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Abstract

The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state vari-
ables, which is distinct from the stateless neuron models used in deep learning. The new version of Intel’s neuromorphic
research processor, Loihi 2, supports an extended range of stateful spiking neuron models with programmable dynamics.
Here, we showcase advanced neuron models that can be used to efficiently process streaming data in simulation experiments
on emulated Loihi 2 hardware. In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier
Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT. In
another example, we describe an algorithm for optical flow estimation using spatiotemporal RF neurons that requires over
90x fewer operations than a conventional DNN-based solution. We also demonstrate backpropagation methods to train
non-linear spiking RF neurons for audio classification tasks, suitable for efficient execution on Loihi 2. We conclude with
another application of nonlinear filtering showing a cascade of Hopf resonators exhibiting computational properties seen
in the cochlea, such as self-normalization. Taken together, this work presents new techniques for an efficient spike-based

spectrogram encoder that can be used for signal processing applications.

Keywords Neuromorphic computing - Resonator neurons - Spiking neural networks - Optic flow - Speech recognition

1 Introduction

In the language of signal processing, biological neurons
are nonlinear time-varying filters. When interconnected
in great numbers, biological neurons give rise to percep-
tion and intelligence, with remarkable energy efficiency.
The recent successes of deep learning hints at the potential
power of neural networks for signal processing, but the char-
acteristics of artificial neural networks have diverged from
their biological counterparts. Conventional artificial neuron
models are vastly simplified compared to biology, with the
rich temporal dynamics of biological neurons reduced to a
point-wise nonlinearity, such as the ReLU function.
Neuromorphic chips, such as Intel’s Loihi [1], can imple-
ment neuron models with a dynamical behavior similar to
biological neurons, and their sparse communication and
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connectivity features support efficient scaling to high dimen-
sional processing. In many cases, Loihi provides orders of
magnitude gains in speed and energy compared to conven-
tional solutions [2]. Today, the value of neuromorphic net-
works as signal processors remains underappreciated and
underexplored.

With Loihi 2, we have augmented Loihi with enhance-
ments aimed at expanding the breadth of signal processing
problems that neuromorphic architectures can support. This
paper discusses some of the enhancements and shares early
examples that showcase the value of Loihi 2’s richer feature
set for intelligent and efficient signal processing applica-
tions. In particular, we highlight how resonating neuron
models can be used for signal processing applications.

After introducing Loihi 2 in the next section, we demon-
strate in simulation experiments different types of linear and
nonlinear resonator units. First, we describe how resonate-
and-fire (RF) neurons can be used in linear filtering appli-
cations of streaming signals. We show how these neurons
can efficiently compute the Short-Time Fourier Transform
(STFT) on audio signals, and how the coefficients can be
encoded and processed with spikes. We then demonstrate
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how RF neurons can be used in vision to estimate optical
flow on event-data through spatio-temporal filters that are
computed in the membrane dynamics. We further describe
how networks of nonlinear RF neurons can be trained with
backpropagation and present early results on the NTIDIG-
ITS and Google Speech Commands datasets. Finally, we
describe a cochlea model based on a cascade of Hopf resona-
tors performing nonlinear spectral decomposition on audio
data. In particular, we find the critical density at which self-
normalizing gain control emerges.

2 Loihi Architecture

Spiking neurons have been modelled as first order differential
equations since Hodgkin and Huxley. Early Neuromorphic Engi-
neers mimicked the dynamics of biological spiking neurons in
silicon using analog electronic circuits [3]. More recently, there
has been a shift towards digital implementations, both in soft-
ware and in silicon, which naturally gives rise to a discrete time
formulation of the internal neuron dynamics. Both Loihi and its
successor, Loihi 2, use this digital approach (see [1] for details).

Loihi implements the discrete Leaky Integrate and Fire
(LIF) neuron model

affl =) wyslt—1] 0
j

w;[t] = A,ult — 11 + a;l¢] )

vl = Ayt — 1]+ u,l1] 3)

where g;[]1is the accumulated synaptic activation for timestep
t,u; and v, represent the i neuron’s current and voltage respec-
tively, and A4, and 4, are the current and voltage decay. When-
ever v;[f] exceeds threshold, a spike is generated (s,[t] = 1)
and the voltage variable is reset to zero (v;[t] = 0). All states
and parameters use fixed precision.

