
Journal of Research on Technology in Education

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ujrt20

Pathways to inclusive early childhood computational
thinking education: unveiling young students’ strategies
with multiple representations

Kristina M. Tank, Tamara J. Moore, Anne Ottenbreit-Leftwich, Zarina Wafula,
Lin Chu & Sohheon Yang

To cite this article: Kristina M. Tank, Tamara J. Moore, Anne Ottenbreit-Leftwich, Zarina Wafula,
Lin Chu & Sohheon Yang (2025) Pathways to inclusive early childhood computational thinking
education: unveiling young students’ strategies with multiple representations, Journal of
Research on Technology in Education, 57:1, 2-25, DOI: 10.1080/15391523.2024.2410194

To link to this article:  https://doi.org/10.1080/15391523.2024.2410194

Published online: 09 Oct 2024.

Submit your article to this journal 

Article views: 123

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ujrt20

https://www.tandfonline.com/journals/ujrt20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15391523.2024.2410194
https://doi.org/10.1080/15391523.2024.2410194
https://www.tandfonline.com/action/authorSubmission?journalCode=ujrt20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ujrt20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15391523.2024.2410194?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/15391523.2024.2410194?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/15391523.2024.2410194&domain=pdf&date_stamp=09%20Oct%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/15391523.2024.2410194&domain=pdf&date_stamp=09%20Oct%202024
https://www.tandfonline.com/action/journalInformation?journalCode=ujrt20


JOURNAL OF RESEARCH ON TECHNOLOGY IN EDUCATION
2025, VOL. 57, NO. 1, 2–25

Pathways to inclusive early childhood computational thinking 
education: unveiling young students’ strategies with multiple 
representations

Kristina M. Tanka , Tamara J. Mooreb , Anne Ottenbreit-Leftwichc ,  
Zarina Wafulaa , Lin Chuc  and Sohheon Yangc 
aIowa State University, Ames, Iowa, USA; bPurdue University, West Lafayette, Indiana, USA; cIndiana University, 
Bloomington, Indiana, USA

ABSTRACT
This study investigates the integration of computational thinking (CT) into 
early elementary literacy, focusing on kindergarten to second grade stu-
dents, using multiple representations to understand their ideas of CT. 
Through clinical task-based interviews with 12 students, we found that con-
crete manipulatives, pictorial/graphical representations, and language-based 
strategies were key to facilitating CT comprehension. The findings indicate 
no significant gender differences in CT engagement, and instead we need 
to emphasize the need for inclusive, multi-representational teaching meth-
ods in early education. By using multiple representations, we may be able 
to nurture early STEM interest and confidence in computer science and 
related fields.

Introduction to the problem

Importance of broadening participation in computing (BPC) in CS education

Computer science (CS) education is essential for preparing students for the future workforce 
(Tissenbaum & Ottenbreit-Leftwich, 2020). However, CS education lacks inclusivity and excludes 
certain groups of students, especially historically marginalized populations (Code.org et  al., 2023). 
This gap harms the diversity and quality of the CS workforce, and the representation and inclu-
sion of women’s perspectives and needs in technology. This exclusion also reduces the potential 
for innovation and creativity from diverse perspectives in the field (Shah & Yadav, 2023; 
Tissenbaum et  al., 2021).

Addressing the lack of diversity in CS education is not merely a matter of social justice; it 
is a necessity for fostering innovation and addressing complex global challenges. Diverse teams 
bring a range of viewpoints and problem-solving approaches, which are invaluable in tackling 
multifaceted problems in technology and beyond (National Science Board, 2020). Without pro-
active measures to broaden participation, we risk perpetuating homogeneity within the tech 
industry, stifling innovation and limiting the potential for societal advancement (Shah & Yadav, 
2023). Therefore, it is critical for educational institutions and policymakers to prioritize inclusive 
strategies that ensure equitable access to CS education for all students, regardless of their back-
ground or demographic characteristics (Vakil, 2018).

Scholars have suggested that the lack of diversity in CS is related to an early loss of interest 
and confidence that many female students experience in science, technology, engineering, and 
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mathematics (STEM) and CS subjects (Kucuk & Sisman, 2020; Metz, 2007). Research has shown 
that female students tend to perform well and express interest in STEM and CS in elementary 
school, but their engagement and self-efficacy decline by late elementary and middle school, 
especially in mathematics and CS (Cvencek et  al., 2011; Lei et  al., 2019; Master & Walton, 2013). 
Therefore, if we want to engage more historically marginalized populations of students in CS, 
we need to begin at the early elementary grades when there are fewer gender differences in 
STEM-related motivation, interest, belonging, or ability (Master et  al., 2023). However, teaching 
CS at the elementary level has faced a variety of challenges, with one of the largest being a lack 
of time due to other subject areas (e.g. Israel et  al., 2015). Integrating CS into subject areas that 
are already emphasized at this level could provide support for teachers who have limited instruc-
tional time for other subjects, such as CS, that are not tied to testing (e.g. Rich et  al., 2019). 
In early elementary, literacy receives substantial attention/time and it has been suggested literacy 
could be an ideal area for CS integration given similarities in language learning and CT (Bers, 
2019; Delacruz, 2020). Currently, there is limited information on how to engage elementary 
students in CS within the context of literacy and if or how this integrated approach supports 
early understandings of CS.

Research questions

To better understand how to engage early elementary students in CS within the context of 
literacy, we used the following research questions to investigate CT integrated literacy activities: 
(1) What aspects of the CT and literacy learning tasks support early understandings of CT 
competencies for all students and, (2) how do early elementary students, especially girls, expe-
rience and participate in literacy integrated CT instruction?

Inclusivity in computer science education

Although computer science (CS) is a field that offers many opportunities for innovation, cre-
ativity, and social impact, it is also a field that suffers from a lack of diversity (National Science 
Board, 2020). The national CS for All initiative has notably boosted interest in computer science 
education, focusing heavily on K-12 to support the CS pipeline (Code.org et  al., 2023). However, 
most CS education for young learners does not resonate with their everyday experiences 
(Tissenbaum et  al., 2021). This can lead to young learners’ disengagement from computer science, 
especially among those groups that are historically marginalized from computing and STEM 
fields (Valla & Williams, 2012). This decline in interest is influenced by several factors, such as 
the lack of exposure and access to CS curriculum and activities (Lin et  al., 2012; Su et  al., 
2023), the negative stereotypes and social norms that discourage girls from pursuing STEM and 
CS (Kucuk & Sisman, 2020; Metz, 2007), the low sense of belonging and identity that girls feel 
in these fields as well as the lack of feedback and encouragement from teachers, parents, and 
peers (Cvencek et  al., 2011; Lei et  al., 2019; Master et  al., 2023). Master et  al. (2021) also found 
that stereotypes of girls being less interested in CS than boys persisted as young as first grade 
and may contribute to gender gap issues as children get older. Other studies have also shown 
that girls as young as second grade have expressed lower self-efficacy and attitudes toward CS 
before any interventions (Kind, 2017) and have observed gender differences showing that boys 
were more likely to describe themselves as skilled programmers (Kjällander et al., 2021). Therefore, 
building students’ CS knowledge, confidence, and interest at the K-2 levels may be enough to 
build students’ positive STEM/CS identity (Martin-Hansen, 2018; Su et 2023) during this piv-
otal time.

