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Abstract
The severe shortage of functional donor lungs that can be
offered to recipients has been a major challenge in lung
transplantation. Innovative ex vivo lung perfusion (EVLP) and
tissue engineering methodologies are now being developed to
repair damaged donor lungs that are deemed unsuitable for
transplantation. To assess the efficacy of donor lung recon-
ditioning methods intended to rehabilitate rejected donor lungs,
monitoring of lung function with improved spatiotemporal res-
olution is needed. Recent developments in live imaging are
enabling non-destructive, direct, and longitudinal modalities for
assessing local tissue and whole lung functions. In this review,
we describe how emerging live imaging modalities can be
coupled with lung tissue engineering approaches to promote
functional recovery of ex vivo donor lungs.
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Introduction
For patients with end-stage lung disease, lung trans-
plantation is the only definitive therapeutic option [1].

Unfortunately, nearly 80% of donor lungs are disqualified
for transplantation, mainly due to poor gas exchange
function resulting from lung injury prior to procurement.
The availability of transplantable donor lungs could be
substantially increased if injured donor lungs, many of
which are of marginal quality, can be repaired to a level
that meet acceptable transplant criteria [2e4]. Inno-
vative donor lung reconditioning protocols and plat-
forms, such as isolated [5] and cross-circulation [2,6e8]
ex vivo lung perfusion (EVLP), have been developed
with the goal of improving the functional integrity of
rejected donor lungs.

A technological bottleneck hampering donor lung recon-
ditioning is that current methods used to evaluate lung
function during EVLP treatments provide only limited
insight into the progression of lung recovery. Current lung
function evaluation methods are largely limited to moni-
toring global (i.e., not region-specific) parameters associ-
atedwith lung injury. Notably, imagingmodalities that are
i) capable of mapping local lung function, ii) noninvasive/
nondestructive, and iii) operational in real time would
help clarify why individual donor lungs fail or improve
during EVLP. The imaging-assisted approach to donor
lung reconditioning can aid in planning interventions,
administering treatments tailored to individual lung
(region) needs, andmonitoring responses in a closed-loop
manner. By enabling a mechanistic understanding of lung
injury, interventions, and recovery, the imaging-based
approach can be leveraged to expand the pool of donor
lungs acceptable for transplantation (Figure 1).

Here, we discuss selected clinical and research-level
imaging technologies reported within the last five years
that can be used to quantify specific functions of three
distinct anatomical compartments of the lung: i) respi-
ratory tract, ii) alveolar gas exchange region, and iii)
vasculature. We focus on functional imaging methods
which generate localizable signals and which are appli-
cable to ex vivo support platforms for donor lungs.

Donor lung injury modes and critical
functions
Donor lungs are susceptible to a variety of complica-
tions, which may be global or region-specific (prefer-
entially affecting airways, parenchyma, vasculature, or a
subset of any of these). These complications include
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atelectasis, contusion or hemorrhage due to trauma,
edema due to leaky vasculature, pulmonary emboli, and
perimortem aspiration in the donor [2]. While EVLP
aims to recover donor lungs injured by various mecha-
nisms, adjunct technologies that enable real-time, non-
destructive functional monitoring of different lung re-
gions may facilitate directed injury repair. Thus, we have
identified critical functions to monitor in three distinct
lung compartments:

i) Respiratory tract (conducting airways: trachea
through terminal bronchioles): Critical functions
include mucociliary clearance and ventilation.
Mucociliary clearance is the directional removal of
inhaled pathogens or particles by an “escalator” of
mucus driven by beating cilia. Ventilation refers to
the movement of air in and out of the lung.

ii) Lung parenchyma (gas exchange region: respiratory
bronchioles through alveoli): Critical functions
include gas exchange and elastic deformation. Gas
exchange involves oxygen and carbon dioxide

equilibration between alveoli and the bloodstream,
while elastic recoil is the main driver of exhalation
during normal breathing.

iii) Pulmonary vasculature: Critical functions include
vessel patency, responsiveness, permeability, and
immune recruitment. Patency refers to vessel
openness, i.e., not blocked by clots or stenosis.
Permeability refers to the status of tight junctions in
the endothelium, supporting normal tissue fluid
balance. Immune recruitment refers to transport of
cellular and humoral contents to the lung via the
vasculature in response to infection and injury.