Loihi 2 introduces a more flexible microcode programma-
ble neural engine. Users can allocate variables and execute
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Figure 2 Block diagrams of the discrete computation for the LIF neu-
ron, and RF, Hopf resonators. The Hopf Resonator shows an imple-
mentation of the Euler method, but in practice we use a 4th order
Runge-Kutta.

a wide range of instructions organized as short programs
using an assembly language. These programs have access to
neural state memory, the accumulated synaptic input a; for
the present timestep, random bits for stochastic models, and
a timestep counter for time-gated computation. The instruc-
tion set supports conditional branching, bitwise logic, and
fixed-point arithmetic backed by hardware multipliers.

Within a core, memory limits the number of different neu-
rons which can be implemented. By using lower precision
neuron models, more neurons can be implemented within the
same memory footprint, up to a maximum of 8192 per core.
More complicated neurons can be implemented as longer
programs which access multiple memory addresses for neural
state and synaptic input, and pass information to each other
through the persistent thread state. The microcode engine has
a flexible but finite set of operations and a maximum number
of operations that can be executed each timestep, which may
limit the complexity of neuron models.

(c) (d)
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Figure 1 Response of neuron models used in this paper to an impulse
(spike) at time 0. a A Leaky Integrate and Fire model which spikes
whenever voltage exceeds threshold. b A complex valued Resonate
and Fire model used for spatiotemporal filtering, which spikes when-
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ever z crosses the real axis and real(z) is greater than threshold. ¢ A
complex valued Resonate and Fire model with reset used in deep net-
works. d A complex valued Hopf Resonator with a stable limit cycle.
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Figure 3 The Loihi 2 chip plot
(right) and processing flow for
a single core (left). Incom-
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ing spikes are mapped to lists
of synapse weights which are
accumulated for consumption in
the next timestep. Meanwhile,
neurons update using the previ-
ous timestep’s accumulated

activation and generate spikes
which are routed to other cores
by the Output Axon stage.

Mapping to
synapses

In addition to allowing much richer internal neuron dynam-
ics, the neural engine allows user-defined output nonlinearities
and reset mechanisms, and different from biological spiking,
spikes in Loihi can carry a 32-bit integer payload, a format we
refer to as graded spikes. The conditions determining when
a neuron emits a spike, as well as the optional graded spike
payload, are specified as part of the neuron’s programming.
Loihi 2 also supports non-spiking neurons that send a state
variable, such as its membrane potential, unconditionally on
every timestep or at regular sampling intervals. These are all
new features in Loihi 2 which we make use of in this paper.
Figure 1 shows the impulse (spike) response of the different
Loihi 2 neuron models described in this paper, including their
spiking output and reset behavior. Figure 2 shows the com-
putation associated with these neuron models. While the LIF
model uses a two stage cascade of filters, the RF and Hopf
Resonator models use two cross-coupled filters to generate the
real and imaginary components (see Fig. 3).

Loihi 2 further provides richer connectivity features than
its predecessor. Synaptic activations can be computed from
graded spikes, support for convolutional connections has
been optimized, and new features allow procedural genera-
tion of stochastic synapses and separable synaptic matrices.
Additional details of the Loihi 2 architecture can be found
in the Loihi 2 Technology Brief'.

3 Applications

3.1 Resonate-and-Fire Neurons for Spectral
Analysis

The Resonate-and-Fire (RF) neuron is an extension of the
standard LIF model, newly enabled in Loihi 2. The RF neu-
ron is a damped harmonic oscillator with a spiking mecha-
nism. The internal state is complex-valued z = u + iv, where
the variables u and v represent the real and imaginary parts.