To establish an inclusive and diverse computer science education ecosystem, we need to 
examine the content in the CS curriculum, the design of the learning activities, and the focus 
on our purpose for CS education (Vakil, 2018). In other words, when designing CS education 
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experiences, we need to make efforts to create curricula that are designed for all students. We 
can accomplish this through three pedagogical practices as suggested by Ryoo (2019): (1) making 
CS more relevant by connecting concepts to everyday examples and contexts, (2) focusing on 
issues that are relevant to those students, and (3) providing opportunities for student choice 
and agency.

Early CS/CT and literacy

Research within early childhood education and CS/CT have found that young children can 
successfully demonstrate early CT skills (Saxena et  al., 2020) and effective instruction has been 
shown to enhance early CT and coding skills as well as improve mastery of CT and program-
ming concepts (e.g. Bers, 2019; Relkin et  al., 2021; Su & Yang, 2023). Developmentally appropriate 
practices in CS have typically included unplugged activities (without computers or other com-
putational devices), computational toys (such as robots), and/or plugged activities (using a digital 
app or coding platform like ScratchJr). Studies have found that unplugged activities in conjunction 
with plugged activities have been shown to help students learn CT better than plugged activities 
alone (del Olmo-Muñoz et  al., 2020), especially when utilizing these approaches through concrete 
experiences (Bati, 2022).

Although CS and CT are often linked to STEM disciplines, researchers such as Bers (2019) 
have suggested that “due to the critical foundational role of language and literacy in early years, 
the teaching of computer science can be augmented by models of literacy learning” (p.499). 
Incorporating CS into literacy education could provide a significant approach to creating inclusive 
CS learning for young learners by centering them on an active agent in their learning. Storytelling 
and imaginative play, which are integral parts of early literacy, serve as ways for children to 
make sense of and interpret the world around them (Cremin & Flewitt, 2016). CT is seen as a 
fundamental skill for all, like literacy, essential for navigating daily life (Tsortanidou et  al., 2021), 
offering potential when combined with literacy instruction. In fact, Macrides et  al. (2022) found 
that integrating programming into literacy and storytelling exercises can serve as a suitable 
method for developmentally appropriate learning for young learners. Furthermore, programming, 
a key element in CS, is akin to mastering a new language, enabling expression of ideas and 
acquiring knowledge of programming languages involves understanding sequence and 
problem-solving skills, thereby teaching young students analytical and logical reasoning (Bers, 
2019). This suggests that when looking at the integration of CS/CT into early elementary class-
rooms, an integration into literacy could not only build on the idea that learning to code involves 
learning how to use a new language, but it also builds on the practical aspect that literacy and 
language is a foundational component within early elementary instruction. This further supports 
recommendations that early CS/CT instruction needs to be integrated into subject areas that are 
already emphasized at this level as elementary teachers have limited time for additional content 
and instruction (Israel et  al., 2015; Rich et  al., 2019).

Early CS/CT and multiple representations

Moreover, when looking at CS/CT with young learners, exploring how multiple representations 
and translations between them can be a meaningful approach to assess young learner’s CS per-
formance because they communicate through more than just spoken words. Valuing multi-modal 
representations, such as gesture, images, and movement, can promote equitable and inclusive 
learning environments by focusing on the varied symbols used by young learners (Flewitt, 2016). 
Moore et al. (2020) found that as early elementary students engaged with CT tasks developed 
to look at specific representational translations, individual students created and used additional 
intermediate representations in order to successfully complete these CT tasks. These intermediate 
representations included such things as using embodiments to keep track of where they were 
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in their coding and reorienting their bodies to make a visual representation more manageable. 
Through these research studies, it is seen that welcoming different symbolic tools enhances 
active participation in tasks among young learners.

Along with studies examining the importance of multiple representations for young learners 
(e.g. Flewitt, 2016; Moore et al., 2020), there have been studies investigating how spatial reason-
ing, as a way of representing young learners’ problem-solving, is intertwined with CS/CT (Berson 
et  al., 2023; Brainin et  al., 2022; Margulieux, 2019). Young learners’ spatial skills are an important 
indicator of how they successfully solve problems and make achievements in CS education 
(Margulieux, 2019). Some studies especially talk about the use of robot programming and spatial 
reasoning. For example, Berson et  al. (2023) discovered that programming with the Sphero robot 
(as a concrete representation) forms an essential foundation for spatial reasoning and computa-
tional thinking; young learners, for instance, used their bodies to indicate spatial awareness by 
positioning themselves near the robot. Also, according to Brainin et al. (2022), robot programming 
could enhance young learners’ spatial reasoning, such as spatial relations and mental rotation 
skills, by providing a hands-on cognitive tool that allows them to work on their problem-solving 
process. Also, enhancing spatial skills helps encode non-verbal data and recognize landmarks 
(Margulieux, 2019), that can be potentially utilized for CS/CT tasks. Thus, investigating how 
young learners utilize their spatial skills such as visualization in CS/CT tasks could be meaningful 
in looking at the relationship of early CS/CT and multiple representations.

