the reduced Hamiltonian H [A,B]
N and, in

analogy to (1.1), we set

D[A,B]( f ) :=
∑

j /∈A∪B

〈
cosh−2(B[A,B]

j )(∂ j f )
2
〉

[A,B] ,

where B[A,B]
j := σ j∂ j H

[A,B]
N . Notice that B[A,B]

j is formally obtained by setting σB

equal to zero and fixing σA in Bj . More explicitly, it is given by

B[A,B]
j (σ ) =

∑

p≥2

βp

N (p−1)/2

( ∑

i2,...,i p∈Bc

g ji2...i pσi2 . . . σi p + . . .

. . . +
∑

i1,...,i p−1∈Bc

gi1i2...i p−1 jσi1σi2 . . . σi p−1

)
+ η j

(2.1)

for σ = (σA, σAc∩Bc ) ∈ �N−|B|, with σA ∈ �|A| understood as being fixed.
Next, we define the spectral gap of the subsystem related to A, B by

a[A,B] ≡ a[A,B](σA) := sup
f :�N−|A∪B|→R,

f �=const .

〈 f ; f 〉[A,B]
D[A,B]( f )

, (2.2)

and the maximal spectral gap over all N − k spin subsystems by

aN−k := max
A,B⊂{1,...,N }:

A∩B=∅,|A∪B|=k

max
σA∈�|A|

a[A,B](σA). (2.3)

For i, j ∈ (A ∪ B)c, we finally set m[A,B]
i = 〈σi 〉[A,B] and m[A,B]

i j = 〈σi ; σ j
〉
[A,B].

Let us point out that, throughout the rest of this work, we keep the dependence of
quantities like 〈·〉[A,B], H [A,B]

N , etc. on σA ∈ �|A| implicit, to ease the notation.
Our starting point for the proof of Theorem 1.1 is the following lemma.

Lemma 2.1 (Conditioning Lemma). Let f : �N−k → R and let A, B be disjoint with
|A ∪ B| = k, then

〈 f ; f 〉[A,B] ≤
(
1 − 1

N − k

)
aN−k−1D[A,B]( f ) + 1

N − k

∑

j /∈A∪B

〈 f ; σ j 〉2[A,B]
1 − (m[A,B]

j )2
.

(2.4)

This inequality links the spectral gap a[A,B] over the N − k spin system related to A
and B with the maximal spectral gap aN−k−1 over the N − k − 1 spin systems, and
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our proof of Theorem 1.1 is based on employing this relation inductively. The key
point is then to show that the second term on the r.h.s. in (2.4) is under good control
during the iteration. Heuristically, note that if we write f =∑ j /∈A∪B c jσ j + h such
that 〈h; σ j 〉 = 0 (that is, up to a constant, h is the projection of f onto the orthogonal

complement of the functions σ �→ σ j − m[A,B]
j in L2(d〈·〉[A,B])), then

∑

j /∈A∪B

〈 f ; σ j 〉2[A,B]
1 − (m[A,B]

j )2
= ‖(	[A,B])1/2M [A,B]c‖22

for	[A,B] = diag
(
(1−(m[A,B]

i )2)−1
)
,M [A,B] = (m[A,B]

i j )i, j /∈A∪B and c = (ci )i /∈A∪B .
In particular, motivated by well-known results on the correlation matrix like for exam-
ple [10], if we could ignore the order one entries on the diagonal of the correlation
matrix M [A,B], we might expect the right hand to be of size ε〈 f ; f 〉 for small ε if the
inverse temperature coefficients are small enough, and with such a bound one could
easily iterate (2.4) to conclude Theorem 1.1.

Of course, we can not simply ignore the diagonal of M [A,B] and therefore, we need
to proceed slightly differently. First, in Sect. 3, we give the rough bound

∑

j /∈A∪B

〈 f ; σ j 〉2[A,B]
1 − (m[A,B]

j )2
≤ C

√
N − k〈 f ; f 〉[A,B]

on a set of probability close to one, uniformly in the subsets A, B. This bound implies
that the maximal spectral gap can not have a large jump after adding one additional
spin into the system. In the second step, we then control the error term in (2.4) through
an improved iteration bound which, loosely speaking, has the form

∑

j /∈A∪B

〈 f ; σ j 〉2[A,B]
1 − (m[A,B]

j )2
≤ (1 + O(ε)

)
D[A,B]( f ) + O(ε)〈 f ; f 〉[A,B]

for small ε if the temperature coefficients are small and if we have a some a priori
control on aN−k−1. To obtain this bound, it turns out that we can follow a similar
heuristics as above for the correlation matrix, but with the correlation matrix replaced
by another matrix whose norm indeed turns out to be small at high temperature.
Equipped with this improved estimate and the continuity argument from the first step,
we use (2.4) inductively and conclude Theorem 1.1 in Sect. 5.

Let us conclude this overview with the proof of (2.4).

Proof of Lemma 2.1 By the total variance formula, we have for any j /∈ A ∪ B

〈 f ; f 〉[A,B] = 〈〈 f (·, σ j ); f (·, σ j )〉[A∪{ j},B]〉[A,B]
+ 〈〈 f (·, σ j )〉[A∪{ j},B]; 〈 f (·, σ j )〉[A∪{ j},B]〉[A,B].

(2.5)
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By definition (2.3), we can bound the integrand in the first term on the r.h.s. in (2.5)
by

〈〈 f (·, σ j ); f (·, σ j )〉[A∪{ j},B]〉[A,B]
≤ aN−k−1

∑

l /∈A∪{ j}∪B

〈
〈cosh−2(B[A∪{ j},B]

l )(∂l f (·, σ j ))
2〉[A∪{ j},B]

〉

[A,B]

= aN−k−1

∑

l /∈A∪{ j}∪B

〈
cosh−2(B[A,B]

l )(∂l f )
2
〉

[A,B] ,

so that averaging over j /∈ A ∪ B implies

〈 f ; f 〉[A,B] ≤
(
1 − 1

N − k

)
aN−k−1D[A,B]( f )

+ 1

N − k

∑

j /∈A∪B

〈〈 f (·, σ j )〉[A∪{ j},B]; 〈 f (·, σ j )〉[A∪{ j},B]〉[A,B].

Finally, every function�N−k � σ �→ g(σ ) = g(σ j ) that only depends on σ j is a linear
function g(σ j ) = cσ j+b for certain coefficients b, c ∈ R. Thus 〈g(σ j ); g(σ j )〉[A,B] =
c2(1 − (m[A,B]

j )2) and 〈g(σ j ); σ j 〉[A,B] = c(1 − (m[A,B]
j )2). We can rewrite this

relationship as follows:

〈
g(σ j ); g(σ j )

〉
[A,B] =

〈
g(σ j ); σ j

〉2
[A,B]

1 − (m[A,B]
j )2

.

Choosing σ �→ g(σ ) = 〈 f (·, σ j )〉[A∪{ j},B], we obtain

〈g; g〉[A,B] = 〈〈 f (·, σ j )〉[A∪{ j},B]; σ j 〉2[A,B]
1 − (m[A,B]

j )2
= 〈 f ; σ j 〉2[A,B]

1 − (m[A,B]
j )2

.

��

3 Continuity argument

As mentioned in the previous section, our first goal is to show that, assuming aN−k−1
to be of order one, the rate with which aN−k may increase is not too large, with high
probability. To make this more precise, let us set from now on

β :=
∑

p≥2

√
p3 log p βp (3.1)
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and let us define the good event 
 by


 :=
{

sup
A∩B=∅

sup
σA∈�|A|

sup
σ∈�N−|A∪B|

∥∥(∂i B[A,B]
j (σ )

)
1≤i, j≤N−|A∪B|

∥∥ ≤ 5β

}
, (3.2)

where ‖ · ‖ denotes the standard matrix norm ‖A‖ := supc∈Rd :‖c‖2=1 ‖Ac‖2, for
A ∈ R

d×d (recall that for symmetric A = AT , the norm coincides with ‖A‖ =
supc∈Rd :‖c‖2=1 c

T Ac). Our specific definition of β comes from appropriate tensor

bounds on ‖(∂i B[A,B]
j )‖ that appear in Sect. 6. The event 
 is similar to events found

in the literature such as [6, Appendix B], where one needs to control thematrix norm of
‖∇2HN‖, though our estimates are slightly more involved. Then, we prove in Sect. 6
below that P(
) ≥ 1 − e−N (see Lemma 6.1). In the following, let us also denote by
Cβ the constant

Cβ := (103β)2 exp(103β), (3.3)

whose specific form becomes clearer in Sect. 6. The main result of this section reads
as follows.