! Taking Neuromorphic Computing to the Next Level with Loihi 2

Accumulated
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Each RF neuron is parameterized by a resonant frequency
w, and a decay factor 4 € (0, 1), with dynamics defined by

2] = Ae“Piz, [t — 1] + a,[1] “)

where the last term a[¢] is the synaptic input and Ael®?!

defines the oscillation kernel.

When starting from an initial condition of z;[f] = 0 and
assuming no reset mechanism, the dynamics of an RF neu-
ron can be rewritten in the form

7 [t] = Z "M, [t — n) )

n

which is recognizable as one term for frequency w of the
discrete Short-Time Fourier Transform (STFT) of a,[¢] with
an exponential window. Thus, a bank of RF neurons each at
different frequencies can then be used to compute the STFT.

The key feature of a spiking neuron is the temporally
sparse pulsed output. Recently, it was shown how a spike-
timing code can be used to represent the phases of complex
variables [4]. Based on this, the complex-valued coefficients
computed in the STFT can be encoded as a spike pattern.
This is done by configuring a spiking condition for each RF
neuron such that a spike is generated whenever the real-
part exceeds a threshold as the imaginary-part crosses zero.
By sending the magnitude Izl as the payload of a graded
spike, the combination of spike time and spike payload fully
encodes the STFT complex coefficients. Conveniently, the
magnitude is equivalent to the real-component of the state
when the RF neuron’s spike is triggered, which means no
extra computation is required to transmit the magnitude.
This encoding permits downstream neurons to potentially
perform complex-valued matrix arithmetic.

Taken together, a bank of RF neurons naturally computes
the STFT of an input signal through the internal dynamics
and outputs the complex-valued coefficients as a timing pat-
tern of graded spikes. By encoding a signal’s spectrum in
a sparse, event-driven manner with spikes, the communica-
tion bandwidth is automatically compressed without increas-
ing latency. In the example shown in Fig. 4, the RF imple-
mentation reduces output bandwidth by 47x compared to a
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Figure 4 Using simulated RF neurons compatible with Loihi 2 to
approximate the STFT of an audio chirp and reconstructing the input
signal from the spike responses. A: The input chirp. B: Real compo-
nent of the internal dynamics of two RF neurons with different res-

conventional STFT producing a spectrogram vector on each
time step. This advantage is partially because the RF neuron
system naturally reduces output bandwidth proportional to
the resonant frequency, akin to the wavelet transform [5].
We used RF neurons to produce STFTs for several exam-
ples in the Google Speech Commands dataset (Fig. 5). The
Spiking STFT produced by the RF neurons can be inverted
by convolving the graded spikes with the neuron’s oscilla-
tion kernel and integrating across the population. We varied
the spiking threshold of the RF neurons and measured the
reconstruction correlation as a function of spikes produced.
We compared this to the conventional STFT by excluding
the smallest coefficients and performed inverse STFT to
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Figure 5 Spiking STFT for google speech command (top). Conven-
tional STFT is shown compared to RF based STFT (middle). Recon-
struction algorithm reproduces original signal (bottom). Recon-
struction efficiency of RF model (cyan) is compared to thresholded
conventional STFT (black).
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onant frequencies. C: Spike raster showing the output timing for all
100 neurons in response to the stimulus. D: Reconstruction (orange)
of the original signal (blue) E: Comparison to the STFT.

measure the reconstruction correlation. Reconstructions
from the RF-generated spikes saturate to 94% correlation
with only five thousand spikes. A conventional STFT com-
putation generates over 3 million complex values over the
same period. Computing a reconstruction from only the larg-
est 500K nonzero coefficients maintains a high reconstruc-
tion correlation of 98%, but the reconstruction correlation
drops to ~63% if only the largest 5,000 values are preserved.
This shows that the RF implementation uses spike timing
to encode the STFT information more efficiently than the
conventional STFT.

