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Abstract
The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state vari-
ables, which is distinct from the stateless neuron models used in deep learning. The new version of Intel’s neuromorphic 
research processor, Loihi 2, supports an extended range of stateful spiking neuron models with programmable dynamics. 
Here, we showcase advanced neuron models that can be used to efficiently process streaming data in simulation experiments 
on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier 
Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In 
another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over 
90x fewer operations than a conventional DNN-based solution. We also demonstrate backpropagation methods to train 
non-linear spiking RF neurons for audio classification tasks, suitable for efficient execution on Loihi 2. We conclude with 
another application of nonlinear filtering showing a cascade of Hopf resonators exhibiting computational properties seen 
in the cochlea, such as self-normalization. Taken together, this work presents new techniques for an efficient spike-based 
spectrogram encoder that can be used for signal processing applications.
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1  Introduction

In the language of signal processing, biological neurons 
are nonlinear time-varying filters. When interconnected 
in great numbers, biological neurons give rise to percep-
tion and intelligence, with remarkable energy efficiency. 
The recent successes of deep learning hints at the potential 
power of neural networks for signal processing, but the char-
acteristics of artificial neural networks have diverged from 
their biological counterparts. Conventional artificial neuron 
models are vastly simplified compared to biology, with the 
rich temporal dynamics of biological neurons reduced to a 
point-wise nonlinearity, such as the ReLU function.

Neuromorphic chips, such as Intel’s Loihi [1], can imple-
ment neuron models with a dynamical behavior similar to 
biological neurons, and their sparse communication and 

connectivity features support efficient scaling to high dimen-
sional processing. In many cases, Loihi provides orders of 
magnitude gains in speed and energy compared to conven-
tional solutions [2]. Today, the value of neuromorphic net-
works as signal processors remains underappreciated and 
underexplored.

With Loihi 2, we have augmented Loihi with enhance-
ments aimed at expanding the breadth of signal processing 
problems that neuromorphic architectures can support. This 
paper discusses some of the enhancements and shares early 
examples that showcase the value of Loihi 2’s richer feature 
set for intelligent and efficient signal processing applica-
tions. In particular, we highlight how resonating neuron 
models can be used for signal processing applications.

After introducing Loihi 2 in the next section, we demon-
strate in simulation experiments different types of linear and 
nonlinear resonator units. First, we describe how resonate-
and-fire (RF) neurons can be used in linear filtering appli-
cations of streaming signals. We show how these neurons 
can efficiently compute the Short-Time Fourier Transform 
(STFT) on audio signals, and how the coefficients can be 
encoded and processed with spikes. We then demonstrate 
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how RF neurons can be used in vision to estimate optical 
flow on event-data through spatio-temporal filters that are 
computed in the membrane dynamics. We further describe 
how networks of nonlinear RF neurons can be trained with 
backpropagation and present early results on the NTIDIG-
ITS and Google Speech Commands datasets. Finally, we 
describe a cochlea model based on a cascade of Hopf resona-
tors performing nonlinear spectral decomposition on audio 
data. In particular, we find the critical density at which self-
normalizing gain control emerges.

2 � Loihi Architecture

Spiking neurons have been modelled as first order differential 
equations since Hodgkin and Huxley. Early Neuromorphic Engi-
neers mimicked the dynamics of biological spiking neurons in 
silicon using analog electronic circuits [3]. More recently, there 
has been a shift towards digital implementations, both in soft-
ware and in silicon, which naturally gives rise to a discrete time 
formulation of the internal neuron dynamics. Both Loihi and its 
successor, Loihi 2, use this digital approach (see [1] for details).

Loihi implements the discrete Leaky Integrate and Fire 
(LIF) neuron model

where ai[t] is the accumulated synaptic activation for timestep 
t, ui and vi represent the ith neuron’s current and voltage respec-
tively, and �u and �v are the current and voltage decay. When-
ever vi[t] exceeds threshold, a spike is generated ( si[t] = 1 ) 
and the voltage variable is reset to zero ( vi[t] = 0 ). All states 
and parameters use fixed precision.