Theoretical framework

As we were examining the ways in which the students engaged and interacted with the K-2 CT 
tasks, we used the Lesh Translation Model (LTM) as the lens through which we examined our 
data. Building on Bruner’s (1966) theory of enactive, iconic, and symbolic representations, the 
LTM (Lesh & Doerr, 2003) provides a framework for understanding how students develop flu-
ency in using different representational modes. LTM expands on Bruner’s work by identifying 
five key modes: (1) real-world experiences, (2) written symbols, (3) spoken or written language, 
(4) pictures and graphics, and (5) concrete manipulatives. This model emphasizes that deep 
conceptual understanding hinges on a student’s ability to not only represent concepts in these 
various forms but also to flexibly translate between and within them (Lesh & Doerr, 2003). The 
more seamlessly a student can navigate these representational modes, the better they grasp the 
underlying concept. Importantly, each mode highlights different aspects of the concept, and a 
complete understanding often requires considering information across multiple representations. 
Computer science can be taught using multiple representations such as real life examples, every-
day language, pseudocode, flowcharts, code tracing/tracking charts and tables, coding languages, 
etc. (Malik et  al., 2019). However, most representations of algorithms and debugging within 
coding are much too abstract for children as a place to start (Fessakis et  al., 2013). Therefore, 
it is important that students, especially K-2 students, are introduced to computational concepts 
using multiple representations starting with more concrete ideas and then progressing to more 
abstract ones; while at the same time, making connections between the representations.

Our tasks are designed such that students participate in multiple types of representations, 
other than written symbols as they are still learning to read. It is also important to note that 
many representations can be classified across representational modes. In this research, we chose 
to classify the representations based on how students were using them. All tasks are set in 
real-world experiences by tying in images, games, toys, picture books, etc. and so due to space 
limitations, we have chosen not to present representations specific to real world experiences.

Materials and methods

We employed a clinical, task-based interview design (Clement, 2000; Goldin, 2000) to examine 
12 K-2 students’ understanding of sequencing as a foundational CT skill through a series of 
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task-based interviews (Goldin, 2000). The task-based interviews target attributes of CT/CS 
learning including how students develop CT knowledge, how students work through the tasks, 
and what causes them to successfully complete or get stuck. The multiple task-based interview 
study design allowed for the in-depth exploration of multiple learners across K-2 and their early 
understandings of CT.

Data collection

Our research team collected eight task-based interviews from each of the 12 K-2 students across 
four data collection sessions. Our 12 participants included two girls and two boys from each 
of the three grade levels and each student participated in all eight of the tasks. All of our stu-
dents were from three schools in the Midwest region of the United States. Our Kindergarten 
students were from a rural area, our first grade students were from an urban area, and our 
second grade students were from a rural area. Table 1 provides relevant information about our 
participants. It is important to note that we did not ask students what their preferred genders 
were, but asked our project partner teachers to identify boys and girls based on how it was 
communicated by the district and parents. Within the states where this research was conducted, 
it was not a viable option to ask students for their preferred genders. Additionally, our partner 
teacher at each grade level helped us choose the participants from the students whose parents 
had consented to the request for research and photo release as defined by our approved IRB 
protocol and by considering a range of abilities in the students chosen.

Our data were video recordings from the task-based interviews which offered a structured 
approach to studying student thinking (Goldin, 2000) about the foundational CT concept of 
sequencing. In these interviews, we presented individual students with carefully designed sequenc-
ing tasks (Maher & Sigley, 2020). Students then worked through the tasks talking aloud as they 
saw fit or were prompted. The task-interview protocols first had the researcher providing direc-
tions for the students. For example, from our Task 1 interview protocol, the researcher would 
say, “Can you help me by using these direction cards to put these pictures into the correct 
order? You can do whatever you want to do to help you put these pictures in order.” Then the 
protocol instructs the researchers to observe and take notes, only helping the students when 
they are stuck. The protocols also allow for researcher questions to get at the student thinking 
if there is something that is unclear in order to reveal their reasoning and thought processes 
(Clement, 2000). For example, a researcher may interject with a question like: “Isabella, why 
did you put the cards in this arrangement?” Our task-interview protocols allow for in-depth 
exploration of how students engaged with the concepts, including how they developed knowledge, 
navigated challenges, and utilized representations (Maher & Sigley, 2020). The following section 
describes the tasks and their development.

Table 1. Participant information.

Grade Pseudonym
Biological 

Sex
Session

1 2 3 4
K Lily female Task 1 ĺ Task 2 Task 3 ĺ Task 4 Task 5 ĺ Task 6 Task 7 ĺ Task 8

Henry male Task 2 ĺ Task 1 Task 4 ĺ Task 3 Task 6 ĺ Task 5 Task 8 ĺ Task 7
Sophia female Task 2 ĺ Task 1 Task 4 ĺ Task 3 Task 6 ĺ Task 5 Task 8 ĺ Task 7
William male Task 1 ĺ Task 2 Task 3 ĺ Task 4 Task 5 ĺ Task 6 Task 7 ĺ Task 8

1 Isabella female Task 2 ĺ Task 1 Task 3 ĺ Task 4 Task 6 ĺ Task 5 not present
Joe male Task 2 ĺ Task 1 Task 4 ĺ Task 3 Task 6 ĺ Task 5 Task 7 ĺ Task 8
Jonathan male Task 1 ĺ Task 2 Task 3 ĺ Task 4 Task 5 ĺ Task 6 Task 8 ĺ Task 7
October female Task 1 ĺ Task 2 Task 4 ĺ Task 3 Task 5 ĺ Task 6 Task 7 ĺ Task 8

2 Charlie male Task 2 ĺ Task 1 Task 4 ĺ Task 3 Task 5 ĺ Task 6 Task 8 ĺ Task 7
Connor male Task 1 ĺ Task 2 Task 3 ĺ Task 4 Task 6 ĺ Task 5 Task 8 ĺ Task 7
Mallory female Task 2 ĺ Task 1 Task 4 ĺ Task 3 Task 5 ĺ Task 6 Task 7 ĺ Task 8
Melody female Task 1 ĺ Task 2 Task 3 ĺ Task 4 Task 6 ĺ Task 5 Task 8 ĺ Task 7
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Description of tasks

The design of the tasks is an important component when implementing a task-based interview 
approach as the tasks are what drives the eliciting and collection of participants’ knowledge and 
thinking around the desired concept. In the ReCT project, we are breaking down CT into dif-
ferent concepts to examine student learning for early elementary students in CT. For this par-
ticular study, the identified CT concept was algorithm development, which can be further broken 
down into sequencing, repetition structures, and selection structures (Gao & Hew, 2022). 
Sequencing, or the ability to order steps and understand their relationships, was chosen as the 
focus as it has been suggested as critical to early CT and positive links have been found between 
sequencing and later CT performance (Kazakoff et  al., 2013; Su & Yang, 2023).

