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Abstract

Design-time safety guarantees for human-
centered autonomous systems (HCAS) often
break down in open-world deployment due
to uncertain human interaction. In practice,
HCAS must follow a user-personalized safety
plan, with the human providing external inputs
to handle out-of-distribution events. Open-
world safety planning for HCAS demands
modeling dynamical systems, exploring novel
actions, and rapid replanning when plans
are invalidated or dynamics shift. No single
state-of-the-art planner meets all these needs.
We introduce an LLM-based architecture that
automatically generates personalized safety
plans. By itself, the LLM fares poorly at
producing safe usage plans, but coupling it
with a safety verifier—which evaluates plan
safety over the planning horizon and feeds
back quality scores—enables the discovery of
safe plans. Moreover, fine-tuning the LLM on
personalized models inferred from open-world
data further enhances plan quality. We validate
our approach by generating safe usage plans for
artificial pancreas systems in automated insulin
delivery for Type 1 Diabetes patients. Code:
https://github.com/ImpactLabASU/LLMOpen

1 Introduction

Human centered autonomous systems (HCAS) are
often safety critical (Sadigh et al., 2016), where ac-
tions taken by a reactive module (RM) in response
to percepts from the environment can cause harm to
the human. The human in a HCAS can assume two
roles (Fig. 1): a) human in the loop (HIL), where
the human is observing the environment and can
provide additional inputs to the environment or RM
to change their states, and b) human in the plant
(HIP), where the human acts as a passive physical
entity with time variant dynamics that gets directly
affected by the actions of the RM with the intent
to reach a goal state. As such assurance of safety
under human inputs is an essential property to es-
tablish trust and widespread acceptance of HCAS
such as Artificial Pancreas (AP) systems for glu-
cose management in Type 1 Diabetes (T1D) or au-
tonomous cars. Given that the human is inherently

Figure 1: HIL-HIP autonomous systems.

coupled with the operation of HCAS, any safety
assurance process will need to accurately model
RM-human interaction (Sadigh et al., 2016).

The complexity of human interactions with the
HCAS makes it impossible to accurately enlist all
possible scenarios (Banerjee and Gupta, 2014). As
such, in the design phase, safety critical systems
utilize certain limiting assumptions on the distribu-
tion of HIL actions and HIP properties; a human
who satisfies the assumed distribution is referred
to as the “average human". Then a set of safety

plans, HIL action sequences of the “average user",
is developed under which the HCAS is tested to be
safe. Some of the major problems in assuring that
a tested safe HCAS with a set of safety plans still
operates safely in deployment are:

P1: Out of distribution HIL - The set of safety
plans may not optimize performance for a human
user who may not fit the assumptions of the average
human user. As a result, the user in its HIL capacity
may operate the HCAS under out of distribution
(OOD) usage plans that are not tested to be safe
and hence can potentially cause safety violations
in deployment.

P2: Long term time varying HIL-HIP contexts
- The HCAS is often intended for long term usage
and in the course, user contexts such as HIP dynam-
ics or HIL action space can fundamentally change.
Such changes may lead to human interactions with
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Figure 2: Solution to the personalized usage plan gener-
ation in open world for insulin management. Approach
1 uses LLMs as autonomous planners, while approach 2
uses LLMs as plan suggester with iterative plan update
using feedback from a safety verifier.

HCAS that may not adhere to the set of safety plans
or the safety plans themselves may be invalidated
due to the changed HIP dynamics.

P3: Short term unexpected plan invalidation -
Human contexts are characterize by unexpected
events that may affect HIP or may require novel
HIL actions for safe and effective performance,
resulting in deviation from the safety plan.

In state-of-art commercialized HCAS, the prob-
lems P1 through P3 are tackled by exploring novel
usage plans in the open world through consultation
with experts, detecting safety violations through
safety monitors, and preventing hazards through
fail safe modes that may entail shutting off HCAS
autonomy and requiring emergency HIL action. In
this paper, an open world (Talamadupula et al.,
2010) is characterized by occurrences of one or
more instances of the problems P1 through P3.
In the standard modus operandi of HCAS, the ex-
ploration and execution of novel plans in the open
world is a burden on the user. As such increased
plan management burden: a) is often a deterrent
to usage or adherence to safety plans, or b) may
restrict the HIL actions which may in turn affect
HIP dynamics through the psycho-physiological
feedback pathways.

In this paper, we develop a framework to auto-
matically generate usage plans in the open world
for a HCAS that are: a) personalized for a given
human user, in that it optimizes certain efficacy
criteria for the human user, b) safe for human use
even if they are originally not included in the set of
safe usage plans, and c) reduces plan management
burden by decreasing the number of inputs required
from the human user.

1.1 Solution Overview

We leverage large language models (LLMs) to
solve the problem of usage plan generation in open

world with two approaches (Fig. 2):

a) Approach 1: Using LLM as an autonomous
planner. In this approach, the HIL user interacts
with the chat interface of the LLM to provide an
open world scenario in the form of an embodied
prompt (a textual prompt interleaved with sensor
data from the HCAS operation) as shown in Fig. 2.
The LLM has two components: i) re-inforcement
learning with human feedback (RLHF), that contex-
tualizes an open world scenario embodied prompt
based on human feedback through back prompting
and converts it into a query for the LLM, and ii) a
transformer based language model, which takes a
query and searches for an usage plan. We assume
that the training set of the transformer architec-
ture may include domain specific usage plan for
large set of human users. The usage plan from the
transformer is provided back to the human user,
which then modifies the plan through back prompt-
ing (Valmeekam et al., 2023) to finally reach a
potentially safe plan. Back prompting is a method
where the human user gives a detailed feedback on
the plan quality of the LLM which is then used to
update the LLM response.

We show that using LLMs as autonomous plan-
ner has several drawbacks including the following:

C1: Physically infeasible plans generated by
LLMs (Evaluated in Section 6).

C2: Unsafe plan: Even if LLMs generate a feasi-
ble plan, there is no guarantee that the LLMs may
generate a plan that is safe (Section 6).

C3: Agnostic of personalized HIP dynamical
context: LLMs may generate plans that are not
aware of the personalized human user contexts.
Hence, even if the plans may be safe for the average
user, it may not be safe for the out of distribution
HIL (Evaluated in Section 6). To overcome such
drawbacks, we explore Approach 2.

b) Approach 2: Using LLM as plan suggester
with safety verification. This approach uses plan
safety feedback from a forward safety simulation
module to iteratively modify an initial plan into a
personalized safety plan (Fig. 2).