Proposition 3.1 Let β be as in (3.1),
 as in (3.2), Cβ as in (3.3) and let ε ∈ (0, 10−2)

where ε does not depend on β. Assume that β is sufficiently small. Then, there exists
a universal constant C > 0 such that

P

(

 ∩

N−2⋃

k=0

{
aN−k−1Cβ < ε and aN−k > 5aN−k−1

})

≤ C e(Cε/Cβ+2) log N+N log 4−NC2
β(ε2Cβ2)−1

.

Prop. 3.1 requires a couple of auxiliary results and follows by combining Lemma 3.1
and Corollary 3.4 below. We start with the following observation.

Lemma 3.1 For any disjoint A, B ⊂ {1, . . . , N } with |A ∪ B| = k, we have that

∑

i /∈A∪B

〈σi ; f 〉2[A,B]
1 − (m[A,B]

i )2
≤ ‖(	[A,B])1/2M [A,B](	[A,B])1/2‖〈 f ; f 〉[A,B],

where 	[A,B] = (δi j
[
1 − (m[A,B]

i )2
]−1)

i, j /∈A∪B and M [A,B] = (m[A,B]
i j )i, j /∈A∪B. As

a result, a[A,B] is bounded by

(
1 − ‖(	[A,B])1/2M [A,B](	[A,B])1/2‖

N − k

)
a[A,B] ≤ aN−k−1. (3.4)

Proof Wewrite f =∑i /∈A∪B ciσi +h with 〈h; σi 〉[A,B] = 0 for all i /∈ A∪ B. Notice
that, up to a constant, h is the projection of f onto the orthogonal complement of the
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functions σ �→ σi − m[A,B]
i in L2(d〈·〉[A,B]). Then

∑

i /∈A∪B

〈σi ; f 〉2[A,B]
1 − (m[A,B]

i )2
=
∑

i /∈A∪B

(
∑

j m
[A,B]
i j c j )2

1 − (m[A,B]
i )2

= ‖(	[A,B])1/2M [A,B]c‖22

≤ ‖(M [A,B])1/2	[A,B](M [A,B])1/2‖〈c, M [A,B]c〉2
≤ ‖(M [A,B])1/2	[A,B](M [A,B])1/2‖〈 f ; f 〉[A,B],

(3.5)

where 〈·, ·〉2 denotes the standard Euclidean inner product, ‖ · ‖2 is its induced norm
and ‖ · ‖ denotes the matrix norm, i.e. the maximal eigenvalue in case of a sym-
metric, positive semi-definite matrix like (M [A,B])1/2	[A,B](M [A,B])1/2. Noting that
‖(M [A,B])1/2	[A,B](M [A,B])1/2‖ = ‖(	[A,B])1/2M [A,B](	[A,B])1/2‖, we conclude
the claim using Lemma 2.1 and the definition of a[A,B] in (2.2). ��

To proceed further, we need some a priori information on the distribution of the
cavity fields B[A,B]

j . In essence, the next result allows us to control the Gibbs expecta-

tion of exponentials of B[A,B]
j by the exponentials evaluated at the Gibbs expectation

of B[A,B]
j . To focus on the main line of the argument for the proof of Theorem 1.1, we

defer the proof of the following technical key lemma to Sect. 6.

Lemma 3.2 Let β be as in (3.1), 
 as in (3.2), ε ∈ (0, 10−2), A, B ⊂ {1, . . . , N }
disjoint with |A ∪ B| = k and let j /∈ A ∪ B. Assume that β is sufficiently small. If
a[A,B∪{ j}]Cβ < ε, then we have in 
 that

1
〈
cosh2(B[A,B]

j )
〉
[A,B∪{ j}]

≤ 〈 cosh−2(B[A,B]
j )

〉
[A,B∪{ j}] ≤ (1 + 4ε)

(
1 − (m[A,B]

j )2
)
,

(3.6)

〈
e−K B[A,B]

j
〉
[A,B∪{ j}] ≤ (1 + 4ε)e

−K
〈
B[A,B]
j

〉
[A,B∪{ j}], (3.7)

1 ≤
〈
cosh(K B[A,B]

j )
〉
[A,B∪{ j}]

cosh
(
K
〈
B[A,B]
j

〉
[A,B∪{ j}]

) ≤ 1 + 4ε (3.8)

uniformly in K ∈ [−20, 20].
We use Lemma 3.2 to prove the following result.

Lemma 3.3 Let 
 be as in (3.2), Cβ as in (3.3), ε ∈ (0, 10−2) and set


N−k−1,ε = {aN−k−1Cβ < ε}. (3.9)

Then, there exists a universal constant C > 0 such that in the event 
 ∩ 
N−k−1,ε ,
we have for every disjoint A, B with |A ∪ B| = k, j /∈ A ∪ B, every σA ∈ �|A| and
every function g : �N−k → R that does not depend on σ j that

〈
σ j ; g

〉2
[A,B] ≤ Cε

Cβ

(
1 − (m[A,B]

j )2
)2
D[A,B∪{ j}](g).
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Proof Assume in the following that g : �N−k → R is a function that does not depend
on σ j . Then, writing H [A,B]

N = H [A,B∪{ j}]
N + σ j B

[A,B]
j , we have that

〈g〉[A,B] =

〈∑
σ j∈{±1} ge

σ j B
[A,B]
j

〉

[A,B∪{ j}]〈
2 cosh(B[A,B]

j )
〉

[A,B∪{ j}]
=

〈
g sinh(B[A,B]

j )
〉

[A,B∪{ j}]〈
cosh(B[A,B]

j )
〉

[A,B∪{ j}]
(3.10)

and furthermore

〈
σ j ; g

〉
[A,B] =

〈∑
σ j∈{±1} σ j ge

σ j B
[A,B]
j

〉

[A,B∪{ j}]〈
2 cosh(B[A,B]

j )
〉

[A,B∪{ j}]

−

〈∑
σ j∈{±1} σ j e

σ j B
[A,B]
j

〉

[A,B∪{ j}]〈
2 cosh(B[A,B]

j )
〉

[A,B∪{ j}]

〈∑
σ j∈{±1} ge

σ j B
[A,B]
j

〉

[A,B∪{ j}]〈
2 cosh(B[A,B]

j )
〉

[A,B∪{ j}]
.

To simplify the notation, let us abbreviate for the rest of the proof

〈·〉∗ = 〈·〉[A,B∪{ j}] , ξ = sinh(B[A,B]
j )

〈
cosh(B[A,B]

j )
〉
[A,B∪{ j}]

, ζ = cosh(B[A,B]
j )

〈
cosh(B[A,B]

j )
〉
[A,B∪{ j}]

,

so that, by the independence of g of σ j , we find

〈
σ j ; g

〉
[A,B] = 〈ξg〉∗ − 〈ξ 〉∗ 〈gζ 〉∗ = 〈ξ ; g〉∗ − 〈ξ 〉∗ 〈g; ζ 〉∗ = 〈(ξ − 〈ξ 〉∗ ζ

); g〉∗.