The tasks were developed and piloted by the ReCT team along with three K-2 teacher fellows 
to elicit the following student understanding of sequencing: simple ordering logic, simple ordering 
logic with identification of beginning and end of sequences, reverse sequencing, and ordering 
with multiple logic paths (see Table 2). For each of these concepts, a set of paired tasks were 
developed: one CT focused and one CT and literacy focused. Four pairs, or eight total tasks, 
were developed (Tank et al., 2024) and as suggested by the research (Su & Yang, 2023), each 
of the tasks have multiple versions – unplugged (paper based), embodied (enacted by students), 
plugged with computational toy (such as push button robots), and plugged with digital devices 
(such as iPads). The students did these tasks in different orders to examine whether the sequence 
of versions and/or whether literacy or non-literacy tasks changed the students’ experiences (see 
Table 1).

Data analysis

In this study, we utilized a task-based interview approach (Goldin, 2000) to capture detailed 
observations and actions of students as they engaged with four computational thinking (CT) 
tasks. We used a constant comparative analysis method (Corbin & Strauss, 2014) to iteratively 
code, compare, and condense data to identify emerging patterns of how students used and 
translated between representations. We analyzed over 48 h of video recordings collected across 
the 12 students, with coding conducted by a team of six researchers over three rounds.

Initially, a priori codes were applied based on the representation framework of the Lesh 
Translation Model (LTM) and gestures. The codes included concrete (e.g. physical objects and 
movements), pictorial (e.g. course maps and student drawings), symbolic (e.g. code cards and 
inscriptions), language (e.g. spoken or written words), and gestures (e.g. body movements for 
representational purposes) (Lesh & Doerr, 2003). To enhance the validity and reliability of our 
analysis, we employed the LTM as our analytical framework, focusing on the students’ interac-
tions with various representational modes across each task. The LTM, rooted in Bruner’s (1966) 
theory of enactive, iconic, and symbolic representations, provided a structured lens for under-
standing how students develop fluency in using different representational modes. Our analysis 
paid close attention to students’ ability to navigate and translate between these modes, noting 
similarities, differences, and patterns in their interactions.

In our coding process, one researcher focused on capturing how students used existing and 
invented representations during the tasks. The initial researcher selected for analysis looked for 
one particular representational mode. For example, one researcher reviewed the videos for con-
crete representations whereby students were moving physical objects and movements to represent 
their CT understandings. Another researcher focused on the language representations, looking 
for examples of when students used spoken or written words to represent their CT understand-
ings. Once these examples were identified, these findings were then discussed with two additional 
researchers, who also reviewed and analyzed the videos. Together, they expanded the coding to 
include strategies that individual students employed as they translated between and within 
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Table 2. Overview of tasks.
Task: concept Short description
1: Simple Ordering 

Logic

Students use picture-based direction cards to place picture cards into circular organizer by 
following A ĺ B, B ĺ C, CĺD logic to determine the order (3 levels of difficulty)

2: Simple Ordering 
Logic + Literacy

Students sequence a circular story using either picture-based direction cards and/or the story to 
place picture cards into a circular organizer representing the A ĺ B, B ĺ C, CĺD logic 
(There are 3 versions with the first being a practice).

3: Reverse Sequencing

Students plan and program a path for a robot mouse to get a piece of cheese and then reverse 
that path (Multiple versions: Unplugged, Embodied, & CT Toy)

4: Reverse 
Sequencing + Literacy

Students retell a story by putting the major events in order for how a dog retrieved a ball 
(forward) and then returned it to Joey (backward)

5: Sequencing with 
Multiple Logic Paths

Students plan a path for the Robot Mouse with multiple possible paths to reach the cheese 
(Multiple versions: Unplugged, Embodied, & CT Toy)

(Continued)
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representations. The other three researchers subsequently re-coded the videos to identify elements 
previously recognized by the research team, with all researchers working to reach consensus. 
From this coding process, themes were developed, and the results are presented both from each 
task interview and from the overarching themes identified.

Task: concept Short description
6: Sequencing with 

Multiple Logic 
Paths + Literacy

Students determine the sequence for getting dressed in Winter Gear to go out into the snow 
(Multiple versions: Unplugged, Embodied, & CT Toy)

7: Sequencing with 
Programmed Multiple 
Logic Paths

Students program a path for the frog with multiple possible codes to get to the bench (Two 
versions: Walk & Hop).

8: Sequencing with 
Programmed Multiple 
Logic Paths + Literacy

Students retell the story by programming the big bad wolf, with multiple possible codes, to visit 
the houses of the three little pigs in the correct sequence.

Table 2. Continued.
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At the conclusion of the coding process, we identified that student understanding within CT 
was primarily expressed through three representational modes: concrete manipulatives, pictorial/
graphical representations, and language. We then identified sub-themes within these categories 
to provide a more detailed account of how students utilized these representations during the 
tasks. By comparing the experiences of boys and girls across tasks, we aimed to present a holistic 
portrayal of how they engaged with sequencing as a foundational CT skill.

The research team comprised six members, all of whom had experience teaching computer 
science in elementary classrooms. The three lead researchers, who were also professors, conducted 
the task interviews with the students. Throughout this process, the researchers remained aware 
of their positionality, recognizing that their backgrounds in computer science education could 
influence the interpretation of data. Efforts were made to mitigate this bias through collaborative 
discussions and consensus coding, ensuring that the analysis reflected a balanced and accurate 
representation of the students’ experiences. For example, before beginning the grant, the three 
lead researchers had extensive conversations to identify different CT components and how we 
would measure these. Furthermore, we worked closely with three early childhood classroom 
teachers to design the tasks, ensuring they were developmentally appropriate and focused on 
critical CT skills.

Limitations

Some limitations of this study include the small sample size, as only 12 students participated, 
which may not fully represent the diversity of student experiences and abilities. Additionally, 
the study focused on students from specific geographical areas, which might limit the gener-
alizability of the findings to other regions or populations. The use of task-based interviews, 
while providing in-depth data, may also introduce observer effects, where the presence of 
researchers could influence how students perform the tasks. Moreover, the study’s reliance on 
video recordings might overlook subtle nuances in students’ thinking processes that could be 
captured through other data collection methods. Finally, the researchers’ backgrounds in com-
puter science education, despite efforts to mitigate bias, could have influenced the interpretation 
of the data.

Results

To better understand how to engage early elementary students in CS within the context of 
literacy, we examined what aspects of the CT and literacy learning tasks supported early under-
standings of CT and how early elementary students engaged in these tasks. Results from this 
study will be presented using multiple representations as a framework for student understanding 
within CT and will be presented by primary representational mode: concrete manipulatives, 
pictorial/graphical representations, and language. Much of the results provide evidence of trans-
lation between or within representational mode, so this will be discussed within the results as 
appropriate.