Loihi 2 introduces a more flexible microcode programma-
ble neural engine. Users can allocate variables and execute 

(1)ai[t] =
∑

j

wijsj[t − 1]

(2)ui[t] = �uui[t − 1] + ai[t]

(3)vi[t] = �vvi[t − 1] + ui[t]

a wide range of instructions organized as short programs 
using an assembly language. These programs have access to 
neural state memory, the accumulated synaptic input ai for 
the present timestep, random bits for stochastic models, and 
a timestep counter for time-gated computation. The instruc-
tion set supports conditional branching, bitwise logic, and 
fixed-point arithmetic backed by hardware multipliers.

Within a core, memory limits the number of different neu-
rons which can be implemented. By using lower precision 
neuron models, more neurons can be implemented within the 
same memory footprint, up to a maximum of 8192 per core. 
More complicated neurons can be implemented as longer 
programs which access multiple memory addresses for neural 
state and synaptic input, and pass information to each other 
through the persistent thread state. The microcode engine has 
a flexible but finite set of operations and a maximum number 
of operations that can be executed each timestep, which may 
limit the complexity of neuron models.

Figure 1   Response of neuron models used in this paper to an impulse 
(spike) at time 0. a A Leaky Integrate and Fire model which spikes 
whenever voltage exceeds threshold. b A complex valued Resonate 
and Fire model used for spatiotemporal filtering, which spikes when-

ever z crosses the real axis and real(z) is greater than threshold. c A 
complex valued Resonate and Fire model with reset used in deep net-
works. d A complex valued Hopf Resonator with a stable limit cycle.

Figure 2   Block diagrams of the discrete computation for the LIF neu-
ron, and RF, Hopf resonators. The Hopf Resonator shows an imple-
mentation of the Euler method, but in practice we use a 4th order 
Runge-Kutta.
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In addition to allowing much richer internal neuron dynam-
ics, the neural engine allows user-defined output nonlinearities 
and reset mechanisms, and different from biological spiking, 
spikes in Loihi can carry a 32-bit integer payload, a format we 
refer to as graded spikes. The conditions determining when 
a neuron emits a spike, as well as the optional graded spike 
payload, are specified as part of the neuron’s programming. 
Loihi 2 also supports non-spiking neurons that send a state 
variable, such as its membrane potential, unconditionally on 
every timestep or at regular sampling intervals. These are all 
new features in Loihi 2 which we make use of in this paper. 
Figure 1 shows the impulse (spike) response of the different 
Loihi 2 neuron models described in this paper, including their 
spiking output and reset behavior. Figure 2 shows the com-
putation associated with these neuron models. While the LIF 
model uses a two stage cascade of filters, the RF and Hopf 
Resonator models use two cross-coupled filters to generate the 
real and imaginary components (see Fig. 3).

Loihi 2 further provides richer connectivity features than 
its predecessor. Synaptic activations can be computed from 
graded spikes, support for convolutional connections has 
been optimized, and new features allow procedural genera-
tion of stochastic synapses and separable synaptic matrices. 
Additional details of the Loihi 2 architecture can be found 
in the Loihi 2 Technology Brief1.

3 � Applications

3.1 � Resonate‑and‑Fire Neurons for Spectral 
Analysis

The Resonate-and-Fire (RF) neuron is an extension of the 
standard LIF model, newly enabled in Loihi 2. The RF neu-
ron is a damped harmonic oscillator with a spiking mecha-
nism. The internal state is complex-valued z = u + iv , where 
the variables u and v represent the real and imaginary parts. 

Each RF neuron is parameterized by a resonant frequency 
� , and a decay factor � ∈ (0, 1) , with dynamics defined by

where the last term ak[t] is the synaptic input and �ei�Δt 
defines the oscillation kernel.

When starting from an initial condition of zk[t] = 0 and 
assuming no reset mechanism, the dynamics of an RF neu-
ron can be rewritten in the form

which is recognizable as one term for frequency � of the 
discrete Short-Time Fourier Transform (STFT) of ak[t] with 
an exponential window. Thus, a bank of RF neurons each at 
different frequencies can then be used to compute the STFT.