Notice that in the second step, we used 〈ζ 〉∗ = 1. Observing also that

〈ξ 〉∗ =
〈
sinh(B[A,B]

j )
〉
[A,B∪{ j}]〈

cosh(B[A,B]
j )

〉
[A,B∪{ j}]

= 〈σ j 〉[A,B] = m[A,B]
j , (3.11)

we apply Cauchy-Schwarz and obtain the upper bound

〈
σ j ; g

〉2
[A,B] ≤ 〈g; g〉∗

〈
ξ − m[A,B]

j ζ ; ξ − m[A,B]
j ζ

〉

∗
≤ aN−k−1D[A,B∪{ j}](g)

〈
(ξ − m[A,B]

j ζ )2
〉

∗ ,
(3.12)

where in the last step we applied spectral gap inequality 〈g; g〉∗ ≤ aN−k−1D[A,B∪{ j}]
(g). In
N−k−1, we know that aN−k−1Cβ < ε, so the claim follows if we show that the
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last factor on the r.h.s. of the previous estimate is bounded by some absolute constant
C > 0 times (1 − (m[A,B]

j )2)2. To this end, we bound

〈
(ξ − m[A,B]

j ζ )2
〉

∗
=
〈
cosh(B[A,B]

j )
〉−2

∗

〈
cosh2(B[A,B]

j )
(
tanh(B[A,B]

j ) − m[A,B]
j

)2〉

∗
≤
〈
cosh(B[A,B]

j )
〉−2

∗

〈
cosh4(B[A,B]

j )
〉1/2
∗

〈(
tanh(B[A,B]

j ) − m[A,B]
j

)4〉1/2
∗ .

In 
 ∩ 
N−k−1,ε we can apply Lemma 3.2, because aN−k−1Cβ < ε implies in
particular that a[A,B∪{ j}]Cβ < ε. Expanding cosh(x) = (ex + e−x )/2, this yields

〈
cosh(B[A,B]

j )
〉−2

∗

〈
cosh4(B[A,B]

j )
〉1/2
∗ ≤ C (3.13)

and we also claim that

〈(
tanh(B[A,B]

j ) − m[A,B]
j

)4〉

∗ ≤ C
(
1 − (m[A,B]

j )2
)4

. (3.14)

Assuming the validity of (3.14) for the moment, the lemma follows by combining
the previous four estimates. Hence, let us focus on the proof of (3.14). As explained
below, this bound follows by giving a uniform (in N ) lower bound on 1 + m[A,B]

j or

1−m[A,B]
j , depending on whether 〈B[A,B]

j 〉∗ ≥ 0 or 〈B[A,B]
j 〉∗ ≤ 0. To see this, let us

assume first that 〈B[A,B]
j 〉∗ ≥ 0. Then, Lemma 3.2 implies

〈
1
{
B[A,B]
j ≤ −1/2

}〉
∗ ≤ exp(−K/2)

〈
exp
(− K B[A,B]

j

)〉
∗

≤ (1 + ε) exp(−K/2) exp
(− K 〈B[A,B]

j 〉∗
) ≤ 2 exp(−K/2).

for every 0 ≤ K ≤ 20. Choosing 0 ≤ K ≤ 20 suitably, we get

1 + m[A,B]
j = 1 + 〈tanh(B[A,B]

j

)〉
[A,B]

≥ 1 + tanh
(− 1/2

)− 〈sinh2(B[A,B]
j )〉1/2∗

〈cosh(B[A,B]
j )〉∗

〈
1
{
B[A,B]
j ≤ −1/2

}〉1/2
∗

≥ 1 − tanh
(
1/2
)− 2 exp(−K/4) ≥ 1/(1 + e) > 0.
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Using this lower bound, the elementary bounds 0 ≤ 1 − tanh(x) ≤ 2e−2x and
cosh2(x) ≤ cosh(2x) for all x ∈ R and once again Lemma 3.2, we find that

〈(
tanh(B[A,B]

j ) − m[A,B]
j

)4〉
∗ ≤ C

〈(
1 − tanh(B[A,B]

j )
)4〉

∗ + C
(
1 − m[A,B]

j

)4

≤ C
〈
e−8B[A,B]

j
〉
∗ + C

(
1 − (m[A,B]

j )2
)4

≤ Ce−8〈B[A,B]
j 〉∗ + C

(
1 − (m[A,B]

j )2
)4

as well as

e−2〈Bj〉∗ ≤ 1

2
cosh

(
2〈B[A,B]

j 〉∗
)−1 ≤ C

〈
cosh

(
2B[A,B]

j

)〉−1
∗

≤ C
〈
cosh2

(
B[A,B]
j

)〉−1
∗ ≤ C

(
1 − (m[A,B]

j )2
)
,

where we used (3.6) in the last step. Combining the previous two display yields (3.14)
for 〈B[A,B]

j 〉∗ ≥ 0.

If 〈B[A,B]
j 〉∗ < 0, we proceed similarly as above and the bound (3.14) follows from

estimating 〈1{B[A,B]
j ≥ 1/2}〉∗ ≤ 2 exp(−K/2) so that 1 − m[A,B]

j ≥ 1/(1 + e) by
choosing a suitable 0 ≤ K ≤ 20, and combining this with

〈(
tanh(B[A,B]

j ) − m[A,B]
j

)4〉
∗ ≤ C

〈(
1 + tanh(B[A,B]

j )
)4〉

∗ + C
(
1 + m[A,B]

j

)4

≤ Ce8〈B
[A,B]
j 〉∗ + C

(
1 − (m[A,B]

j )2
)4

≤ C cosh
(
2〈B[A,B]

j 〉∗
)−4 + C

(
1 − (m[A,B]

j )2
)4

≤ C
(
1 − (m[A,B]

j )2
)4

.

��
Corollary 3.4 Let 
 be as in (3.2), Cβ as in (3.3), ε ∈ (0, 10−2) and recall 
N−k−1,ε
defined in (3.9). Then, there exists a universal constant C > 0, s.t. in 
 ∩ 
N−k−1,ε ,
we have for every A, B be disjoint with |A ∪ B| = k < N and every σA ∈ �|A| that

‖(	[A,B])1/2M [A,B](	[A,B])1/2‖ ≤ C
√

ε

Cβ

√
N − k + 1.

Here, we recall that 	[A,B] = 	[A,B](σA) = (δi j
[
1 − (m[A,B]

i )2
]−1)

i, j /∈A∪B as well

as M [A,B] = M [A,B](σA) = (m[A,B]
i j )i, j /∈A∪B.

Proof For c = (ci )i /∈A∪B ∈ R
N−k , we have that

cT(	[A,B])1/2M [A,B](	[A,B])1/2c

=
∑

j /∈A∪B

c j√
1 − (m[A,B]

j )2

〈
σ j ;

∑

i /∈A∪B

ciσi√
1 − (m[A,B]

i )2

〉

[A,B]

.
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Fixing j /∈ A ∪ B and setting g j (σ ) := ∑i /∈A∪B∪{ j}
(
1 − (m[A,B]

i )2
)−1/2

ciσi , it is
clear that g j does not depend on σ j and Lemma 3.3 implies that

0 ≤ cT(	[A,B])1/2M [A,B](	[A,B])1/2c

≤ C

√
ε

Cβ

∑

j /∈A∪B

√
1 − (m[A,B]

j )2|c j |

√√√√√
∑

i /∈A∪B∪{ j}

〈
cosh−2 (B[A,B]

i

)〉
[A,B∪{ j}]c2i

1 − (m[A,B]
i )2

+ ‖c‖22

Using (3.6), we obtain

cT(	[A,B])1/2M [A,B](	[A,B])1/2c ≤ C
√

ε

Cβ

√
N − k ‖c‖22 + ‖c‖22.

Since the constant C > 0 on the right hand side in the last bound depend neither on
A, B nor on the spin configuration σA (implicitly contained in the expectations w.r.t.
the conditional Gibbs measure 〈·〉[A,B]), this proves the lemma. ��

The previous corollary is not, yet, enough to conclude Prop. 3.1. To this end, we
need another consequence of Lemma 3.2.