Concrete manipulative representations

Concrete manipulative representations are described as tangible, physical objects or tools that 
students interact with to perform tasks. These can include items like coding cards, robots, or 
other hands-on materials that require students to physically move, arrange, or manipulate them 
to solve problems or demonstrate understanding of computational thinking (CT) concepts. These 
representations served as cognitive scaffolds, helping to externalize and organize students’ 
thoughts, and to bridge their understanding of abstract CT concepts by providing a more con-
crete, tangible experience.
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Tracking movement physically
Task 3 and 5 required students to program the mouse to get to the cheese. While observing students 
during these tasks, it became evident that there were two approaches through which they tracked 
the path of the mouse on the maze. Eight out of 12 students, that included three boys and five girls, 
used the physical mouse as a placeholder by picking it up and moving it around the maze to visu-
alize the next steps (sequence) of the path. For example, Sophie used the paper mouse in our 
unplugged version to help her keep track of the movement (see Figure 1), while Isabella used the 
actual computational toy robot mouse to help her keep track of the movement (see Figure 2 - left 
image). This approach allowed them to physically simulate the movement of the mouse—using the 
orientation of the mouse and the push buttons on the back—to plan its trajectory on the maze. By 
physically manipulating the mouse, they could better understand the spatial relationships and antic-
ipate the sequence of direction cards required to reach the cheese. The second approach—which 
many students did, but only two students used for any length of time—was to use their finger or 
hand to keep their place on the maze. For example, Joe started out using his memory to track the 
mouse on the maze, but when that presented challenges, he then used his finger to map out the 
course on the maze (see Figure 2 - right image) then as it got more complex, he used the mouse 
to track where he was in some instances. Both of these approaches facilitated their problem-solving 
process enabling them to successfully program the mouse to get to the cheese.

Physically pushing buttons with each step

As an example of a directly related concrete use of the manipulatives, both Lily and Isabella 
physically pushed buttons on the device to input a command and then manually moved the 
mouse to follow the programmed path through each step. This action represents a highly con-
crete form of engagement with computational thinking (CT), where the students not only 
determined the sequence of steps but also physically enacted the outcome. This tactile and 
interactive approach allowed them to see the immediate effects of their programming decisions 

Figure 1. Sophia (K) Picking up and moving around the mouse as a placeholder to determine the sequence of the mouse on 
the maze.
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and track the code more easily. By physically interacting with the technology, Isabella and Lily 
(see Figure 3) bridged the gap between abstract CT concepts and real-world application, demon-
strating a hands-on learning process that made the computational task more comprehensible 
and grounded in their experience.

Representational style of direction cards

Tasks 1 and 2 were designed for students to use the direction cards (A→B; B→C) to order the picture 
cards onto a circle diagram mat. The way that the students managed this task related to how they 
used the concrete representations of the direction cards. There were four primary ways that the 
students organized the cards to complete the tasks: hunt-and-peck style, end-to-end, top-to-bottom, 
and discard pile. Table 3 shows the styles each student used throughout the Tasks 1 and 2.

Hunt-and-peck representation style
The hunt-and-peck style of using the direction cards was employed by nine of our 12 students. 
This entailed looking for the card needed with little to no organization of the direction cards and 
only moving direction cards to be able to see them. Here, the students started with a direction 
card (often the closest one or the one they saw first) and then placed both corresponding picture 
cards on the mat. Then they would hunt for the next direction card (the one where the picture 
on the left matched the last card’s right picture). Then place the appropriate picture card on the 
mat. Only three students, Lily (K), Henry (K), and Melody (2) stuck with this representation style 
throughout both tasks and all versions. Jonathan (1) used this on Task 1 which was his first task, 
and William (K) (see Figure 4), Connor (2), and Mallory (2) both used this later.

Discard pile representation style
The discard pile strategy was similar to the hunt and peck strategy; students did not try to 
organize the direction cards before placing the picture cards on the mat. Here though, students 

Figure 2. (a) Isabella (1) used the mouse robot to track maze placement and (b) Joe (1) used his fingers to track the placement 
of the mouse..

Figure 3. Lily’s example of using the mouse to code each step.
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would move (or discard) any direction card that they had already used as a way to manage 
knowing what cards they had left to consider. Four students used this strategy: Joe (1), Mallory 
(2) (see Figure 5), Charlie (2), and Connor (2).

End-to-end representation style
The end-to-end strategy has students chaining the direction cards so that matching pictures are 
next to each other. Three of our students used this strategy: Isabella (1), Jonathan (1), and 
Mallory (2). Two students laid out the direction cards so that all cards were in a single chain, 
while two students also laid them out in left-to-right chains of a few cards and then made rows 
down. Isabella did both (see Figure 6). Interestingly, Isabella placed her card in both ways across 
all of her tasks, sometimes she placed a direction card in her chain and then a picture on her 
mat (e.g. Figure 6 - left image) and other times she laid out all of her direction cards then all 
of her picture cards (e.g. Figure 6 - right image).

Top-to-bottom representation style
The strategy of laying cards from top-to-bottom had the students creating a column of cards 
such that the right picture of one card was the left picture on the card below it. Four students 
used this strategy: Sophia (K), William (K), Lily (K), and October (1) (see Figure 7). October 
always organized her direction cards first, then placed all of the picture cards.

The hunt and peck and the discard pile strategies had students alternating between finding 
a direction card and placing the picture card on the mat. These strategies generally showed the 
students decomposing the task into single operations—find and place the next card. The 

Table 3. The representation style used by each student in Tasks 1 and 2. Some students used 
multiple representational styles and, therefore, have multiple check marks. The girls’ names are 
underlined to make biological sex easy to identify.

Grade Pseudonym
Representation style

hunt-and-peck discard pile end-to-end top-to-bottom
K Lily ᅛ ᅛ

Sophia ᅛ
Henry ᅛ
William ᅛ ᅛ

1 Isabella ᅛ
October ᅛ
Joe ᅛ ᅛ
Jonathan ᅛ ᅛ

2 Mallory ᅛ ᅛ ᅛ
Melody ᅛ
Charlie ᅛ
Connor ᅛ ᅛ

Figure 4. William using the hunt-and-peck method for Task 2 – Moose and Muffin.
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Figure 5. Mallory uses the discard pile strategy as she works through Task 2 – If You Give a Pig a Pancake.

Figure 6. Isabella with her cards end-to-end both one continuous chain and rows of chains.