3.2 Resonate-and-Fire Neurons for Estimating
Optical Flow

While the membrane dynamics of a neuron can implement a
temporal filter, the synapses to a neuron can implement a spa-
tial filter. By combining the two we can compute separable
spatiotemporal filters. Spatiotemporal filtering of this type
has many potential signal processing applications, and it is
especially efficient on neuromorphic hardware when process-
ing sparse spiking data produced by other spiking neurons,
or by Dynamic Vision Sensors (DVS) [6]. As a showcase,
we demonstrate how RF neurons can be used to compute
spatiotemporal filters on standard video data or streaming
event data, and to estimate optical flow with motion energy
algorithms [7].

The opponent energy model [7] consists of separate spa-
tial and temporal filters, each with either even (blue) or odd
(orange) symmetry (Fig. 6, left). This is mathematically
equivalent to applying complex-valued filters to the input
and the computation can be carried out with RF neurons
(Fig. 6, right).

The spatiotemporal filters used in the model are complex-
valued Gabor filters which have a preferred spatial frequency
o, and orientation @ (Fig. 7). The temporal frequency of
the filter w, is inherited from the resonant frequency of the
RF neuron. The filter values are encoded as complex-valued
synaptic weights that feed into the RF neurons.
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Figure 6 The original Adelson and Bergen Opponent Energy model
(left) consisting of separable spatial f{) and temporal 4() components
with orange filters out of phase with the blue filters. The equivalent
model implemented using complex (purple) spatial and temporal fil-
ters.

Input pixel values or events from the DVS sensor, repre-
sented as s in Fig. 6, flow through the complex filters into
a layer of resonate-and-fire neurons. For DVS input events,
each input spike results in the complex-valued synaptic
weight to be integrated by an RF neuron, where the real and
imaginary parts of the weight are directly added to the real
and imaginary state of the RF neuron. In the case of frames,
a separate graded spike is used to represent the intensity
of each pixel, and the activation « is the accumulated dot-
product between the filter and input frame, which then gets
integrated by an RF neuron. The filter with opposite preferred
direction is computed by a second RF neuron that integrates
the complex conjugate of the input activation a, simplifying
the computation and storage requirements of the filters.

The dynamics of the RF neuron integrating the complex-
valued synaptic inputs then directly computes the coeffi-
cient of each spatiotemporal filter. If the input spikes are not

Spatial Components

Figure 7 The complex-valued spatial filters combined with the RF
neuron dynamics is used for spatiotemporal filtering.
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Figure 8 Integration of complex filters through dynamics of RF neu-
rons. Input spikes (black) cause jumps in RF neuron’s membrane
potential based on synaptic weight (colored arrows).

aligned with the spatiotemporal pattern of the filter, then the
RF neuron will have small sub-threshold dynamics (Fig. 8,
left), and no spike indicates O as the filter coefficient. But
if the input is aligned with the filter, then each input causes
the magnitude of the internal state to grow. If sufficiently
coherent, then the neuron will output a graded spike. The
timing of the output spike signals the phase of the complex
filter coefficient, and the graded value carries the magnitude.

The filters are applied across the image as a convolution,
using Loihi 2’s support for weight reuse of convolutional
kernels. Input pixel events are filtered by shared kernel
weights activating unique RF neurons at different tempo-
ral frequencies that are spatially mapped across the image.
This provides a resource efficient implementation, which is
important given Loihi 2’s limited synaptic memory capacity.

After filtering, the motion energy model relies only on
the magnitudes of the complex filter coefficients. First, the
opponent energy Ey, , is calculated based on the differ-
ence in magnitude of oppositely tuned filters. This difference
can be computed by a downstream neuron that receives the
graded input spikes of the two corresponding RF neurons.
Loihi 2 supports a more efficient implementation in which a
single neuron program directly implements the full opponent
energy calculation. In this instantiation, a single neuron pro-
gram maintains the state variables of two oppositely-tuned
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Table 1 Optical flow model parameters.

Parameter Units Symbol Count  Values
Receptive Field Size  pix - - (64, 64)
Timestep Duration sec At - 0.032
Spatial Frequency rad/pix o, n,= = 2"5_"6
Temporal Frequency rad/sec o, n, =35 o, =4rk
Orientations rad 0 ng=4 g =k

Ny

RF neurons, and directly outputs the opponent energy values
as a graded spike.