Lemma 3.5 Let β be as in (3.1), 
 as in (3.2), Cβ as in (3.3) and let ε ∈ (0, 10−2).
Assume that β is sufficiently small and recall 
N−k−1,ε defined in (3.9). Moreover,
let T ∈ N be fixed (independently of N), let N − T ≤ k ≤ N − 1 and define for
A, B ⊂ {1, . . . , N } disjoint with |A ∪ B| = k and σA ∈ �|A| the event


A,B,σA :=
{∥∥(	[A,B])1/2M [A,B](	[A,B])1/2

∥∥ >
11

10

√
N − k

}
.

Then, there is a universal constant C > 0 such that

P

( ⋃

A∩B=∅,
|A∪B|=k

⋃

σA∈�|A|

(

 ∩ 
N−k−1,ε ∩ 
A,B,σA

))

≤ C e(T+2) log N+N log 4−NCβ(CT εβ2)−1
.

Proof Let T ∈ N be fixed and A, B ⊂ {1, . . . , N } be disjoint with N − T ≤ k =
|A∪B| ≤ N−1. Now, consider the auxiliary field B[A,Ac]

j which, formally, is obtained

from B[A,B]
j by setting σAc = 0 (note that B ⊂ Ac). Then, B[A,Ac]

j is obviously a
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function of σA alone and by (2.1), we have that

(B[A,B]
j − B[A,Ac]

j )(σ )

=
∑

p≥2

βp

N (p−1)/2

( ∑

i2,...,i p∈Bc,

∃ 2≤l≤p: il∈Ac∩Bc

g ji2...i pσi2 . . . σi p + . . .

. . . +
∑

i1,...,i p−1∈Bc,

∃ 1≤l≤p−1: il∈Ac∩Bc

gi1i2...i p−1 jσi1σi2 . . . σi p−1

)

for every σ = (σA, σAc∩Bc ) ∈ �N−|B|.
Moreover, given σ ∈ �N−|B|, it is straightforward to see that

(
B[A,B]
j −B[A,Ac]

j

)
(σ )

is a centered Gaussian random variable with variance bounded by

E
(
B[A,B]
j − B[A,Ac]

j

)2
(σ ) ≤ C

∑

p≥2

N p−2

N p−1 pβ
2
pT ≤ CTβ2

N

for some universal constant C > 0. Setting


δ :=
{

sup
A,B⊂{1,...,N }:

A∩B=∅,|A∪B|≥N−T ,

sup
j /∈A∪B

sup
σ∈�N−|B|

∣∣(B[A,B]
j − B[A,Ac]

j

)
(σ )
∣∣ > δ

}

for δ ∈ (0, 1), we conclude that

P(
δ) ≤
(
N

T

)
T 2(N − T )2N−T 2N−|B|e−Nδ2/(2CTβ2)

≤ exp
(
(T + 2) log N + N log 4 − Nδ2

CTβ2

)
.

(3.15)

Now consider the event 
 ∩ 
N−k−1,ε ∩ 
c
δ . If A, B are disjoint s.t. |A ∪ B| = k,

σA ∈ �|A| and g : �N−k → R is a function that does not depend on σ j , for some
j /∈ A ∪ B, we can proceed as in (3.12) to (3.13) of Lemma 3.3 to conclude that

〈
σ j ; g

〉2
[A,B] ≤ CaN−k−1D[A,B∪{ j}](g)

〈(
tanh(B[A,B]

j ) − m[A,B]
j

)4〉1/2
[A,B∪{ j}]

for some universal C > 0. By definition of 
δ , we have

C
〈(
tanh
(
B[A,B]
j

)− m[A,B]
j

)4〉

∗
= C
〈(

tanh
(
B[A,B]
j

)− tanh
(
B[A,Ac]
j

)

+ 〈 tanh (B[A,Ac]
j

)− tanh
(
B[A,B]
j

)〉
[A,B]
)4〉

∗ ≤ Cδ4
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in 
 ∩ 
N−k−1,ε ∩ 
c
δ , where we used that B

[A,Ac]
j is constant, conditionally on σA,

and that x �→ tanh(x) in R is globally Lipschitz (with Lipschitz constant bounded by
one). That is, in 
 ∩ 
N−k−1,ε ∩ 
c

δ , we have that

〈
σ j ; g

〉2
[A,B] ≤ Cε

Cβ

δ2
(
1 − (m[A,B]

j )2
)2
D[A,B∪{ j}](g)

uniformly in A, B, σA and g. Therefore, arguing as in the proof of Corollary 3.4, we
find that in 
 ∩ 
N−k−1,ε ∩ 
c

δ , we have

sup
‖c‖2=1

cT(	[A,B])1/2M [A,B](	[A,B])1/2c ≤ Cδ

√
ε

Cβ

√
N − k + 1 ≤ 11

10

√
N − k

for all δ > 0 small enough so that δ ≤ 1
10C

−1
(Cβ

ε

)1/2. Since this bound is true
uniformly in the sets A, B with |A ∪ B| = k (with N − T ≤ k ≤ N − 1) and
σA ∈ �|A|, we conclude that

⋃

A∩B=∅,
|A∪B|=k

⋃

σA∈�|A|

(

 ∩ 
N−k−1,ε ∩ 
A,B,σA

) ⊂ 
 ∩ 
N−k−1,ε ∩ 
δ0 ⊂ 
δ0

for δ0 = C−1
(Cβ

ε

)1/2. Hence, the bound (3.15) (for δ = δ0) concludes the lemma. ��
We can now combine the previous lemmas to prove the main result of this section.

Proof of Prop. 3.1 By Eq. (3.4) from Lemma 3.1 and by Corollary 3.4, there exists a
universal constant C > 0 s.t. for all A, B disjoint with |A ∪ B| = k < N , we have in

 ∩ 
N−k−1,ε that

a[A,B] = a[A,B](σA) ≤
(
1 − C

√
ε/

√
Cβ(N − k)

)−1
aN−k−1.

Here, we set 
N−k−1,ε = {aN−k−1Cβ < ε} as before. Taking the sup over the
spin configurations σA ∈ �|A| and over all subsystems described by disjoint sets
A, B ⊂ {1, . . . , N } with |A ∪ B| = k < N , this implies that in 
 ∩ 
N−k−1,ε

aN−k ≤ 5aN−k−1

for all k < N − T , where T := (5C/4)2(ε/Cβ). In other words, for such k, we have


 ∩ 
N−k−1,ε ∩ {aN−k > 5aN−k−1} = ∅.

For the remaining N − T ≤ k ≤ N − 2, on the other hand, Lemma 3.1 and the fact
that 11

10
√
2

≤ 4
5 imply that
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 ∩ 
N−k−1,ε ∩ {aN−k > 5aN−k−1
} ⊂

⋃

A∩B=∅,
|A∪B|=k

⋃

σA∈�|A|

(

 ∩ 
N−k−1,ε ∩ 
A,B,σA

)
,

where


A,B,σA :=
{∥∥(	[A,B])1/2M [A,B](	[A,B])1/2

∥∥(σA) >
11

10

√
N − |A ∪ B| + 1

}
.

By the preceding Lemma 3.5, the probability of this event is bounded by

P

( ⋃

A∩B=∅,
|A∪B|=k

⋃

σA∈�|A|

(

 ∩ 
N−k−1,ε ∩ 
A,B,σA

)))

≤ C e(T+2) log N+N log 4−NCβ(CT εβ2)−1

≤ C e(Cε/Cβ+2) log N+N log 4−NC2
β(Cε2β2)−1

for a universal constant C > 0. Finally, taking a union bound over these remaining k
with N − T ≤ k ≤ N − 2, we conclude the claim. ��

4 Improved iteration estimate

As pointed out in the introduction, the main difficulty in deriving an upper bound on
the spectral gap aHN lies in the fact that a priori it is not simple how to control the error
term on the r.h.s. in (2.4). While in the previous section, we have used the two point
correlation matrix to control the error term, this is not, yet, enough to iterate (2.4) and
obtain a meaningful upper bound on aHN . However, controlling the error term both
through the Dirichlet form and the norm of a related matrix, we get sufficiently strong
control on the error that allows us to iterate (2.4) and to give, in combination with
Prop. 3.1, an inductive proof of Theorem 1.1. The main result of this section reads as
follows.