In a donor lung of substandard quality, certain functions
may be more compromised than others, depending on
the cause and mechanism of injury. In the following
sections, we discuss possible applications of cutting-
edge imaging technologies to quantify these critical
lung functions, which together may set a foundation for
advanced lung recovery platforms.

Figure 1

Imaging-assisted donor lung reconditioning. Selected real-time functional imaging modalities for detecting regional lung deficits, assisting in
targeted repair, and monitoring lung recovery during rehabilitation of disqualified donor lungs on ex vivo support platforms. CT: computed tomography;
MRI: four-dimensional MRI; PET: positron emission tomography; SPECT: single-photon emission computed tomography; OCT: optical coherence
tomography.
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Imaging-assisted monitoring of respiratory
tract functions
Mucociliary clearance
Mucociliary clearance is typically measured by tracking
the movement of inhaled tracers as they are transported
by ciliary action. Several noninvasive methods utilize ra-
diation: gamma scintigraphy of the chest has been used
to track the clearance of technetium-based radiolabeled
particles in numerous studies [9]. Scintigraphy, however,
is limited to averaged mucociliary clearance because it is
difficult to determine the exact location of the tracers in
the airways (e.g., small vs. large airways) from the 2D
images acquired. To access airway-level detail, methods
with increased spatial and temporal resolution have been
developed. In one approach, tantalum microparticles
delivered into the lungs were traced using X-ray
computed tomography (CT) (Figure 2a). Not only was
the clearance of individual particles in 3D visualized with
high temporal resolution, but also a new phenomenon
was observed: elastic recoil of cystic fibrosis mucus [10].
Another method that employed positron emission to-
mography (PET) was able to track bulk movement of
distally instilled radiotracers along the entire course of
the respiratory tract [11] (Figure 2b).

Radiation-free methods have also been developed,
including the use of fluorescent nanoparticles in
mucociliary clearance tracking in thin tissues with
traditional microscopy [12]. This particle tracking
method can also be applied to larger tissues via intra-
tracheal insertion of optical fiber imaging probes in
fluorescence micro-bronchoscopy. For example, we
created a fluorescence micro-bronchoscopy device that
is capable of resolving and tracking single fluorescently
labeled microparticles or cells that are coated on the
airway lumen of isolated rat lungs. This imaging mo-
dality could be extended to human-sized ex vivo lungs
[6,13,14]. It is possible in particle-based imaging that
particles are not fully cleared from the lung. Micro-
bronchoscopy could be used to visualize ciliary action
in a particle-free manner via cilia-targeted fluorescent
labels, such as fluorescent wheat germ agglutinin [15].
Label-free quantitative assessments of airway tissue
structure and function can be achieved through optical
coherence tomography (OCT). Advanced OCTsystems
can provide cross-sectional views of airway epithelium
with high imaging resolution (w1e3 mm), enabling
direct visualization of cilia movement. Inclusion of
tracer particles allows for simultaneous measurement of
mucus micro-rheology and mucociliary clearance
[16,17]. Given the many existing uses and advanced
bronchoscopy for OCT, it is expected that this tech-
nique will be easily extended to human-sized lungs
[18,19]. Considerations of specialty equipment, radia-
tion exposure, and desired temporal and spatial scales
will determine which of these imaging methods are most
appropriate for investigating donor lung regeneration.