Tackle drawback C1: We contextualize the RLHF
module of the LLM with a physics driven model of
the HIP. This contextualization process is done by
generating domain specific prompts regarding the
physics model.

Tackle drawback C3: We first recover the physics
guided model of the HIP from the open world sce-
nario data (Section 5.2.1). The LLM is then fine
tuned using embodied instruction prompts that en-
code the relationship between open world scenario
data and physics model parameters. The fine tuned
LLM is capable of correlating model parameters
with open world scenario data and incorporates
such causal relations in its plan search mechanism.
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Tackle drawback C2: We use the recovered model
as a forward safety simulator, instantiated with the
usage plan derived by the LLM. Safety is quantified
using metrics such as robustness of signal temporal
logic formula. This safety evaluation is then passed
to the RLHF module to modulate the plan quality
score. If a plan is unsafe, then a heavy penalty is
imposed in the plan quality score.

We show the efficacy of Approach 2 in yielding
safe plans for various instances of problems P1
through P3 in the domain of AP for automated
insulin delivery in T1D patients. Approach 2 was
tested on 102 open world scenarios and yielded
safe plans in 93 scenarios within two iterations of
the forward safety simulation feedback. If it cannot
generate a safe plan, the Approach 2 defaults to
fail safe HCAS shutdown. We also show that user
burden in terms of number of HIL inputs to the RM,
can be reduced through further back prompting the
LLM, once a safe usage plan is achieved.

2 Related Works

Why can’t we use classical planners? Classi-
cal planners such as STRIPS (Fikes and Nilsson,
1971), GraphPlan (Blum and Furst, 1997), or Fast
Downward (Helmert, 2006) are designed to oper-
ate with discrete states, with limited uncertainty.
The usage plan generation problem is in continu-
ous state space with open world. Modification of
classical planners to continuous states and open
world scenarios may lead to state explosion. More-
over, addressing problems P2 and P3 will require
re-planning, which with classical planners maybe
very time consuming. Moreover, classical planners
cannot optimize a plan by reducing the number of
steps and hence cannot reduce user burden.

Why can’t POMDPs be used? Partially observ-
able Markov decision process (POMDP) (Cassan-
dra et al., 1999), although designed for discrete
planning domain, can be extended to continuous
domain through sampling (Pineau et al., 2003).
POMDPs are good at addressing short term uncer-
tainties (P3). However, POMDPs suffer from curse
of dimensionality especially in the open world
which makes it very time consuming to learn and re-
plan with personalized out-of-distribution contexts
(P1 and P2). Searched plan may be optimized by
putting negative reward on plan length.

Why can’t we use traditional reinforcement
learning for usage plan generation in open
world? Reinforcement learning (RL) approaches
are best suited to solve the planning problems in
open world (Brockman et al., 2016) with their plan
exploration capabilities. However, in the open
world if uncertain changes occur, then the under-
lying Markov decision process (MDP) needs to
be relearned and the plan search process has to

Paper NA MA PI DS QRP

(Zhuo et al., 2013) No Yes No No No
(Ding et al., 2022) No Yes Yes No No
(Chen et al., 2024) No Yes Yes No No
(Cardellini et al., 2023) No No No Yes No
(Huang et al., 2024) No Yes Yes No No
(Gestrin et al., 2024) Yes Yes Yes No No
(Tantakoun et al., 2024) No Yes Yes No No
(Li et al., 2024) No Yes Yes No Yes
(Wang et al., 2025) No Yes Yes No No
(Goel et al., 2024) No Yes Yes No Yes
(Wang et al., 2023) Yes Yes Yes No No
This work Yes Yes Yes Yes Yes

Table 1: Comparison of open–world planning ap-
proaches on capabilities, NA-Novel Action, MA, Model
Adaptation, PI-Plan invalidation, DS-dynamical sys-
tems, QRP-quick replanning upon change in dynamics.

be executed again. While relearning MDP can be
optimized through iterative training (Palacios and
Geffner, 2016), plan search is often performed us-
ing computationally complex methods such as ge-
netic algorithms (Rodriguez-Aguilar et al., 2010),
non-linear optimization (Li and Allison, 2017), or
constraint satisfaction (Albrecht and Ramamoor-
thy, 2015) methods. This relearning process is slow
and during this process there is no guarantee on the
safety of the HCAS.

What potential advantages do we have with
LLMs? LLMs can potentially solve the slow re-
planning problem in RL. A pre-trained LLM repre-
sents large databases into very sparse embedding
space. We hypothesize that the pre-trained LLM
has been trained on textual content related to do-
main specific usage plans. This is the case in the
example domain of AP considered and also highly
likely for many other domains. Hence, given a
prompt describing an open world scenario, it can
map the prompt to the embedding space and search
for similar embeddings. This search is fast since it
is a sub-linear time search over n embeddings us-
ing similarity metrics (Huang et al., 2020). Reverse
embedding of the output of this search may result
in a valid plan which can be quickly evaluated by
the RLHF quality score.

What are the previous attempts at using LLMs
as planners? Huang et al. (Huang et al., 2022)
show that if LLMs are appropriately prompted,
they can effectively decompose high-level tasks
into mid-level plans without any further training.
Valmeekam et al. (Valmeekam et al., 2023) show
that LLMs as autonomous planners have dismal
performance (3% success rate). Iterative correction
by humans through back prompting enhanced their
ability to solve benchmark tasks. Sharan et al. (Sha-
ran et al., 2023) present a hybrid planning strategy
to improve closed-loop planning in autonomous
driving where the LLM plan was evaluated us-
ing collision risk metrics to enhance the overall
system’s adaptability and performance. Banerjee
et al (Banerjee et al., 2024) showed that fine tun-
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ing with a calibrated continuous dynamical model
can enable LLMs to evaluate plans in the continu-
ous domain for closed world problems whereas
this work focuses on open world plan genera-
tion. Our approach is motivated by Valmeekam
et al. (Valmeekam et al., 2023), where instead
of human correction, we utilize a forward safety
simulation engine coupled with a model recov-
ery tool such as SINDY (Kaiser et al., 2018) or
EMILY (Banerjee and Gupta, 2024b,a; Xu et al.,
2025) as plan evaluator.
Existing work on open world planning: Table 1
lists several previous work focussed on open world
planning. As shown, there exists no single planner
that can tackle all components of open world plan-
ning in real deployment viz. novel action search,
adaptation to model change, planning with continu-
ous dynamics, and quick re-planning upon change
in continuous dynamics.