Proposition 4.1 Letβ be as in (3.1),
 as in (3.2) andCβ as in (3.3). For ε ∈ (0, 10−2),
set


N−k−1,ε = {aN−k−1 Cβ < ε
}
.

Then, for β sufficiently small, we have in the event 
 ∩ 
N−k−1,ε that

(
1 − Cβ2eCβ max(1, aN−k)

2

ε (N − k)

)
aN−k ≤

(
1 − 1

N − k

)
aN−k−1 + (1 + 4ε)5

N − k

for some universal constant C > 0.
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To derive the above result, our starting point is once again the upper bound (2.4).
However, in this section we relate the error term (the second term on the r.h.s. in
(2.4)) to the Dirichlet form, up to another error that is indeed small at sufficiently high
temperature. To be more precise, let f : �N−|A∪B| → R, then

〈
f ; σ j

〉
[A,B] − 〈∂ j f ; σ j

〉
[A,B]

= 1

2

〈(
f (σ ) + f (σ̂ j )

) ∑

σ j∈{±1}

(σ j − m[A,B]
j )eσ j B

[A,B]
j

2
〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

〉

[A,B∪{ j}]

= 1

2

〈
f (σ )
(
(σ j − m[A,B]

j ) − e−2σ j B
[A,B]
j (σ j + m[A,B]

j )
)〉

[A,B] =: 1
2

〈
f h[A,B]

j

〉
[A,B] ,

where we set

h[A,B]
j = (σ j − m[A,B]

j ) − e−2σ j B
[A,B]
j (σ j + m[A,B]

j ).

By choosing f ≡ 1, we observe that
〈
h[A,B]
j

〉
[A,B] = 0, so that in fact

〈
f ; σ j

〉
[A,B] = 〈∂ j f ; σ j

〉
[A,B] + 1

2

〈
f ; h[A,B]

j

〉
[A,B] (4.1)

for general f : �N−|A∪B| → R. The last identity shows that the error term in (2.4)
can be controlled by D[A,B]( f ), through the first term on the r.h.s. in (4.1), and, as
explained below, by the norm of S[A,B] = (S[A,B]

i j )1≤i, j≤N−|A∪B|, defined by

S[A,B]
i j = 〈h[A,B]

i ; h[A,B]
j 〉[A,B]

√
1 − (m[A,B]

i )2
√
1 − (m[A,B]

j )2
. (4.2)

The crucial observation is that the operator norm of S[A,B] is small if β is sufficiently
small, assuming some rough a priori information on aN−k−1, like in the previous
section. We make this more precise in the following auxiliary lemmas and conclude
Prop. 4.1 at the end of this section by combining Lemma 4.1 and Lemma 4.3 below.

Lemma 4.1 Let ε ∈ (0, 10−2), 
 be as in (3.2), Cβ as in (3.3) and recall 
N−k−1,ε
defined in (3.9). Assume that β is sufficiently small. Then, for disjoint A, B ⊂
{1, . . . , N } s.t. |A ∪ B| = k, we have in 
 ∩ 
N−k−1,ε that

∑

j /∈A∪B

〈
σ j ; f

〉2
[A,B]

1 − (m[A,B]
j )2

≤ (1 + 4ε)5D[A,B]( f ) + 1

2ε
‖S[A,B]‖〈 f ; f 〉[A,B].
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As a consequence, we have in 
 ∩ 
N−k−1,ε that

(
1 − 1

2ε

‖S[A,B]‖
N − k

)
a[A,B] ≤

(
1 − 1

N − k

)
aN−k−1 + (1 + 4ε)5

N − k
.

Proof Let j /∈ A ∪ B. From (4.1), we obtain that

〈 f ; σ j 〉2[A,B] ≤ (1 + ε)〈∂ j f ; σ j 〉2[A,B] +
(1
4

+ 1

4ε

)
〈 f ; h[A,B]

j 〉2[A,B].

Also, since σ j∂ j f does not depend on σ j , we get

〈
∂ j f ; σ j

〉
[A,B] = 〈(1 − σ jm

[A,B]
j )σ j∂ j f

〉
[A,B]

= 〈(1 − m[A,B]
j tanh

(
B[A,B]
j

))
σ j∂ j f

〉
[A,B],

so that by Cauchy-Schwarz

〈
∂ j f ; σ j

〉2
[A,B] ≤ 〈 cosh−2 (B[A,B]

j

)
(∂ j f )

2〉
[A,B]

× 〈( cosh (B[A,B]
j

)− m[A,B]
j sinh

(
B[A,B]
j

)2〉
[A,B].

Now, splitting cosh(x) − y sinh(x) = 1
2 (1 − y)ex + 1

2 (1 + y)e−x for x, y ∈ R and

recalling (3.10) and thatm[A,B]
j = 〈sinh(B[A,B]

j )〉[A,B∪{ j}]/〈cosh(B[A,B]
j )〉[A,B∪{ j}] as

in (3.11), we bound

1

4

〈
cosh

(
B[A,B]
j

)− sinh
(
B[A,B]
j

)〉2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)
exp
(
2B[A,B]

j

)〉
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

≤ 1

4

〈
exp
(− B[A,B]

j

)〉2
[A,B∪{ j}]

cosh2
(〈
B[A,B]
j

〉
[A,B∪{ j}]

)

〈
cosh2

(
B[A,B]
j

)〉1/2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

〈
exp
(
4B[A,B]

j

)〉1/2
[A,B∪{ j}]

≤ 1

4
(1 + 4ε)4

〈
cosh2

(
B[A,B]
j

)〉−1
[A,B∪{ j}]

(4.3)

as well as

1

4

〈
cosh

(
B[A,B]
j

)+ sinh
(
B[A,B]
j

)〉2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)
exp
(− 2B[A,B]

j

)〉
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

≤ 1

4

〈
exp
(
B[A,B]
j

)〉2
[A,B∪{ j}]

cosh2
(〈
B[A,B]
j

〉
[A,B∪{ j}]

)

〈
cosh2

(
B[A,B]
j

)〉1/2
[A,B∪{ j}]

〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

〈
exp
(− 2B[A,B]

j

)〉
[A,B∪{ j}]

≤ 1

4
(1 + 4ε)4

〈
cosh2

(
B[A,B]
j

)〉−1
[A,B∪{ j}],

(4.4)
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where we used repeatedly the bound (3.7) from Lemma 3.2. Using also the first bound
(3.6) from Lemma 3.2, the previous bounds yield altogether that

〈
∂ j f ; σ j

〉2
[A,B]

1 − (m[A,B]
j

)2 ≤ (1 + 4ε)4
〈
cosh−2 (B[A,B]

j

)
(∂ j f )

2〉
[A,B].

Combining this bound with Lemma 2.1, we obtain

〈 f ; f 〉[A,B] ≤aN−k−1

(
1 − 1

N − k

)
D[A,B]( f ) + (1 + ε)(1 + 4ε)4

N − k
D[A,B]( f )

+ 1

2ε

1

N − k

∑

j /∈A∪B

〈 f ; h[A,B]
j 〉2[A,B]

1 − (m[A,B]
j )2

.

To conclude the lemma, the last term on the r.h.s. of the last equation can be estimated
similarly as in (3.5). ��

To obtain the improved iteration bound of Proposition 4.1, the previous lemma
suggests to study the norm of S[A,B], introduced in (4.2). We do this in two main steps
and, similarly as in the previous section, we need a technical preparation whose proof
is explained in Sect. 6.