Ventilation in the conducting zone
Clinical techniques such as X-ray and bronchoscopy
assess the general condition of conducting airways in
ex vivo lungs. These add to the functional data that can be
gleaned from mechanical ventilator readings, such as
peak inspiratory pressure and lung compliance [8].
However, these methods are limited by poor individual
airway resolution (X-ray) or cumbersome sampling of one
airway at a time, and to imaging of larger airways (bron-
choscopy). The leading clinical systems for evaluating
airway dynamics are four-dimensional (4D = 3Dþ time)
computed tomography (4DCT) and magnetic resonance
imaging (4DMRI). Both modalities can generate local
flow-volume relations (Figure 2c), display regional dif-
ferences in tissue strain throughout the entire lung, and
be used to monitor localized lung injures [20e22]. These
measures would be useful for planning local interventions
and monitoring regional donor lung recovery. 4DCT is
considered the clinical gold standard, but 4DMRI offers
the additional advantage of eliminating radiation expo-
sure in the ex vivo donor lung [23]. A few other CT-based
technologies can provide complementary information.
Inferences can be made about global small airway health
using conventional CT images and parametric response
mapping, which was recently shown to correlate to micro-
CTof tissue [24]. For localized detail, phase contrast CT
can be used to capture individual terminal bronchiole
opening and closure during ventilation [25] (Figure 2d).

Sound-based technologies, stemming from one of the
oldest lung monitoring modalities, the stethoscope, are
comparatively low-cost and rapidly implementable
methods of monitoring airway condition. For example,
turbulent flow in large airways and closure/reopening in
small airways have distinctive auditory signatures (stri-
dor and crackles, respectively), which can be regionally
resolved. Crackles, in particular, may signal abnormal
surfactant properties, which in turn inform the func-
tional wellbeing of type II alveolar cells, while stridor
signals constriction of larger airways. Sound-based
technologies include both auscultation and forced
oscillation measurement systems, which, combined with
advanced signal processing methods, are capable of
discriminating features of multiple pulmonary diseases
[26e29]. These technologies have been further
reviewed recently [30]. In total, 4DCTmay be the most
powerful technology for tracking lung recovery, with
4DMRI perhaps soon to follow. Parametric response
mapping and acoustic technologies, as a less resource-
intensive alternatives, might be more realistic for im-
mediate adoption.

Imaging-assisted monitoring of lung
parenchyma
Gas transport and exchange
Spatially heterogeneous tissue defects are a common
feature of refused donor lungs, but conventional

Imaging ex vivo donor lungs Hudock et al. 3

www.sciencedirect.com Current Opinion in Biomedical Engineering 2023, 25:100432

www.sciencedirect.com/science/journal/24684511


methods used to measure gas exchange function of lung
provide only averaged readouts across the whole lung. In
contrast, MRI can allow region-by-region functional as-
sessments of ex vivo donor lungs. Using an inhalable
contrast agent, such as xenon-129 gas (129Xe), MRI

permits three-dimensional, high-resolution, and longi-
tudinal lung function measurements without using ra-
diation [31e33] (Figure 3a). Inhaled 129Xe can readily
dissolve in lung tissue and red blood cells (RBC).
Notably, 129Xe resonates at distinct frequencies when

Figure 2

Functional imaging of mucociliary clearance and ventilation in the conducting zone airways. (a) Tantalum microdisk path tracking by CT [10]. (b)
PET signal transport by MCC, overlayed on CT image (left) and traced along 3D airway reconstruction (right) [11]. (c) Schematic of bronchoscope-
deployable GRIN lens-based fluorescence imaging probe (left) and acquired images of 10 mm fluorescent particles deposited intraluminally via collagen
hydrogels of varying concentrations [14]. (D) 4DMRI flow-volume loops plotted for 1/20th of points tracked, with lung-average loops superimposed on
each local loop, demonstrating regional variation [21]. (d) Progressive closure of a single terminal bronchial under decreasing PEEP observed with
phase-contrast CT [25]. 4DMRI: four-dimensional magnetic resonance imaging; CT: computed tomography; GRIN: gradient-index; MCC: mucociliary
clearance; PEEP: positive end-expiratory pressure; PET: positron emission tomography.
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dissolved in air, alveolar tissue, and blood, allowing ac-
curate estimation of gas transport between the airspace
and vascular network [34]. Importantly, the materials
used to construct the platform for ex vivo support of
lungs imaged by 129Xe MRI must not interact with the
magnetic fields. Further, the trade-off between

measurement resolution and associated costs will need
to be evaluated.