3 Formal Problem Definition

Let the state of the HCAS be expressed by the state
variable X which follows the dynamics in Eqn 1.

Ẋ = fω(X,π(X,Sp) + Uex), (1)

where fω(.) is any Lipshitz continuous (Nesterov,
1982) function parameterized by coefficient set ω,
and π(., .) describes the action of a RM that com-
putes an input to the environment based on the
environment state expressed by Xp ⊂ X and RM
configuration set (such as set point) Sp (Fig. 1).
For convenience in expressing the planning prob-
lem and with restricted focus on the case study of
AP, we will assume that the environment state is
accurately expressed by the HCAS state and hence
Xp = X . In a HIL-HIP architecture, the input to
the environment is given by: u = π(X,Sp) + uex,
where uex ∈ Uex is an external input from the
HIL, and Sp can be manually changed by the
HIL. A usage plan, pl, consists of a temporal
sequence of b external inputs (uex(qi)) at times
0 ≤ qi ≤ TH and/or a system configuration
changes (sp(pi) ∈ Sp) at times 0 ≤ pi ≤ TH ,
TH is the planning horizon. We denote the set of
all possible plans as P∞.
Safety is defined as a logical predicate
Safe(X, fω, pl) on the state of the HIP X ,
for a given dynamics fω, and a given usage
plan pl. A plan pl is a safety plan if the pred-
icate Safe(X, fω, pl) is satisfied at all times
t ∈ [0, TH ]. The user burden for executing a plan
pl ∈ P∞ is simply the length |pl|.
Safety tested HCAS: We assume that the HCAS
(Fig. 1) is safety tested, which implies the existence
of an “average user" denoted by coefficient distri-
bution D(ω), external input distribution D(Uex),
and configuration distribution D(Sp), and a set

P ⊂ P∞ of safety plans with respect to the predi-
cate Safe(X, fω, pl) : ω ∈ D(ω) and pl ∈ P .

Open World: It is characterized by open world
events (ω′, u′ex, s

′

p, X), such that either, a) ω′ /∈
D(ω), or b) u′ex /∈ D(Uex), or c) s′p /∈ D(Sp).
Personalized plan generation in open world:
Given an open world event (ω′, u′ex, s

′

p, X), find

a safety plan pl ∈ P∞ with minimum length |pl|,
such that Safe(X, fω′ , pl) is satisfied in [0, TH ].

4 Usage plan in open world case study

AP is an exemplary safety critical HIL-HIP HCAS
with the open world problem. APs automatically
infuse insulin, known as micro bolus, to control
blood glucose levels around a set point Sp, while
preventing hypoglycemia when blood glucose level
falls below 70 mg/dl. All AP systems that are ap-
proved for human use by Food and Drug Admin-
istration (FDA) require the human user to provide
external insulin in addition to the AP controller
input to manage glucose variability due to meal
intake, also called meal bolus (umeal). This meal
bolus is proportional to the carbohydrate content
of the meal C, with carb insulin ratio (CIR) as the
proportionality constant. While administering meal
bolus any residual insulin in the body due to past
insulin infusion, characterized by insulin on board
(IoB) is subtracted (Eqn. 2).

umeal = C/CIR − iob, (2)

In addition, external insulin, correction bolus

(ucorr), unrelated to meal can also be administered
if the CGM reading is greater than the set point.
ucorr is proportional to the difference between the
current glucose value G(t) and the set point, with
insulin sensitivity factor (ISF) as the proportionality
constant shown in Eqn. 3.

ucorr = (G(t) − Sp)/ISF − iob. (3)

The residual insulin or IOB depends on the
insulin pharmacokinetics, (Eqn. 4), obtained
from Bergman Minimal Model (BMM) (Bergman,
2021), and is difficult for a human to guess.

dy

dt
= z,

dz

dt
= −2k1z−k

2

1y+k
2

1uex,
diob

dt
= −niob+p1(y+Ib),

(4)

where X = y, z, iob, k1 is the diffusion coefficient
for insulin, and n and p1 are patient specific metrics.
Here, we assume that y and z are internal state
variables of the BMM and are not measurable.

A safe usage plan for the AP HCAS is a sequence
of set point changes, carbohydrate, meal bolus, and
correction bolus intake actions such that the safety
criteria of percentage time below 70 mg/dl in 24 hrs
is less than 4% is satisfied. In STL the safety con-
dition can be written as G glucose > 70, where G
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is the globally true STL operator. An example safe
usage plan is as follows: “set point is 110 mg/dL

at 6 am; set ISF to 50 at 6 am; set CIR to 15 at 6

am; breakfast with 20 g of carbohydrate at 8:30

am with 1 U of meal bolus; if CGM > 180 mg/dL,

take correction bolus from Eqn. 3; lunch with 40 g

of carbohydrate at 1 pm with meal bolus in Eqn. 2;

if CGM > 210 mg/dL, take correction bolus from

Eqn. 3; dinner with 30 g of carbohydrate at 6 pm

with meal bolus in Eqn. 2, set set point at 90 mg/dL

at 10 pm" This is deemed safe by a sample patient
from the virtual patient registry available in the
FDA approved Type 1 Diabetes simulator devel-
oped at UVA PADOVA (Man et al., 2014). This
is an example of the average user that follows the
constrained distribution manifested by the virtual
patient registry. The outcome is measured using
four metrics: a) percentage time in range (TIR),
70mg/dl ≤ CGM ≤ 180mg/dl, and b) time be-
low range (TBR), when CGM < 70mg/dl.

4.1 Example of open world problems

P1: Out of distribution HIL with novel actions-
Exercise induces changes in the glucose insulin
dynamics of the HIP that are still un-characterized
in clinical literature (Bally et al., 2020). As such
none of the FDA approved AP can operate safely
if the human user performs exercise, which makes
it an OOD HIL action. Each AP system have their
own open world usage plan for managing exercise,
where the user is required to change the set point
and take a small snack with 7g carbohydrate, 30
mins prior to exercise (Bally et al., 2020). Post ex-
ercise, the actions in the plan changes based on the
type of exercise. If it is an aerobic exercise then the
user needs to carefully monitor for hypoglycemia
and take 7 g snack upon occurrence (Bally et al.,
2020). Else if it is interval training, then the user
needs to monitor for hyper-glycemia and then ad-
minister correction bolus.