Figure 7. October placing her direction cards in the top-to-bottom strategy before placing any picture cards on the mat.
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end-to-end and top-to-bottom strategies allowed students to either alternate between finding a 
direction card and placing a picture card on the mat (like the previous strategies) or order all 
direction cards first and then place all of the picture cards on the mat. This latter strategy 
showed the students decomposition of the task had a holistic quality—find the pattern, then 
place the picture cards.

Ineffective card placement on the maze

The use of the concrete representation of the coding direction cards for the robot mouse (Task 
3 and 5) was a barrier to them coding the mouse correctly. One way that this was seen was 
when the students laid the coding cards directly on the maze. Several of our 12 students grav-
itated toward this concrete action in a way that suggested that they were using the cards as a 
placeholder to manage where they were in planning out the path of the robot mouse. This 
caused confusion because: (1) students often did not understand how the cards represented the 
movement and (2) the placement of the first card on the maze determined where the second 
card would need to go in terms of spacing.

A common issue with placing the cards on the robot mouse maze was that students had a 
misunderstanding about how the cards represented movement. One way that this played out 
was when the maze included a corner, it takes three cards to represent the mouse traveling 
through a turn (e.g. forward, right, forward) and the students often only placed one (e.g. right). 
In Figure 8, Melody (Grade 2) placed a single left turn arrow card on the corner. We saw this 
error across most students who placed the cards directly on the maze. To get the students past 
this type of error, the researcher always had to suggest laying out the cards off of the maze, 
which was the case for Melody as well.

Another way that this played out was that students placed the arrow cards rotated to match 
the path intended. Figure 9 showed Melody as she began Task 3 with the computational toy 
version. This time, she used just one arrow to represent the path the mouse will take. She does 
this both for the corner and for the tunnel as marked with red arrows on the image. In this 
case, the arrow cards chosen are meant to represent the mouse moving forward (blue arrow) 
or backward (yellow arrow).

A second common issue was spatial consistency throughout placing the cards on the maze. 
When the student placed the first card, which was usually a forward movement, they placed it 
either where the mouse started, on the seam between two squares, or where the mouse would 
land. Once this choice was made it was necessary to keep this consistent spacing throughout 
the remainder of the placing of cards. However, most students did not recognize the need for 
consistent spacing. This was common among both the girls and boys in our study at all grade 

Figure 8. Melody laying cards directly on the unplugged version of Task 3, using a single left arrow to represent a turn. Her 
code also uses only one card per square which led to coding problems beyond just the corner turn.
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levels. Each of the students was unable to solve the task until the researcher prompted them to 
reorganize the cards off of the maze. In one example, William (K) began by placing cards on 
the path (Figure 10 - left image). When the mouse did not get to the cheese, William recognized 
that he was missing a step, and added the turn (orange left arrow card) beside the backwards 
(yellow arrow) card creating a pile of cards (Figure 10 - right image). When the mouse did not 
end up at the cheese, he struggled with what to do next as the cards seemed to fill the space. 
He found it hard to figure out what cards he was missing and how to manage the cards due 
to his spacing and placement of the cards.

Pictorial/graphical representations: laying out cards in the shape of the board

Pictorial/graphical representations referred to the use of visual elements like images, diagrams, 
or graphical organizers that students use to understand and solve computational thinking 
(CT) tasks. These representations can depict sequences, processes, or spatial relationships in 
a visually interpretable manner, allowing students to conceptualize and reason about CT 
concepts more effectively. They served as a bridge between concrete manipulatives and abstract 
thinking, helping students visualize and internalize the steps involved in coding and compu-
tational tasks.

In the last concrete representation examples, we saw that the concrete manipulative use of 
laying the cards on the maze was generally problematic. Four students, three girls and one boy, 
laid out the direction cards for the robot mouse off of the maze, but in a shape that represented 
the path of the mouse through the maze. Because the layout of the cards was a graphic 

Figure 9. Melody laying cards directly on the computational toy version of Task 3, using rotated forward and backward arrows 
represent the path the robot mouse will take.

Figure 10. William (K) laying out cards on the maze with spatial issues creating barriers to completion.
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representation of how the mouse traveled, we classified this a representational translation from 
concrete to pictorial/graphical.

In one example, Jonathan (Grade 1) first laid out the cards on the maze in the path that the 
mouse was traveling on the maze (see Figure 11-left image). The researcher prompted him to 
move the cards off of the maze so that the mouse could travel on the maze. Jonathan then 
moved the cards off of the maze in the same shape as the path. He tested the code by coding 
the mouse and allowing it to travel the maze (see Figure 11- middle image). This code had the 
mouse coming off of the track past the tunnel. The pictorial representation of the cards allowed 
him to recognize spatially where the code went wrong by comparing where the mouse went off 
the maze to that same point in his pictorial layout of the cards. He removed the extra blue 
arrow and tested again. He continued to debug in this manner (one mistake at time) until he 
got the mouse to the cheese (Figure 11 - right image).

Task 3 was intended to see if students could reverse the sequence. The researcher asked him 
to keep the forward corrected code on the table:

Okay. I want you to leave this [pointing to the direction cards on the table], how it is–because this is his 
[the mouse’s] forward movement. I want you to pretend that our robot mouse can pick up this cheese and 
take it back to his home. But I want him to do everything he did–backwards. So if [the mouse] went for-
ward, I want it to go backwards.

To accomplish this, he did not consider his original correct code and try to reverse it, rather 
he went through a very similar process to going forward, which was layout the cards and test. 
This time, though, he did keep the cards off of the board. Figure 12 shows a few shots of 
progression through this cycle. The backwards task was more difficult, so while he did use the 
spatial reasoning to determine where his mistake in the code was compared to where the mouse 
went wrong on the maze, this cycle he would wipe everything out past the mistake and rebuild, 
rather than just replace or remove a card like he did in the forward movement of the mouse.

This mode of laying cards in a pictorial representation was present in other students and 
tasks as well. Figure 13 shows Isabella (Grade 1) laying out her direction cards from Task 3 in 
a shape that somewhat represented the path of the mouse (left image). However, her organization 
proved to be difficult for her to know the order of the code, so she changed her organization 
to a linear representation (right image).

Figure 12. Jonathan working on the reverse code for Task 3. He chose to wipe the cards at the beginning (left image) and with 
each mistake (third image). This cycle continued until the code was completed.