Once the opponent energy E is calculated for one combi-
nation of orientation 6, spatial frequency w,, and temporal
frequency w,, the opponent energies from multiple filters
of different frequencies and orientations must be combined
to arrive at an optical flow estimate. We perform this step
in post-processing off-chip. Each RF neuron with spatial
frequency w,, temporal frequency w, and orientation 6 has a
preferred input velocity vector v € R?, which is orthogonal
to the orientation of the neuron’s spatial receptive field:
Vo0 = [% cos 6, Z)T: sin 0] (6)

X

Stimuli moving at the neuron’s preferred velocity and direc-
tion produce the highest magnitude inner product with its
spatiotemporal receptive field. To estimate the optical flow
f € R? at a given pixel location, the neurons’ preferred
velocities are weighted by their normalized opponent energy
at that pixel location:

Z Va)x,a),,HEwX,m,,H
w,,w,,0

Z wa,w,,G

,,0,,0

f:

@)

We implement spatiotemporal filters with Gabor shaped
receptive fields of different orientations using the param-
eters in Table 1 to estimate optical flow from event data. The
model was evaluated on the Multi View Stereo Event Cam-
era (MVSEC) dataset [8] and compared to EV-FlowNet, a
state-of-the-art model for estimating optical flow from event
data. EV-FlowNet is a deep stateless neural network trained
under self-supervision. Our model, in contrast, requires
no training data, and processes the event data as it arrives,

rather than buffering input data and processing it as voxels
in a spatiotemporal tensor.

We compare to EV-FlowNet,, as it achieves the best per-
formance across the test sequences (see [8] for details of EV-
FlowNet). We evaluate the models using the methods described
in [8], calculating the Average Endpoint Error (AEE; the aver-
age distance between computed flow vectors fand the ground-
truth flow vectors) and outlier percentage (percentage of flow
vectors with AEE > 3 pixels).

Table 2 compares results for two versions of our model.
The dense version estimates flow directly from the neuron’s
internal state in a single Loihi 2 program. The spikes version
uses only the graded spikes that are output from RF neurons.
Across the three indoor flying sequences from [8], our models
achieves better performance than EV-FlowNet on these two
metrics. Figure 9 illustrates a single representative frame.

Compared to EV-FlowNet, our model has less than half the
neurons, although each RF neuron update is more expensive (4
MAC:s versus 1 ReLU). However, computation in EV-FlowNet
is dominated by synaptic ops, which outnumber the neuron
updates by 2000x. Our model has over 10x fewer synapses,
our synaptic ops are cheaper (a complex AC versus a MAC),
and sparse synapse activation results in 93x fewer synaptic ops
on the MVSEC sequences tested.

To compute optical flow from the neuron state, the neuron
must square its magnitude to compute the opponent energy
(Fig. 6), and the energies must be combined in post-processing
off-chip. Off-chip post-processing (6) introduces another 2
MAGC:s per neuron and one inversion per pixel, which is still
dwarfed by the synaptic ops. For comparison, readout neurons
in EV-FlowNet require computing tanh twice per pixel.

The RF optical flow model benefits from two key proper-
ties. The event-based operation exploits sparsity of the input
spike data to reduce synaptic ops, and an overlapping region
between two subsequent temporal windows only needs to be
processed once, saving further ops.

3.3 Using Backpropagation to Train RF Neurons

We have extended the Spike Layer Error Reassignment
(SLAYER) tool [9], which was previously used to train LIF
neural networks on Loihi, to handle complex and oscillatory
models with graded spikes, including the RF neuron, for
Loihi 2. This new implementation of SLAYER is available

Table 2 Average Endpoint

Frror on MVSEC. Indoor Flying 1 Indoor Flying 2 Indoor Flying 3
AEE % outlier AEE % outlier AEE % outlier
EV — FlowNet,g 1.03 22 1.72 15.1 1.53 11.9
Ourspense 0.91 0.35 1.28 5.83 1.04 2.88
Oursgpikgs 0.83 0.68 1.22 542 0.97 2.65

Bold indicates best performing model
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Figure 9 Ground truth optical
flow from the MVSEC dataset
(left) compared to our method
(middle) and EV-FlowNet
(right).