P2: Long term time variance - Pregnancy induces
fundamental long term change in the HIP dynam-
ics, which none of the AP systems are designed to
control (Bally et al., 2020). Safe and effective us-
age plan requires significant manual external bolus
(meal or correction) decisions that increases plan
management workload (Parent et al., 2023).

P3: Short term unexpected plan invalidation -
Meal schedule is very important in maintaining safe
usage plan. However, the human user may deviate
from the meal plan on certain occasions. Such de-
viations again require careful manual intervention
resulting in user burden.

5 Detailed Solution

We provide details of the two approaches.

5.1 Approach 1: LLM as autonomous planner

We use three LLMs, GPT o4 mini (OpenAI et al.,
2023), Gemini 2.5 Flash (Team et al., 2023), and
Llama 2 (Touvron et al., 2023) as autonomous
planners in Approach 1. Llama 2 is chosen for
autonomous planner since it establishes baseline
for Approach 2 since given the computational re-
sources available Llama 2 could be fine tuned.

5.2 Approach 2: LLM with safety feedback

It has two new compnents: a) physics model recov-
ery module, and b) safety simulator.

5.2.1 Physics model recovery module

This module extracts the coefficients of Eqn. 4,
which is given by the BMM. For this purpose we
utilize sparse identification of non-linear dynamics
strategy (SINDY-MPC) (Kaiser et al., 2018). Given
the temporal traces of the state variables, SINDY-
MPC gives the model ceofficient set ω for the HIP.

5.2.2 Safety simulator

Safety of the LLM-generated plan is evaluated us-
ing forward simulation. For the AP system, we
instantiated virtual patients in the UVA PADOVA
T1D simulator (Man et al., 2014) with BMM model
coefficients obtained from the SINDY-MPC based
model recovery. The model was simulated for plan-
ning horizon TH to determine whether the LLM
generated plan is safe (Details in supplement).

5.2.3 Safety guarantees

We have explored Control Lyapunov–Barrier Func-
tion (CLBF) theory (Romdlony and Jayawardhana,
2016) that guarantee safety under uncertainty.

Safety is a predicate Safe(X, fw, pl), state: X ,
dynamics: fw, plan: pl. Existence of forward in-
variant (FI) set F is a theoretical safety guaran-
tee, since if X(0) ∈ F satisfies Safe(X, fw, pl)
then ∀ subsequent X(t) under fw, pl, X(t) ∈ F
and satisfy Safe(X, fw, pl). A set F is FI, if ∃
CLBF V (X, pl) where: a) V (X, pl) > 0, ∀X ∈
F , b) V (Sp) = 0, Sp is the set point, and c)
∀X ∈ F, ∃λ > 0 such that Lfw(V (X, pl)) +
λV (X, pl) < 0, where Lfw is the Lie derivative
of V (X, pl) with respect to fw. Neural CLBF ar-
chitecture, CLBFNN (Dawson et al., 2022), can
search for a CLBF. To verify safety of a plan pl, we
use the following steps:

Step 1: Calibrate the T1D simulator with real
world data to obtain the individualized parameters.

Step 2: Instantiate a CLBFNN with dynam-
ics fw from calibrated T1D simulator, plan pl,
and X(0). Simulator is used to derive glucose
trajectory and compute Lie derivatives of the
CLBFNN penultimate layer, to obtain loss func-
tion, ||Lfw(V (X, pl)) + λV (X, pl) − ϵ||2, ϵ > 0
is a relaxation variable.
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Step 3: Run the CLBFNN until loss function
reaches 0 for ϵ = 0.01.

Step 4: If the CLBFNN reaches zero loss in
< N(300) epochs then ∃ a CLBF, and plan pl is
guaranteed safe.

We introduce a new metric vgsafe to compute the

number of guaranteed safe plans.

5.2.4 Physics contextualization of RLHF

The physics model contextualization is performed
through instruction based tuning of the RLHF using
the following question response prompt in each
LLM repeated with different parameter set.

Question: The insulin glucose dynamics of an individ-
ual with Type 1 Diabetes is given by the Bergman Mini-
mal Model. Please use the Bergman Minimal Model with
parameter set k1 = 0.09, n = 0.142, and p1 = 0.02 to
compute the insulin on board in the next 30 mins when a
bolus insulin of 2 U is taken now.
Response: It is 1.2 U.

c) Instruction-Based Fine-tuning of LMs: Here,
we fine-tune the LLM with embodied instruction
prompts. These prompts explain the relationship
between the dynamical coefficients of the HCAS
ω and the functions fω(.).We used the ALPACA
prompt response format (Chen et al., 2023) to gen-
erate training prompts, with three parts:

"### Instruction: Find out the diffusion parameter
from the Bergman Minimal Model with the following
time series. The 40 values corresponding to 400 seconds
of IOB values
### Input: 1.0 0.99948 0.99747 0.99411 0.98975
0.98473 0.97931 0.97371 0.96808 0.96254 0.95717
0.95205 0.94719 0.94264 0.93839 0.93446 0.93084
0.92752 0.92448 0.92171 0.9192 0.91693 0.91488
0.91303 0.91137 0.90988 0.90855 0.90735 0.90629
0.90534 0.90449 0.90374 0.90307 0.90248 0.90195
0.90148 0.90107 0.90071 0.90038 0.9001
### Response: 0.015"

Fine tuning is performed using 20,000 such sam-
ple prompts generated from the T1D simulator.

5.2.5 Deployment of Approach 2

In approach 2 due to resource limitations we fine
tuned Phi 2 and Llama 2 models. To maintain
consistency in the RLHF combinations we used
the BARD RLHF in both the LLM configurations.
During deployment, the HIL is expected to provide
two types of inputs to facilitate the generation of
the safe usage plan.
Inputs: a) A Natural Language Prompt that
is provided by the HIL which describes a HCAS
usage plan discovery task through a chat interface,
BARD in this case (GoogleAI, 2023).
b) A Trace of physical dynamics of the HCAS
denoted by τ = {X(t)∀t ∈ [t0 − th, t0]}, where
t0 is the current time and the th is the past horizon.