Figure 11. Jonathan (Grade 1) translating his concrete representation of the cards on the maze (left) to a pictorial path-like 
representation on the table (middle) and then correcting his code (right).
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Language-based representations

This results section explores two key language-based representations that emerged during our 
analysis of students engaging in computational thinking (CT) tasks: self-talk and stories. We 
found that all students used self-talk to support their problem-solving processes and verbalize 
their understanding. Additionally, stories, both created and utilized by the students, served as 
a common approach to grasping CT concepts and reasoning through tasks. The following sec-
tions will delve deeper into these themes with specific examples showcasing how students lev-
eraged self-talk and stories to develop their early understandings of CT.

Self-talk to get through a task
Throughout the tasks, we found that all students used language-based representations of self-talk 
to support early understandings of CT. Self-talk here is defined as the talk the students did 
unprompted by the researcher and not directed at the researcher. In the examples of self-talk, 
the students were frequently seen using self-talk as an intermediary representation to help them 
either make sense of a representation they were trying to use or to help them as a mediator 
between representations, such as from the concrete robot mouse to the pictorial representation 
of the arrow on the coding card. Across the cases of self-talk, the students were seen using this 
representational form as a way to persist in the task when they got stuck. For instance, Mallory 
(Grade 2) utilized self-talk effectively during a debugging process, where she verbalized her 
observations and thoughts, thus externalizing her problem-solving process. She recognized an 
anomaly in the sequence of her task, labeling it as "weird" and logically deducing that a piece 
might be missing. As she looked at two direction cards, the muffin → jam and the jam → muffin, 
she started searching for another direction card with jam on it: “Ok, that’s weird. Is there another 
jam over here?” Her methodical search for a solution, expressed through her dialogue with 
herself, highlighted her analytical approach to resolving the sequence challenge. Similarly, Henry 
(K) and October (1) employed self-talk while interacting with the robot mouse, reading aloud 
the instructions on the arrow cards or the colors on the arrows. This strategy likely helped 
them lessen the mental effort needed to convert these abstract representations into physical 
actions, demonstrating how verbalizing thoughts can play a crucial role in understanding and 
solving CT tasks.

Use of stories
All 12 of the students incorporated storytelling across the CT tasks, especially those involving 
the robot mouse in Tasks 3 and 5. During the embodied maze activity (Task 3), this was evident 
in how Charlie and Conner (Grade 2) physically acted like mice. Charlie pretended to sniff the 
cheese at the end, while Conner chirped in a playful imitation. Similarly, Sophie (K) added a 
narrative while controlling the paper mouse, saying, "He can really smell that cheese!" (shaking 

Figure 13. Isabella representing her code in the shape of the path the mouse should travel (left) then linearly (right).
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the mouse) and then adding sound effects as she moved it forward ("yum, yum, yum"). These 
examples showcase how storytelling and role-playing bridge the gap between abstract CT con-
cepts and students’ experiences, making learning more engaging.

This creative storytelling extended beyond explicit prompts. For instance, when tasked with 
programming a frog in ScratchJr (Task 7), Charlie (Grade 2) wasn’t satisfied with a simple hop. 
His love for baseball inspired him to create a narrative where the frog would "slide into home-
base" (See Figure 14). He even acted out the slide for the researcher, demonstrating his desire 
to incorporate this movement. This playful integration of narrative highlights how students can 
use stories to make CT tasks more meaningful and solve problems in unique ways.

In conclusion, these examples demonstrate the power of storytelling in supporting early CT 
development. Students across all ages and grades consistently used or created narratives to make 
sense of tasks and develop their CT understanding. Whether prompted by the activity or 
self-generated, these stories provided a context and structure that aided problem-solving, par-
ticularly in more complex sequencing tasks. This suggests that educational activities that encourage 
storytelling can be a valuable tool for nurturing early CT skills.

Discussion

Based on our study, several conclusions and recommendations can be drawn about integrating 
computational thinking (CT) in early elementary literacy and how to support competencies for 
all students. Although we initially sought out to explore differences between boys’ and girls’ 
experiences, our analysis across students and tasks indicated no significant gender-based differ-
ences in the ways that students engaged with and benefited from these computational thinking 
tasks. Both boys and girls demonstrated similar strengths and faced comparable challenges during 
the task-based interviews. This finding suggests that the instructional strategies we develop may 
not necessarily be gender-specific but should instead focus on addressing the common barriers 
and leveraging the affordances observed across all students at this level. Thus, our approach to 
shaping instruction should aim to universally enhance learning experiences and outcomes in 
computational thinking for every student, irrespective of gender.

However, it may also be that by using multiple representations (concrete manipulatives, pic-
torial/graphical, and language-based strategies), we were able to enhance inclusivity by accom-
modating diverse learning styles, which is particularly helpful for marginalized groups (e.g. Ryoo, 
2019). Research suggests (Bati, 2022) that girls, along with other historically underrepresented 
groups in STEM, often benefit from more concrete and relatable instructional methods due to 
socialized differences in early education experiences. By integrating multiple forms of 

Figure 14. Charlie embodying the code by acting out the slide (left) and the code that matched that action in his ScratchJr 
code.
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representation, these learners are better supported due to the following: (1) concrete manipu-
latives (e.g. coding toys) provide hands-on learning, which can reduce intimidation and increase 
engagement, particularly for students who may feel disconnected from abstract computational 
concepts (Bati, 2022), (2) pictorial/graphical representations help students visualize and plan 
their actions, thus bridging the gap between abstract concepts and tangible understanding. This 
is key for young learners, including girls, who may have lower confidence in STEM subjects 
compared to boys (Moore et al., 2020), and (3) language-based strategies, such as self-talk and 
storytelling, allow students to verbalize and structure their understanding. This cognitive tool 
can foster deeper engagement and confidence, particularly for students who benefit from 
narrative-driven learning, a method shown to engage girls in science and math (Cremin & 
Flewitt, 2016).

The integration of CT into early childhood education aligns with previous findings that 
highlight the effectiveness of unplugged activities combined with plugged activities in enhancing 
CT skills among young learners. For example, del Olmo-Muñoz et  al. (2020) and Su and Yang 
(2023) emphasized that this combination was particularly effective, suggesting that your approach 
to using multiple representations such as concrete manipulatives, pictorial/graphical representa-
tions, and language-based strategies is well-supported by existing literature.

Multiple representations enhance understanding

When looking across the findings, there were some overarching trends in how the students 
engaged with and utilized multiple representations across the tasks that align with previous 
recommendations for engaging early learners with CT. Concrete manipulatives like coding cards 
and robots were seen to help our students grasp abstract CT concepts by allowing them to 
physically manipulate and visualize the problem-solving process, which aligns with recommen-
dations for the importance of concrete experiences for younger learners (Bati, 2022), as well as 
the findings that suggest that coding with physical robots support spatial reasoning understand-
ings (Berson et  al., 2023; Brainin et  al., 2022).