Ground Truth Flow

publicly as part of the Deep Learning library in Lava, an
open source neuromorphic software framework>.

The extension generalizes the temporal error credit
assignment problem for neuron dynamics formulated as a
linear time-invariant system. For the specific case of RF neu-
ron dynamics represented by the decaying rotation operator
Ae @At the temporal error credit assignment is simply the
decaying rotation operator applied to gradients backward
in time. This is illustrated in Fig. 10. What is different in
temporal credit assignment for RF dynamics compared LIF
neurons is that the error credit sign switches at different
points in history according to the phase of the RF rotation
dynamics.

A surrogate function is typically used to approximate the
function derivative for gradient backpropagation in spiking
neurons [9, 10]. We extend the concept to relaxation of the
actual Dirac-Delta function in the derivative term using nas-
cent delta approximation.

0H(x)
ox

=o(x) = ¢,(x) ®)

where ¢, (+) is thﬁ nascent delta approximation. One example

is ¢,(x) = aie_“in. This generalization applies to the phase
spiking mechanism described in Sect. 3.1.

The RF neurons described in Sect. 3.1, are essentially
linear filters. For deep networks, we introduce an output

2 https://lava-nc.org. The 1ava-d1 deep learning library is available
at https://github.com/lava-nc/lava-dl

Ours EV-FlowNet

nonlinearity for the RF neuron following the model proposed
in [11]. In this model, the RF neuron generates a spike when-
ever its imaginary component exceeds the threshold, follow-
ing which the real component is reset to 0 (Fig. 1c). We find
that this nonlinear spiking mechanism has better learning
behavior with backpropagation.

Using SLAYER we trained a hybrid MLP of RF and LIF
neurons (64-256RF-256RF-242LIF) on the spiking NTIDIG-
ITS [12] audio dataset. The model, with 226K parameters,
predicts digit utterances with an accuracy of 92.14 + 0.24%.
In contrast, the best-known conventional solution using
LSTM units (643K parameters) achieves an accuracy of
91.25% [12].

We also tackled the more challenging Google Speech
Commands dataset [13] (1042 subset) with both MLP and
convolutional architectures by first converting the dataset to

*  spike

imag
imag gradient

5 0
real real gradient

() (b)

Figure 10 Complex phase plot showing a forward dynamics of
resonate and fire neuron. b temporal credit assignment of gradients
accounting for resonate and fire neuron dynamics.
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Figure 11 Performance comparison of feed-forward networks on
Google Speech Commands 1042 subset task [16, 17].

spikes using a publicly available cochlea model [14]. The
MLP architecture (64-256RF-256RF-288LIF) has 238K
parameters and achieves an accuracy of 88.97%. An equiva-
lent LIF only architecture with 156K parameters achieved
an accuracy of 88.03%. A hybrid CNN architecture with five
RF convolution layers followed by two LIF dense layers,
achieves 91.74%.

The performance of SLAYER trained networks with other
existing feed-forward streaming models on Google Speech
Commands is shown in Fig. 11. It is worth noting that the
hybrid CNN architecture shows competitive performance
with sparse spike based communication even compared to
best performing CNN while requiring about half the param-
eters. The hybrid CNN’s accuracy is comparable to the best
known recurrent SNN result of 92.10% [15] with 285K
parameters even though it is a feed-forward network. We
acknowledge that non-event based recurrent networks and
attention based networks yield better accuracy on Google
Speech Commands. One such example is the Legendre
Memory Unit which shows an accuracy of 96.9% while
requiring just 97K parameters (recurrent networks have an
advantage in parameter count, since they can reuse the same
weights in the recurrent computations). We expect to close
the performance gap with further improvements and the abil-
ity to train recurrent RF networks in the future.