Lemma 4.2 Let β be as in (3.1), 
 as in (3.2), A, B ⊂ {1, . . . , N } be disjoint with
|A ∪ B| = k and for q ∈ N, let

I [A,B]
q := max

[
max
i /∈A∪B

∑

j /∈A∪B

∣∣∂i B[A,B]
j

∣∣q , max
j /∈A∪B

∑

i /∈A∪B

∣∣∂i B[A,B]
j

∣∣q
]
.

Then, for every q ≥ 2, we have in 
 that I [A,B]
q ≤ (5β)q .

Moreover, defining X [A,B]
q as the matrix with entries

X [A,B]
q,i j := (∂i B[A,B]

j

)q
for 1 ≤ i, j ≤ N − k,

the matrix norm of X [A,B]
q is bounded in 
 by

∥∥X [A,B]
q
∥∥ ≤ (5β)q , for every q ∈ N.

With the input of Lemma 4.2, we can prove the following result.

Lemma 4.3 Let β be as in (3.1), 
 as in (3.2), Cβ as in (3.3), ε ∈ (0, 10−2), A, B ⊂
{1, . . . , N } disjoint with |A ∪ B| = k and let S[A,B] be as in (4.2). Assume that β is
sufficiently small and set


N−k−1,ε = {aN−k−1 Cβ < ε
}
.

Then, there exists some universal C > 0 such that in 
 ∩ 
N−k−1,ε , we have

∥∥S[A,B]∥∥ ≤ Cβ2 exp (Cβ)max(1, a[A,B])2.
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Proof We split the bound into two main steps, based on

0 ≤
∑

i, j /∈A∪B

ci S
[A,B]
i j c j =

〈
∑

i /∈A∪B

ci
h[A,B]
i√

1 − (m[A,B]
i )2

;
∑

j /∈A∪B

c j
h[A,B]
j√

1 − (m[A,B]
j )2

〉

[A,B]

≤ a[A,B]
∑

i /∈A∪B

〈
cosh−2(B[A,B]

i )

( ∑

j /∈A∪B

∂i h
[A,B]
j .

√
1 − (m[A,B]

j )2
c j

)2〉

[A,B]

≤ 2a[A,B]
∑

i /∈A∪B

〈
cosh−2(B[A,B]

i )

( ∑

j /∈A∪B∪{i}

∂i h
[A,B]
j√

1 − (m[A,B]
j )2

c j

)2〉

[A,B]

+ 2a[A,B]
∑

i /∈A∪B

c2i
1 − (m[A,B]

i )2

〈
cosh−2(B[A,B]

i )(∂i h
[A,B]
i )2

〉

[A,B]

=: T1 + T2

(4.5)

for c ∈ R
N−k . We bound the contributions T1 and T2, defined on the r.h.s. in (4.5),

separately. To this end, a straightforward computation yields first of all that

∂i h
[A,B]
j (σ ) =

{
− 1

2e
−2σ j B

[A,B]
j (m[A,B]

j + σ j )X
[A,B]
i j , i �= j,

−σ j sinh
(
2B[A,B]

j

)(
tanh
(
B[A,B]
j

)− m[A,B]
j

)
, i = j,

where X [A,B] = (X [A,B]
i j

)
1≤i, j≤N−k is defined by

X [A,B]
i j = 1 − exp

(
2σ j∂i B

[A,B]
j

) =
∞∑

q=1

2q

q!
(
σ j∂i B

[A,B]
j

)q
.

In particular, Lemma 4.2 implies that in 
, we have that

∥∥X [A,B]∥∥ ≤
∞∑

q=1

2q

q!
∥∥X [A,B]

q

∥∥ ≤ Cβ exp(Cβ)

for some universal C > 0 and thus

T1 ≤ Cβ2 exp(Cβ)a[A,B]
∑

j /∈A∪B

(
1 − (m[A,B]

j

)2)−1〈
e−4σ j B j (m[A,B]

j + σ j )
2〉

[A,B] c
2
j .
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To control the r.h.s. further, we compute

〈
e−4σ j B

[A,B]
j (m[A,B]

j + σ j )
2〉

[A,B]

=
(
1 + (m[A,B]

j

)2)〈 cosh
(
3B[A,B]

j

)〉
[A,B∪{ j}] − 2m[A,B]

j

〈
sinh
(
3B[A,B]

j

)〉
[A,B∪{ j}]〈

cosh
(
B[A,B]
j

)〉
[A,B∪{ j}]

= 1

2

(
1 − m[A,B]

j

)2〈
e3B

[A,B]
j
〉
[A,B∪{ j}] + (1 + m[A,B]

j )2
〈
e−3B[A,B]

j
〉
[A,B∪{ j}]〈

cosh
(
B[A,B]
j

)〉
[A,B∪{ j}]

.

Now, recalling once more that m[A,B]
j = 〈sinh(B[A,B]

j )〉[A,B∪{ j}]
〈cosh(B[A,B]

j )〉[A,B∪{ j}]
as in (3.11), a similar

computation as in (4.3) and (4.4) using Lemma 3.2 shows that in
∩{aN−k−1,εCβ <

ε
}

1 ± m[A,B]
j =

2

〈
e±B[A,B]

j

〉

[A,B∪{ j}]〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

≤ C
e
±
〈
B[A,B]
j

〉

[A,B∪{ j}]
〈
cosh

(
B[A,B]
j

)〉
[A,B∪{ j}]

and

〈
e−4σ j B

[A,B]
j (m[A,B]

j + σ j )
2〉

[A,B] ≤ C
〈
cosh2

(
B[A,B]
j

)〉−1
[A,B∪{ j}] ≤ C

(
1 − (m[A,B]

j

)2)

for some absolute constant C > 0. Consequently, it holds true that T1 ≤
Cβ2 exp(Cβ)a[A,B]‖c‖22.

Next, we consider the contribution T2, defined in (4.5). In this case, in order to
extract a factor β, we need to apply the spectral gap inequality again. Setting

ui := tanh
(
B[A,B]
i

)− m[A,B]
i ,

we apply Cauchy-Schwarz and find

〈
cosh−2(B[A,B]

i )
(
∂i h

[A,B]
i

)2〉

[A,B]

=
〈
4 sinh2

(
B[A,B]
i

)
cosh

(
B[A,B]
i

)
(tanh

(
B[A,B]
i

)− m[A,B]
i

)2〉
[A,B∪{i}]〈

cosh
(
B[A,B]
i

)〉
[A,B∪{i}

≤ C

〈
cosh6

(
B[A,B]
i

)〉1/2
[A,B∪{i}]〈

cosh
(
B[A,B]
i

)〉
[A,B∪{i}

〈
u4i

〉1/2
[A,B] .
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900 A. Adhikari et al.

Then, since 〈ui 〉[A,B] = 0, we can bound
〈
u4i
〉
[A,B] ≤ 〈u2i ; u2i

〉
[A,B] + 〈ui ; ui 〉2[A,B] and

by the spectral gap inequality, we get

〈ui ; ui 〉[A,B] ≤ a[A,B]
∑

k /∈A∪B

〈
(∂kui )

2
〉

[A,B] ,

〈
u2i ; u2i

〉

[A,B] ≤ 4 a[A,B]
∑

k /∈A∪B

〈
(∂kui )

2(ui − ∂kui )
2
〉

[A,B] .