Steps for the Generation of a Safe Plan:
Step 1: The trace τ is used to recover the per-

sonalized dynamics coefficients for the real user
ωP using the SINDY-MPC based model recovery
method (Kaiser et al., 2018).
Step 2: The coefficient ωP is then used in an
embedded prompt to solve the inverse inference
problem for the physical dynamics, where the fine-
tuned Llama-2 model is instructed to derive a trace
X(t) : ∀t ∈ [t0, t0+tf ], where tf is the future hori-

zon for the given ωP and the current state X(t0).
Step 3: This trace is used by a chat RL interface
BARD to map to the appropriate plan.
Step 4: The plan is then evaluated for safety
through forward simulation of the plant dynamics.
Time below range (TBR) computed by counting
the number of glucose values less than 70 mg/dl
in 24 hrs plan horizon as a percentage. A plan is
deemed safe if TBR < 4%. In addition to TBR
another plan evaluation is the number of human
inputs required by the plan. These two metrics are
used to provide feedback about plan safety to the
RLHF through back prompting (done manually)
Step 5: If the plan is safe, then it is executed and
the cycle continues. If unsafe, then the LLM is
prompted to generate a new plan and Step 4 is
re-executed. Output: A safe usage plan.

6 Evaluation

The open world scenario is introduced to each LLM
using the following prompt sequence.
T1, Contextualization Prompt:

I am a 30 year old woman with Type 1 Diabetes. I am
using an automated insulin delivery system. Please learn
insulin delivery algorithm from the following prompts.
Q1: I am eating 30g carbs. Carb ratio is 5. Insulin on
board is 3 U. How much bolus should I take?
Answer: You should take 3 U bolus
. . .
Q6: I am eating 7g carbs to avoid hypoglycemia. Carb
ratio is 5. Insulin on board is 1 U. How much bolus
should I take?
Answer: You should take 0 U bolus
Full prompt in supplement

T2, Prompts to test temporal dynamics under-
standing: These are test prompts where, a question
about the dynamical properties of the environment
such as insulin glucose interaction, is asked to the
LLM and the answer is manually verified. Follow-
ing prompt is an example.

My diffusion coefficient is 0.3 U/kg/hr. What
should be my IoB value in 2 hrs if my current glucose
is 110 mg/dL and I just tool 2 U of insulin, I dont have
any active insulin or active carbs, and I do not eat for the
next 2 hrs.

The answer to this prompt should be 1.2 U ac-
cording to the BMM used in UVA PADOVA simu-
lator (Man et al., 2014).
T3, Prompts to test feasible action: These are a
set of prompts that test whether the LLM is provid-
ing physically feasible actions. As an example:
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My carbohydrate to insulin ration is 15. What should
be the meal bolus dose if I eat 30 grams of carbohydrate?

The answer to this prompt should be that the user
should take 2 U of insulin according to Eqn. 2.
T4, Closed world planning prompt:

I am going on a trip and I will be in downtown
Chicago. My average blood glucose during daytime is
110 mg/dL. I like to eat three meals a day. What should I
have for breakfast, lunch and Dinner so that my average
CGM does not vary more than 10%?

T5, Open world planning prompt: We utilize
three types of open world planning prompt:
Prompt with P1 to test novel action (NA):

I want to do interval training for 30 mins in the next
hour. I dont have a healthcare provider to help me now.
My current CGM reading is 85 mg/dL. My Insulin sen-
sitivity factor setting is 50, and my carbohydrate to in-
sulin ratio is 0.36. I dont want hypoglycemia after exer-
cise. How should I configure the set point of my device?
Should I eat a snack to avoid hypoglycemia? Should I
take any insulin with the snack.

Prompt with P2 to test model adaptation (MA):

I am in sixth week of pregnancy. What should be
my meal plan throughout the day and exercise plan to
maintain > 70% time in range?

Prompt with P3 to test plan invalidation (PI):

It is 6 pm now. I followed your meal plan. But I feel
like having a quarter piece of a 0.5 pound tiramisu cake.
My current glucose is 121 mg/dL and I ate afternoon
snacks at 3 pm. How much should I eat so that my
glucose does not go above 180 mg/dL? Also should I
take insulin with this cake? If so how much?

6.1 Dataset Description

Real world dataset for personalization: We used
two real world datasets: a) 10 Individuals with
T1D using Control IQ model predictive control
automated insulin delivery system for 2 weeks ob-
tained from JAEB center (JAEB center, 2023), and
b) 24 T1D women with pregnancy using Control
IQ AP for 30 weeks in LOIS-P study (O’Malley
et al., 2021). The data are used to show model adap-
tation (MA) and quick replanning (QPR) capacities
of our approach (Table 1).
Simulation data: We used a virtual patient with
BMM parameters shown in Table 3 as simulation
settings. We generated 218 meal instances of sizes
ranging from 7 g to 50 g for various carb ratio set-
tings ranging from 10 to 25. We set up the virtual
patients with prior insulin usage starting from 30
mins before a meal to 3 hrs before a meal. We
integrated an MPC controller similar to Control IQ
that generates the insulin outputs u = π(X, s) in
addition to the prior bolus and also the meal bolus.

The data is used to validate the accuracy of the
SINDY-MPC model recovery technique and also
to show novel action search (NA), plan invalida-
tion (PI) tackling capacities and understanding of
dynamical systems (DS) properties (Table 1).

6.2 Evaluation Experiments

We evaluate each approach for performance on:

Model Adaptation (MA) is evaluated in two parts.

a) Model recovery accuracy - We measure the ac-
curacy of the recovered model using SINDY-MPC
method in replying real world data from normal
T1D and pregnant T1D individuals using real world
datasets. Metrics: Accuracy is measured using the
root mean square error (RMSE) between replayed
glucose and groung truth data. In addition, we
also observe the variance in the underlying model
coefficients across the two sub-populations.

b) Responding to contextualization prompts

(Econtext): We used 100 T1 prompts with 10
prompts each from from 5 non-pregnant patients,
and 5 pregnant patients. Metrics: For each ap-
proach we evaluate the percentage of bogus re-
sponses vb, as evaluated by a human user, a mea-
sure of hallucination, and the %-age of responses
which are within 10% error of the ground truth vg.