3.4 Cascaded Hopf Resonators

Loihi 2’s programmable architecture allows neuron models
to unconditionally generate graded spikes at regular inter-
vals, which may be interpreted as samples of analog wave-
forms. An additional nonlinear feedback term can also be
added to the RF neuron dynamics yielding the Hopf reso-
nator (Fig. 1(c)). In particular, the feedback consists of the
squared modulus of the complex state variable (9) resulting
in a cubic nonlinear term that persists even for very weak
stimuli referred to as “essential nonlinearity” [18]. As the

@ Springer

stimuli become stronger, the cubic term increases at about
the same rate so that the nonlinear harmonics produced
remain almost constant. This behavior is very different from
a passive nonlinear system and corresponds to an oscillator
operating near a Hopf bifurcation. A Hopf bifurcation is a
critical point at which a periodic solution to the differen-
tial equation arises because the system stability switches
(Fig. 1(d)). The distance to the critical point is adjusted by
input strength a which offers self-adjusting gain and band-
width control.

Hopf dynamics have wide-ranging signal processing appli-
cations, a classical one being regenerative receivers, which
have recently seen a revival in low-power wireless applica-
tions [19]. Hopf resonators are also used as active elements
in models of the auditory pathway up to the auditory nerve
[20, 21], providing biologically inspired methods for audio
preprocessing. As signal processing units on Loihi 2, these
approaches promise simplicity, compactness, and efficiency
thanks to their many emergent properties.

One model of the cochlea we consider here for Loihi 2
implementation uses a cascade of Hopf resonators to repre-
sent basilar membrane sections at different frequencies [20].
Specifically, each membrane section provides a band-passed
filtered version of its input to the following lower frequency
section, and so on.

We begin by modeling a cochlea section using the con-
tinuous formulation

z=wy((4 - 2> + Dz + a), )

where z € C is the resonator response, @, € R is the charac-
teristic frequency of the cochlea section, 4 € R is a param-
eter that controls the Hopf bifurcation, and a € C is the
external input to the resonator. The output of the model is a
complex analog quantity. For a Loihi 2 implementation, we
consider a discrete time version of (9) shown in Fig. 1(c),
discretized using a 4th order Runge-Kutta method.

We have explored different densities of sections per octave
and have found that a self-normalizing gain control emerges
at a critical density. We here show two example densities
6 = 2, 6the first one before and the second one after the criti-
cal density that occurs até = 5. In order to show the emergent
self-normalization effect, we first need to compute a selectiv-
ity plot for each resonator by sweeping a pure tone into the
the highest frequency Hopf resonator unit at the beginning
of the cochlea cascade. The output of the highest frequency
resonator is then fed to the next highest resonator, and so on.
By recording the peak of the temporal response to each reso-
nator’s incoming signal, we obtain Fig. 12(a, b). Each subplot
is showing the selectivity of each resonator in cascade to an
input tone with amplitude A = {0.01,0.08, 2, 10}. If we now
take the envelope of the peak responses of the selectivity plot
at constant amplitude and density, then we obtain a maximum
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Figure 12 Cascade of Hopf resonators for various amplitudes (0.01,
0.08, 2, 10) showing the selectivity of each resonator to incoming
tones (from dark to lighter solid lines for resonator with lower char-
acteristic frequency). a density of 2 sections per octave b 6 sections/
octave density.

peak contour for each input tone amplitude along the cascade
(Fig. 13). At higher densities, the cascading provides a self-
normalizing gain control — signal amplitudes across several
orders of magnitude of frequency range are normalized to a
narrow dynamic range (-3dB, 0dB). This self-normalizing
gain control is a novel observation, an emergent property
of cascading Hopf resonators at densities larger than 4 per
octave. For implementation on Loihi 2 and other hardware
platforms, this represents a very manageable density require-
ment, e.g. a total of no more than 30 resonators is needed to
cover the entire human auditory range of 5-6 octaves.