Real-time visualization of oxygen uptake can be achieved
at reduced cost via multispectral fluorescence micro-
scopy (Figure 3b) and photoacoustic microscopy (PAM)

Figure 3

Imaging-assisted structural and functional assessment of lung parenchyma. (a) Real-time noninvasive monitoring of gas transport and exchange
of lung via 129Xe MRI [33]. Barrier: alveolar tissue barrier. RBC: red blood cell. (b) 2D visualization of oxygen saturation level (sO2) across lung tissue via
multispectral fluorescence microscopy (MFM) [35]. (c) 3D visualization of hemoglobin concentration (CHb) and sO2 within a biological tissue via
photoacoustic microscopy (PAM) [37]. (d) Non-destructive region-by-region quantification of lung tissue stiffness via vacuum-enabled tissue tensile test
[41] (e) Assessment of structural and functional integrity of lung parenchymal tissue via sound-assisted airflow quantification [29]. Freq: frequency, Mic:
microphone.
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[35e38] (Figure 3c). The underlying principle of both
imaging methods is that hemoglobin (Hb) absorbs light
differently when it is oxygenated (HbO2) and deoxy-
genated (HbR). Therefore, oxygen saturation (sO2) and
hemoglobin concentration (CHb) can be determined by
quantifying absorption of the excitation lights in tissue.
Wavelengths between 650 nm and 900 nm are typically
used because they are much more highly absorbed by
HbO2 and HbR than by water, leading to improved
signal-to-noise ratios [35,36]. While multispectral fluo-
rescence microscopy can determine sO2 distributions
only at the tissue surface due to considerable light scat-
tering within tissue, photoacoustic methods can generate
3D sO2 maps with excellent imaging resolution in deeper
tissue regions (up to several centimeters). The superior
imaging quality and depth of photoacoustic microscopy
are due to detection of acoustic waves, which scatter less
than light in biological tissues [37,38]. However, because
acoustic waves propagate poorly in airspaces, photo-
acoustic sO2 quantification may also be limited to
subpleural regions.

Elastic tissue deformation
The ability of lung tissue to repeatedly deform (i.e.,
stretch and contract) in response to applied force or
pressure is a useful measure to characterize the quality
of ex vivo donor lungs [39,40]. Deformability of lung
tissue, which varies spatially across a lung, can be
determined by directly measuring stiffness (i.e., elas-
ticity) of local tissue. We established a vacuum-based
elastography method that enables accurate quantifica-
tion of tissue stiffness in a localized, real-time, and
nondestructive manner [41] (Figure 3d). In this
approach, lung parenchymal tissue at a selected region is
elongated by locally applying a vacuum pressure. By
correlating the length of tissue elongation (LE) and the
magnitude of vacuum pressure applied (PV), we deter-
mined the elastic moduli (E) of lung tissue. Notably,
measured LE varied nonlinearly in response to loading-
unloading of PV and exhibited hysteresis, which is a
unique behavior of lung tissue and agrees with obser-
vations by 4DCT and 4DMRI. Further, this method
allowed measuring the elasticity of acutely injured lung
tissue. Of note, lung tissue stiffness at low lung volume
is mainly determined by the surface tension of the
pulmonary surfactant, while at higher lung volumes, the
lung tissue matrix elasticity becomes increasingly
important in determining stiffness. This suggests that
elastography can allow independent, quantitative
assessment of both surfactant properties and matrix
elasticity simply by taking measurements at different
lung volumes. Using this method, tissue stiffness maps
that visually describe multiple aspects of tissue integrity
across the ex vivo lung can be obtained.