Protocol for hallucination evaluation: A set proto-
col was used to flag hallucination which are objec-
tive, verifiable, and reproducible:

i) LLM suggests 2 consecutive meals in < 15mins

ii) LLM suggests a meal > 300 g of carbohydrate

iii) consecutive > 20 U (medically approved max-
imum single dose) insulin bolus suggested in <
15mins.

iv) LLM suggested a setpoint of < 20 mg/dl (lowest
medically allowed).

v) Wrong correction bolus Insulin (Eqn. 3) com-
puted by LLM.

c) understanding temporal dynamics (Etime):
We generated 12 T2 and 12 T3 prompts as de-
scribed in Section 6 and evaluate each approach
using the metrics vb and vg on the response.

d) generating safe usage plans for prompts in
the closed world (Eclose): We generated 20 T4
plans and evaluated each approach using the vb
metric and percentage of times the LLM generates
safe plans vsafe and the length of the plan vn as a
quantifier of user burden.

e) generating safe usage plans for prompts in
the open world (Eopen): We generated 102 open
world T5 prompts with equal distribution across
the three problems P1 (evaluate NA), P2 (evaluate
MA), and P3 (evaluate PI). We used vsafe and vn
as metrics for evaluation.
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Table 2: Performance of LLM as autonomous planner
in the evaluations. NAN means not applicable

LLM Evaluation Halluc-
ination vb

Accuracy
vg

Safety
vsafe

User bur-
den vn

GPT o4 mini Econtext 32% 68% NAN NAN
GPT o4 mini Etime 41.6% 25% NAN NAN
GPT o4 mini Eclose 0% NAN 20% 13(±2)
GPT o4 mini Eopen 0% NAN 14.7% 9(±4)
Gemini 2.5 FlashEcontext 22% 46% NAN NAN
Gemini 2.5 FlashEtime 33.3% 25% NAN NAN
Gemini 2.5 FlashEclose 5% NAN 25% 11(±3)
Gemini 2.5 FlashEopen 0% NAN 30.4% 8(±2)
Llama 2 Econtext 14% 86% NAN NAN
Llama 2 Etime 16.6% 25% NAN NAN
Llama 2 Eclose 0% NAN 50% 12(±4)
Llama 2 Eopen 0% NAN 40.2% 9(±4)

Table 3: BMM coefficients derived using SINDY-MPC
for AP in real world datasets.

Data Type k1(10
−2) n(10−2) 1/min p1(10

−2) 1/min RMSE
Normal 9.8(± 0.3) 14.06(± 0.9) 2.8(± 0.3) 11.1(± 1.3)
Pregnancy 7.18 (± 0.4) 15.9 (± 1.2) 2.5 (± 0.2) 12.8(± 3.4)
Difference 2.6 (p < 0.01) 1.8 (p = 0.04) 0.3 (p = 0.2) 1.7 (p=0.7)

6.3 Approach 1: autonomous planners

Table 2 shows that LLMs are poor autonomous
planners usage plan generation. Although LLAMA
2 and Gemini 2.5 Flash models had overall less hal-
lucinations, still their accuracy in extracting tem-
poral properties is poor. Moreover, they fail to
generate safety plans more than 50% of the time
in either closed or open world scenarios. The plan
lengths are variable across the LLMs but required
a high number (best average 8) of responses from
the human over 24 hrs.

6.4 Approach 2: LLM + safety verifier

Model Adaptation evaluation:

Accuracy of Model coefficient estimation using

SINDY-MPC The SINDY-MPC model could extract
model coefficients from the real world datasets with
good replay RMSE as shown in Table 3. There was
no statistical difference (ttest p value) between the
RMSE of pregnant and normal T1D individuals in-
dicating that the model recovery process recovered
diverse models which performed equally well on
both the sub-populations. This is further corrob-
orated by the significant differences between the
model coefficients of the two cohorts (Table 3).

Contextualization performance: Despite differ-
ences in cohort characteristics Table 4 shows that
fine tuned LLAMA 2 model was 92% accurate in
answering contextualization prompts. The above
two results show that Approach 2 exhibits model
adaptation capability.

Understanding temporal dynamics: Table 4
shows that finetuned LLAMA 2 integrated with
BARD RLHF is 83.3% accurate as compared to
16.6% if not finetuned on T2 prompts. This is
significant since the finetuned LLAMA 2 can ac-
curately answer prompts related to temporal char-

Table 4: Performance of LLM + safety verifier in the
evaluations. NA means not applicable

LLM Evaluation Halluc-
ination
vb

Accur
acy vg

Safety
vsafe

User bur-
den vn

BARD RLHF
+ LLAMA 2

Econtext 0% 92% NA NA

– Etime 0% 83.3% NA NA
– Eclose 0% NA 100% 9(±3)
– Eopen 0% NA 91.2% 6(±2)
BARD RLHF
+ Phi 2

Econtext 13% 65% NA NA

– Etime 0% 58.3% NA NA
– Eclose 0% NA 90% 10(±4)
– Eopen 0% NA 69.6% 6(±5)

acteristics of dynamics showing understanding of
dynamical properties and beats the untuned latest
GPT o4 mini or Gemini 2.5 Flash (Table 2).

PI and QPR performance: Table 4 shows that the
BARD+LLama2 LLM architecture achieve 91.2%
safe plans without any hallucination as identified
by the human evaluator for plan invalidation and
quick replanning tasks. The average delay in plan
regeneration was 1 min 2s (± 45 s) on the LLAMA
2 model indicating fast enough response for the in-
sulin management example. Moreover, we see that
the burden on the user is also significantly reduced
as compared to Approach 1 as demonstrated by the
decreased plan length.

Novel action search performance: Table 5
shows the comparison of Control IQ MPC +
HIL and MPC + LLM in the closed world
setting with the Approach 2 on LLAMA 2,
MPC+LLM+verifier+open. We see that the Ap-
proach 2 has the least TBR showing safe operation.
Further, the correction bolus and set point sugges-
tions are significantly different from closed world
setting indicating novel actions suggested by the
Approach 2 which also leads to safe operation.

Table 5: Comparison of usage plan generation methods
with novel action exploration.