The key feature of a spiking neuron is the temporally 
sparse pulsed output. Recently, it was shown how a spike-
timing code can be used to represent the phases of complex 
variables [4]. Based on this, the complex-valued coefficients 
computed in the STFT can be encoded as a spike pattern. 
This is done by configuring a spiking condition for each RF 
neuron such that a spike is generated whenever the real-
part exceeds a threshold as the imaginary-part crosses zero. 
By sending the magnitude |z| as the payload of a graded 
spike, the combination of spike time and spike payload fully 
encodes the STFT complex coefficients. Conveniently, the 
magnitude is equivalent to the real-component of the state 
when the RF neuron’s spike is triggered, which means no 
extra computation is required to transmit the magnitude. 
This encoding permits downstream neurons to potentially 
perform complex-valued matrix arithmetic.

Taken together, a bank of RF neurons naturally computes 
the STFT of an input signal through the internal dynamics 
and outputs the complex-valued coefficients as a timing pat-
tern of graded spikes. By encoding a signal’s spectrum in 
a sparse, event-driven manner with spikes, the communica-
tion bandwidth is automatically compressed without increas-
ing latency. In the example shown in Fig. 4, the RF imple-
mentation reduces output bandwidth by 47x compared to a 

(4)zk[t] = �ei�Δtzk[t − 1] + ak[t]

(5)zk[t] =
∑

n

ein�Δt�nak[t − n]

Figure 3   The Loihi 2 chip plot 
(right) and processing flow for 
a single core (left). Incom-
ing spikes are mapped to lists 
of synapse weights which are 
accumulated for consumption in 
the next timestep. Meanwhile, 
neurons update using the previ-
ous timestep’s accumulated 
activation and generate spikes 
which are routed to other cores 
by the Output Axon stage.

1  Takin​g Neuro​morph​ic Compu​ting to the Next Level​ with Loihi​ 2
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conventional STFT producing a spectrogram vector on each 
time step. This advantage is partially because the RF neuron 
system naturally reduces output bandwidth proportional to 
the resonant frequency, akin to the wavelet transform [5].

We used RF neurons to produce STFTs for several exam-
ples in the Google Speech Commands dataset (Fig. 5). The 
Spiking STFT produced by the RF neurons can be inverted 
by convolving the graded spikes with the neuron’s oscilla-
tion kernel and integrating across the population. We varied 
the spiking threshold of the RF neurons and measured the 
reconstruction correlation as a function of spikes produced. 
We compared this to the conventional STFT by excluding 
the smallest coefficients and performed inverse STFT to 

measure the reconstruction correlation. Reconstructions 
from the RF-generated spikes saturate to 94% correlation 
with only five thousand spikes. A conventional STFT com-
putation generates over 3 million complex values over the 
same period. Computing a reconstruction from only the larg-
est 500K nonzero coefficients maintains a high reconstruc-
tion correlation of 98%, but the reconstruction correlation 
drops to ∼63% if only the largest 5,000 values are preserved. 
This shows that the RF implementation uses spike timing 
to encode the STFT information more efficiently than the 
conventional STFT.

3.2 � Resonate‑and‑Fire Neurons for Estimating 
Optical Flow

While the membrane dynamics of a neuron can implement a 
temporal filter, the synapses to a neuron can implement a spa-
tial filter. By combining the two we can compute separable 
spatiotemporal filters. Spatiotemporal filtering of this type 
has many potential signal processing applications, and it is 
especially efficient on neuromorphic hardware when process-
ing sparse spiking data produced by other spiking neurons, 
or by Dynamic Vision Sensors (DVS) [6]. As a showcase, 
we demonstrate how RF neurons can be used to compute 
spatiotemporal filters on standard video data or streaming 
event data, and to estimate optical flow with motion energy 
algorithms [7].

The opponent energy model [7] consists of separate spa-
tial and temporal filters, each with either even (blue) or odd 
(orange) symmetry (Fig. 6, left). This is mathematically 
equivalent to applying complex-valued filters to the input 
and the computation can be carried out with RF neurons 
(Fig. 6, right).