Integrity of lung parenchymal tissue can also be evalu-
ated by measuring acoustic signals (i.e., sounds) emitted

from the lung during ventilation [30,42] (Figure 3e). As
air travels through the airways of the lung or escapes via
damaged tissue, distinct sound signals at specific fre-
quencies are generated due to dynamic interaction be-
tween the airflow and surrounding tissues [43]. Thus,
lung sounds can be used to quantify ventilation, monitor
lung function, or diagnose lung pathologies. In our
recent study, we demonstrated that the location and
severity of acute lung tissue defects could be deter-
mined by analyzing respiratory sound signals [29]. Using
the acquired sound data, a 2D acoustic map was
generated that accurately predicted the location and
severity of tissue damage. Significantly, due to external
placement of acoustic sensors (e.g., microphones) for
the measurements, acoustic mapping could be used for
convenient longitudinal monitoring not just ex vivo, but
also once lungs are repaired and implanted in vivo.

Imaging-assisted monitoring of pulmonary
vasculature
Perfusion and patency
Donor lung vascular condition, including patency, perfu-
sion, and vessel responsiveness to vasoconstrictive or
vasodilatory factors, has been shown to correlate with
transplant outcomes, but methods to evaluate vascula-
ture condition in situ remain limited [2,44]. Thus, ex vivo
vascular evaluation is valuable to the entire transplant
process, in addition to its role in recovery interventions
on EVLP. Perfusion of the pulmonary vasculature enables
oxygen transport, temperature regulation, and clearance
of cellular debris. Clinical methods to evaluate perfusion
have also been applied to ex vivo donor lungs, including
radiography, sonography, and scintigraphy [45,46]. These
methods for imaging the whole lung can be used to
globally assess perfusion throughout all lobes and pe-
ripheral regions of the donor lung (Figure 4a). Further-
more, multiparametric oxygen-enhanced MRI can detect
regional lung injury and impaired gas exchange prior to
lung transplantation, which was demonstrated in a pre-
clinical model of ischemic injury [47] (Figure 4b).

Because the lungs serve as a biological heat exchanger in
which heat is transferred from circulating blood to
inhaled, ambient-temperature air, the surface tempera-
ture of the ex vivo lungs can also indicate effective
regional perfusion. Accordingly, thermography has been
applied to donor lungs as a means of assessing the uni-
formity and distribution of perfusion, including in swine
lungs with ischemic and gastric aspiration injuries and in
human donor lungs [2,7,8,44]. Gross thermography of the
whole lung enables identification of regions with poor
perfusion that may benefit from additional targeted
therapies. Further, focal thermography monitors tem-
perature changes following contact application of a cold
probe to the surface of the lung, serving as a marker for
regional vascular health (Figure 4c). In swine lungs
supported on EVLP, thermography has been used to
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Figure 4

Modalities for functional imaging of pulmonary vasculature. (a) Micro-computed tomography angiography to visualize patency and perfusion of
pulmonary vasculature in control, cold ischemic, and ex vivo lung perfusion (EVLP) rat lungs [46]. (b) Magnetic resonance imaging (MRI) of pulmonary
vasculature with heat map demonstrating oxygen washout [47]. (c) Thermography of swine lung supported with cross-circulation EVLP for real-time
monitoring of perfusion, (i) thermographs obtained at 0, 18, 36 h of perfusion, (ii) thermal perfusion test with cold probe application followed by real-time
temperature monitoring, (iii) quantification of lung temperature in control, gastric injury, and following cold probe application [2]. (d) Visualization of
perfusion using near infrared microscopy (NIR) of indocyanine green (ICG) following intravenous delivery into ex vivo swine lung [51].
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assess surface temperature prior to transplantation. Early
surface temperature (8 min post-reperfusion) was
determined to be a reliable indicator of pulmonary
function and transplant suitability, with improved trans-
plant outcomes in lungs with surface temperature
"26 #C [48].