Method TIR TBR Correction bo-
lus (U)

Set point
(mg/dl)

MPC + HIL 78.2%(±21.1) 4.4%(±4.2) 5.4(±4.2) 105(±12)
MPC + LLM +
closed

81.2%(±18) 8.8%(±1.1) 5.6(±3.1) 100(±10)

MPC + LLM +
verifier + open

81%(±12) 3%(±2) 11.6 (±2) 75 (± 13)

6.5 Ablation analysis

We demonstrate the relative importance of each
step of Approach 2 by taking the BARD+Llama 2
model and re-evaluating for the closed and open
world planning task by removing the components
one by one. We generate the following LLM con-
figurations for the ablation study:

Approach 2 - safety verifier, where we remove
the safety verifier and iterate twice incorporating
plan length as the only plan quality metric.
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Table 6: Performance of LLM + safety verifier in the
evaluations. NA means not applicable

Approach 2 - Evaluation Safety vsafe User burden vn
safety verifier Eclose 75% 9(±4)
safety verifier Eopen 61.8% 6(±2)
plan length Eclose 100% 12(±0)
plan length Eopen 87.2% 8(±4)
fine tuning Eclose 100% 9(±7)
fine tuning Eopen 39.2% 7(±3)
model contextualization Eclose 85% 14(±7)
model contextualization Eopen 81.4% 10(±6)

Table 7: Safety guarantees of LLM autonomous planner.

LLM Evaluation v
g

safe

GPT o4-mini Eclose 19%
GPT o4-mini Eopen 14.4%
Gemini 2.5 Flash Eclose 23%
Gemini 2.5 Flash Eopen 30.0%
Llama 2 Eclose 47%
Llama 2 Eopen 39.1%

Approach 2 - plan length, where we remove the
plan length quality metric from the back prompts.
Approach 2 - fine tuning, where we remove per-
sonalized model based fine tuning.
Approach 2 - physics model contextualization,
where the RLHF is not aware of the physics model.

Table 6 shows that removal of safety verifier has
significant effect on the safety of the generated
plan. Removal of plan length feedback not only
has impact on user burden but also results in more
safety violation for open world scenarios. This
may be due to increased insulin delivery actions
in the updated plans. Removal of fine tuning sur-
prisingly has no effect on the safety of the close
world plans but has significant effect on the safety
of open world plans. This is intuitive since nearly
30% of the open world scenarios involved change
in HIP dynamics which cause the close world safe
plans to be unsafe. Model contextualization has
reduced plan safety and increased user burden.

6.6 Results for safety guarantees

Baselines in Table 7 show modest safety general-
ization: GPT o4-mini (19/14.4), Gemini 2.5 Flash
(23/30.0), and Llama 2 (47/39.1) for vgsafe under

Eclose/Eopen. Table 8 shows that RLHF-based
hybrids substantially raise performance: BARD
RLHF + Llama 2 (93.5/89.1) and BARD RLHF +
Phi 2 (84/65.8), narrowing the Eclose→Eopen gap.
Table 9 ablations (“Approach 2 minus”) indicate
contribution hierarchy: removing the safety verifier

hurts most (72/60.6), removing model contextu-

alization also degrades (83/80.1), removing plan

Table 8: Safety guarantees for LLM with safety verifier.

LLM Evaluation v
g

safe

BARD RLHF + Llama 2 Eclose 93.5%
BARD RLHF + Llama 2 Eopen 89.1%
BARD RLHF + Phi 2 Eclose 84%
BARD RLHF + Phi 2 Eopen 65.8%

Table 9: Safety guarantees for ablation studies.

Approach 2 minus Evaluation v
g

safe

safety verifier Eclose 72%
safety verifier Eopen 60.6%
plan length Eclose 99%
plan length Eopen 86.7%
fine tuning Eclose 100%
fine tuning Eopen 30.9%
model contextualization Eclose 83%
model contextualization Eopen 80.1%

length has minor effect (99/86.7), and removing
fine tuning preserves Eclose = 100 but collapses
Eopen = 30.9. Overall, verifier and contextualiza-
tion drive the largest gains over baselines, fine tun-
ing is crucial for Eopen (harder, more OOD-like),
and Eopen remains the more challenging regime.

6.7 Quantification of Backprompting effort

We measure average back-prompts bavg, no-back-
prompt rate pb, and fail-safe trigger rate as shown in
the table below for Approach 2’s Eclose and Eopen.

Table 10: Back-prompting performance.

LLM Evalu
ation

Back prompting
effort (bavg)

% no back-
prompts (pb)

% fail-safe
mode triggers

BARD +
Llama 2

Eclose 0.2 84% 3%

BARD +
Llama 2

Eopen 0.81 67% 8.4%

BARD +
Phi 2

Eclose 0.36 76% 4.3%

BARD +
Phi 2

Eopen 0.94 59% 11.2%

7 Conclusions

This paper demonstrates using LLMs to plan the
personalized operation of an HCAS. It highlights
a key property of LLM planners: they can explore
novel actions and reason about dynamical systems
with rapid replanning. Our main observations are
that LLMs can plan control tasks when two steps
are carefully designed: (a) contextualization of the
chat RL, and (b) fine-tuning the LLM’s internal
weights via embodied training, where textual in-
structions and interpretations intertwine with traces
from the real-world system. Our method applies
to any open-world planning over a dynamical sys-
tem with Lipschitz-continuous dynamics and tem-
porally concatenated inputs—e.g., artificial pan-
creas with human in the loop operation, or semi-
autonomous cars that drive under autonomy and
hand off control to the driver in critical scenarios
or perception failures.
Future Work: Safety assured LLM based open
world planners can be integrated into HIL control
design (Banerjee et al., 2025a) and assistive tech-
nologies such as AIIM (Banerjee et al., 2025b) to
seamlessly integrate open world planning capabili-
ties in safety critical systems.
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9 Limitations

The proposed framework effectively automates the
generation of safety plans for HCAS while opti-
mizing user burden measures using the plan size.
However, in addition to safety and plan size there
are several other metrics that are important for the
human user which is yet to be studied.

Quality of life for a safety plan: A safety plan
should not restrict the human user from doing day
to day activities. As seen in case of exercise for
T1D, users are reluctant to exercise because of the
burden of glucose management using the AP. In
our paper, we did not characterize quality of life
as a plan quality metric. Quantification of quality
of life for a plan can have significant individual
variance and needs to be studied in more detail.