Using the elementary bound | tanh(x) − tanh(y)| ≤ 2 cosh−2(x)|x − y|e|x−y| for
x, y ∈ R, we then obtain

∣∣∂ku[A,B]
i

∣∣ ≤ 2 cosh−2 (B[A,B]
i

)∣∣∂k B[A,B]
i

∣∣ exp
(∣∣∂k B[A,B]

i

∣∣)

so that Lemma 4.2 implies for β small enough (so that 5β < 1) that

〈ui ; ui 〉[A,B] ≤ 4 a[A,B]
∑

k /∈A∪B

〈
cosh−4 (B[A,B]

i

)∣∣∂k B[A,B]
i

∣∣2 exp
(
2
∣∣∂k B[A,B]

i

∣∣)
〉

[A,B]

≤ Cβ2 exp(Cβ)a[A,B]
〈
cosh−4 (B[A,B]

i

)〉
[A,B]

= Cβ2 exp(Cβ)a[A,B]

〈
cosh−3

(
B[A,B]
i

)〉
[A,B∪{i}]〈

cosh
(
B[A,B]
i

)〉
[A,B∪{i}]

Analogously, we obtain that

〈
u2i ; u2i

〉

[A,B] ≤ Cβ2 exp(Cβ)a[A,B]

〈
cosh−3

(
B[A,B]
i

)〉
[A,B∪{i}]〈

cosh
(
B[A,B]
i

)〉
[A,B∪{i}]

and combining this with the previous estimates, we conclude that

T2 ≤ Ca3/2[A,B]
∑

i /∈A∪B

β2 exp(Cβ)c2i

1 − (m[A,B]
i )2

〈
cosh6

(
B[A,B]
i

)〉1/2
[A,B∪{i}]

〈
cosh

(
B[A,B]
i

)〉2
[A,B∪{i}]

〈
cosh−3 (B[A,B]

i

)〉

[A,B∪{i}]

≤ Cβ2 exp(Cβ)max(1, a[A,B])2‖c‖22
Here, the second step follows from Lemma 3.2, arguing as before. In conclusion, we
have shown that for all c ∈ R

N−k , we have that

0 ≤ 〈c, S[A,B]c〉2 ≤ Cβ2 exp(Cβ)max(1, a[A,B])2‖c‖2.

for some universal C > 0, i.e. ‖S[A,B]‖ ≤ Cβ2 exp(Cβ)max(1, a[A,B])2. ��
Proof of Prop. 4.1 We combine Lemmas 4.1 and 4.3, which implies directly the
improved iteration bound in Proposition 4.1. ��
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5 Proof of Theorem 1.1

In this section, we combine Prop. 3.1 and Prop. 4.1 to prove Theorem 1.1.

Proof of Theorem 1.1 W.l.o.g., we can assume that ε is sufficiently small. In particular,
we assume in the following that ε ∈ (0, 10−2) so that we can apply the main results
of the previous sections.

We proceed inductively and before giving the details, let us first of all show that
a1 = 1. To see this, let A, B ⊂ {1, . . . , N } be disjoint such that |A ∪ B| = N − 1
and let i /∈ A ∪ B. Then, the Gibbs measure 〈·〉[A,B] is simply the coin tossing
measure associated to the external field B[A,B]

i . In other words, it is determined by the

probabilities 〈1σi=±1〉[A,B] = 1
2 ± 1

2 tanh
(
B[A,B]
i

)
. Set pi := 1

2 + 1
2 tanh

(
B[A,B]
i

)
and

let f : {±1} → R be a function s.t. f (1) �= f (−1). Moreover, assume without loss
of generality that 〈 f 〉[A,B] = 0, i.e. that

f (−1) = − pi
1 − pi

f (1).

Then, we find that

〈 f 2〉[A,B] = pi f (1)
2 + (1 − pi ) f (−1)2 = pi

1 − pi
f (1)2

= pi (1 − pi )
〈(
f (1) − f (−1)

)2〉
[A,B] = D( f )

and thus a[A,B] = 1. Since A, B ⊂ {1, . . . , N } were arbitrary, this means that a1 = 1.
Now, let ε > 0 be sufficiently small. We choose the inverse temperature β =

ε3/4 � 1 so that

β

ε
= ε−1/4 � 1 and

β

ε1/2
= ε1/4 � 1.

In particular, we can assume in the following w.l.o.g. that ε is so small that

(i)
C2

β

C1ε2β2 = O(1)ε−1/2 > 2 log 4,

(i i) (1 + 40ε1/4)Cβ = O(1) ε3/2 < ε and

(i i i) 25(1 + 40ε1/4)2
C2β

2eC2β

ε
= O(1)ε1/2 < ε1/4,

where each O(1) > 0 is bounded by some universal constant, and the constants C1
and C2 refer to the universal constants from Prop. 3.1 and Prop. 4.1, respectively.
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Next, the event 
̃ of high probability we use for the proof of Theorem 1.1 is defined
by


̃ : = 
 ∩
N−2⋂

l=0

{
aN−l−1Cβ < ε and aN−l > 5aN−l−1

}c

= 
 ∩
N−2⋂

l=0

{
aN−l−1Cβ ≥ ε or aN−l ≤ 5aN−l−1

}
,

where
 denotes the set defined in (3.2). In particular, according to Prop. 3.1 combined
with condition (i) from above as well as the fact that P(
) ≥ 1 − e−N , it holds true
that

P(
̃) ≥ 1 − Ce−cN

for universal constants c,C > 0.
Now, let us prove the following induction: if aN−k−1 ≤ 1 + 40ε1/4 in 
̃ for some

0 ≤ k ≤ N−2, then we prove that this implies aN−k ≤ 1+40ε1/4 in 
̃. Since a1 = 1,
the inductive assumption is clearly satisfied for k = N−2.Hence, Theorem1.1 follows
from the proof of the inductive step.

To prove the inductive step, by the inductive assumption on aN−k−1 and condition
(i i) from above, we have that aN−k−1Cβ < ε in 
̃. By definition of 
̃, this implies
that

aN−k ≤ 5aN−k−1 < 5 (1 + 40ε1/4)

in 
̃. Therefore, Proposition 4.1 implies that

(
1 − 25C2β

2eC2β (1 + 40ε1/4)2

ε (N − k)

)
aN−k ≤

(
1 − 1

N − k

)
aN−k−1 + (1 + 4ε)5

N − k

≤
(
1 − 1

N − k

)
aN−k−1 + 1 + 32ε1/4

N − k
.

Combining this with condition (i i i) from above and using again aN−k ≤ 5aN−k−1,
we obtain that

aN−k ≤
(
1 + 5ε1/4

N − k
− 1

N − k

)
aN−k−1 + 1 + 32ε1/4

N − k

≤
(
1 + 5ε1/4

N − k
− 1

N − k

)
(1 + 40ε1/4) + 1 + 32ε1/4

N − k

= 1 + 40ε1/4 + (5ε1/4)(40ε1/4) − 3ε1/4

N − k
≤ 1 + 40ε1/4,
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for all ε > 0 sufficiently small. This proves the inductive step and therefore, arriving
at k = 0, we have shown that on a set of probability at least 1−Ce−cN , we have that
aHN ≤ 1 + 40ε1/4. ��

6 High probability estimates

In this section, we complete our arguments by providing the high probability estimates
related to the set 
, defined in (3.2), Lemma 3.2 as well as Lemma 4.2.

Lemma 6.1 Let 
 be defined as in (3.2). Then, P(
) ≥ 1 − e−N .

Proof We recall from (2.1) that

B[A,B]
j (σ ) =

∑

p≥2

βp

N (p−1)/2

( ∑

i2,...,i p∈Bc,

g ji2...i pσi2 . . . σi p + . . .