The spatiotemporal filters used in the model are complex-
valued Gabor filters which have a preferred spatial frequency 
�x and orientation � (Fig. 7). The temporal frequency of 
the filter �t is inherited from the resonant frequency of the 
RF neuron. The filter values are encoded as complex-valued 
synaptic weights that feed into the RF neurons.

Figure  4   Using simulated RF neurons compatible with Loihi 2 to 
approximate the STFT of an audio chirp and reconstructing the input 
signal from the spike responses. A: The input chirp. B: Real compo-
nent of the internal dynamics of two RF neurons with different res-

onant frequencies. C: Spike raster showing the output timing for all 
100 neurons in response to the stimulus. D: Reconstruction (orange) 
of the original signal (blue) E: Comparison to the STFT.

Figure 5   Spiking STFT for google speech command (top). Conven-
tional STFT is shown compared to RF based STFT (middle). Recon-
struction algorithm reproduces original signal (bottom). Recon-
struction efficiency of RF model (cyan) is compared to thresholded 
conventional STFT (black).
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Input pixel values or events from the DVS sensor, repre-
sented as s in Fig. 6, flow through the complex filters into 
a layer of resonate-and-fire neurons. For DVS input events, 
each input spike results in the complex-valued synaptic 
weight to be integrated by an RF neuron, where the real and 
imaginary parts of the weight are directly added to the real 
and imaginary state of the RF neuron. In the case of frames, 
a separate graded spike is used to represent the intensity 
of each pixel, and the activation a is the accumulated dot-
product between the filter and input frame, which then gets 
integrated by an RF neuron. The filter with opposite preferred 
direction is computed by a second RF neuron that integrates 
the complex conjugate of the input activation ā , simplifying 
the computation and storage requirements of the filters.

The dynamics of the RF neuron integrating the complex-
valued synaptic inputs then directly computes the coeffi-
cient of each spatiotemporal filter. If the input spikes are not 

aligned with the spatiotemporal pattern of the filter, then the 
RF neuron will have small sub-threshold dynamics (Fig. 8, 
left), and no spike indicates 0 as the filter coefficient. But 
if the input is aligned with the filter, then each input causes 
the magnitude of the internal state to grow. If sufficiently 
coherent, then the neuron will output a graded spike. The 
timing of the output spike signals the phase of the complex 
filter coefficient, and the graded value carries the magnitude.

The filters are applied across the image as a convolution, 
using Loihi 2’s support for weight reuse of convolutional 
kernels. Input pixel events are filtered by shared kernel 
weights activating unique RF neurons at different tempo-
ral frequencies that are spatially mapped across the image. 
This provides a resource efficient implementation, which is 
important given Loihi 2’s limited synaptic memory capacity.

After filtering, the motion energy model relies only on 
the magnitudes of the complex filter coefficients. First, the 
opponent energy E��x�t

 is calculated based on the differ-
ence in magnitude of oppositely tuned filters. This difference 
can be computed by a downstream neuron that receives the 
graded input spikes of the two corresponding RF neurons. 
Loihi 2 supports a more efficient implementation in which a 
single neuron program directly implements the full opponent 
energy calculation. In this instantiation, a single neuron pro-
gram maintains the state variables of two oppositely-tuned 

Figure 6   The original Adelson and Bergen Opponent Energy model 
(left) consisting of separable spatial f() and temporal h() components 
with orange filters out of phase with the blue filters. The equivalent 
model implemented using complex (purple) spatial and temporal fil-
ters.

Figure  7   The complex-valued spatial filters combined with the RF 
neuron dynamics is used for spatiotemporal filtering.

Figure 8   Integration of complex filters through dynamics of RF neu-
rons. Input spikes (black) cause jumps in RF neuron’s membrane 
potential based on synaptic weight (colored arrows).

921Journal of Signal Processing Systems (2022) 94:917–927
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RF neurons, and directly outputs the opponent energy values 
as a graded spike.