Guarantees on LLM performance: In the demon-
strated plan generation technique, we enforce the
LLM to either produce a safe plan in two iteractions
of plan quality measurement or relinquish control
and default to fail safe modes. Hence as such if
the system is not in fail safe mode then the plan is
guaranteed safe. However, this strategy may often
result in unnecessary fail safe mode trigger due to
failure to find a suitable plan. Formal guarantees
on LLM performance with unrestricted iterations
is difficult to provide.

Quantifying back prompting overhead: Back
prompting was necessary in all LLMs to obtain
domain specific safety plans. Especially all LLMs
seem to have amnesia of contexts and through back
prompting required the human user to remind about
context information previously provided in the con-
versation. We have not quantified the overhead of
back prompting but is an important efficacy metric.

10 Potential Risks

Usage of LLMs in critical medical applications
is not devoid of its risks. Unsafe decisions has
safety risks. This is addressed to some extent in
this paper. However, safety certification requires
some form of safety gurantees. Such guarantees
cannot be currently provided for LLMs. Without
such guarantees it may not pass certification studies.
Hence, LLM based techniques have to be used
off label. This is a significant risk and has to be

prevented until research on safety guarantees on
LLMs mature.
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A LLM Prompts

A.1 LLM Prompts for plan generation - GPT
o4 mini

[sharp corners, colback=white, colframe=black,
boxrule=1pt] Learn from the following prompts

Q1: I am eating 30g carbs. Carb ratio is 5. In-
sulin on board is 3 U. How much bolus should I
take?

Answer: You should take 3 U bolus

Q2: I am eating 20g carbs. Carb ratio is 5. In-
sulin on board is 1 U. How much bolus should I
take?

Answer: You should take 3 U bolus

Q3: I am eating 7g carbs to avoid hypoglycemia.
Carb ratio is 5. Insulin on board is 2 U. How much
bolus should I take?

Answer: You should take 0 U bolus

Q4: I am eating 60g carbs. Carb ratio is 5. In-
sulin on board is 4 U. How much bolus should I
take?

Answer: You should take 8 U bolus

Q5: I am eating 25g carbs. Carb ratio is 5. In-
sulin on board is 3 U. How much bolus should I
take?

Answer: You should take 2 U bolus

Q6: I am eating 7g carbs to avoid hypoglycemia.
Carb ratio is 5. Insulin on board is 1 U. How much
bolus should I take?

Answer: You should take 0 U bolus
[sharp corners, colback=white, colframe=black,
boxrule=1pt] GPT o4 mini Response
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It seems like you’ve provided a set of prompts
and corresponding answers related to insulin bo-
lus calculations in the context of carbohydrate in-
take, carb ratio, and insulin on board. Each prompt
presents a scenario with specific values, and the
corresponding answer provides the recommended
bolus insulin amount based on those values.

If you have any specific questions or if there’s
a particular aspect you’d like me to focus on or
elaborate on regarding these prompts, please let me
know, and I’ll do my best to assist you.

[sharp corners, colback=white, colframe=black,
boxrule=1pt] Prompt I am eating 45 g carbs. Carb
ratio is 5. Insulin on board is 2 U. How much bolus
should I take?

[sharp corners, colback=white, colframe=black,
boxrule=1pt] GPT o4 mini Response

Based on the patterns observed in the provided
prompts, the calculation for bolus insulin is deter-
mined by the formula: Bolus dose=(Carb intake/-
Carb ratio)+Insulin on board Substituting in the val-
ues: Bolus dose=(45/5)+2=9+2=11 U Therefore,
based on the provided information, you should take
11 units of bolus insulinfor 45g of carb intake with
a carb ratio of 5 and 2 units of insulin on board.

A.2 LLM Prompts for fine-tuning Llama2
Model

[sharp corners, colback=white, colframe=black,
boxrule=1pt] ### Instruction: Find out the diffu-
sion parameter from the Bergman Minimal Model
with the following time series. The 40 values cor-
responding to 400 seconds of IOB values
### Input: 1.0 0.99948 0.99747 0.99411
0.98975 0.98473 0.97931 0.97371 0.96808
0.96254 0.95717 0.95205 0.94719 0.94264
0.93839 0.93446 0.93084 0.92752 0.92448 0.92171
0.9192 0.91693 0.91488 0.91303 0.91137 0.90988
0.90855 0.90735 0.90629 0.90534 0.90449
0.90374 0.90307 0.90248 0.90195 0.90148
0.90107 0.90071 0.90038 0.9001
### Response: 0.015

A.3 LLM Prompts for final query to
fine-tuned Llama2 Model (LLAMA 2)

[sharp corners, colback=white, colframe=black,
boxrule=1pt] Prompt to LLAMA 2

Below is an instruction that describes the task
of finding the Insulin On Board of a type 1 dia-
betic patient paired with a diffusion parameter of
the Bergman Minimal Model for an insulin intake.
Write a corresponding output that is the Insulin On
Board time series.

### Instruction: My diffusion parameter is
0.015081113389040546 and I took an insulin
dosage. What is my Insulin On Board percentage
time series?

### Response:
[sharp corners, colback=white, colframe=black,

boxrule=1pt] Response from LLAMA 2
### Response: 1 0.9992 0.99622 0.9915

0.98568 0.98 0.97398 0.96744 0.9614 0.95591
0.95099 0.94646 0.94225 0.93842 0.93502
0.93198 0.92925 0.92684 0.92469 0.9227 0.92087
0.91922 0.91777 0.91647 0.91526 0.91416
0.91315 0.91222 0.91138 0.9106 0.90987 0.90919
0.90859 0.90803 0.9075 0.90699 0.9065 0.90599
0.90551 0.90505 0.9046 0.90415 0.90372 0.9033
0.90289 0.9025 0.9021 0.90172 0.90137 0.90105
0.90076 0.90049 0.90022 0.900 0.89978 0.89958

B T1D Simulator

The T1D simulator is implemented in Simulink
following the architecture shown in Figure 3. The
simulator can be reun by providing a meal input,
meal time, bolus input, bolus time, initial glucose,
and duration of simulation. In addition, the insulin
sensitivity factor, carbohydrate ratio can also be
specified.
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Figure 3: Simulink architecture of Type 1 Diabetes Simulator.
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