4 Discussion

Loihi 2’s generalized feature set, including a programma-
ble neuron engine, provides far greater flexibility than Loihi
for exploring novel spiking neural network models. In this
paper, we have described oscillatory neuron models which
can be executed on Loihi 2 that go beyond the much-studied
leaky-integrate-and-fire model. The simulation experiments
show several potential signal processing applications that can
be computed using oscillatory neuron models. Using these
techniques, efficient signal processing can be performed on
neuromorphic hardware, providing advantages for latency
and energy constrained applications.

The STFT is widely used in signal processing applications
for non-stationary signals. The real-time and high throughput
requirements of these applications make parallel implemen-
tations essential. In terms of computational complexity, the
graded spike RF network shares the efficiency of previous
proposals of parallel hardware implementations of the STFT
based on iterative integration of inputs [22]. By encoding the
complex coefficients with a graded spike-timing code, we
also see great reductions in the bandwidth needed to encode
the signal’s spectral representation and expect similar reduc-
tions in downstream processing on Loihi 2.

The optical flow algorithm we presented is a reformulation
of the Adelson & Bergen model [7]. Generally, spatiotem-
poral filters can be designed in the complex domain, and
we described how the oscillatory dynamics of RF neurons

Figure 13 Amphtude nor- ) i 2 sections 6 sections —A=0.01
malization using a cascade 3 2.0 2.01 —A=0.02
of Hopf resonators. Peak = —A=0.04
output amplitude (y-axis) for g- 1.5+ 1.5- A=0.08
a cascade of Hopf resonators < A=0.10

. . - A=0.20
plotted against input stimulus 5 1.0 1.0 «oe ————— A=0.40
frequency (x-axis) for different g \ A=0.80
input amplitudes (A). Increas- 8 0.5- a 0.5 A=1.00
ing the number of sections per _N . ‘ A=400
octave from 2 (left) to 6 (right) —————— ————— ' ————— ————— A=4.00
increases the sharpness of the 103 104 103 104

normalization tuning.

Freq [Hz]
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can compute these filters on streaming video or the sparse
events produced by neuromorphic cameras. In conjunction
with efficient convolutions available on Loihi 2, this approach
is a simple and efficient way to process video data with spa-
tiotemporal filters. We compared this model to a multi-layer
convolutional network for estimating optical flow. This con-
volutional network was not designed with any efficiency or
simplicity goals, yet the very simple model presented here
reached similar or better performance levels.

The dynamics of the RF neurons, along with the encoding
of complex coefficients as a graded timing pattern of spikes,
leads to a system which performs linear complex-valued
matrix operations. The STFT and optical flow applications are
essentially linear filtering operations, with only a slight nonlin-
earity in which amplitudes below threshold are not transmitted.

More generally, RF neurons can be modified to perform
nonlinear transformations. In both deep learning applica-
tions and auditory processing applications inspired by the
cochlea, nonlinearities are essential. The nonlinearity can
be introduced by including higher-order terms in the mem-
brane dynamics, or by the spiking and reset mechanisms.
Other nonlinearities can be used for signal processing algo-
rithms, for example, binary spikes [4], or thresholded graded
spikes, can be used for nonlinear compression, i.e., clipping,
of STFT representations.

We have demonstrated that networks of nonlinear RF neu-
ron models can be trained using backpropagation in the deep
learning paradigm, similar to recent work on the training of
networks of LIF neurons [9]. We compared our results to other
approaches that classify streaming data, and achieve similar
performance. While these feed-forward RF networks do not yet
achieve state-of-the-art performance, these are nascent mod-
els and improvements may be expected as training methods
mature, for example with support for recurrent architectures.

Another example of nonlinear signal processing sup-
ported by Loihi 2 is the cascaded-Hopf resonator, in which
oscillatory units with different resonant frequencies are cou-
pled, and a higher-order feedback term is included in their
dynamics. In our model inspired by the basilar membrane,
we have shown that a sufficiently high density of Hopf reso-
nators per octave leads to peak self-normalization, a novel
emergent property on top of the nonlinear spectral decom-
position of the model. The Hopf resonator cascade offers a
compact self-normalized spectral decomposition that could
become an alternative for STFT or MFCC preprocessing in
future audio applications.
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