Once the opponent energy E is calculated for one combi-
nation of orientation � , spatial frequency �x , and temporal 
frequency �t , the opponent energies from multiple filters 
of different frequencies and orientations must be combined 
to arrive at an optical flow estimate. We perform this step 
in post-processing off-chip. Each RF neuron with spatial 
frequency �x , temporal frequency �t and orientation � has a 
preferred input velocity vector v ∈ ℝ

2 , which is orthogonal 
to the orientation of the neuron’s spatial receptive field:

Stimuli moving at the neuron’s preferred velocity and direc-
tion produce the highest magnitude inner product with its 
spatiotemporal receptive field. To estimate the optical flow 
f ∈ ℝ

2 at a given pixel location, the neurons’ preferred 
velocities are weighted by their normalized opponent energy 
at that pixel location:

We implement spatiotemporal filters with Gabor shaped 
receptive fields of different orientations using the param-
eters in Table 1 to estimate optical flow from event data. The 
model was evaluated on the Multi View Stereo Event Cam-
era (MVSEC) dataset [8] and compared to EV-FlowNet, a 
state-of-the-art model for estimating optical flow from event 
data. EV-FlowNet is a deep stateless neural network trained 
under self-supervision. Our model, in contrast, requires 
no training data, and processes the event data as it arrives, 

(6)v�x,�t ,�
=

[
�t

�x

cos �,
�t

�x

sin �
]

(7)f =

∑
�x,�t ,�

v�x,�t ,�
E�x,�t ,�

∑
�x,�t ,�

E�x,�t ,�

rather than buffering input data and processing it as voxels 
in a spatiotemporal tensor.

We compare to EV-FlowNet2R , as it achieves the best per-
formance across the test sequences (see [8] for details of EV-
FlowNet). We evaluate the models using the methods described 
in [8], calculating the Average Endpoint Error (AEE; the aver-
age distance between computed flow vectors f and the ground-
truth flow vectors) and outlier percentage (percentage of flow 
vectors with AEE > 3 pixels).

Table 2 compares results for two versions of our model. 
The dense version estimates flow directly from the neuron’s 
internal state in a single Loihi 2 program. The spikes version 
uses only the graded spikes that are output from RF neurons. 
Across the three indoor flying sequences from [8], our models 
achieves better performance than EV-FlowNet on these two 
metrics. Figure 9 illustrates a single representative frame.

Compared to EV-FlowNet, our model has less than half the 
neurons, although each RF neuron update is more expensive (4 
MACs versus 1 ReLU). However, computation in EV-FlowNet 
is dominated by synaptic ops, which outnumber the neuron 
updates by 2000x. Our model has over 10x fewer synapses, 
our synaptic ops are cheaper (a complex AC versus a MAC), 
and sparse synapse activation results in 93x fewer synaptic ops 
on the MVSEC sequences tested.

To compute optical flow from the neuron state, the neuron 
must square its magnitude to compute the opponent energy 
(Fig. 6), and the energies must be combined in post-processing 
off-chip. Off-chip post-processing (6) introduces another 2 
MACs per neuron and one inversion per pixel, which is still 
dwarfed by the synaptic ops. For comparison, readout neurons 
in EV-FlowNet require computing tanh twice per pixel.

The RF optical flow model benefits from two key proper-
ties. The event-based operation exploits sparsity of the input 
spike data to reduce synaptic ops, and an overlapping region 
between two subsequent temporal windows only needs to be 
processed once, saving further ops.

3.3 � Using Backpropagation to Train RF Neurons

We have extended the Spike Layer Error Reassignment 
(SLAYER) tool [9], which was previously used to train LIF 
neural networks on Loihi, to handle complex and oscillatory 
models with graded spikes, including the RF neuron, for 
Loihi 2. This new implementation of SLAYER is available 

Table 1   Optical flow model parameters.

Parameter Units Symbol Count Values

Receptive Field Size pix - - (64, 64)
Timestep Duration sec Δt - 0.032
Spatial Frequency rad/pix �

x
n
x
= 1 �

x
=

6�

256

Temporal Frequency rad/sec �
t

n
t
= 5 �

tk
= 4�k

Orientations rad � n� = 4 �
k
=

k�

n�

Table 2   Average Endpoint 
Error on MVSEC.