Similar to findings from  Moore et al. (2020), pictorial/graphical representations that students 
used with the direction cards helped to bridge the gap between concrete and abstract elements, 
enabling students to conceptualize and plan their actions. Finally, language, particularly in sto-
rytelling and self-talk, was seen to play a crucial role in processing and articulating CT tasks, 
helping to serve as a cognitive tool that aids understanding and problem-solving (Cremin & 
Flewitt, 2016). While there were some general trends seen within representations, the overarching 
analysis across students and tasks revealed that individual students utilizing a diversity of 
approaches and representational styles when engaging with and solving the tasks. Although this 
was a small sample of students across K-2 grades, we believe our results showcase the impor-
tance of using varied representational modes.

Early childhood CT education has typically focused on developmentally appropriate practices 
and the use of broader conceptualizations like unplugged and plugged activities (e.g. Rich et  al., 
2019). However, our research underlines the importance of adopting a multi-modal representa-
tions approach to early childhood CT education. This broader perspective acknowledges the 
various ways children interact with and comprehend CT concepts, suggesting that a combination 
of concrete manipulatives, pictorial/graphical representations, and language-based approaches can 
provide a more holistic and developmentally appropriate learning experience. Both Wohl et  al. 
(2015) and del Olmo-Muñoz et  al. (2020) emphasized that integrating different modes, such as 
unplugged activities and computational toys, can help young learners grasp complex concepts 
by gradually moving from concrete to more abstract forms of representation. This supports our 
findings that the use of concrete manipulatives, pictorial/graphical representations, and language 
could be used as stepping stones in CT education. Furthermore, using multiple representations 
can lead to a more inclusive and effective CT education, catering to the diverse needs and 
preferences of a wide range of early elementary students (Moore et al., 2020). By doing so, 
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educators can create a more engaging and supportive learning environment that fosters early 
interest and confidence in CS and STEM, thereby contributing to a broader and more diverse 
future in these fields.

Language as a cognitive tool and integrating CT with literacy

Language plays a pivotal role in learning computational thinking (CT) and in helping stu-
dents process and articulate their understanding (Bers, 2019). The use of language has been 
shown to facilitate a deeper connection between students and the abstract concepts inherent 
in CT tasks (Macrides et  al., 2022) and this was seen in our tasks through the use of stories 
and self-talk. We found that language and storytelling were significant in helping students 
articulate and process their computational thinking tasks. For instance, during a task with 
a robot mouse, a student named Sophia created a story where she navigated the mouse 
through a maze, using language to plot each step, such as moving forward, turning, and 
reversing. This storytelling approach allowed her to not only visualize and sequence the 
actions needed, but also helps in breaking down complex CT tasks into relatable and com-
prehendible parts, allowing students to make sense of and navigate through these tasks more 
effectively.

To leverage language effectively in teaching CT, educators can integrate literacy activities 
into the regular curriculum, using stories and dialogues as tools to introduce and explain 
CT concepts. This approach not only enhances the relatability and comprehensibility of CT 
but also promotes a more holistic educational experience where language and computation 
support and enrich each other (Bers, 2019). By doing so, teachers can create a learning 
environment where language is used strategically to reduce the complexity of CT concepts, 
helping students to organize their thoughts, solve problems, and express their understanding 
in a coherent and structured manner. By embedding CT concepts within familiar stories 
and personal narratives, students could better understand and articulate the steps involved 
in problem-solving, thereby enhancing their engagement and learning in computer science 
education.

Implications

Early introduction of CS concepts

Others have found that introducing CS concepts at the elementary level, especially through 
literacy integration, can lay the groundwork for future learning and interest in STEM fields (e.g. 
Martin-Hansen, 2018). Based on the results of the study, we found that integrating CT into 
literacy practices using multiple representations, especially language, could potentially bridge 
gaps in CS education and create a more inclusive and engaging learning environment for young 
students, particularly in the early grades.

Integrating CT with literacy and promoting language as a cognitive tool
Teachers should deliberately foster an environment where students are encouraged to use story-
telling and self-talk as strategies to articulate and process their understanding of computational 
thinking (CT) concepts. By blending CT with literacy activities and intentionally guiding students 
to create narratives, educators can make abstract CT principles more tangible and relatable (Bers 
& Horn, 2010). This approach not only aids in externalizing students’ thought processes but also 
makes problem-solving more manageable. Utilizing digital storytelling tools like ScratchJr allows 
students to integrate programming elements into their narratives, enriching their learning experi-
ence and helping them to develop a deeper understanding of CT through language and narrative 
construction.
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Multiple representations as an inclusive approach
Teachers should use a variety of representational modes, including concrete manipulatives (like 
coding cards and robots), pictorial/graphical representations, and language-based instructions. 
This approach caters to different learning styles and helps in making CT concepts more acces-
sible for all students.

However, despite the importance of CS education, disparities in participation persist. Computer 
science education often excludes marginalized groups, including female students and those from 
underrepresented racial and socioeconomic backgrounds (Cvencek et  al., 2011; Kucuk & Sisman, 
2020). Without interventions that address these disparities, many students lose interest and 
confidence in CS early on, which perpetuates a lack of diversity in the field (Shah & Yadav, 2023).

The findings of this study highlight how using multiple representations, such as concrete 
manipulatives and pictorial/graphical tools, can provide an inclusive learning experience that 
fosters early engagement in CS for marginalized groups. By offering varied entry points into CS 
learning, these approaches can help address existing disparities by ensuring that all students, 
regardless of their background, have access to developmentally appropriate and engaging CT 
instruction (Cremin & Flewitt, 2016; Moore et al., 2020).

Introduce CT at early grades
Introducing computational thinking (CT) concepts at early grade levels is crucial for building 
foundational skills and fostering interest in STEM fields. Making CT relevant and engaging 
by connecting it to students’ everyday experiences and interests can demystify computer science 
and make it more accessible to all students. Our observations show that there are no signif-
icant differences in engagement with CT between boys and girls at these ages, yet we know 
from other research that as students progress in their education, these differences appear. This 
highlights the importance of starting CT education early and ensuring an inclusive learning 
environment. By doing so, teachers can provide equal access and opportunities for every stu-
dent to benefit from CT education, thus supporting the development of CT skills in young 
learners and enhancing their interest in pursuing STEM education and careers in the future.
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