. . . +
∑

i1,...,i p−1∈Bc

gi1i2...i p−1 jσi1σi2 . . . σi p−1

)
+ η j

for σ ∈ �N−|A∪B| and σA understood to be fixed. It is then simple to see that an
explicit expression for σi∂i B

[A,B]
j is given by

σi∂i B
[A,B]
j (σ ) =

∑

p≥2

βp√
N

∑

k1,k2,...,kp−2∈Bc

gi jk1k2...kp−2

σi1√
N

. . .
σi2√
N

. . .
σi p−2√

N
,

where for each i, j ∈ {1, . . . , N−|A∪B|}, the coupling gi jk1k2...kp−2
is a sumof p(p−1)

i.i.d. standardGaussian randomvariables (if the indices ku �= ks for 1 ≤ u �= s ≤ p−2
are all distinct; otherwise gi jk1k2...kp−2

= 0). Moreover, the couplings gi jk1k2...kp−2
are

independent over the superscripts i, j ∈ {1, . . . , N − |A ∪ B|}. We can view this as

σi∂i B
[A,B]
j (σ ) =

∞∑

p=2

βp√
N
Gp(τ, τ, . . . , τ, ei , e j ),

where Gp : (RN )p → R denotes the multilinear map that is defined through

(Gp)k1k2...kp := g
kp−1kp
k1,...,kp−2

, the vector τ ∈ {y ∈ R
N : ‖y‖2 ≤ 1} has components

τi = 0 if i ∈ B and τi = N−1/2σi if i ∈ {1, . . . , N }\B and (ek)k=1,...,N denotes the
standard basis of RN . In particular, we have that

sup
A,B⊂{1,...,N }:

A∩B=∅
sup

σA∈�|A|
sup

σ∈�N−|A∪B|
‖∂i B[A,B]

j (σ )‖ ≤
∞∑

p=2

βp√
N

|||Gp|||,
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where

|||Gp||| := sup
y1,...,yp∈RN :

‖yi‖2≤1∀i=1,...,p

G p(y1 ⊗ y2 . . . ⊗ yp).

According to [14, Theorem 1], we have that

P

({
N−1/2|||Gp||| >

√
p(p − 1)[8 log(p/ log(3/2))p + log t + log 2]

})
≤ e−N log t

for any t > 1. Choosing t = 2p for p ≥ 2, this implies

P
({
N−1/2|||Gp||| > 5

√
p3 log p

}) ≤ e−N log 2p.

Finally, since supA,B⊂{1,...,N }:
A∩B=∅

supσA∈�|A| supσ∈�N−|A∪B| ‖∂i B[A,B]
j (σ )‖ > 5β for β =

∑∞
p=2

√
p3 log pβp, defined in (3.1), implies that N−1/2|||Gp∗ ||| > 5

√
p3∗ log p∗ for

some p∗ ≥ 2, we conclude that P(
) ≥ 1 − e−N log 4∑
p=2

( 2
p

)N ≥ 1 − e−N . ��
We continue with the proof of Lemma 4.2.

Proof of Lemma 4.2 Assuming the first claim I [A,B]
q ≤ (5β)q for q ≥ 2 for the

moment, the bounds on the matrices X [A,B]
q are simple. Indeed, for q = 1, we have

X [A,B]
1,i j = ∂i B

[A,B]
j , so ‖X [A,B]

1 ‖ ≤ 5β in 
, by definition of 
. For q ≥ 2, on the

other hand, we have that ‖X [A,B]
q ‖ ≤ I [A,B]

q by standard matrix properties and hence

the claim follows if I [A,B]
q ≤ (5β)q for q ≥ 2. To this end, notice for q = 2

I [A,B]
2 = max

1≤i≤N−|A∪B|max
([(

X [A,B]
1

)t(
X [A,B]
1

)]
i i ,
[(
X [A,B]
1

)(
X [A,B]
1

)t ]
i i

)

≤ ‖X [A,B]
1 ‖2 ≤ (5β)2

and for q > 2 that Iq ≤ I2 max1≤i, j≤N−|A∪B| |∂i B[A,B]
j |q−2 ≤ (5β)q in 
. ��

Finally, it remains to prove Lemma 3.2 which follows as a simple corollary from the
next Lemma.

Lemma 6.2 Let ε ∈ (0, 10−2) and K ∈ R. Suppose that A, B ⊂ {1, . . . , N } are
disjoint and let j /∈ A ∪ B. Then, if β is sufficiently small (depending on K ) and if

CK ,βa[A,B∪{ j}] := (20Kβ)2 exp(20Kβ)a[A,B∪{ j}] < ε,

we have in 
 that

〈
exp(K B[A,B]

j )
〉
[A,B∪{ j}] ≤ (1 + 4ε) exp

(
K 〈B[A,B]

j 〉[A,B∪{ j}]
)
.
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Proof Writing 〈 f 2〉[A,B∪{ j}] = 〈 f ; f 〉[A,B∪{ j}] + 〈 f 〉2[A,B∪{ j}]. Since cosh(x) ≥ 1
(see also Remark 2 after Theorem 1.1), we bound

〈 f 2〉[A,B∪{ j}] ≤ a[A,B∪{ j}]
∑

k /∈A∪B∪{ j}
〈(∂k f )2〉[A,B∪{ j}] + 〈 f 〉2[A,B∪{ j}],

using the spectral gap inequality. Choosing f = exp
(
K B[A,B]

j

)
, we have ∂k f =

exp
(
K B[A,B]

j

)(
1 − exp

(
2K∂k B

[A,B]
j

))
and Lemma 4.2 implies

∑

k /∈A∪B∪{ j}

(
1 − exp

(
2K∂k B

[A,B]
j

))2 ≤
∑

q≥2

(4K )q

(q − 2)!
∑

k /∈A∪B

|∂k B j |q

≤
∑

q≥2

(4K )q

(q − 2)! I
[A,B]
q ≤ (20Kβ)2 exp(20Kβ)

Here, we used the elementary bound (ex − 1)2 ≤ |x |2e2|x | for x ∈ R. We conclude

∑

k /∈A∪B∪{ j}
〈(∂k f )2〉[A,B∪{ j}] ≤ CK ,β〈 f 2〉[A,B∪{ j}],

for f = exp
(
K B[A,B]

j

)
and since CK ,βa[A,B∪{ j}] < ε < 1, this implies

〈 f 2〉[A,B∪{ j}] ≤ (1 − CK ,βa[A,B∪{ j}]
)−1〈 f 〉2[A,B∪{ j}].

Now, f 1/2 = exp
( K
2 B

[A,B]
j

)
so we can iterate the previous step and find that

〈
exp
(
K B[A,B]

j

)〉
[A,B∪{ j}]

≤
∞∏

l=0

1
(
1 − C2−l K ,βa[A,B∪{ j}]

)2l lim
l→∞

〈
exp
(
2−l K B[A,B]

j

)〉2l
[A,B∪{ j}].

Noting that liml→∞
〈
exp
(
2−l K B[A,B]

j

)〉2l
[A,B∪{ j}] = exp

(
K 〈B[A,B]

j 〉[A,B∪{ j}]
)
and

log
∞∏

l=0

1
(
1 − C2−l K ,βa[A,B∪{ j}]

)2l

≤
∞∑

l=0

2l(− log)
(
1 − 2−2l exp

(
20Kβ(2−l − 1)

)
CK ,βa[A,B∪{ j}]

)
≤ 3ε

for β small enough (depending on K , so that exp(|20Kβ|) is sufficiently close to one).
All in all, we conclude that
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〈
exp
(
K B[A,B]

j

)〉
[A,B∪{ j}] ≤ (1 + 4ε) exp

(
K 〈B[A,B]

j 〉[A,B∪{ j}]
)
.

��
Proof of Lemma 3.2 This is a simple application of the previous lemma, noting that
the definition of Cβ in (3.3) and the assumption Cβa[A,B∪{ j}] < ε allows us to apply
Lemma 6.2 uniformly in K ∈ [−20, 20], if β is small enough (so that exp(202β) is
sufficiently close to one). Indeed, with this observation, we obtain directly (3.7) and
(3.8). The second inequality in (3.6) follows similarly, realizing first that by Jensen’s
inequality and the identities m[A,B]

i = 〈 tanh(B[A,B]
i )

〉
[A,B] and (3.10), we have that

1

1 − (m[A,B]
j )2

≤
〈

1

1 − tanh2(B[A,B]
j )

〉

[A,B]
= 〈 cosh2(B[A,B]

j )
〉
[A,B]

=
〈
cosh3(B[A,B]

j )
〉
[A,B∪{ j}]〈

cosh(B[A,B]
j )

〉
[A,B∪{ j}]

and then applying (3.8) three times. The first inequality in (3.6) is a consequence of
Cauchy-Schwarz inequality. ��
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