Bold indicates best performing model

Indoor Flying 1 Indoor Flying 2 Indoor Flying 3

AEE % outlier AEE % outlier AEE % outlier

EV − FlowNet
2R

1.03 2.2 1.72 15.1 1.53 11.9
Ours

DENSE
0.91 0.35 1.28 5.83 1.04 2.88

Ours
SPIKES

0.83 0.68 1.22 5.42 0.97 2.65
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publicly as part of the Deep Learning library in Lava, an 
open source neuromorphic software framework2.

The extension generalizes the temporal error credit 
assignment problem for neuron dynamics formulated as a 
linear time-invariant system. For the specific case of RF neu-
ron dynamics represented by the decaying rotation operator 
�e−i�Δt , the temporal error credit assignment is simply the 
decaying rotation operator applied to gradients backward 
in time. This is illustrated in Fig. 10. What is different in 
temporal credit assignment for RF dynamics compared LIF 
neurons is that the error credit sign switches at different 
points in history according to the phase of the RF rotation 
dynamics.

A surrogate function is typically used to approximate the 
function derivative for gradient backpropagation in spiking 
neurons [9, 10]. We extend the concept to relaxation of the 
actual Dirac-Delta function in the derivative term using nas-
cent delta approximation.

where �n(⋅) is the nascent delta approximation. One example 
is �n(x) =

1

an
e
−

|x|
an . This generalization applies to the phase 

spiking mechanism described in Sect. 3.1.
The RF neurons described in Sect. 3.1, are essentially 

linear filters. For deep networks, we introduce an output 

(8)
�H(x)

�x
= �(x) ≈ �n(x)

nonlinearity for the RF neuron following the model proposed 
in [11]. In this model, the RF neuron generates a spike when-
ever its imaginary component exceeds the threshold, follow-
ing which the real component is reset to 0 (Fig. 1c). We find 
that this nonlinear spiking mechanism has better learning 
behavior with backpropagation.

Using SLAYER we trained a hybrid MLP of RF and LIF 
neurons (64-256RF-256RF-242LIF) on the spiking NTIDIG-
ITS [12] audio dataset. The model, with 226K parameters, 
predicts digit utterances with an accuracy of 92.14 ± 0.24% . 
In contrast, the best-known conventional solution using 
LSTM units (643K parameters) achieves an accuracy of 
91.25% [12].

We also tackled the more challenging Google Speech 
Commands dataset [13] (10+2 subset) with both MLP and 
convolutional architectures by first converting the dataset to 

Figure 9   Ground truth optical 
flow from the MVSEC dataset 
(left) compared to our method 
(middle) and EV-FlowNet 
(right).

Figure  10   Complex phase plot showing a forward dynamics of 
resonate and fire neuron. b temporal credit assignment of gradients 
accounting for resonate and fire neuron dynamics.

2  https://​lava-​nc.​org. The lava-dl deep learning library is available 
at https://​github.​com/​lava-​nc/​lava-​dl
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spikes using a publicly available cochlea model [14]. The 
MLP architecture (64-256RF-256RF-288LIF) has 238K 
parameters and achieves an accuracy of 88.97% . An equiva-
lent LIF only architecture with 156K parameters achieved 
an accuracy of 88.03% . A hybrid CNN architecture with five 
RF convolution layers followed by two LIF dense layers, 
achieves 91.74%.

The performance of SLAYER trained networks with other 
existing feed-forward streaming models on Google Speech 
Commands is shown in Fig. 11. It is worth noting that the 
hybrid CNN architecture shows competitive performance 
with sparse spike based communication even compared to 
best performing CNN while requiring about half the param-
eters. The hybrid CNN’s accuracy is comparable to the best 
known recurrent SNN result of 92.10%  [15] with 285K 
parameters even though it is a feed-forward network. We 
acknowledge that non-event based recurrent networks and 
attention based networks yield better accuracy on Google 
Speech Commands. One such example is the Legendre 
Memory Unit which shows an accuracy of 96.9% while 
requiring just 97K parameters (recurrent networks have an 
advantage in parameter count, since they can reuse the same 
weights in the recurrent computations). We expect to close 
the performance gap with further improvements and the abil-
ity to train recurrent RF networks in the future.