Blood vessel permeability
The vascular barrier is essential for maintaining tissue
homeostasis. In injured lungs, pulmonary edema occurs
frequently due to disrupted vascular permeability,
leading to fluid buildup in the interstitium and paren-
chyma as well as impaired gas exchange. Methods to
evaluate edema in donor lungs ex vivo typically rely on
measurement of donor lung weight gain (i.e., changes in
the wet/dry ratio or lung weight), which is imprecise and
not standardized. Because compromised vasculature is a
main contributor to pulmonary edema, monitoring of
vascular permeability in ex vivo donor lungs may be
useful for assessing donor lung suitability for trans-
plantation. Recently, a clinical study utilized ultrasound
of human lungs on EVLP to determine the ability of the
“direCt Lung Ultrasound Evaluation (CLUE)” scoring
system to predict transplant outcomes [49]. Further-
more, delivery of fluorescent tracers within the pulmo-
nary vasculature followed by real-time imaging enables
visualization and assessment of vascular integrity and
permeability [50]. For example, near-infrared fluores-
cence imaging of delivered indocyanine green has been
applied for ex vivo and in situ monitoring of pulmonary
edema and vascular integrity [50e52] (Figure 4d).
While fluorescent microspheres also have been tested as
the tracer, the intense inflammatory response they
generate in the host prohibits their usage in vivo [53].

Immune recruitment
In addition to structural integrity and patency of the
pulmonary vasculature, the composition (e.g., cell popu-
lations, inflammatory markers, etc.) recruited to the lung
via the vascular compartment may offer further insight
into lung health. Recent advances in intravital imaging
have demonstrated novel approaches towards functional
and compositional evaluation of the vascular compart-
ment, including to quantify the fraction of functional
microvasculature in the pulmonary microcirculation;
detection of endotoxins present in the blood, which
attract immune components; and circulation of exoge-
nous therapeutic cells following delivery [54e56]. These
intravital imaging techniques could be extended to use in
ex vivo donor lungs to assess the impact of injury on in-
flammatory and immune constituents in the pulmonary
vasculature. Overall, imaging modalities for visualization
of pulmonary vasculature should allow high-resolution
assessment of all lung regions and utilize bioinert and
immune-compatible contrast agents. Delivery of thera-
peutics that simultaneously enable visualization could
further serve theranostic (therapeutic þ diagnostic) ap-
plications in the pulmonary vasculature.

Conclusions and outlook
Real-time, non-destructive imaging enables the study
of lung repair and regeneration in greater detail, with
attention to functional recovery. The end-goal of
incorporating more advanced imaging technology is to
increase the number of lung available for transplant by
rescuing rejected donor lungs. The technologies
discussed here offer a range of resolutions, scales, costs,
and utilities. Clinically adjacent technologies, such as
advanced CT and MRI, offer the best whole-lung res-
olution across several lung functions, while their
drawbacks include high operation costs and the need
for specialty tracers [10,32]. Several methods that can
be deployed bronchoscopically, such as fluorescence
micro-bronchoscopy and OCT, are suited to highly
localized assessments of lung tissue. Thermography,
elastography, and auscultation represent accessible
methods for measuring integrity of lung parenchyma or
vasculature. Notably, prior to procurement, nearly all
donor lungs are evaluated for their suitability for
transplantation via chest X-ray or CT. Therefore, the
lung function data acquired by new and advanced lung
imaging modalities can be compared with the radio-
graphically obtained baseline information of the rejec-
ted donor lung to quantitatively evaluate the efficacy of
EVLP treatments.

With recent rapid advancements in tissue engineering
and stem cell technologies, removing damaged lung cells
and replacing them with a healthy cell population is one
of the key strategies being pursued towards recovering
donor lungs with advanced damage. To make this donor
lung bioengineering approach feasible, the research
community needs improved methods that allow in situ
cell replacement and longitudinal monitoring of their
regenerative activities. Some of the imaging modalities
discussed above can be useful to expedite realization of
this innovative donor lung reconditioning strategy. For
instance, fluorescence micro-bronchoscopy, OCT, and
intravital imaging methods may be particularly well
suited for guiding cell removal and delivery into selected
lung regions and for follow-up imaging with cellular level
detail. Meanwhile, 4DCT, 4DMRI, and 129Xe MRI may
be suited to quantifying the organ-wide alterations
associated with cell removal and implantation, and
subsequent lung function improvement. Thus, equip-
ped with these real-time, nondestructive, and region-
specific functional imaging modalities, donor lung
regeneration strategies may more rapidly advance to-
wards clinical use.
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