3.4 � Cascaded Hopf Resonators

Loihi 2’s programmable architecture allows neuron models 
to unconditionally generate graded spikes at regular inter-
vals, which may be interpreted as samples of analog wave-
forms. An additional nonlinear feedback term can also be 
added to the RF neuron dynamics yielding the Hopf reso-
nator (Fig. 1(c)). In particular, the feedback consists of the 
squared modulus of the complex state variable (9) resulting 
in a cubic nonlinear term that persists even for very weak 
stimuli referred to as “essential nonlinearity” [18]. As the 

stimuli become stronger, the cubic term increases at about 
the same rate so that the nonlinear harmonics produced 
remain almost constant. This behavior is very different from 
a passive nonlinear system and corresponds to an oscillator 
operating near a Hopf bifurcation. A Hopf bifurcation is a 
critical point at which a periodic solution to the differen-
tial equation arises because the system stability switches 
(Fig. 1(d)). The distance to the critical point is adjusted by 
input strength a which offers self-adjusting gain and band-
width control.

Hopf dynamics have wide-ranging signal processing appli-
cations, a classical one being regenerative receivers, which 
have recently seen a revival in low-power wireless applica-
tions [19]. Hopf resonators are also used as active elements 
in models of the auditory pathway up to the auditory nerve 
[20, 21], providing biologically inspired methods for audio 
preprocessing. As signal processing units on Loihi 2, these 
approaches promise simplicity, compactness, and efficiency 
thanks to their many emergent properties.

One model of the cochlea we consider here for Loihi 2 
implementation uses a cascade of Hopf resonators to repre-
sent basilar membrane sections at different frequencies [20]. 
Specifically, each membrane section provides a band-passed 
filtered version of its input to the following lower frequency 
section, and so on.

We begin by modeling a cochlea section using the con-
tinuous formulation

where z ∈ ℂ is the resonator response, �0 ∈ ℝ is the charac-
teristic frequency of the cochlea section, � ∈ ℝ is a param-
eter that controls the Hopf bifurcation, and a ∈ ℂ is the 
external input to the resonator. The output of the model is a 
complex analog quantity. For a Loihi 2 implementation, we 
consider a discrete time version of (9) shown in Fig. 1(c), 
discretized using a 4th order Runge-Kutta method.

We have explored different densities of sections per octave 
and have found that a self-normalizing gain control emerges 
at a critical density. We here show two example densities 
� = 2, 6 the first one before and the second one after the criti-
cal density that occurs at � ≈ 5 . In order to show the emergent 
self-normalization effect, we first need to compute a selectiv-
ity plot for each resonator by sweeping a pure tone into the 
the highest frequency Hopf resonator unit at the beginning 
of the cochlea cascade. The output of the highest frequency 
resonator is then fed to the next highest resonator, and so on. 
By recording the peak of the temporal response to each reso-
nator’s incoming signal, we obtain Fig. 12(a, b). Each subplot 
is showing the selectivity of each resonator in cascade to an 
input tone with amplitude A = {0.01, 0.08, 2, 10} . If we now 
take the envelope of the peak responses of the selectivity plot 
at constant amplitude and density, then we obtain a maximum 

(9)ż = 𝜔0((𝜆 − |z|2 + i)z + a),

Figure  11   Performance comparison of feed-forward networks on 
Google Speech Commands 10+2 subset task [16, 17].
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peak contour for each input tone amplitude along the cascade 
(Fig. 13). At higher densities, the cascading provides a self-
normalizing gain control – signal amplitudes across several 
orders of magnitude of frequency range are normalized to a 
narrow dynamic range (-3dB, 0dB). This self-normalizing 
gain control is a novel observation, an emergent property 
of cascading Hopf resonators at densities larger than 4 per 
octave. For implementation on Loihi 2 and other hardware 
platforms, this represents a very manageable density require-
ment, e.g. a total of no more than 30 resonators is needed to 
cover the entire human auditory range of 5-6 octaves.

4 � Discussion

Loihi 2’s generalized feature set, including a programma-
ble neuron engine, provides far greater flexibility than Loihi 
for exploring novel spiking neural network models. In this 
paper, we have described oscillatory neuron models which 
can be executed on Loihi 2 that go beyond the much-studied 
leaky-integrate-and-fire model. The simulation experiments 
show several potential signal processing applications that can 
be computed using oscillatory neuron models. Using these 
techniques, efficient signal processing can be performed on 
neuromorphic hardware, providing advantages for latency 
and energy constrained applications.

The STFT is widely used in signal processing applications 
for non-stationary signals. The real-time and high throughput 
requirements of these applications make parallel implemen-
tations essential. In terms of computational complexity, the 
graded spike RF network shares the efficiency of previous 
proposals of parallel hardware implementations of the STFT 
based on iterative integration of inputs [22]. By encoding the 
complex coefficients with a graded spike-timing code, we 
also see great reductions in the bandwidth needed to encode 
the signal’s spectral representation and expect similar reduc-
tions in downstream processing on Loihi 2.

The optical flow algorithm we presented is a reformulation 
of the Adelson & Bergen model [7]. Generally, spatiotem-
poral filters can be designed in the complex domain, and 
we described how the oscillatory dynamics of RF neurons 

Figure 12   Cascade of Hopf resonators for various amplitudes (0.01, 
0.08, 2, 10) showing the selectivity of each resonator to incoming 
tones (from dark to lighter solid lines for resonator with lower char-
acteristic frequency). a density of 2 sections per octave b 6 sections/
octave density.

Figure 13   Amplitude nor-
malization using a cascade 
of Hopf resonators. Peak 
output amplitude (y-axis) for 
a cascade of Hopf resonators 
plotted against input stimulus 
frequency (x-axis) for different 
input amplitudes (A). Increas-
ing the number of sections per 
octave from 2 (left) to 6 (right) 
increases the sharpness of the 
normalization tuning.
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can compute these filters on streaming video or the sparse 
events produced by neuromorphic cameras. In conjunction 
with efficient convolutions available on Loihi 2, this approach 
is a simple and efficient way to process video data with spa-
tiotemporal filters. We compared this model to a multi-layer 
convolutional network for estimating optical flow. This con-
volutional network was not designed with any efficiency or 
simplicity goals, yet the very simple model presented here 
reached similar or better performance levels.

The dynamics of the RF neurons, along with the encoding 
of complex coefficients as a graded timing pattern of spikes, 
leads to a system which performs linear complex-valued 
matrix operations. The STFT and optical flow applications are 
essentially linear filtering operations, with only a slight nonlin-
earity in which amplitudes below threshold are not transmitted.

More generally, RF neurons can be modified to perform 
nonlinear transformations. In both deep learning applica-
tions and auditory processing applications inspired by the 
cochlea, nonlinearities are essential. The nonlinearity can 
be introduced by including higher-order terms in the mem-
brane dynamics, or by the spiking and reset mechanisms. 
Other nonlinearities can be used for signal processing algo-
rithms, for example, binary spikes [4], or thresholded graded 
spikes, can be used for nonlinear compression, i.e., clipping, 
of STFT representations.

We have demonstrated that networks of nonlinear RF neu-
ron models can be trained using backpropagation in the deep 
learning paradigm, similar to recent work on the training of 
networks of LIF neurons [9]. We compared our results to other 
approaches that classify streaming data, and achieve similar 
performance. While these feed-forward RF networks do not yet 
achieve state-of-the-art performance, these are nascent mod-
els and improvements may be expected as training methods 
mature, for example with support for recurrent architectures.

Another example of nonlinear signal processing sup-
ported by Loihi 2 is the cascaded-Hopf resonator, in which 
oscillatory units with different resonant frequencies are cou-
pled, and a higher-order feedback term is included in their 
dynamics. In our model inspired by the basilar membrane, 
we have shown that a sufficiently high density of Hopf reso-
nators per octave leads to peak self-normalization, a novel 
emergent property on top of the nonlinear spectral decom-
position of the model. The Hopf resonator cascade offers a 
compact self-normalized spectral decomposition that could 
become an alternative for STFT or MFCC preprocessing in 
future audio applications.
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